

PROGRAMMING OF PROCESSING

ALGORITHM OF THE IMAGE ON GPU

USING CUDA TECHNOLOGY

Final Degree Project /

Trabajo Final de Grado

Degree in Video Game Design and

Development

Author: David Insa Moreno

UJI Supervisors: Sven Casteleyn & Carlos Granell Canut

June 2019

1

ABSTRACT

 The reason for the TFG is related to the need that the company AUTIS has,

to find a solution to reduce the use of the CPU during the taking and the processing

of images, using LabVIEW software, in the project of dynamic inspection of the

defects in the car bodies. That is why this work is based on research and the creation

of tools that allow you to perform the maximum number of possible functions on the

graphic card. In order to achieve this, it has been learned LabVIEW and CUDA. The

first is the work environment that is used in the project and in the company. And the

second, because it is an architecture to work with the graphics card directly. Once it

has been learned, it has had to move some of the common algorithms in the process

of images made in the CPU to the graphic card by CUDA doing them through parallel

programming, arriving to create a DLL and integrating it in LabVIEW.

2

CONTENTS
Contents

1. Introduction
1.1 Work motivation ... 5

1.2 Objectives ... 5

1.3 Envioronment and initial size ... 5

1.4 Related subjects ... 6

2. Planning and resources evalution

2.1 Planning .. 7

2.2 Resources evaluation .. 8

3. System analysis and design
3.1 Requirements analysis 10

3.1.1 Functional requirements ... 10

3.1.2 Non-functional requirements ... 12

3.2 System design .. 13

3.3 System architecture ... 16

3.4 Interface design ... 17

4. Work development and results

4.1 Work development .. 21

4.1.1 Learning LabVIEW .. 21

4.1.2 Assimilate image processing algorithms 30

4.1.3 Analyze current developments on CPU 34

4.1.4 Techniques for the development of new features on GPU 34

4.1.5 Implementation of the functionalities described 35

4.1.5.1 GPU Control Algorithms .. 36

4.1.5.2 Reserve and Free GPU memory Algorithms 37

4.1.5.3 Copy of CPU-GPU and GPU-CPU data Algorithms . 37

4.1.5.4 Threshold and Reverse Threshold Algorithms 38

4.1.5.5 Erode and Dilate Algorithms .. 39

4.1.5.6 Open and Close Algorithms .. 40

4.1.5.7 Internal Algorithms ... 40

4.2 Results .. 42

3

5. Conclusions and future work

5.1 Conclusions .. 43

5.2 Future work .. 44

Bibliography

A. Other considerations
A.1. Bibliography .. 45

B. Source Code

.. 47

4

1

INTRODUCTION

Contents

1.1 Work motivation ………………………………………….. 5

1.2 Objectives ………………………………………………… 5

1.3 Envioronment and initial size ………………………........ 5

1.4 Related subjects ……………………………………..... 6

 AUTIS, a company dedicated to the industrial automation sector,

offered me the possibility to introduce myself as a programmer in one part

of one of its most important projects. The mentioned part consists in the

reduction of CPU consumption so as not to overload the systems of

inspection of body surfaces that they possess. To do this, it was thought to

perform the greatest possibility of actions that are carried out, in said

inspection, with the graphic card (which from now on I will refer to it as a

GPU or Graphic Processing Unit), since the actions that are carried out

they are much more suitable and would suppose a liberation of work of the

CPU.

 So, my training stage began in a new programming and performance

realm that would allow algorithms to process images in GPU.

5

1.1 Work Motivation

 The simple idea of learning a new way of programming as it is parallel

programming and also be able to apply it optimally in the processing of images,

creates a great curiosity about the extent to which the processing algorithms can

become parallelizable and also be the more efficient.

1.2 Objectives

The objectives set by the company are:

 Analysis of the functions that are currently used in their
systems for surface inspection.

 Approach of these functions for its execution on GPU.

 Valuation of existing bookstores in the market, such as
OpenCV CUDA, NPP NVIDIA and others that can be
assessed during the course of the project.

 Programming of a set of algorithms for surface inspection
with CUDA technology.

 The personal objectives are:

 Learn as much as possible.

 Be able to be useful with everything learned.

 Have enough dexterity to transform / adapt sequential

algorithms to a parallelizable format.

1.3 Envioronment and initial size

 At the time of starting the project, there was no idea of the LabVIEW

environment or parallel programming. And a learning has been started from 0 of

many concepts. For example, as a preview, LabVIEW is a very different kind of

programming that requires a lot of knowledge of all the tools it has, so as not to

make programs that are already done and lose time that way. The environment

when learning and receiving training has always been positive, an aspect that

greatly assimilates.

6

1.4 Related subjects

After all the subjects given during the degree, I opted to do the TFG

oriented to programming subjects. For the most part, the subjects most related to

all the work have been Programming I and Programming II, because they teach

the basic concepts; Algorithms and Data Structures, since in it C ++ is learned and

ways to use optimal recursiveness and Operating Systems, you learn about aspects

related to parallel programming.

7

2

PLANNING AND RESOURCES

EVALUATION

Contents

1.1 Planning …………………………………………………... 7

1.2 Resources evaluation …………………………………….... 9

2.1 Planning

 As can be seen in the diagram, the project was developed in five phases,

where three of which were learning and the other two of analysis and research.

 Since one of the most used tools by the company is the LabVIEW software,

there was a learning stage with it. During this stage, it has been learned the basics

to start doing their own projects. In addition, it has been observed and moved with

their own architecture that AUTIS uses as the basis of your projects in this

software.

 Once the first phase was finished, the operation of five methods widely

used in the project had to be analyzed. This analysis consisted in carrying out tests

with these methods on images of bodies to contrast what results were obtained

when applying one or the other.

8

 Subsequently, it was necessary to investigate how these methods were being

implemented, currently in the project, as a basis for their internal functioning and

thus be able to carry them out in the future in parallel.

 In the fourth phase, it was an introduction in the world of parallel

programming. In it, it was possible to learn a number of concepts and forms of

programming, which in previous circumstances were unknown. It was learned

more about CUDA, since the company opted to introduce all its concepts in all

defect inspection projects on body surfaces, because it represents a quite

remarkable software improvement for the equipment they use. But apart from

CUDA, it has been possible to introduce other parallel programming concepts

such as multiprocessor programming (OpenMP), programming of computer

clusters (MPI), new models of parallel programming such as OpenACC, ...

 Finally, it has been necessary to apply all the concepts studied during the

previous phases to get to create a palette (is the term used to call the set of data

and functions in LabVIEW) of image processing. In this phase, a lot of time has

been invested in realizing algorithms with Visual Studio, implementation of these

algorithms in LabVIEW through the creation of DLLs and debugging errors that

have been appearing when combining LabVIEW with CUDA.

Figure 2.1: Gant chart about the realized tasks and dedicated hours.

9

2.2 Resource evaluation

 Regarding the amount of human resources invested during the learning

stage, it can vary. This is because all the concepts of this work can be learned

autonomously without the need for professionals, since there are material

resources such as guides or books about each of the environments (LabVIEW,

Visual Studio and CUDA). The downside of not using professionals for learning

is that the time spent can increase. Regarding my situation, enough were used for

LabVIEW and less for the other two, due to external work circumstances.

 The amount of economic resources is quite high, since the licenses of

LabVIEW and internal libraries (those of IMAQ). By searching the internet you

can get books that explain the whole functioning of CUDA, which as a basis to

have basic concepts are fine. But they don’t help to obtain the skill of parallel

programming. In my circumstance, it has been had an online training course

certified and made by NVIDIA. In addition to receiving tutorials and information

about CUDA from professionals in the field outside the company.

 The time spent can also vary according to the amount of previous resources

that have been decided to invest. It is also influenced by the type of person who

does it, since they are not completely clear concepts and it is necessary to

understand very well.

 So that, the economic estimate of human resources would be around 3800

euros, counting all the hours spent in conducting training classes. The economic

estimate of material resources, would be around 3600 euros. This counting that

the license of LabVIEW is the cheapest (400 euros per year), in my case the

licenses used are the professionals (around 5000 euros per year). The remaining

amount is based on CUDA courses, library licenses in LabVIEW and a team with

the necessary. Therefore, the total estimate would be about 7400 euros.

10

3

SYSTEM ANALYSIS AND DESIGN

Contents

3.1 Requirements analysis …………………………………............... 10

3.1.1 Functional requirements …………………………...….... 10

3.1.2 Non-functional requirements …………………………... 12

3.2 System design …………………………………………………. 13

3.3 System architecture ……………………………………………. 16

3.4 Interface design ………………………………………………... 17

3.1 Requirements analysis

 In this section, it can be seen the schemes about the palette.

3.1.1 Functional requirements

 The user needs to perform certain functions that allow an image to be

treated with the GPU. For this purpose, operations that prepare the image for

processing, send and receive operations, and memory reserve and release

operations are required.

11

Input: Minimum and Maximum Numbers & Black / White Image
Output: Binarized Image

Description:

The user will apply a threshold to the image. Which is based on
binarizar the image. It puts 1 in the pixels of the image whose
value is between the minimum and the maximum of the numbers
entered. And to 0 those that are not inside

Table 3.1.1: Functional requirement << Algortithm Threshold >>

Input:
Minimum and Maximum Numbers & Black / White Image

Output: Binarized Image

Description:

The user will apply a reverse threshold to the image. Which is
based on binarizar the image. It puts 0 in the pixels of the image
whose value is between the minimum and the maximum of the
numbers entered. And to 1 those that are not inside

Table 3.1.2: Functional requirement << Algortithm Reverse Threshold >>

Input:
Radio Number & Binarized Image

Output: Processed Image

Description:

The user enters a binarized image and applies an erode algorithm.
This algorithm gives each a pixel the minimum of the sum of its
neighbors. The number of neighbors depends on the radio.

Table 3.1.3: Functional requirement << Algortithm Erode>>

Input:
Radio Number & Binarized Image

Output: Processed Image

Description:

The user enters a binarized image and applies an dilate algorithm.
This algorithm gives each a pixel the maximum of the sum of its
neighbors. The number of neighbors depends on the radio.

Table 3.1.4: Functional requirement << Algortithm Dilate>>

Input:
Radio Number & Binarized Image

Output: Processed Image

Description:

The user enters a binarized image and applies an open algorithm.
This algorithm is base don using firstly a erode and secondly a
dilate. It is used to eliminate noise in the picture.

Table 3.1.5: Functional requirement << Algortithm Open>>

Input:
Radio Number & Binarized Image

Output: Processed Image

Description:

The user enters a binarized image and applies an close algorithm.
This algorithm is base don using firstly a dilate and secondly a
erode. It is used to fill holes in areas with 1 in their pixels.

Table 3.1.6: Functional requirement << Algortithm Close>>

12

Input:
Width and Height of the Image

Output: Nothing

Description:

The user will reserve memory in GPU for the image with which he
will try.

Table 3.1.7: Functional requirement << Algortithm to Reserve GPU memory>>

Input:
Nothing

Output: Nothing

Description: The user will free memory in GPU.

Table 3.1.8: Functional requirement << Algortithm to Free GPU memory>>

Input:
Image

Output: Nothing

Description: The user needs to copy the image from GPU to CPU

Table 3.1.9: Functional requirement << Algortithm to Copy data in GPU>>

Input:
Space for a Processed Image

Output: Processed Image

Description: The user needs to copy the image from CPU to GPU

Table 3.1.10: Functional requirement << Algortithm to Copy data in CPU>>

3.1.1 Non-functional requirements

 The user must use some extra functions to be able to perform the image

processing. As will be explained later, in the GPU it is necessary to reserve memory

to perform operations, pass the data, which will be used, from CPU to GPU and

vice versa and free the used memory. Therefore, two or four (depending on the

implementation of the program) functions that allow error-free processing will be

used. In addition, everything must be connected sequentially.

 Algorithms that process images work with arrays of numbers, instead of

image files. So that the user can work without problem. It will be provided with

methods that transform the image file into arrays. In addition to functions to be

able to visualize the original and the result.

 So that everything is clear, each implemented function will have a detailed

description of what it does, where it should be located and what input and output

parameters it uses. In addition, it will have a physical manual and PDF with all the

methods used.

13

3.2 System design

CASE USE DIAGRAM

Figure 3.2.1: Case use diagram

The programmer is responsible for creating functions that allow operations

with the GPU through Visual Studio. Users work only with LabVIEW.

That's why the programmer passes those functions in Visual Studio to

LabVIEW and also creates extra functions so users can connect all of them

without problems.

14

CLASS DIAGRAM

Figure 3.2.2: Class diagram

The user of LabVIEW creates a project or applies in another the set of

functions created for the treatment of the image. These functions call those

created in Visual Studio. Where each Visual function can be used only by a

LabVIEW function and each user can use the LabVIEW feature set

between 1 and infinite times.

15

ACTIVITIES DIAGRAM

Figure 3.2.3: Activities diagram

The user who uses the image processing functions, gives an image to

LabVIEW. This set of functions is responsible for performing all

operations to send, process and receive the image to the GPU. Until the

image acquisition operations are performed, it remains in GPU and can not

be used by LabVIEW.

16

INTERACTION DIAGRAM

Figure 3.2.4: Interaction diagram

The user gives an image to LabVIEW and it is displayed in the user interface,

LabVIEW internally performs the processing operations. And in turn, these

functions call the library that allows us to send, process and receive the image in

GPU. Once the processing is finished, the final result of the image is returned.

3.3 System architecture

 To be able to carry out this project, at the software level you need to have

licenses from LabVIEW, IMAQ, Visual Studio and CUDA. At hardware level, it

is mainly required to have a graphic card compatible with CUDA.

The processor of the computer is an important factor when it comes to

obtaining a greater number of processed images, but it is not vital if what is

required is not the quantity but the times. Therefore, if you want an optimal image

processing, we recommend devices with a good RAM, graphics card and

processors.

17

The equipment used for the project is:

 Processor: Intel® Core™ i7-8700K CPU 3.70 GHz

 RAM: 16 GB

 Graphic Card: GeForce GTX 1050 Ti (4GB)

 Hard Disk: 500 GB

 Monitor: HP VH27

3.4 Interface design

 The interface of this project does not exist as it can be that of an application

or video game. A palette of VIs (or Virtual Instruments, are the program on wich

LabVIEW is based) has been designed and these are distributed by folders. The

only design part that exists is the visual and documented part of each VI.

Figure 3.4.1: Final result of the palette.

18

 It has been tried that each VI has a representative icon, an internal order

and a small description of its use and utility.

Figure 3.4.2: Example of VI icon, inputs and outputs parameters and a VI description.

 Likewise, a VI testet has been carried out with everything implemented, but

with a very basic design. In it, we can compare times of each type of VI

implemented in the palette, allowing the modification of the input parameters and

adding own test files.

Figure 3.4.3: Front Panel Tester.

19

Figure 3.4.4: Block Diagram Tester.

20

4

WORK DEVELOPMENT AND

RESULTS

Contents

4.1 Work development ... 21

4.1.1 Learning LabVIEW .. 21

4.1.2 Assimilate image processing algorithms 30

4.1.3 Analyze current developments on CPU 34

4.1.4 Techniques for the development of new features on GPU 34

4.1.5 Implementation of the functionalities described 35

4.1.5.1 GPU Control Algorithms .. 36

4.1.5.2 Reserve and Free GPU memory Algorithms 37

4.1.5.3 Copy of CPU-GPU/GPU-CPU data Algorithms . 37

4.1.5.4 Threshold and Reverse Threshold Algorithms 38

4.1.5.5 Erode and Dilate Algorithms 39

4.1.5.6 Open and Close Algorithms 40

4.1.5.7 Internal Algorithms ... 40

4.2 Results .. 42

4.1 Work development

21

4.1.1 Learning in LabVIEW

During the first two weeks, they introduced me to the new graphic

programming environment, LabVIEW, which I would use as the basis of my

project. The formation of this new language is distributed in two blocks, Core 1

and 2.

LabVIEW is based on the creation of programs called VI or Virtual

Instruments, each VI consists of three parts: Front Panel, is the user interface;

Block Diagram, contains the source code; and Icon / Connector Panel, represents

the VI and allows connect with others.

Figure 4.1.1.1: Front Panel Example.

Figure 4.1.1.2: Block Diagram Example.

Figure 4.1.1.3: VI Example with its identification Icon and all the connectors it has.

22

CORE 1 is distributed as follows:

 LabVIEW and distribution.

 A first application.

 Problem solving and debugging of VIs.

 Loops.

 Data structure.

 Decision making structure.

 Modularity.

 Access to files.

LabVIEW and distribution: This part presents the software, how it is

formed and how a project is created. That is a little what it has been had previously

introduced.

A first application: Here is explained the flow of data that manages, which

is based on the transfer of data through connections between the different

elements within a Block Diagram and always goes from left to right and from top

to bottom. A large number of factors must be taken into account in order to carry

out operations correctly and that the data flow does not collapse. The elements of

LabVIEW can have connections of entrance, of exit or both. Those who don’t

have input will always run first and those who have input must wait for the flow

to reach them.

Figure 4.1.1.4: Data flow Example. In this case, by the connections, it will first make the addition

and then the multiplication.

In addition, the type of data it uses is revealed: numeric data of 8, 16, 32

and 64 bits; singles, doubles, booleans, strings, etc.

23

Figure 4.1.1.5: A part of general palette interface

Problem solving and debugging of VIs: In this section is exposed how

to prevent all kinds of errors that can occur and how to solve them to avoid

unwanted effects. LabVIEW has a large amount of aid for debugging projects, a

manual on all errors that may appear and for dealing with errors.

 Figure 4.1.1.6: Debug mode example. It is activated with the menu light

Figure 4.1.1.7: VI with error example. It is indicated with the broken arrow.

24

Loops: We talk about the "for" and "while" loops and introduce a new

concept that is the temporalization of loops, this is because, if we don’t apply a

runtime between each loop cycle, LabVIEW consumes a lot of CPU resources.

With timers, we better distribute CPU usage for processes.

Figure 4.1.1.7: While loop (Left) and For loop (Right) examples.

 Figure 4.1.1.8: Example CPU usage by two loops example (one without

and the other with a timer), it can be seen that the left loop consumes 8 of CPU and the timer is 0.

Data Structure: It talks about arrays of one and two dimensions. It is noted

that arrays can only have elements of the same type and that clusters are used to

use structures with several types of elements. It explains the functions that can be

performed with them, polymorphism, which is based on the concept of input of

different types of data in one element and that are transformed into another, and

the autoindexed, which are several qualities that arrays have to get your data in the

loops.

25

Figure 4.1.1.9: Three ways to treat an array in a loop (the first one, it is autoindexed when enter in a

loop, that is, only the parameters of array enter. When exit, all the elements ara grouped again in an array. The

second one, the complete array enters and an array of arrays comes out. The third one, the array enters and

the array comes out).

Decision making structure: The type of structures they use for this are

similar to the “if” and “switch” used in conventional programming.

Figure 4.1.1.10: Case structure as a “if”

Figure 4.1.1.11: Cases structure as a “switch”

26

Modularity: This concept is related to the benefit of reusing code by

creating VIS that are known to be used more than once, so that they don’t have to

recreate everything, they are known as subVIs.

Figure 4.1.1.12: VIs used in other VI

Acces to file: LabVIEW can open, read, write and close all types of files

and this section deals with everything related to it.

Figure 4.1.1.13: File I/O Palette

And CORE 2 is based on the following topics:

 Use of variables.

 Communication between parallel loops.

 Design patterns.

 Control of the user interface.

 File I / O techniques.

 Improvement of an existing VI.

 Creation and distribution of an installer.

27

Use of variables: Here it talks about local and global variables, which pass

information between locations in the application that can not connect with cables.

The differences between the two are explained, at what moment to use each one

and the possible career conditions that can be produced if they handle properly.

 Figure 4.1.1.14: Up (element to create a local variable) and down (element to create a global

variable)

Communication between parallel loops: In this lesson you learn to

develop code that synchronizes the data between parallel loops and explains which

communication method is the most appropriate in different scenes.

Figure 4.1.1.15: 4 loops in parallel

Design patterns: It shows how to perform different types of patterns

(simple, general, state machine and state machine based on events). The simple VI

pattern consists of a single VI that performs the operations (such as addition,

subtraction, concatenation of strings,...). The general VI pattern consists of three

phases: Start-up, all previous procedures are initialized; Main application, performs

all VI operations and is usually composed of at least one loop; and Closing, in

charge of the finalization. The pattern of the state machine, this consists of a loop

with a case structure in its interior. The state machine pattern based on events

combines the interaction of the user with a state machine.

28

 Figure 4.1.1.16: Simple pattern

Figure 4.1.1.17: General pattern

Figure 4.1.1.18: State machine pattern

Figure 4.1.1.19: State machine with events pattern

29

Control of the user interface: In this part of the lesson you learn to use

the elements in an appropriate way, to invoke them and control their references to

control objects of the Front Panel through programming.

 Figure 4.1.1.20: A double variable with its reference

File I/O techniques: The topic of dealing with external files in LabVIEW

is explained in more depth.

Improvement of an existing VI: Based on code optimization, factoring

and correction of elements to have a sustainable, readable and easy to understand

VI for all.

Figure 4.1.1.21: A sequential sum with a bad order.

Figure 4.1.1.22: The same sum with a correct order.

30

Creation and distribution of an installer: It exposes all the steps for the

creation of ejectuables of the VI.

After the basic training in LabVIEW, it has been learned a bit about the

Block Diagram architecture that AUTIS uses for most projects, which is based in

a state machine with events custom pattern, to make it more sustainable and with

a lot of modularity. With it all the VIS that we insert in the right place will be

controlled by the architecture making it become a much more stable project.

And finally, the LabVIEW training course, the libraries that the company

uses for the whole issue of processing and imaging of IMAQ were released. Which

has a good set of elements for it, such as memory reserve for images, determination

of the size of images, conversions of binary arrays to images, color images to black

and white, image processing algorithms (erode, threshold,...), determine

histograms, etc.

Figure 4.1.1.23: IMAQ palette

4.1.2 Assimilate image processing algorithms

During this period it was necessary to investigate the most common

algorithms that the company applies to the images it takes of the surfaces of the

bodies of the vehicles. Five were investigated: Threshold, Erode, Dilate, Open and

Close. For this, it had to be understood that each of them was used, as they were

applied to LabVIEW and how they were performed in CPU.

31

The mechanism that the company uses to detect defects in the surfaces

consists of a tunnel where the bodywork is introduced and with a beam of light

reproject a specular reflection on the surface and all this is captured by frame by

frame by the cameras. That reflection is the area that will be analyzed later to

determine if there are defects. But to be able to treat that area, the previous

algorithms and others must be applied.

Explanations of each algorithm:

Threshold: Method that allows to binarize the image according to two

input parameters (a minimum and a maximum). Analyze each pixel of the image

and if it falls within the range between the minimum and maximum, the value of

that pixel is replaced by 1. If it is left out it replaces it with 0. It is useful to discard

from the analysis of the image areas where the reflex does not appear or is not

valid. This method is introduced in LabVIEW through a VI that calls a DLL

(which it will be explained later).

Figure 4.1.2.1: To the left, a threshold with minium 70 and maxium 240. And to the right, minium

10 and maxium 240.

32

Erode: Method that reduces the limits of a region. This process is done

through a variable size / radius kernel. What is done is to apply said kernel on a

pixel, determining the minimum of its neighbors and applying on said pixel. It is

used to reduce the contours of the reflection taken.

Figure 4.1.2.2: To the left, an erode with radius 1. And to the right, with radius 5.

Dilate: Brother method of the Erode. Perform the opposite operation,

calculation of the maximum of its neighbors.

Figure 4.1.2.3: To the left, a dilate with radius 1. And to the right, with radius 5.

33

Open: Method that first applies an Erode and then a Dilate.

Figure 4.1.2.4: To the left, an open with radius 1. And to the right, with radius 5.

Close: Method that first applies a Dilate and then an Erode.

Figure 4.1.2.4: To the left, a close with radius 1. And to the right, with radius 5.

34

4.1.3 Analyze current developments on CPU

The algorithms described in the previous section can be carried out

sequentially or in parallel in the CPU. Both ways don’t fit the needs of the

company, either by execution times or by continuing to load many tasks to the

CPU. Therefore, the company chooses to look for alternatives with the GPU. To

be able to perform the largest number of operations with the GPU and thus

achieve two things: better processing times and reduce the computational load of

the CPU to be able to perform more tasks with it.

4.1.4 Techniques for the development of new features

on GPU

As a result of wanting to perform the maximum possible operations in

GPU, it is decided to use the functionalities of the CUDA architecture. It is a

parallel computing platform that allows to use a variation of the programming

language in C to encode algorithms in GPU created by NVDIA.

During this period, a CUDA training is carried out through a course on

fundamentals of computational acceleration that the NVDIA itself imparts online,

through the tutoring of professionals in this field and through its own research.

In addition, we opted for a 10-hour course introducing us in the world of

parallel programming in both CPU and GPU, where programming concepts were

seen as OpenMP, OpenACC, CUDA,...

4.1.4.1 CUDA architecture

CUDA is born from the search of a unification of the two internal

processors (the one of vertices and fragments) of a GPU. This is done because

previously there was a problem of load imbalance between the two processors and

the difference between instruction repertoires. With this new architecture we are

allowed to create a program where a function or a complete program is called,

known as a kernel. This runs parallel to the GPU as a set of “threads” that are

organized in a hierarchy that can be grouped into "blocks" (which can also be

grouped together in a grid). Blocks and grids can have one, two or three

35

dimensions. In order to specify the quantity of all these, it must be specified when

making the calls.

Already within the GPU each thread is assigned an identifier inside its block

and the same for the blocks within the grid. So, this allows each thread to decide

what data it should work with. Finally, it should be noted that threads are grouped

in groups of 32, and that the maximum number of threads per block is 1024 and

that the number of threads can vary but it is around 65553.

4.1.5 Implementation of the functionalities described

The objective with all this learning is to build a set of VIs in LabVIEW that

allow to perform image processing operations with CUDA. Put both concepts

together using DLLs (Dynamic Link Libraries).

To create a DLL it has been used the Visual Studio 2017 development

environment, which allows to incorporate CUDA into its C / C ++ language.

When creating a new project, you must specify that the project will not be .exe but

.dll and in the header files you must specify a condition for each function, which

you want to export. Therefore, the functions are created in C / C ++ language

and the CUDA functionalities are incorporated.

Once we have the created DLL file, already in LabVIEW an element is used,

"Call Library Fuction Node", that allows to call the desired DLL, passing the

necessary input and output parameters.

After carrying out all the previous processes, we will have one or several

VIs that contain the desired functionalities and therefore a palette can be created.

A palette is nothing more than a grouping of VIs introduced in LabVIEW in a

general way, used according to the required needs and without the need to have

the source project (the one containing the VIs of said palette) open.

In order for the image processing palette to work correctly, a strict order

must be followed in the execution of the VIs placed in the Block Diagram. This

order will be: GPU memory reserve> Copy of CPU to GPU data> Processing

Functions> Copy of GPU data to CPU> GPU memory release. And all of them

must be linked by the same variable, "Error IN / OUT Toolkit", which must be

received from the VI previously executed and extracted by the next VI, thus

completing the marked order.

36

Figure 4.1.5: Order of use of the palette

4.1.5.1 GPU Control Algorithms

CUDA has a large number of default functions to handle the entire GPU

environment. After reading about it, it was decided to implement five functions in

my palette that avoid interaction errors with LabVIEW, because in the long run

there could be errors in the use of the GPU, if the indicated path was not followed

when working with it.

The first function implemented indicates how many graphics processors

compatible with CUDA the device has. The following restart a certain or all of the

GPUs, freeing up the memory space that the processor uses. The third one

establishes which graphic card to use. And finally, although for reasons of time it

has not been possible to make it work correctly, a function that explains what is

the error that could have occurred in the DLL.

Figure 4.1.5.1: GPU Control VIs

37

4.1.5.2 Reserve and Free GPU memory Algorithms

 One of the concepts to take into account when working with CUDA is that

it is essential to reserve GPU memory (similar to the process that is done with the

CPU) to perform operations with it. The release is also essential, to avoid the

storage of unnecessary data. So, whenever you want to work with it, we must use

the functions of reservation and release of that memory.

 Due to the purpose of creating a palette for image processing, these two

functions are implemented as two VIs. The first, the reserve, you pass the sizes of

the image. To the second, only the variable "Error IN / OUT Toolkit" commented

in a previous section.

Figure 4.1.5.2: Reserve and free GPU memory VIs

4.1.5.3 Copy CPU-GPU and GPU-CPU data Algorithms

 Once you have reserved a memory area, you must send the necessary data

to the GPU with which to perform the operations. And to get the data, they must

be sent back to the CPU. In order to implement these requirements, CUDA has

several very practical functions in this regard.

 It has been chosen to make two VIs. The one that makes a copy of the CPU

to GPU, is passed the array of the image (which it will be explained in more depth

in a later section) that you want to send to the GPU. The other VI receives an

empty array and returns it with the result of the processing.

To speed up and avoid errors, it has been put together the functions of

Memory Reserve and Copy of CPU-GPU data into one, thus creating a single VI

to deal with the initialization of work with GPU. In the same way, it has been did

38

it with the Memory Release and GPU-CPU Data Copy, to treat the completion as

a single VI. This is possible because nothing can be added between these unions.

Figure 4.1.5.3: Copy data VIs

4.1.5.4 Threshold and Reverse Threshold Algorithms

In the following algorithms, it is taken into account if the user that will use

these processing functions, understands the internal management of the "threads"

and "blocks" that the GPU uses. Because VIs are made that control these

parameters automatically or manually.

The threshold realized takes advantage of the parallel programming in

CUDA, since as it is about the replacement of pixels only, independently of its

neighbors, it is enough to apply a number of threads and blocks of 1D, that is to

say there will only be in x, needed to change all the pixels.

Reverse threshold is the function contrary to threshold, it substitutes 0 the

pixels inside the range and 1 the ones outside.

Figure 4.1.5.4: Threshold and Reverse Threshold VIs

39

4.1.5.5 Erode and Dilate Algorithms

 It was also taken into account to perform these algorithms automatically

and manually. After analyzing and investigating how an Erode worked, a quite

reliable solution was obtained, not quite optimal, but which performed image

processing in a very acceptable time. It is based on obtaining the minimum and

maximum of the neighbors, but in a parallel way. To be able to do it is based on

the use of the two dimensions of the "threads" and "blocks", to speed up much

more.

 After implementing this function, the Dilate was performed by changing

some parameters. By performing tests, a code was obtained that performed these

algorithms with a higher speed, but with a disadvantage. Much greater speed is

achieved if the number of images is very large. In order to arrive at this solution,

what is done is to divide the algorithm made in CUDA of the first Erode / Dilate

in two steps. First it is done with the threads of the y axis and in the other step

with those of the x. The only downside of this new code is that we use another

auxiliary array, with which we must reserve memory and release it. But all this is

done internally and this function receives and passes the data as the other VIs of

these algorithms.

 In this way you have four VIs of each: 2 of the fastest version (when you

have a large number of images) and 2 of the normal version.

Figure 4.1.5.5.1: Erode VIs

40

Figure 4.1.5.5.2: Dilate VIs

4.1.5.6 Open and Close Algorithms

 These are also made for automatic and manual format. The versions that

make Erode and Dilate are taken much faster. The reason for this is that these VIs

will process large amounts of images and in the long run would obtain better

results.

Figure 4.1.5.6: Open and Close VIs

4.1.5.7 Internal Algorithms

 Since we have tried to implement this palette for professional and non-

professional users in this field, we have always sought the best optimization, the

best possible results and the greatest ease of use. By the way, knowing that when

working with the GPU there is not a total of always efficient "threads" and

"blocks", a function has been created in Visual Studio that calculates all this

automatically to avoid the user having to know nothing of all handled by the GPU.

41

With this function according to the sizes of the image to be processed, quantities

of these are established.

Also for those more expert users, we have a manual version of all the

algorithms to determine the numbers of "threads" and "blocks" to use GPU. For

the moment, in this format, if you use algorithms that require two dimensions of

these, the quantities will be the same for x as for y.

 In LabVIEW, VIs have been created that facilitate all the previous and final

travel to obtain a processed image. For this, the following VIs have been

implemented:

 1_acq_To_ArrayU8: Because the company stores a set of images taken in

the ".acq" file, this VI has been created to be able to read one or all of the

desired images and transform each image into an array of Unsigned 8, which

is the file format that receives the first necessary VI.

 1_ArrayU8_To_Image: After completing the entire processing path, the

image is obtained in an array of Unsigned 8, so we must do a conversion.

From this step, this VI is commissioned.

 1_Image_To_ArrayU8: In the same way that you can convert an “. acq"

file, in this one you can do with all these types of images: BMP, TIFF,

JPEG, JPEG2000, PNG and AIPD.

 CreateBufferSrcDst: In many cases you want to display both the initial

result and the end of the desired image, for this to occur it is necessary to

reserve memory. In this VI, making use of IMAQ libraries is responsible

for making a memory reservation for two images.

 UseMask: This function at the moment has no use. It is based on receiving

a mask of the desired image, transform it to binary and from binary to array

Unsigned 8. If no mask is received, create an entire mask full of 1s. The

reason for this function is that in the future, it can be used to streamline

other algorithms by removing image areas that will not be necessary to

analyze.

42

Figure 4.1.5.7: Extra VIs

4.2 Results

 After all the achievements have been advanced throughout the project, it

can be affirmed that the objectives set have been achieved. In this way, we achieve

an operative and optimal palette in LabVIEW that can be used in a professional

field such as the inspection of body surfaces. In turn, freeing up workload to the

CPU and using the GPU as much as possible.

 The times obtained in each algorithm don’t surpass the 2 milliseconds,

arriving to process images of sizes 2464 x 2056 pixels in less than 4 milliseconds

and of 1232 x 1028 pixels in less than 3.

Figure 4.2: Final palette introduced in LabVIEW

43

5

CONCLUSIONS AND FUTURE

WORK

Contents

5.1 Conclusions ... 43

5.2 Future work ... 44

5.1 Conclusions

 After all the work done I am satisfied with the result obtained. Learning

new forms of programming and new work environments give much greater skill

and possibility of creating codes, although as seen in some cases it is not always

possible to parallelize certain algorithms.

 Working with the LabVIEW environment has been a great experience,

since it is based on a different programming than the one seen during the degree,

highly recommended when debugging code and much more visual.

 I think the only fault is that I have had is that spent a lot of time fixing

errors between LabVIEW and CUDA, because I was trying to perform actions

that couldn’t be done. One of them was to try to handle from LabVIEW the

images that were in GPU memory, which can’ t be done. And the other problem,

which has been rather a limitation, is that it has been tried that this palette could

be used several times, that is, to be able to use for example two Erodes in a parallel

way in LabVIEW. It couldn’t be achieved due to lack of time and inexperience,

44

since he was investing a lot of time in a factor that he didn’t know for sure if he

could. After finishing the whole project and researching it, I have several

possibilities to achieve it.

 One thing I would like to add is that all the functions of processing the

image in a Visual document are performed. The reason for this is that it allows you

to make changes more accurately and quickly than creating news documents for

each function. In addition only few functions have been realized because the

learning of LabVIEW and CUDA is done from zero, so the time to create and test

new algorithms was not very high.

Finally, in my opinion, doing the TFG in a company brings great experience

to observe how the real world really works. Since until it is entered, it isn’t known.

I must also add that the company where I have done it isn’t related to videogames,

but it’s related to many of the subjects I have given programming. Externally to

the TFG, I have used 3DS Max and Blender, for company activities.

5.2 Future work

I would like to continue working in this area and parallelize more

complicated algorithms, so that I can really appreciate all the knowledge acquired.

Also, I would like to improve the functionality of the palette so that it would

be possible to use it more than once in the same VI, which, as I said earlier, is still

not possible.

45

 A

OTHER CONSIDERATIONS

Contents

A.1 Bibliography ... 45

A.1 Bibliography

Information about online courses offered by NVIDIA:
https://www.nvidia.com/en-us/deep-learning-ai/education/#ac-online

Basic information about CUDA:
https://es.wikipedia.org/wiki/CUDA

https://sg.com.mx/revista/programando-para-el-gpu-cuda

https://devblogs.nvidia.com/even-easier-introduction-cuda/

Book of the University of Burgos about CUDA:
http://riubu.ubu.es/bitstream/10259/3933/1/Programacion_en_CUDA.pdf

CUDA Toolkit Documentation:
https://docs.nvidia.com/cuda/index.html#

Operation on the NVIDIA GPU:
https://hardzone.es/2018/05/06/nucleos-cuda-tarjetas-graficas-nvidia/

https://www.nvidia.com/en-us/deep-learning-ai/education/#ac-online
https://es.wikipedia.org/wiki/CUDA
https://sg.com.mx/revista/programando-para-el-gpu-cuda
https://devblogs.nvidia.com/even-easier-introduction-cuda/
http://riubu.ubu.es/bitstream/10259/3933/1/Programacion_en_CUDA.pdf
https://docs.nvidia.com/cuda/index.html
https://hardzone.es/2018/05/06/nucleos-cuda-tarjetas-graficas-nvidia/

46

Basic CUDA programming with C ++:
https://eslinux.com/programacion-gpu-cuda/

First steps with CUDA:
http://fisica.cab.cnea.gov.ar/gpgpu/images/clases/clase_1_cuda.pdf

Creating a C ++ DLL for CUDA:
https://www.youtube.com/watch?v=eAWXktWXOo4

Creating a C ++ DLL for Visual Basic:
http://alonso_m.tripod.com/visualc/creardll.htm

Creating a C ++ DLL:
http://codecrab.blogspot.com/2010/05/utilizando-librerias-dll-desde-c.html

Treatment of images in C:
https://poesiabinaria.net/2011/07/salvando-archivos-de-imagen-bmp-en-c/

Information about CUDA bookstores:
https://docs.nvidia.com/cuda/cuda-samples/index.html#box-filter-with-npp

LabVIEW Core 1 and 2:
http://sine.ni.com/tacs/app/overview/p/ap/of/lang/es/ol/es/oc/gt/pg/1/sn/n24:12725/id/158

2/

Information about morphological transformations:
https://docs.opencv.org/trunk/d9/d61/tutorial_py_morphological_ops.html

https://docs.opencv.org/2.4/doc/tutorials/imgproc/erosion_dilatation/erosion_dilatation.html

https://en.wikipedia.org/wiki/Erosion_(morphology)
https://homepages.inf.ed.ac.uk/rbf/HIPR2/open.htm

https://courses.cs.washington.edu/courses/cse576/06sp/notes/Basics1.pdf

UPV documents about “Introduction to parallel processing”

https://eslinux.com/programacion-gpu-cuda/
http://fisica.cab.cnea.gov.ar/gpgpu/images/clases/clase_1_cuda.pdf
https://www.youtube.com/watch?v=eAWXktWXOo4
http://alonso_m.tripod.com/visualc/creardll.htm
http://codecrab.blogspot.com/2010/05/utilizando-librerias-dll-desde-c.html
https://poesiabinaria.net/2011/07/salvando-archivos-de-imagen-bmp-en-c/
https://docs.nvidia.com/cuda/cuda-samples/index.html#box-filter-with-npp
http://sine.ni.com/tacs/app/overview/p/ap/of/lang/es/ol/es/oc/gt/pg/1/sn/n24:12725/id/1582/
http://sine.ni.com/tacs/app/overview/p/ap/of/lang/es/ol/es/oc/gt/pg/1/sn/n24:12725/id/1582/
https://docs.opencv.org/trunk/d9/d61/tutorial_py_morphological_ops.html
https://docs.opencv.org/2.4/doc/tutorials/imgproc/erosion_dilatation/erosion_dilatation.html
https://en.wikipedia.org/wiki/Erosion_(morphology)
https://homepages.inf.ed.ac.uk/rbf/HIPR2/open.htm
https://courses.cs.washington.edu/courses/cse576/06sp/notes/Basics1.pdf

47

 B

SOURCE CODE

Repository in GitHub of Visual Studio Project:
https://github.com/david32crack/DLLCUDA

Repository in GitHub of LabVIEW Project:
https://github.com/david32crack/PaletteLabVIEWProject

Repository in GitHub of Palette:
https://github.com/david32crack/PaletteLabVIEWPackage

Algotithms in Visual Studio:

Threshold Algorithm with GPU:

https://github.com/david32crack/DLLCUDA
https://github.com/david32crack/PaletteLabVIEWProject
https://github.com/david32crack/PaletteLabVIEWPackage

48

First version Erode Algorithm with GPU:

Second version Erode Algorithm with GPU:

49

First version Dilate Algorithm with GPU:

Second version Dilate Algorithm with GPU:

50

Algorithm to calculate Threads and Blocks:

