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ABSTRACT 

Packing of raw materials in work environments is a known source of potential health 

impacts (respiratory, cardiovascular) due to exposure to airborne particles. This activity 

was selected to test different exposure and risk assessment tools, aiming to 

understand the effectiveness of source enclosure as a strategy to mitigate particle 

release. Worker exposure to particle mass and number concentrations was monitored 

during packing of 7 ceramic materials in 3 packing lines in different settings, with low 

(L), medium (M) and high (H) degrees of source enclosure. Results showed that 

packing lines L and M significantly increased exposure concentrations (119-609 µg m-3 

respirable, 1150-4705 µg m-3 inhalable, 24755-51645 cm-3 particle number), while non-

significant increases were detected in line H. These results evidence the effectiveness 

of source enclosure as a mitigation strategy, in the case of packing of ceramic 

materials. Total deposited particle surface area during packing ranged between 5.4-
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11.8x105 µm2 min-1, with particles depositing mainly in the alveoli (51-64%) followed by 

head airways (27-41%) and trachea bronchi (7-10%). The comparison between the 

results from different risk assessment tools (Stoffenmanager, ART, NanoSafer) and the 

actual measured exposure concentrations evidenced that all of the tools overestimated 

exposure concentrations, by factors of 1.5-8. Further research is necessary to bridge 

the current gap between measured and modelled health risk assessments. 

KEYWORDS: exposure, non-communicable disease, workplace, human health 

impacts, modelling, ventilation. 

1. INTRODUCTION 

Exposure to particulate matter (PM) is known to cause adverse health effects such as 

respiratory and cardiovascular non-communicable diseases (Landrigan et al., 2017). 

The finest fractions (with aerodynamic particle diameter Dp ≤ 2.5 µm) are considered 

the most harmful for human health (Gakidou et al., 2017; Landrigan et al., 2017; World 

Health Organization, 2016). In workplace settings, ceramic industry workers are known 

to suffer from work-related asthma due to airborne dust inhalation (Kurt et al., 2018). 

Elements such as Cr, Cd or Pb were detected in ceramic workers blood and urine 

samples in higher amounts than in control workers, causing a diminution of lung 

function and oxidative stress (Hormozi et al., 2018; Shouroki et al., 2015). Workers in 

the ceramic sector can also be exposed to respirable crystalline silica (RCS) dust 

which was found to cause silicosis and oxidative damage in workers (Anlar et al., 2017; 

Nardi et al., 2018). Moreover, RCS has been recently classified as carcinogenic for 

humans (Directive 2017/2398/EC). Reducing worker exposure to RCS is paramount 

and efforts are being carried out to reduce not only exposure but also toxicity (e.g., by 

using organosilane coatings; Ziemann et al. (2017). 

Industrial bag filling, packing and pouring processes are high exposure risk activities in 

the ceramic sector. Studies in different industrial sectors report from very low to high 
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levels of worker exposure to particles, e.g, during pouring and packing of fertilizers, 

paint pigments, TiO2, carbon black, fullerenes and carbon nanofibers (Ding et al., 2017; 

Evans et al., 2013, 2010; Fujitani et al., 2008; Koivisto et al., 2012; Koivisto et al., 2015; 

Koponen et al., 2015; Kuhlbusch et al., 2004; Ribalta et al., 2019) , as well as packing 

and pouring of cement materials (Notø et al., 2018; Peters et al., 2008). The literature 

is increasing and emissions are known to be influenced by numerous parameters 

including powder properties, amount of material handled, type of processes, localized 

controls and number of repetitions (Fransman et al., 2011; Koponen et al., 2015; Van 

Tongeren et al., 2011). However, additional studies are still necessary. Specifically, 

studies providing real–world experimental data on dust emissions from different 

packing lines and materials are especially valuable to quantitatively assess the 

relevance of process parameters, as well as to generate input data which may be 

subsequently used in workplace air modelling approaches. An example of this kind of 

work may be found in Koponen et al. (2015), where particle release was studied during 

pouring of different materials and amounts, and using different types of mixing tanks. 

In this context, packing of 7 widely used raw materials in the ceramic industry with 

potential impacts on human health was studied in 3 industrial packing lines equipped 

with different mitigation measures. A discussion on different methods available to 

determine the statistical significance of particle emissions is presented (Asbach et al., 

2012 and Kaminski et al., 2015; ARIMA time series approach in Klein Entink et al. 

(2011); and more conventional statistical tests, e.g, t test, Mann-Whitney “U” test, 

ANOVA, Fonseca et al., 2018), assessing their applicability to high-variability, coarse 

particle emission scenarios. Finally, monitored concentrations are compared to results 

from 3 of the most widely used screening tools for risk assessment (Stoffenmanager, 

ART and NanoSafer v1.1). Stoffenmanager and ART, are tools recommended by the 

ECHA (ECHA, 2016) for tier 1-2 risk assessment of chemical hazards (Fransman et al., 

2011; Tielemans et al., 2008a). 



4 
 

This work aims to (1) monitor real-world occupational exposure concentrations to 

particles during packing of different materials in a ceramic industry plant; (2) report 

inhalation doses in terms of particle number, mass and surface area to link exposure to 

health outcomes; (3) explore the applicability of different methods to determine the 

statistical significance of coarse particle emissions, and (4) contribute to reducing the 

gap between measured and modelled exposure concentrations, with the aim to 

improve the performance of human risk assessment models in real world scenarios.  

2. METHODOLOGY 

2.1. Work environment 

The measurements were carried out during packing of 7 ceramic materials (2 clays, 2 

feldspars, 2 kaolin and 1 quartz) in 3 different packing lines, between the 14th and 28th 

of February 2018 at 2 industrial settings, named as #1 and #2 (for confidentiality 

reasons) and located in the vicinity of Valencia, Spain (Fig. 1). All materials are highly 

used in the ceramic industry, and thus representative of this sector. The 3 packing lines 

are representative of 3 different levels of source containment, with low, medium and 

high mitigation strategies and referred to as L, M and H respectively. 

 Industrial plant #1 (Fig. 1(a)): Packing lines L and M were located in plant #1 

which has a total volume (total surface area x height) of 2100 m3 (Figure 1). Packing of 

big bags (1200 kg) was carried out through a cylindrical opening at a 400-800 kg min-1 

flow depending on the material being packed. Packing line L was not enclosed and had 

no closing system to attach the bag to the feed funnel whereas packing line M was not 

enclosed but had a partially closing system to attach the bag to the feed funnel 

preventing release of airborne dust; (Supplemental Fig. S1(a) and (b)). Both packing 

lines were equipped with a local exhaust ventilation system (LEV), with a flow rate of 

18000 m3 h-1 (value provided by the company), and a subsequent bag filter. 

Additionally, plant #1 was naturally ventilated with air coming from outdoors via doors 
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(flow rate 187-725 m3 h-1, experimentally measured) which were always open. 

Experimentally determined total air exchange per hour (ACH) was 9 h-1. Packing lines L 

and M were not operated at the same time.  

 Industrial plant #2 (Fig. 1(b)): with a total volume (total surface area x height) of 

420 m3 (Figure 1), it contained packing line H where packing of small bags (20-25 kg) 

was carried out through a lateral cylindrical opening at 75 kg min-1 flow. The packing 

line was not enclosed but the bag was completely attached to the feed funnel during 

the bag filling process (Supplemental Fig. S1(d)), and was equipped with a LEV system 

(flow rate of 2400 m3 h-1, value provided by the company) and a subsequent bag filter, 

meaning that particle emissions were much more mitigated than in lines L and M in 

industrial plant #1. In addition, the plant #2 was naturally ventilated through a pair of 

doors (flow rate 386-437 m3 h-1, experimentally measured) with a total experimentally 

determined ACH of 7 h-1. 

During packing, worker’s tasks were to (1) manually place a pallet and an empty bag in 

the packing area (Supplemental Fig. S1(a) and (b)); (2) control and guarantee the 

correct functioning of the line during the packing process, with the worker standing at 

approximately 2 m from the emission source, and (3) manually close the bag except in 

packing line H (Supplemental Fig. S1(c)). Diesel-powered forklifts were used to move 

the filled bags to the storage area; this task was usually carried out by another worker.  

A summary of the packing lines operated each day, the materials used and the number 

of repetitions monitored, is described in Table 1. 

2.2. Materials  

Clay 1 and clay 2 consist of > 90% of clay (CAS: 999999-99-4). The main components 

of Feldspar 1 and 2 (> 90%) is feldspar (CAS: 68476-25-5) with a RCS content 

between 1-10%, determined using the SWeRF method.  The main component of 

Quartz 1 is quartz > 95% (CAS: 014808-60-7). Kaolin 1 and 2 are composed by > 90% 
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kaolinite (CAS: 1332-58-7) and < 1% quartz. The true and bulk density of all materials 

is between 2.5-2.6 and 0.9-1.5 g cm-3, respectively. Materials characteristics and 

chemical composition are shown in Table 1 and Supplemental Table S1. 

2.3. Dustiness  

Material dustiness was assessed by using the continuous drop (C.D) standard method 

(EN 15051) (Supplemental Fig. S2).  

The C.D device, made of stainless steel, consists of a cylindrical pipe through which air 

circulates in an upward direction with a volume flow rate of 53 l min-1 (López-Lilao et 

al., 2015). Sampling heads for inhalable (designed by Institut für Gefahrstoff-

Forschung-IGF) and respirable (FSP-2, BGIA) fractions are located slightly above the 

discharge position of the material. Samples for gravimetric measurements of inhalable 

and respirable fractions were collected on cellulose thimbles, single thickness, 10x50 

mm and PVC filters of 37 mm and 5 µm of porosity respectively.  

The experiments were repeated 2 times to ensure results repeatability and total 

duration of each test was 10 minutes. 

2.4. Real time measurements 

Particle number and mass concentrations were monitored in real time by using mobility 

and optical particle sizers, aerosol photometers, diffusion chargers and a condensation 

particle counter (Table 2). Air flows in the plant (WA) were experimentally measured 

with a Weather Transmitter WXT536, WXT530 Series, Vaisala, Helsinki, Finland. The 

uncertainties of the portable instruments are reported in Viana et al. (2015). Calibration 

of the Grimm laser spectrometers (Mini-LAS and Mini-WRAS) followed the procedures 

recommended by the manufacturer and were also calibrated with regard to gravimetric 

reference samples collecting ambient aerosols. It should be noted that this kind of 

calibration was therefore not carried out with the same aerosol as monitored in the 
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present work, which would be the advisable procedure for any workplace exposure 

assessment (PD CEN/TR 16013 - 2:2010). Monitoring was conducted in the worker 

area (WA), indoors, and outdoors (Fig. 1). The instruments were placed on a portable 

table at approximately 1 m height (instrument inlets being at 1.5 m above the ground 

level and at 1.5-2 m from the emission source), and were used without connecting any 

tubing to the inlets  Thus, measurements were considered representative of exposure 

but not strictly breathing zone (Asbach et al., 2012). All instruments were synchronized 

prior to the measurements and intercompared (Supplemental Table S2). 

In the industrial plant #1, particle concentrations were measured for 2/3 batch 

repetitions of 20 bags each (each batch was between 1 and 2 h). Conversely, in the 

industrial plant #2, concentrations were measured for 4 to 5 h of continuous activity 

(packing). Total packing for all materials lasted between 3-5 h (162-350 min) (Table 1). 

Additionally, 20-30 min of pre-activity concentrations was measured for each day. 

During the lunch break, which was between 12:00-15:00 h, packing was not ongoing. 

2.5. Particle collection and analysis 

Particles emitted during packing were collected in the WA onto Au grids (Quantifolil ® 

with 1 µm diameter holes – 4 µm separation of 200 mesh). The grids were attached to 

polycarbonate filters placed in a sampling cassette (SKC INC., USA, 1/8 in. inlet 

diameter and 25 mm filter Ø). The cassette was connected to a Leland pump with an 

operating flow rate of 3 l min-1. The morphology and primary particle size of the 

particles collected were determined using a field emission scanning electron 

microscope (FESEM) FEI CUANTA 200F. 

Respirable mass concentration was gravimetrically determined in the WA by pre- and 

post- weighing by using a CIP 10 (Arelco ARC) sampler with a flow rate of 10 l min-1 

and air filtration by a rotating porous foam filter (Görner et al., 2010; Görner et al., 

2009). Respirable mass fraction in the worker breathing zone (BZ) was determined by 
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pre- and post- weighing using a Dorr-Oliver Nylon Cyclone Assembly with a Mixed 

Cellulose Ester Membranes, 0.80 µm pore size, 25 mm Ø (EDM Millipore™ MF-

Millipore™) connected to a pump (Apex, Casella) operating at a 1.7 l min-1 flow 

(Supplemental Fig. S1(c)). BZ filters were baked in an oven, re-suspended in ultrapure 

water and tragacanth, and redeposited onto PVC filters (25 mm Ø) following the 

national occupational health and safety institute’s (INSHT) method based on 

membrane filter/ X-ray diffraction (MTA/MA -056/A06). Filters were left for at least 2 h in 

a dryer prior to quantification. Exposure to RCS was quantified by the X-ray diffraction 

technique, using a BRUKER theta-theta model D8 Advance diffractometer with copper 

radiation (Kα λ = 1.54183Å) and VÅntec solid-state detector. Data were recorded from 

2θ of 26º to 28º, with a step size of 0.07º and acquisition time of 3 s. Certified reference 

materials were used for quantification and validation (BCR-66, SRM 1878a y SRM 

2950-2957). 

2.6. Data processing 

8-hour time weighted average (8h TWA) WA concentrations for online mass 

measurements were calculated as follows:  

TWA =  
t1C1+t2C2+⋯+tnCn

t1+t2+⋯+tn
        (1) 

where Cn is the mean concentration during a specific operation and tn is the time of the specific operation,  

and compared to 8h TWA limit values for unspecified dusts (respirable mass 

concentration, 3000 μg m-3 and inhalable mass concentration, 10000 μg m-) and RCS 

(50 μg m-3) (INSH, 2018). Note that sampling periods were different for each material 

thus; temporal background concentrations were used to complete the 8h TWA. 8h 

TWA RCS was calculated by applying the content of RCS in percentage obtained with 

the gravimetrical analysis, to calculated 8h TWA respirable mass concentration. 
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Conversely to particle number concentration for which a specific approach has been 

designed (Asbach et al., 2012), for particle mass there is no specific method to 

determine statistically significant increases other than conventional statistical tests. 

Therefore, the need was identified to test the performance of different methods which 

could be useful to establish guidelines in occupational exposure assessment studies. 

Here, 3 methods to determine statistically significant increases in exposure during 

packing, compared to pre-activity periods, were tested: 

1) The approach described by Asbach et al. (2012) and Kaminski et al. (2015) for 

particle number, from now on referred to as nanoGEM approach:  

Mean concentration during packing >  BG ±  3 ∗ (σBG)    (2) 

where BG is the mean temporal background (pre-activity) concentration and σBG is the 

standard deviation of the background concentration.  

2) Conventional statistical methods; two-sample t test and Mann-Whitney “U” test, 

parametric and non-parametric tests for independent samples.  

Log-normality and variance homogeneity were assessed by using the Kolmogorov-

Smirnov and Levene’s (absolute) test respectively, and by histogram plotting. In 

general, data did not fully fulfil normality assumptions. However, for datasets > 30-40 

samples, the violation of normality assumptions should not be a major problem 

(Ghasemi and Zahediasl, 2012; Pallant, 2007). Therefore, in order to determine 

statistically significant differences between measured concentrations during 

background and packing the two-sample t test (from now on referred to as t test) was 

performed (unequal variances) as well as the non-parametric Mann-Whitney “U” Test 

(Wilcoxon rank-sum test) (from now on referred to as MW “U” test), both for 

independent samples and typically used as in e.g. (Fonseca et al., 2018; Ribalta et al., 

2019b). 
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3) Autoregressive Integrated Moving Average (ARIMA) time series approach. ARIMA 

models are used for nanoparticle exposure assessment in Klein Entink et al. (2011) 

and proposed in the EN 17058:2018 (standard for workplace exposure- assessment of 

exposure by inhalation of nano-objects and their aggregates and agglomerates) as the 

golden standard method for number concentration and other metrics analyses. The 

ARIMA models are the most general type of models used for analyzing time series 

while considering the autocorrelation between samples. Examples of the ARIMA 

analysis performed are shown in Annex A (Supplemental Material). 

2.7. Particle inhalation dose 

The inhalation dose of deposited particles in the respiratory tract during inspiration and 

expiration was quantified in terms of particle number concentration, particle active 

surface area and mass. Particle active surface area was calculated for particles up to 

750 nm (cut-off diameter at 679 nm) by using particle size distribution (PSD) (Heitbrink 

et al., 2009; Keller et al., 2001) as in Koivisto et al. (2012b).  Particle mass was 

calculated by using mobility particle diameter and effective density as in  Koivisto et al. 

(2012b). Particle density during packing was assumed to be 2.55 g cm-3 as it is the 

materials’ mean density (López Lilao et al., 2017) described by the provider, and 1.5 g 

cm-3 during background (Martins et al., 2015). The regional inhalation dose rate, 

calculated for head airways, tracheobronchial and alveolar regions, was obtained by 

applying WA particle size concentrations to simplified deposition fraction probability 

equations for the ICRP human respiratory tract model (ICRP, 2011) as described by 

Hinds (1999). The respiratory volume used was 25 l min-1, corresponding to male 

respiration during light exercise (Koivisto et al., 2012b). In the model, particles were 

assumed to be spherical and to preserve their size during inhalation.  

2.8. Risk assessment using online tools (Stoffenmanager, ART and NanoSafer) 
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Stoffenmanager® v.7.1, is a risk priorisation web-based tool which consists of a control 

banding tool (inhalation and dermal), with a part designed for exposure to engineered 

nanoparticles (inhalation) and general and REACH specific quantitative inhalation 

exposure parts (van Tongeren et al., 2017). It is between tier 1 and 2 tool as 

recommended by ECHA (ECHA, 2016; Landberg et al., 2017; Spinazzè et al., 2017; 

van Tongeren et al., 2017), and its general assumptions are based on Marquart et al. 

(2008) whereas the rationale of the algorithm is based on Cherrie and Schneider 

(1999) and adapted as described in Tielemans et al. (2008a).  

The Advanced REACH tool (ART), is a tier 2 mechanistic exposure modelling tool with 

a higher level of detail than the Stoffenmanager and recommended by the ECHA 

(ECHA, 2016). It also has a Bayesian approach that combines the mechanistic model 

with measurements of exposure (Landberg et al., 2017). Similarly to Stoffenmanager, 

ART is also based on Cherrie and Schneider (1999) approach with Tielemans et al. 

(2008b) modifications. It is described and explained in detail in Fransman et al. (2011) 

and has been tested and calibrated in Schinkel et al. (2011).  

Stoffenmanager and ART dimensionless total exposure score equations can be found 

in Riedmann et al. (2015).  

The NanoSafer v1.1 is a control-banding and risk management tool (Kristensen et al., 

2010; Jensen et al., in preparation) for manufactured nanomaterials. In addition to 

manufactured nanomaterials, the tool can also be used to assess and manage 

emissions from nanoparticle-forming processes such as powder handling and 

fugitive/point-source emissions. Hazard assessment and case-specific exposure 

potentials are currently combined into an integrated assessment of risk levels 

expressed in control bands with associated risk management recommendations and e-

learning on how to reduce exposure or risk thereof. The tool is currently intended for 

small and medium-size companies and laboratories with no or limited experience in 
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working with nanomaterials and/or insufficient resources to perform a full precautionary 

risk assessment. Further developments in future aim to expand the application 

domains and include assessment with risk management measures as part of calibrate 

project (http://www.nanocalibrate.eu/home). 

3. RESULTS AND DISCUSSION 

3.1. Worker exposure monitoring  

Worker exposure is here analyzed considering the packing line type and the material 

being packed. In the following sections, results are discussed considering statistical 

significance obtained only when using the nanoGEM approach. Discussion regarding 

differences when using different statistical tests will be done in a separate section 3.6.   

The results for Clay 2 from line L, Feldspar 1 from line M and Feldspar 2 from line H 

are discussed in detail in this section, while the results from the rest of the materials 

are shown in Supplemental Material-Fig.S3, S4, S5 and S6. The case studies in this 

section were selected due to their representativeness and due to the fact that 

statistically significant exposure concentrations were recorded. Measured 

concentrations for all materials are shown in Table 3.  

3.1.1. Packing line L (Low mitigation strategies) 

In packing line L, located in the industrial plant #1, packing of Clay 1, Clay 2 and Kaolin 

1 was monitored (Table 1). For Clay 1 and Kaolin 1, 2 batches of 20 bags of 1200 kg 

each were monitored whereas for the Clay 2, 20 pallets consisting of 3 bags (400 kg 

each; total 1200 kg) were monitored.  

Packing of Clay 2 in line L (Fig. 2 and Table 3) increased total particle number 

concentrations significantly (34806-36253 cm-3) compared to background 

concentrations (18348±3412 cm-3). However, these increases seem to be related to 

outdoor influence (Supplemental Table S3). In addition, statistically significant 
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increases of inhalable (1524-1998 μg m-3) and respirable (135-139 μg m-3) mass 

concentrations were monitored, with increases from pre-activity concentrations of 

1317-1791 μg m-3 for inhalable and 117-121 μg m-3 for respirable fractions. BZ and WA 

respirable dust concentrations gravimetrically analyzed were 226 μg m-3 and 230 μg m-

3, respectively, which are slightly higher than online respirable concentrations 

measured by the mini-LAS. RCS exposure was 73.6 μg m-3 (32.7% of total respirable 

dust) (Table 3). Arithmetic mean particle dimeter (10 nm-35 µm, Mini-WRAS particle 

count) during packing was 82.2-82.7 nm whereas during pre-activity it was 79.2±4.2 

nm. Clear peaks for particle mass (Fig. 2(b) and (c)) can be identified coinciding with 

the start of a new pallet (of 1200 kg) being packed which will contain 3 bags of 400 kg. 

Therefore, peaks are not related to the start of pouring but to the action of manually 

placing the pallet in the packing area, otherwise we would be able to detect the peaks 

in between related to the start and stop for the next bag of 400 kg. Cyclic process in 

which the start of the process presents the maximum peak concentration have been 

described for industrial pouring (Koponen et al., 2015) and pilot plant milling (Ribalta et 

al., 2019b). Therefore, the type of handling and number of repetitions can be as critical 

as the amount of material being handled or even more, as pointed out by Koponen et 

al. (2015).  

PSD in Fig. 3(a) shows that packing of Clay 2 increased particle concentrations for 

particle diameters > 0.5 μm. The same was observed for Kaolin 1 (Fig. 3(b)) which had 

a similar behavior than Clay 2, showing also statistically significantly increased 

concentrations during packing of particle number and mass (respirable and inhalable) 

concentrations (Supplemental Fig. S4). SEM images for Clay 2 show clay platy 

particles (> 1 µm dimeter) together with diesel agglomerates (Supplemental Fig. S7(a) 

and (b)). Clay 1 PSD is not shown due to a power shortage. In general, Clay 1 

(Supplemental Fig. S3) differs from the other 2 materials as no significant increases 

were detected. This is in agreement with the dustiness indexes, Clay 1 presenting the 



14 
 

lowest value of the 3 materials (1733±880 mg kg-1). Table 1 shows the C.D dustiness 

results in terms of inhalable (WI) and respirable (WR) mass fractions (mg kg-1). In sum, 

line L (with low mitigation strategies) generated statistically significant impacts on 

exposure in terms of particle number and mass (respirable and inhalable) for 2 of 3 

materials (Clay 2 and Kaolin 1).  

3.1.2. Packing line M (Medium mitigation strategies) 

Packing of Feldspar 1 (3 batches of 20 bags of 1200 kg each) (Fig. 4) and Quartz 1 (2 

batches of 20 bags of 1200 kg each) (Supplemental Fig. S5) in line M (industrial plant 

#1) was monitored. 

During packing of Feldspar 1 (Fig. 4), total particle number concentration measured 

with the CPC (26777-51645 cm-3) was similar to pre-activity (42038±5595 cm-3). The 

same was true for the respirable mass fraction (119-577 μg m-3 during packing vs. 

212±70 μg m-3 during background) but with a significant increase during batch 1 (Table 

3). Contrarily, the inhalable mass fraction was found to be significantly higher during all 

packing repetitions (1412-3416 μg m-3) when compared to pre-activity concentrations 

(643±224 μg m-3) with increases between 770 and 2773 μg m-3. As occurred during 

packing in line L, peaks can be identified at the beginning of each bag being packed 

(Fig. 4(b) and (c)) especially from 16:00 to 18:00 of particles 1-5 μm (Fig. 4(b)). Peaks 

were less marked during the morning shift due to another indoor process which was 

slightly covering up packing emissions. Particle mean diameter (10 nm-35 µm) during 

packing was 80.2-84.9 nm whereas during pre-activity was 80.9±2.4 nm. During 

packing in line M, the concentration of particles > 2 μm increased when packing 

Feldspar 1 (Fig. 3(c)) whereas the concentration of particles between 0.01 and 0.5 μm 

increased when packing Quartz 1 (Fig. 3(d)). SEM images for Feldspar 1 show high 

concentrations of feldspar particles (> 2 µm diameter) and diesel agglomerates 

(Supplemental Fig. S7(c) and (d)). Conversely, for Quartz 1, quartz particles observed 
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were > 1 µm diameter (Supplemental Fig. S7(g) and (h)). During packing, Quartz 1 

presented lower mass concentrations than Feldspar 1 which is in agreement with 

dustiness indexes Quartz 1 < Feldspar 1. In general Quartz 1 (Supplemental Fig. S5) 

behaved differently than Feldspar 1, showing only a significant increase in particle 

number during one batch (Table 3). When, comparing WA with indoor measures during 

packing, WA was seen to have slightly lower particle number concentration than the 

indoor location but higher mass concentrations (Supplemental Table S3). Before 

Quartz 1 pre-activity period, maintenance tasks were carried out in the plant, which 

probably influenced pre-activity and indoor concentrations. 

BZ and WA respirable dust concentrations for Feldspar 1 and Quartz 1 gravimetrically 

analyzed were 1065 μg m-3 and 313 μg m-3, and  468 μg m-3 and 186 μg m-3 

respectively (Table 3). Conversely, in line L respirable dust in BZ and WA were 

approximately in the same range (see 3.1.1). Near field online measurements were 

seen to underestimate worker exposure when compared with personal exposure 

(Koivisto et al., 2015; Koponen et al., 2015) although this is not always the case as 

found by (Janssen et al., 1998). Here, BZ mass concentrations were seen to be higher 

than WA concentrations only for Feldspar 1 and Quartz 1, both materials packed in line 

M. The difference between line L and M results could be explained by the fact that 

materials packed in packing line M were the ones with a higher dustiness index and 

during pouring the level of mitigation strategies is “medium”, additionally main exposure 

of the worker to the material was when the worker manually closed the bag and not 

during material pouring into the bag (when closing there was no extraction system and 

the worker was directly on the emission source). 

RCS exposure in the BZ was 74.6 (7% of total respirable mass concentration) and 

160.5 (34.3% total respirable mass concentration) μg m-3 for Feldspar 1 and Quartz 1 

respectively (Table 3). RCS content during Quartz 1 packing was lower than expected 

as during dustiness tests respirable silica content represented 97-100% of the total 
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respirable dust collected (Supplemental Table S4), which shows that worker exposure 

measured was not only due to Quartz 1 packing. 

3.1.3. Packing line H (High mitigation strategies) 

In packing line H (industrial plant #2), packing of Feldspar 2 (Fig. 5) and Kaolin 2 

(Supplemental Fig. S6) in bags of 20-25 kg was monitored during 5 to 6 hours. This 

line had the most stringent mitigation measures of all three lines, with the opening of 

the bag fully enclosed and automated system. 

Packing of Feldspar 2 did not significantly increase particle number or mass 

concentrations (Fig. 5 and Table 3). Particle number concentrations measured with the 

CPC during pre-activity was 69673±29930 cm-3 whereas during packing they ranged 

between 19476-43049 cm-3. Mean inhalable and respirable mass concentrations during 

pre-activity were 1824±1270 and 333±179 μg m-3 and, although during batch 1 mass 

concentrations increased (4264±17531 and 701±2607 μg m-3 for inhalable and 

respirable fractions), those were not statistically significant, most likely due to the fact 

that they were related to unexpected events during packing e.g. broken bags during 

pouring (Fig. 5(c)). If only the period between 12:00 and 14:00 is considered (where no 

events occurred), then inhalable and respirable concentrations were 1127±617 μg m-3 

and 187±93 μg m-3 respectively. WA respirable dust concentration was 437 μg m-3. 

Particle mean dimeter (10 nm-35 µm) during packing and pre-activity was 87.2-97.3 nm 

and 76.2±4.6 nm, respectively. Conversely, Kaolin 2 did not behave the same way, 

showing significant increases for particle number, although this was due to outdoor and 

indoor influence (Supplemental Table S3), and mass concentration remained the same 

during packing than during pre-activity.  

In packing line H, the 2 materials did not behave exactly the same, but no significant 

increases were detected for particle mass concentration for any of them. Kaolin 2 had 

higher dustiness index than Feldspar 2 but conversely showed lowest concentrations 
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during packing. This is in line with the fact that line H is the one with the strongest 

mitigation strategies. However, it is important to highlight that high respirable mass 

concentrations (up to 20000 µg m-3) were detected during specific events such as bags 

breaking, which may impact worker exposure but would not be detected if only 8h TWA 

was considered. This highlights the relevance of real-world and time-resolved particle 

monitoring in occupational risk assessment.  

3.2. 8h time-weighted average (8h TWA) 

Particle number concentrations increased significantly only during Clay 2, Kaolin 1 and 

during 1 repetition of the Quartz 1. However, those increases were always below 

40000 cm-3, the nano-reference value used as precautionary approach in this specific 

case (non-biodegradable granular nanomaterials in the range of 1-100 nm and density 

< 6 kg l-1) (Van Broekhuizen et al., 2012). 

Increases of inhalable and respirable mass concentrations were found during packing 

for Feldspar 1, Clay 2 and Kaolin 1. However, 8h TWA concentrations (Table 4) did not 

exceed in any case the limit values for particles not otherwise specified of inhalable (8 

to 28 times < 10000 µg m-3) and respirable (4 to 14 times < 3000 µg m-3) mass 

fractions (INSH, 2018). RCS exposure limit value (50 μg m-3) was also not exceeded. 

RCS exposure in the WA for Feldspar 1, Quartz 1 and Clay 2 was 16, 43 and 35 μg m-3 

(3, 1.2 and 1.4 times lower than the occupational limit, respectively). Thus, although 

RCS 8h TWA was not exceeded and considering that values correspond to a 5 to 6 

hours packing shift, it is important to mention that a 7 or 8 hours packing could lead to 

exceed the RCS exposure limit values. 

3.3. Inhalation dose 

Inhalation dose rates were estimated for each day using size distribution data from the 

MiniWras with the exception of Clay 1, for which PSD was obtained using the 
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NanoScan SMPS. Thus, it should be noted that results for Clay 1 are not directly 

comparable with the rest. 

Total deposited particle surface area during packing ranged between 5.4-11.8x105 µm2 

min-1. The main deposition region during packing was the alveoli (50.8-63.7%) followed 

by head airways (26.6-41.3%) and trachea bronchi (7.3-9.6%) (Fig. 6). However, 

deposition in the trachea bronchi and alveolar regions during packing was reduced 

when compared to pre-activity, whereas it increased in the head airways (between 1.2 

to 23%). The same occurred with particle number and mass, which showed increases 

in particles deposited in the head airways during packing (0.8-4.9% and 0.1-5.4%, 

respectively) and reductions in the trachea bronchi and alveolar regions. These results 

are in agreement with the mean PSD of packing emissions which are mainly coarse. 

It is important to point out that surface dose analysis as estimated here can only be 

applied for particles up to 750 nm (Heitbrink et al., 2009; Keller et al., 2001), but PSD 

for some of the materials (Feldspar 1, Clay 2 and Kaolin 1) was > 1 µm. This should be 

considered as a limitation. Hygroscopicity was not considered, which can lead to over- 

or under-estimations of particle deposition in the respiratory tract depending on the dry 

and humid size of the particles(Martonen and Clark, 1983; Asgharian, 2004; Winkler-

Heil et al., 2014; Ching and Kajino, 2018; Salamtonidis et al., under review, JAS) . 

In this model, the 3 metrics (number, mass and surface area) were included based on 

Wang et al. (2010) and Koivisto et al. (2012). Even though percentages of deposited 

particles in the different regions were different, similar results were obtained indicating 

that airborne emitted particles during packing increased deposition in the head airways.  

3.4. Risk assessment modelling 

Different web-based tools have been developed in order to provide risk assessment of 

chemical hazards (Fransman et al., 2011; Kristensen et al., 2010; Tielemans et al., 

2008a; Jensen et al., in preparation). Tier 1-2 risk assessment tools Stoffenmanager 
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and ART  have been tested in different scenarios including dust emissions (Bekker et 

al., 2016; Landberg et al., 2017, 2015; Riedmann et al., 2015; Savic et al., 2018) and 

they are recommended by ECHA (ECHA 2016). However, there is controversy 

regarding whether or not web-based tools results are sufficiently robust to be used with 

decision-making regulatory purposes (Raul and Dwyer, 2003; Koivisto et al., under 

review, STOTEN). In general, models are seen to overestimate actual exposures (van 

Tongeren et al., 2017; Savic et al., 2017) although underestimations have been 

reported (Landberg et al., 2017). In addition, prediction accuracy depends on many 

factors such as the type of process or the concentration ranges, and further studies are 

required to fully understand the performance of online modelling tools. 

Here, 8h TWA inhalable concentrations were compared to ART (Mechanistic and 

Bayesian), and Stoffenmanager, and respirable concentrations were compared to 

NanoSafer v1.1 estimations (Table 4). Differences between packing lines L and M 

could be included in the ART with the option “open process/handling that reduces 

contact between product and adjacent air”. Conversely, this differentiation could not be 

included in Stoffenmanager and NanoSafer v1.1. Examples of the reports provided by 

the tools are shown in Supplemental Annex B (Supplemental Material). Only packing 

lines L and M were considered for risk assessment modelling due to the complexity to 

differentiate between packing lines when using the web-based tools. 

The ART mechanistic model was found to underestimate exposure in 3 out of 5 cases 

(Clay 1, Feldspar 1 and Quartz 1). For Feldspar 1 and Quartz 1 underestimation was 

slight (< 2 factor) whereas for Clay 1, exposure was underestimated by a factor of 4.9. 

8h TWA concentrations were overestimated for Clay 2 and Kaolin 1 with a factor of 4.2 

and 1.2 respectively. To sum up, ART predicted concentrations with an accuracy of ± 2 

factor in three cases. ART Bayesian predicted exposures within a factor < 2 for Clay 1, 

overestimated exposure for Feldspar 1, Quartz 1, Kaolin 1 and Clay 2 (factors 2-6). 

Finally, Stoffenmanager overestimated measured exposure concentrations by a factor 
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between 1.6 and 2.9 for all materials. The risk assessment results obtained with the 

ART and Stoffenmanager are in line with the literature, where models are seen to both, 

over and under estimate actual exposures depending on the case study (van Tongeren 

et al., 2017; Savic et al., 2017; Landberg et al., 2017). 

Results of the exposure assessment modelling by using NanoSafer v1.1 (test date: 

December 4, 2018) are summarized in Table 4. The hazard estimates in NanoSafer 

showed that the 5 tested materials ranged from 0.2 to 0.8 (finite four-step linear scale 

ranging from 0 to 1 with increase in hazard level at 0.25, 0.5 and 0.75 points). Only for 

Feldspar 1 and Quartz 1, specific risk sentences were listed and adopted from the bulk 

material. In consequence, these materials scored the highest hazard score and the 

other three materials (Clay 1, Clay 2, and Kaolin 1) scored the lowest possible hazard 

score of 0.2. 

The exposure score in NanoSafer ranges from 0 to and the exposure risk level 

increases in five steps at 0.1, 0.25, 0.5, and 1.0, where occupational exposure limit 

(OEL) is exceeded when the exposure risk level is larger than 1. For the five cases 

modelled the exposure potential ranks Feldspar 1 > Kaolin 1 > Quartz 1 > Clay 2 > 

Clay 1. In all the cases except for Clay 1, the exposure potential exceeded the OEL 

(3000 µg m-3), which resulted in a risk level (RL) of 5; a special high exposure-related 

risk level. In Clay 1 (packing line L), the exposure score was 0.57 resulting in a final 

RL4. These risk levels (RL4 and RL5) were associated with general recommendations 

for risk management such as: 

RL4: High toxicity suspected and/or high exposure potential. Use highly efficient local 

exhaust ventilation, fume-hood, glove-box etc. Make sure to have the personal 

respiratory protection equipment (PP3 or higher quality) available in case of accidents. 

RL5: Very high toxicity suspected and/or moderate to very high exposure. The work 

should be conducted under strict dust release control, such as in a fume-hood, 
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separate enclosure etc. Air-supplied respirators or highly efficient filter masks (PP3 or 

higher quality) may be used as a supplement and must be readily available in case of 

accidents. Expert advice is recommended. 

In overall, NanoSafer overestimated WA measured concentrations for all materials with 

a factor between 13 and 97 when near-field (NF) output concentrations were 

considered, and between 1 and 8 when far-field (FF) output concentrations were 

considered. WA was located between 1.5-2 m from the emission source which is in the 

limit of the NF defined by NanoSafer (2 m). This explains why the ratios of mass 

predicted and mass measured are closer to 1 if FF concentrations are considered.  

3.5. Dustiness-Exposure concentration correlation 

The use of the dustiness index as an exposure predictor metric has been explored by 

several authors (Brouwer et al., 2006; Evans et al., 2013; Levin et al., 2014; Ribalta et 

al., 2019b). Following the EN 15051 dustiness classification with the C.D method, the 

material showing the highest exposure to inhalable mass concentration (Kaolin 1) was 

also the material with highest inhalable dustiness index (18886±174 mg kg-1), which 

was followed by Kaolin 2, Feldspar 1, Feldspar 2, Quartz 1 and Clay 2.  

Correlation between exposure during materials being packed in line L (low mitigation 

strategy) and their dustiness index (using inhalable fraction) was relatively high (R2 

0.80) (Fig. 7(a)). However, this correlation was low for packing lines M and H, which 

have moderate to high mitigation strategies (R2 0.27) (Fig. 7(b)). Thus, results seem to 

suggest that a clear correlation dustiness exposure exists when materials 

characteristics (e.g. dustiness) dominate over process characteristics (e.g. degree of 

source enclosure). Conversely, when emissions depend more on process 

characteristics correlation is not straightforward.  

The respirable mass-based dustiness indices varied over 1 order of magnitude with 

Kaolin 2 and Feldspar 2 having the highest (104 ± 1 mg kg-1 and 77 ± 0 mg kg-1) (Table 
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1). According to the EN 15051, the respirable dustiness tests reveal that 4 powders are 

categorized as very low (Clay 1) and low (Clay 2, Quartz 1, and Kaolin 1) and 3 

(Feldspar 1, Feldspar 2, and Kaolin 2) are in the category of powders with moderate 

dustiness. When considering correlations for the respirable fraction, these were similar 

but less robust than for the inhalable fraction (R2 = 0.55 for packing line L and R2 = 

0.02 for packing lines M and H, data not shown).  

Current discussions are ongoing regarding this topic (Dubey et al., 2017; Fonseca et 

al., 2018; Ribalta et al., 2019b) as yet no clear direct relationship dustiness-exposure 

has been established. In Fonseca et al. (2018) no clear correlation during laboratory 

spilling of nano-scaled materials under a fume hood with the small-rotating drum 

dustiness results was found, whereas in Ribalta et al. (2018) good correlations 

between dustiness (measured with the continuous drop and rotating drum) were found 

during handling of different coarse ceramic materials. Earlier studies also found 

correlation (Breum et al., 2003; Brouwer et al., 2006; Heitbrink et al., 1989) although, 

some others did not (Class et al., 2001; Heitbrink et al., 1990). 

3.6. Statistical significance variations depending on the statistical method used 

The nanoGEM approach, a specific user-friendly approach, was designed in order to 

assess the statistical significance of exposure impacts for particle number. However, 

no specific approach is available, other than statistical tests, for particle mass 

concentration. Thus, different approaches were tested for the current dataset, in terms 

of particle number and mass. 

Results (Table 5) showed that with respect to currently available and frequently used 

nanoGEM method, the t test and the MW “U” test provided slightly more conservative 

results. The t test differs only in 1 case for inhalable mass and 1 case for respirable 

mass out of 21 cases. Similarly, the MW “U” test differs in 1 and 2 cases for inhalable 

and respirable mass fractions, respectively. Conversely, for particle number, all 3 
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methods provided the same results. Therefore, using the t test or the MW “U” test for 

mass could provide slightly more conservative results to the point of view of exposure 

assessment. However, this could come as the cost of using a less friendly-user 

approach. 

With regard to the method proposed as “golden standard by the EN 17058:2018” 

(ARIMA), in 6 cases results were less conservative (no significant exposures were 

identified in contrast to the other tests) than results obtained when using the other 

tests. Considering the obtained results, ARIMA models are complex to apply and 

require expert knowledge, and they did not identify exposures to mass in the case 

studies. 

Finally, it was observed that using the nanoGEM approach could lead to a slight 

underestimation of the statistical significance when the pre-activity dataset is 

characterized by a high variability, which is frequent in industrial monitoring, especially 

for particle mass concentration. This is not usually the case in laboratory experiments. 

However, it should be noted that the nanoGEM methodology was not designed to be 

applied to particle mass concentrations. As a result, the nanoGEM criterion may be 

applicable to assess the significance of particle emissions in terms of mass 

concentrations taking into account the above limitation. The design of a method tailored 

to particle mass concentrations would be advisable. 

4. CONCLUSIONS 

Exposure and health impacts were assessed during industrial packing of 7 materials in 

3 lines with different levels of mitigation (low, medium and high). The main conclusions 

extracted are summarized below: 

Impact of enclosure strategies on exposure: it may be concluded that packing in 

packing line L and M had a significant impact on worker exposure with regard to 

particles in the 11.5 nm – 35 µm size range, significantly increasing worker exposure 
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and reaching high respirable (135-609 µg m-3 for packing line L and 119-577 µg m-3 for 

packing line M) and inhalable (1370-4705 µg m-3 for packing line L and 1150-3416 µg 

m-3 for packing line M) mass concentrations. However, 8h TWA limits were not 

exceeded in any case. RCS exposure limits were also not exceeded but values were 

close to the limit, indicating a potential risk of exposure. Conversely, packing in line H, 

which had the highest mitigation strategies, was seen to have an impact, only during 

accidental spills e.g. bags being broken, with respirable mass concentration reaching 

20000 µg m-3. Therefore, the degree of source enclosure showed a clear inverse 

relationship with the exposure concentrations monitored evidencing the effectiveness 

of mitigation strategies in place. In addition, results highlight the relevance of real-world 

and time-resolved exposure assessments in occupational exposure, as 8h TWA is 

unable to detect time-resolved high exposures which may significantly impact workers’ 

health. In this case study, where micro-sized materials (d50 8-40 µm) where packed, 

airborne particles emitted were seen to deposit mainly in the head airways of the 

human respiratory tract, indicating that risk of penetration to the alveolar region is low.  

Exposure assessment tools: the dustiness index (inhalable fraction) of the materials 

tested correlated with exposure concentrations during packing in packing line L (R2 

0.80), but no correlation was found for packing in lines M and H (R2 0.27). Thus, it may 

be concluded that dustiness can be a useful metric for exposure prediction when 

materials properties are the main determinant of worker exposure. However, when 

process properties (e.g. degree of enclosure) play a more important role, correlation is 

not straightforward and parametrization is needed. 

In addition, 4 different approaches were tested to assess the statistical significance of 

exposure concentrations (in terms of particle number and mass): t-test, Man-Whitney 

(MW) test, the ARIMA models (referred to as the golden standard in EN 17058:2018), 

and the frequently used nanoGEM approach. The comparison between methods 

evidenced that (a) the ARIMA method is the least conservative of the 4; (b) the t-test, 
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MW test and nanoGEM approach provided the same results for 18 out of 21 cases 

analyzed; (c) for the 3 remaining cases, the differences obtained referred to exposures 

in terms of particle mass, and never to particle number concentrations, which is 

expected considering that nanoGEM was designed to be used for particle number and 

not mass concentrations, (d) the nanoGEM approach may lead to underestimations 

when assessing scenarios with highly variable background concentrations (in terms of 

particle mass). From the point of view of usability, the nanoGEM method was seen to 

be the most practical and the least time and resource consuming. 

Risk assessment modelling: 3 models were tested: ART, Stoffenmanager and 

NanoSafer. Only in 3 out of 5 cases, ART estimated the measured exposure within a 

factor ± 2 and for the 5 cases it was within the inter-quartile confidence interval. The 

Stoffenmanager web-based tool overestimated all predictions, and only in three cases 

it was by a factor < 2. NanoSafer overestimated measured exposure respirable mass 

concentrations in all case scenarios within a factor between 13 and 97, and 1 and 8 

when NF and FF concentrations were considered, respectively. 
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Figures and Tables 

 

Fig. 1 Industrial setting 1(a) and 2 (b) layouts. NanoScan was only used during Clay 1 

packing due to technical problems 
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Fig. 2 Particle concentration at the worker area during packing of Clay 2: (a) particle 

number concentration time series (CPC and DM; DiSCmini); (b) particle size 

distribution time series measured with the MiniWras, solid black line shows MiniWras 

d50; (c) mass concentration time series measured by Grimm mini-LAS. Black vertical 

lines indicate start (solid line) and stop (dashed line) of each batch. Vertical top black 

lines mark the start of each bag being packed. Horizontal grey line shows the 

background period 
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Fig. 3 Particle size distribution in the worker area during pre-activity and packing in 

packing line L for Clay 2 (a) and Kaolin 1 (b) and packing line M for Feldspar 1 (c) and 

Quartz 1 (d) 
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Fig. 4 Particle concentration at the worker area during packing of Feldspar 1: (a) 

particle number concentration time series (CPC and DM; DiSCmini); (b) particle size 

distribution time series measured with the MiniWras, solid black line shows MiniWras 

d50; (c) mass concentration time series measured by Grimm mini-LAS. Black vertical 

lines indicate start (solid line) and stop (dashed line) of each batch. Vertical top black 

lines mark the start of each bag being packed. Horizontal grey line shows the 

background period 
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Fig. 5 Particle concentration at the worker area during packing of Feldspar 2: (a) 

particle number concentration time series (CPC and DM; DiSCmini); (b) particle size 

distribution time series measured with the MiniWras, solid black line shows MiniWras 

d50; (c) mass concentration time series measured by Grimm mini-LAS. Black vertical 

lines indicate start (solid line) and stop (dashed line) of each batch. Vertical top black 

lines mark specific events (bags being broken or other accidents). Horizontal grey line 

shows the background period 
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Fig. 6 Percentage of surface deposited area in the respiratory tract per region during 

packing and pre-activity for of all materials. Abbreviations codes are: BG, background 

(pre-activity period); C1, Clay 1; F1, Feldspar 1; Q1, Quartz 1; C2, Clay 2; K1, Kaolin 1; 

F2, Feldspar 2; K2, Kaolin 2 

 

Fig. 7 Continuous drop dustiness index correlated with exposure for materials packed 

in line L (a), and M and H (b). Inhalable fraction is used 
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Table 1 Description of daily activity and material characteristics. S.D: standard 

deviation. DL: detection limit. RCS: respirable crystalline silica. C.D: continuous drop 

method. WI: Inhalable fraction. WR: Respirable fraction. * indicates respirable cyclone 

minutes of measurement 

Material 

Activity description Material characteristics 

Industrial 

plant 

Packing 

Line 

Batch 

Rep. 

Day 

(02/2018) 

Process 

time (min) 

C.D (mg kg
-1

) 

WI ± S.D/ WR ± S.D 

d50 

(µm) 

Moisture 

(%) 

Clay 1 #1 L 3 14
th
 174 1733±880/6±1 13 11 

Feldspar 1 #1 M 3 20
th
 342 (243*) 10246±253/59±2 31-39 0.2 

Quartz 1 #1 M 2 21
th
 264 8891±1002/43±17 30-38 0.1 

Clay 2 #1 L 2 22
th
 287 5170918±/16±1 10 13 

Kaolin 1 #1 L 2 23
th
 162 18886±174/44±5 13 11 

Feldspar 2 #2 H 2 26
th
 350 9651±235/77±0 22 0.3 

Kaolin 2 #2 H 2 28
th
 309 12325±235/104±1 8 0.7 
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Table 2 Description, settings and location of the instrumentation used. * NanoScan 

was only use during Clay 1 monitoring due to technical problems. PSD: particle size 

distribution 

Instrument Location Manufacturer 

Sample 

flow rate 

(l/min) 

Information 
Particle 

size range 

Concentration 

range 

Time 

resolution 

Butanol 

Condensation 

Particle Counter 

(CPC TSI Model 

3775) 

Worker 

Area 

TSI Inc., 

Shoreview, 

MN, USA 

1.5 
Particle number 

concentration 
4-1500nm 0-10

7
 cm

-3
 6-s 

Mini Wide Range 

Aerosol 

Spectrometer 

(Mini-WRAS 

1371) 

Worker 

Area 

(For Clay 1 

in Indoor) 

Grimm 

Aerosol 

Technik, 

Ainring, 

Germany 

1.2 

Particle mass and 

number 

concentration and 

PSD 

10nm-

35µm 

0.1 – 10
4 

µg m
-3 

3x10
3
-5x10

5
 cm

-

3 
(electrical) 

0-3x10
6
 l

-1 

(optical) 

1-min 

Miniature 

diffusion size 

classifier 

(DiSCmini Matter 

Aerosol AG) 

Worker 

Area, 

Indoor 

and 

Outdoor 

Testo, 

Wohlen, 

Switzerland 

1 

Particle number 

concentration, 

mean particle size 

and alveolar lung 

deposited surface 

area 

10-700nm 10
3
-10

6
 cm

-3
 1-s 

Mini Laser 

Aerosol 

Spectrometer 

(Grimm Mini-

LAS) 

Worker 

Area, 

Indoor 

and 

Outdoor 

Grimm 

Aerosol 

Technik, 

Ainring, 

Germany 

1.2 
Particle mass 

concentration 
0.25-32µm 

0.1 – 10
4
 µg m

-3 

 
6-s 

Optical Particle 

Sizer (OPS, TSI 

Model 3330) 

Indoor 

TSI Inc., 

Shoreview, 

MN, USA 

1 PSD 

0.3-10 µm 

(16 

channels) 

0- 3x10
3
 cm

-3
 1-min 

*Electrical 

Mobility 

spectrometer 

(NanoScan 

SMPS TSI Model 

3910) 

Worker 

Area 

(Only for 

Clay 1) 

TSI Inc., 

Shoreview, 

MN, USA 

0.7 

Particle number 

concentration and 

PSD 

10-420nm 

(13 

channels) 

0-10
5
 cm

-3
 1-min 

Light scattering 

laser photometer 

(DustTrak™ DRX 

aerosol monitor 

TSI Model 8533) 

Outdoor 

TSI Inc., 

Shoreview, 

MN, USA 

3 
Particle mass 

concentration 

PM10, PM4, 

PM2.5 and 

PM1 

0.001-150  mg 

m
-3

 
1-min 
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Table 3 Mean ± S.D (standard deviation) of each batch in the worker area and for each 

day. Bold values are those which are significantly higher than pre-activity (BG) 

concentrations using the nanoGEM approach. BZ: breathing zone. DL: detection limit. 

NaN: Not available number. *The pump stopped during the sampling. Mini-WRAS 

arithmetic mean particle size is calculated by using particle count distribution 

Sampling 
CPC ( cm

-3
) 

MiniWras 

(nm) 
Mini-LAS (μg m

-3
) 

Gravimetric Respirable 

Mass (μg m
-3

) 

(RCS μg m
-3

) 

NTOT Size Inhalable Respirable BZ WA 

Clay 1_L 

Day 1 

BG 42410±32660 50±9 986±1000 212±260 - - 

Batch 1 37896±12825 51±7 1847±2571 144±139 
101 

(<DL) 
182 Batch 2 34535±6339 56±6 1697±2390 166±202 

Batch 3 NaN NaN 1370±1434 162±165 

Feldspar 1_M 

Day 2 

BG 42038±5595 81±2 643±224 212±70 - - 

Batch 1 51645±15528 80±5 3416±4868 577±713 
1065 

(75) 
313 Batch 2 39969±68776 83±27 2180±4965 270±623 

Batch 3 26777±11431 85±19 1412±1564 119±104 

Quartz 1_M 

Day 3 

BG 23291±6988 94±21 3529±3324 353±351 - - 

Batch 1 24755±4862 83±9 1714±2094 153±135 468 

(161) 
186 

Batch 2 46670±17666 74±5 1150±625 209±99 

Clay 2_L 

Day 4 

BG 18348±3412 79±4 207±208 40±26 - - 

Batch 1 36253±7974 82±12 1998±3403 139±148 226 

(74) 
230 

Batch 2 34806±4002 83±5 1524±1469 135±122 

Kaolin 1_L 

Day 5 

BG 15721±2185 86±3 92±114 18±9 - - 

Batch 1 40565±10218 80±7 2647±3486 242±206 36*
1
 

(< DL) 
321 

Batch 2 42331±3358 87±7 4705±4224 609±471 

Feldspar 2_H 

Day 6 

BG 69673±29930 76±5 1824±1270 333±179 - - 

Batch 1 43049±10829 87±25 4264±17531 701±2607 17* 

(< DL) 
437 

Batch 2 19476±10503 97±11 1573±1628 289±228 

Kaolin 2_H 

Day 7 

BG 12484±6143 90±19 898±806 148±134 - - 

Batch 1 71996±127876 74±10 830±762 137±141 
< DL* 55 

Batch 2 50504±28475 69±7 283±193 53±26 

*
1
 Worker wearing the cyclone was carrying out other activities not related to packing which may have 

influenced in the low concentrations registered on the BZ that day 
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Table 4 Calculated 8h TWA (including pre-activity concentrations) for inhalable and 

respirable mass fractions in the worker area is provided. Risk assessment results 

conducted with the ART (Mechanistic and Bayesian), Stoffenmanager and NanoSafer 

v1.1. Ratios of mass predicted and mass measured are shown in brackets.  Material, 

sampling time and inhalable dustiness index using the continuous drop (C.D) is 

provided. WA: worker area. NF: near-field. RCS: respirable crystalline silica. DL: 

detection limit. WI: inhalable fraction. WR: respirable fraction. 

Sampling 

time “min” 

WI/R mg kg
-1

 

WA Respirable 

8h TWA  

(μg m
-3

) 

(WA RCS μg 

m
-3

)* 

WA 

Inhalable 

8h TWA  

(μg m
-3

) 

ART (inhalable μg m
-3

) 

C.D based Stoffenmanager  

(inhalable  

μg m
-3

)  

NanoSafer v1.1 

(respirable 

(NF/FF, 8h 

TWA)  

μg m
-3

) 

Mechanistic Bayesian 

Clay 1_L 

174 min 

C.D WI = 1733 

C.D WR  = 6 

129 

(< DL) 
1454 

300 (160-570) 

[-4.9] 

2200 (1500-

3300) 

[1.5] 

2710 

[1.9] 

1698/143 

[13]/[1.1] 

Feldspar 1_M 

342 min 

C.D WI = 10246 

C.D WR  = 59 

227 

(16) 
1679 

1600 (860-

3100) 

[-1.1] 

4000 (2900-

5500) 

[2.4] 

4420 

[2.6] 

16698/1407 

[74]/[6.2] 

Quartz 1_M 

264 min 

C.D WI = 8891 

C.D WR = 43 

126 

(43) 
1317 

900 (480-1700) 

[-1.5] 

3400 (2500-

4700) 

[2.6] 

2100 

[1.6] 

12171/1025 

[97]/[8.1] 

Clay 2_L 

287 min 

C.D WI = 5170 

C.D WR = 16 

108 

(35) 
780 

3300 (1700-

6200) 

[4.2] 

4700 (3500-

6400) 

[6.0] 

2290 

[2.9] 

4530/382 

[42]/[3.5] 

Kaolin 1_L 

162 min 

C.D WI = 18886 

C.D WR = 44 

166 

(< DL) 
1538 

1800 (980-

3500) 

[1.2] 

4100 (3000-

5500) 

[2.7] 

2950 

[1.9] 

12453/1049 

[75]/[6.3] 

*8h TWA RCS was calculated by applying the content of RCS in percentage obtained with the 

gravimetrical analysis, to calculated 8h TWA respirable mass concentration 

 

 



47 
 

Table 5 Statistically significant increases by using the nanoGEM approach, two-sample 

t test, Mann-Whitney (MW) “U” test and the ARIMA model. X* indicates that only one of 

the cases was significantly higher. Significant decreases are not considered 

Sampling Metric nanoGEM t test MW “U” test ARIMA 

Clay 1_L 
Day 1 

NTOT  - - - - 
Inhalable mass  - X - - 
Respirable mass  - - - - 

Feldspar 1_M 
Day 2 

NTOT  - - - - 
Inhalable mass  X X X - 
Respirable mass  X* X X* - 

Quartz 1_M 
Day 3 

NTOT  X* X* X - 
Inhalable mass  - - - - 
Respirable mass  - - - - 

Clay 2_L 
Day 4 

NTOT  X X X - 
Inhalable mass  X X X - 
Respirable mass  X X X - 

Kaolin 1_L 
Day 5 

NTOT  X X X X 
Inhalable mass  X X X X 
Respirable mass  X X X X 

Feldspar 2_H 
Day 6 

NTOT  - - - - 
Inhalable mass  - - X* - 
Respirable mass  - - X* - 

Kaolin 2_H 
Day 7 

NTOT  X X X X 
Inhalable mass  - - - - 
Respirable mass  - X* X* - 
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Method  

Continuous 

drop 

 

 

1. Sample tank 

2. Metering device 

3. Drop pipe 

4. Sampling head 
for the respirable 
aerosol fraction 

5. Sampling head 
the inhalable 
aerosol fraction 

Fig. S2 Pictures and description of the continuous drop dustiness method used 

for dustiness determination  

 
Fig. S3 Particle concentration at the (WA) during packing of Clay 1: (a) particle 
number concentration time series (CPC and DM; DiSCmini); (b) particle size 
distribution time series measured with the NanoScan, solid black line shows 
NanoScan d50; (c) mass concentration time series measured by Grimm mini-
LAS. Black vertical lines indicate start (solid line) and stop (dashed line) of the 
each batch 
 
During packing of Clay 1, total particle number concentration measured with the 

CPC (34535-37898 cm-3) was similar to pre-activity concentrations 

(42410±32660 cm-3). The same was true for the respirable mass fraction (144-

166 μg m-3 during packing vs. 212±260 μg m-3 during background). Contrarily, 

the inhalable mass fraction was higher (1370-1847 μg m-3) than pre-activity 

concentrations (986±1000 μg m-3) with increases between 384 and 861 μg m-3 

1. 

2. 

3. 5. 4. 
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although they were not statistically significant. Clear peaks can be identified for 

each bag being packed which coincide approximately with the start of the 

pouring process. Breathing zone and worker area respirable dust 

concentrations were 101 μg m-3 and 182 μg m-3 respectively. Particle mean 

dimeter (NanoScan) during packing was 50.8-55.9 nm. 

 

 

Fig. S4 Particle concentration at the WA during packing of Kaolin 1: (a) particle 

number concentration time series (CPC and DM; DiSCmini); (b) particle size 

distribution time series measured with the MiniWras, solid black line shows 

MiniWras d50; (c) mass concentration time series measured by Grimm mini-

LAS. Black vertical lines indicate start (solid line) and stop (dashed line) of the 

each batch 

During packing of Kaolin 1, total particle number concentration measured with 

the CPC (40565-42331 cm-3) was significantly higher than pre-activity 

concentrations (15721±2185 cm-3). Inhalable (2647-4705 μg m-3) and respirable 

(242-609 μg m-3) mass fractions were also significantly higher than pre-activity 

concentrations (92±114 and 18±9 μg m-3 for inhalable and respirable mass 

fractions) with increases of 2554-4613 and 224-591 μg m-3 for the inhalable and 

respirable fractions. Peaks of particles around 5 μm at the start of each bag 

being pack are easily recognizable which coincide with the action of manually 

place the pallet in the packing area. Breathing zone and worker area respirable 

dust concentrations were 36 μg m-3 and 321 μg m-3 respectively. Mean particle 

dimeter (MiniWras) during packing was 79.7-86.5 nm. 
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Fig. S5 Particle concentration at the WA during packing of Quartz 1: (a) particle 
number concentration time series (CPC and DM; DiSCmini); (b) particle size 
distribution time series measured with the MiniWras, solid black line shows 
MiniWras d50; (c) mass concentration time series measured by Grimm mini-
LAS. Black vertical lines indicate start (solid line) and stop (dashed line) of the 
each batch 
 
During packing of Quartz 1, total particle number concentration measured with 

the CPC suffered a statistically significant increase during packing of batch 2 

(46670±17666 cm-3) compared to pre-activity (23291±6988 cm-3) contrarily to 

what happened during batch 3 in which particle number concentrations 

remained the same (24755±4862 cm-3). No increases of respirable (153-209 μg 

m-3) and inhalable (1150-1714 μg m-3) particle mass were observed during 

packing compared to pre-activity concentrations (353±351 μg m-3 for respirable 

and 3529±3324 μg m-3 for inhalable) although peaks can be identified at the 

beginning of some bags being packed. The fact that not significant increases 

were detected is mostly because before the packing process, maintenance 

processes were carried out, and even though a period between maintenance 

processes and packing was left, was not enough for concentrations to stabilize. 

If we compare inhalable mass fraction in the WA and indoor, 1432 μg m-3 in the 

WA vs. 851 μg m-3 indoor clear influence in mass concentrations in the WA due 

to packing are detected. 
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Fig. S6 Particle concentration at the WA during packing of  Kaolin 2: (a) particle 

number concentration time series (CPC and DM; DiSCmini); (b) particle size 

distribution time series measured with the MiniWras, solid black line shows 

MiniWras d50; (c) mass concentration time series measured by Grimm mini-

LAS. Black vertical lines indicate start (solid line) and stop (dashed line) of the 

each batch 

During packing of Kaolin 2 statistically significant increases of particle number 

concentration were monitored (54292-71996 cm-3) when comparing with pre-

activity concentrations (9567±7230 cm-3). However, this increase was due to 

outdoor and indoor influences (diesel forklifts activity). No increases on particle 

mass concentrations were also observed.  
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Fig. S7 SEM images from particles collected in the worker area during materials 

packing.  
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Table S1 Materials particle size distribution and chemical composition. PSD: 

particle size distribution. L.O.I: loss of ignition 

Material 

PSD Chemical analysis (%) 

d10  

(µm) 

d50 

(µm) 

d90 

(µm) 
SiO2 Al2O3 Fe2O3 TiO2 K2O MgO Na2O CaO Li2O L.O.I 

Clay 1 3 13 56 64 26 0.8 0.75 1.4 0.2 0.15 0.2 - 7 

Feldspar 1 4-5 31-39 
101-

117 
69 17-18 

0.1-
0.2 

0.02 10-11 0.04 
2.2-
2.4 

0.4 - 0.4 

Quartz 1 4-5 30-38 
100-

116 
99 

0.8-
0.9 

0.04-
0.08 

0.05-
0.07 

0.1 0.02 0.02 0.1 - 0.3 

Clay 2 2 10 43 57 31 0.9 0.8 1.3 0.2 0.3 0.2 - 9 

Kaolin 1 3 13 46 51 35 0.7 0.3 0.6 0.2 0.05 0.1 - 12 

Feldspar 2 4 22 65 73 17 ≤0.2 ≤0.1 3 0.1 4 0.4 ≥0.7 0.9 

Kaolin 2 3 8 26 51  35 <0.7 <0.5 0.5  <0.2 <0.2 <0.3 - 13 

 

Table S2 Intercomparison results.*Low degree of agreements between CPC 

and MW is due to differences in the measurement ranges and technics 

Number (CPC as 

Reference) 

Mass Concentration (MiniWras 

as Reference) 

Instrument 2d-R2  Instrument 1d-Thoracic R2 

MD1 0.78 Grimm 1 0.93 

MD2 0.73 Grimm N 0.80 

MD3 0.73 Grimm V 0.82 

MD4 0.79 - - 

MW 0.41* - - 
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Table S3 Mean particle number concentrations (cm-3), size (nm), lung 

deposited surface area (μm cm-2) (DiSCmini) and mean inhalable, thoracic and 

respirable mass (μg m3) in the worker area, indoor and outdoor locations for 

each day. Means were calculated considering the two/three batches. WA: 

worker area. LDSA: lung deposited surface area 

Sampling 

DiSCmini Mini-LAS (μg m
3
) 

NTOT (cm
-3

) Size (nm) 
LDSA  

(μm cm
-2

) 
Inhalable Thoracic Respirable 

Clay 1_L 

Day 1 

WA 27564 39 59 1638 709 157 

Indoor 34189 42 78 267 125 19 

Outdoor 40605 36 80 215 23 7 

Feldspar 

1_M Day 2 

WA 40053 52.5 103.6 2447 1519 322 

Indoor 50546 45 123 1772 1400 382 

Outdoor 30776 41 70 1080 77 15 

Quartz 1_M 

Day 3 

WA 29746 37 58 1432 713 181 

Indoor 33934 40 70 851 391 52 

Outdoor 35961 40 61 431 55 10 

Clay 2_L 

Day 4 

WA 23558 43 56 1524 619 135 

Indoor 19113 46 49 285 239 96 

Outdoor 28643 37 57 301 36 16 

Kaolin 1_L 

Day 5 

WA 48424 41 108 3676 1838 425 

Indoor 35016 44 84 589 272 48 

Outdoor 47618 40 70 317 40 17 

Feldspar 2_H 

Day 6 

WA 21784 57 63 2919 1751 495 

Indoor 27615 48 63 1090 465 66 

Outdoor 25541 41 54 1090 465 66 

Kaolin 2_H 

Day 7 

WA 81257 32 124 567 323 96 

Indoor 68377 34 113 372 304 112 

Outdoor 57085 35 78 40 27 8 

 

Table S4 Quartz 1 respirable crystalline silica results for the dustiness test 

Sample 
Mass (µg) 

RCS (%) 
Total Quartz 

Filter 1 940 915 97 

Filter 2 470 475 100 
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Annex A: ARIMA models analysis 

ARIMA models analysis and its results are presented here. Only two cases of 

the ARIMA analysis performed are shown due to space reasons. One example 

of an ARIMA disagreeing with the other tests used (nanoGEM, t test and MW 

“U” test) and one agreeing is shown. 

Case 1) Feldspar 2 inhalable fraction concentration. 

 

ARIMA model used was (1,0,0) 

 

Beta1 is < 1.95 therefore concentrations during process are not significantly 

higher than concentrations during pre-activity. 

This result differ from the ones obtained by using the nanoGEM approach, the t 

test and the MW “U” test which conclude that concentrations during packing are 

significantly higher than pre-activity.  
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Case 2) Kaolin 1 inhalable fraction concentration. 

 

ARIMA model used was (1,0,1) 

 

Beta1 is > 1.95 therefore concentrations during process are significantly higher 

than concentrations during pre-activity. 

This result is in agreement with results obtained by using the nanoGEM 

approach, the t test and the MW “U” test which conclude that concentrations 

during packing are significantly higher than pre-activity.  
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Annex B: Web-based modelling tools output results 

Web-based modelling tools reports are shown here. Only two cases for each 

tool are shown due to space reasons, one for packing line L and one for 

packing line M.  

ART  

a) Feldspar 1, Packing line L 
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b) Kaolin 1, Packing line M 

 



62 
 

 

 

Stoffenmanager 

a) Feldspar 1, Packing line L 

Información básica 

Producto Feldspar 1 

Departamento Stoffenmanager 

Nombre de la evaluación de riesgos B_F1 

Resultados de la estimación de la exposición 

Componente Polvo inhalable 

Concentración de la tarea (mg/m3) 8,73 

Concentración media diaria (mg/m3) 4,42 

Resultados de las estimaciones de exposición 

Componente Feldspar 

Número CAS 68476-25-5 

Concentración de la tarea (mg/m3) 7,86 

Indice de Caracterización de Riesgo Tarea 2,62 

Valor límite (mg/m3) + tipo 3 mg/m3 TWA-8 horas 

Concentración media diaria (mg/m3) 3,98 

Indice de Caracterización de Riesgo Día 1,33 

Valor límite (mg/m3) + tipo 3 mg/m3 TWA-8 horas 

Concentración en el producto inicial (%) 90 



63 
 

Características del producto 

Indicaciones de peligro H  

Pulverulencia del producto Productos extremadamente pulverulentos 

Proceso de trabajo o tarea 

Proceso de trabajo o tarea Packing Euroarce (Hall 1-Packing line L and M) 

Actividad 
Manipulación de productos con una 
velocidad/fuerza relativamente alta que puede 
provocar cierta dispersión de polvo 

PROC 
PROC8b: Transferencia de sustancias o preparados 
(carga / descarga) en instalaciones específicas. 

Duración (minutos) 243 

Frecuencia de la tarea 2-3 días a la semana 

Actividad en el área de respiración No 

Múltiples trabajadores - 

Evaporación, secado o curado después de la 
actividad 

- 

Protección respiratoria Sin protección 

Lugar de trabajo 

Lugar de trabajo Euroarce packing hall 1 

Volumen del recinto de trabajo Volumen superior 1000 m³ 

Ventilación del recinto de trabajo Ventilación general (ventanas y puertas abiertas) 

Limpieza periódica del área de trabajo Sí 

Inspección y mantenimiento periódico Sí 

Medidas de control en la fuente Sistema de extracción localizada 

Separación del trabajador El trabajador no trabaja en una cabina. 

 

b) Kaolin 1, Packing line M 

Información básica 

Producto Kaolin 1 

Departamento Stoffenmanager 

Nombre de la evaluación de riesgos A_K1 

Resultados de la estimación de la exposición 

Componente Polvo inhalable 

Concentración de la tarea (mg/m3) 8,73 

Concentración media diaria (mg/m3) 2,95 

Resultados de las estimaciones de exposición 

Componente Kaolin 

Número CAS 1332-58-7 

Concentración de la tarea (mg/m3) 7,86 

Indice de Caracterización de Riesgo Tarea 2,62 
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Valor límite (mg/m3) + tipo 3 mg/m3 TWA-8 horas 

Concentración media diaria (mg/m3) 2,65 

Indice de Caracterización de Riesgo Día 0,88 

Valor límite (mg/m3) + tipo 3 mg/m3 TWA-8 horas 

Concentración en el producto inicial (%) 90 

Características del producto 

Indicaciones de peligro H  

Pulverulencia del producto Productos extremadamente pulverulentos 

Proceso de trabajo o tarea 

Proceso de trabajo o tarea Packing Euroarce (Hall 1-Packing line L and M) 

Actividad 
Manipulación de productos con una 
velocidad/fuerza relativamente alta que puede 
provocar cierta dispersión de polvo 

PROC 
PROC8b: Transferencia de sustancias o 
preparados (carga / descarga) en instalaciones 
específicas. 

Duración (minutos) 162 

Frecuencia de la tarea 2-3 días a la semana 

Actividad en el área de respiración No 

Múltiples trabajadores - 

Evaporación, secado o curado después de la actividad - 

Protección respiratoria Sin protección 

Lugar de trabajo 

Lugar de trabajo Euroarce packing hall 1 

Volumen del recinto de trabajo Volumen superior 1000 m³ 

Ventilación del recinto de trabajo 
Ventilación general (ventanas y puertas 
abiertas) 

Limpieza periódica del área de trabajo Sí 

Inspección y mantenimiento periódico Sí 

Medidas de control en la fuente Sistema de extracción localizada 

Separación del trabajador El trabajador no trabaja en una cabina. 
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NanoSafer 

a) Feldspar 1, Packing line L 
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Note: the local control (exhaust ventilation) was estimated to reduce particle emissions 

by 90%. A factor of 0.1 was applied to the respirable dustiness input parameter. 
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b) Kaolin 1, Packing line M 
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Note: the local control (exhaust ventilation) was estimated to reduce particle emissions 

by 90%. A factor of 0.1 was applied to the respirable dustiness input parameter. 

 

 

 


