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Abstract: This paper presents the development of a parking occupancy simulator to support a smart
parking system. The simulator uses an agent-based approach to model drivers who follow activity
plans and who may or may not use the smart parking system. We illustrate how the process of
developing our simulator helped in the design and implementation of the smart parking system
components. The paper also shows how the simulator was used to study the possible usage of
the smart parking system in a university campus, foreseeing (1) support for the smart parking
system’s overall suitability, (2) reservation guarantee violation problems, and (3) the value of using
total traveled distance as a metric for the smart parking evaluation. The experience presented in
this paper may prove valuable to teams planning the development of a smart parking system for
similar contexts.
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1. Introduction

Agent-based simulations have proven valuable for studying traffic and mobility phenomena,
including parking search and availability, without disrupting the actual traffic in a city. Many cities
assign great importance to solutions to parking-related problems [1]. Those solutions include smart
parking systems (SPS) which, mainly found as Parking Guidance and Information (PGI) systems,
determine the parking occupancy and provide suggestions about parking availability [2]. SPS have
been shown to have positive effects on driver parking success and on traffic flow [3]. SPS development
has also significantly benefited from behavior models for parking search that help in analyzing the
underlying phenomenon [4], and in testing of design and implementation choices [5,6]. Drivers are
commonly represented as agents, using Agent-Based Modeling (ABM) [7,8], located in an urban
environment. The environment can be represented using data from Geographic Information Systems
(GIS), which provide a digital representation of the urban environment [9] and are already in place in
many city governments.

When off-the-shelf simulation software is used to build a parking simulation linked to an SPS,
the software often can impose data format and scripting restrictions that create conflicts with the
SPS design and implementation. These conflicts prevent or complicate the SPS and simulator from
sharing GIS data and algorithm implementation [5,9], affecting resource sharing and thus reutilization.
Building or adapting a parking simulator so that it can share data and software components with its
related SPS can benefit an SPS project beyond what is explored in previous parking simulations studies.
Such benefits are important considering the increasing availability of city geospatial data [10] and
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the increase in government interest in parking optimization [11]. For example, an SPS development
project for a city may benefit from (1) the incorporation of available geospatial services into the SPS
development, and (2) the early evaluation of the SPS design and feasibility by means of a parking
occupancy simulation.

This paper describes our experiences in building an agent-based parking occupancy simulator.
The simulator had two major goals: (1) testing suitability of an SPS in the context of a university
campus and (2) reuse of its development efforts (and code) during the SPS development. The SPS
targeted by our simulator checks the occupancy of on-street parking spots using sensors, and handles
logical spot reservation upon request. The simulator allows the exploration of parking occupancy
patterns created by agents that either use or decline to use the SPS. Agents represent drivers of the
most typical profiles of people who drive to and within the campus.

As a case study, experimentation was performed using the simulator to explore situations with
different levels of parking demand and SPS usage. The results provide insights into a metric for SPS
suitability evaluation from a driver’s point of view. Also, the experiments allowed exploration of the
reservation guarantee problem (someone stealing your assigned spot while you are en route to it),
which arises due to the lack of a physical reservation enforcement. In summary, the main experiences
and recommendations in this paper are:

1. The methodology we employed to increase re-usability of software development efforts for a
parking simulator, applied to a related SPS development;

2. how to explore the reservation guarantee concept for an SPS without physical reservation
enforcement; and

3. how to use the total driving distance metric for making credible comparisons when evaluating
an SPS usage benefits.

To the best of our knowledge, no previous study has proposed the mentioned reutilization
methodology relating an SPS and a parking occupancy simulator. The design proposal allows novel
traits like running a simulation from current parking state data, or automatically using the latest
environment information. Likewise, despite the fact that the reservation guarantee problem has been
acknowledged by other studies, they did not study the problem incidence under several levels of
SPS usage. Our analysis questions the acceptability of an SPS that promises a reservation to drivers
and does not physically enforce the reservation. Furthermore, the parking studies mainly analyze
parking search distance, which is only a part of the total driving distance. Additionally, the code of our
simulator is freely available in a public repository.

The remaining sections of this article are as follows. Section 2 presents relevant previous studies
and supports our design considerations. Section 3 describes the relationship between the SPS and the
parking simulator. Section 4 explains the simulator’s details. Section 5 describes the case study of the
simulator for the experimental evaluation of SPS usage. Finally, conclusions and acknowledgement
sections are presented.

2. Background

This section demonstrates how our design approach is unique by reviewing previous studies.
We also review previous SPS evaluation metrics to highlight the relevance of our proposed metrics.

2.1. Smart Parking Systems and Parking Simulations

Modeling and simulation have been used for knowledge discovery applicable to parking systems,
as well as for testing already implemented SPS. Some examples of the first approach are: testing
a utility function that involves factors affecting parking choice [4], collaborative path-finding in a
multi-agent context applied to an SPS [12], testing a parking planning algorithm [13,14], and an SPS
evaluation considering several vehicle categories [15]. Examples of the second approach include:
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testing an SPS model to explore factors like distance to building entrances [16], testing dynamic prices
assignment [5], and parking guidance evaluation [6].

Despite the fact that modeling and simulation techniques are often related to SPS design or
evaluation [2,17–21], to the best of our knowledge efforts devoted to the simulator/simulation’s
development are not reutilized in SPS development. A simulator and its related SPS are generally
built following distinct goals: The former’s development commonly seeks a fast way to study the
parking phenomenon, while the latter’s development pays more attention to common software
concerns like robustness, efficiency and load handling. During our work, we noticed an interesting
opportunity to reuse the simulation software modules in a related SPS by combining and linking
the simulator development with the development of the guidance/reservation algorithm and other
software components for the SPS. The abundance and variety of available agent-based modeling
toolkits [17,22] may facilitate such co-developments. The algorithms or other components required in
the SPS may be implemented using the same programming tools in the simulator. In a general sense,
doing so may require:

1. building or adapting parking simulator software and not just defining a model to run in available
modelers,

2. working alongside the SPS development team, and
3. applying software design techniques that assure robust re-usability.

The team that developed the simulator described in this paper was also part of the team
developing the targeted SPS. Its members had software design and team skills that enabled them to
meet the previous requirements. The software components reutilized in this work are the parking
reservation component and the components for accessing the related data and external services.
Section 3 presents the selected design decisions that assured the sought-after component reutilization.

2.2. Agent-Based Parking Models And Gis

ABM applications to traffic and transportation, including parking-related phenomena, are
significant and numerous [7,8], with several popular ABM toolkits being spatially explicit [23] or
including extensions that provide support for GIS data usage [22]. Agents represent drivers in cars
moving across an environment, which is usually composed of a network of road, target destinations,
and parking spaces.

In research literature related to parking studies, the bridging of ABM and GIS is addressed either
using particular spatial data formats or by having the simulation built within a GIS platform. Works
like SUSTAPARK [24], TRANSIMS [25], MATSim [26], PARKGRID [27] and PARKAGENT [13,28,29]
are good examples. SUSTAPARK and PARKGRID load the roads and parking data from GIS layers
stored in files, e.g., in shapefile format. TRANSIMS and MATSim read their input data—e.g., network,
destinations, and activity plans, from files that follow their own specification, though they include
some GIS tools for importing, exporting, or visualizing other formats. PARKAGENT was implemented
as an ArcGIS c© application so as to have direct access to GIS data and services.

Following the reutilization goal presented in Section 2.1, we decided to assure the GIS data and
services were accessible online and decoupled from the simulator. This decision allowed reutilization of
data access, as well as software components. A GIS server providing data access through web services
enabled data sharing between several applications, and more specifically, between the simulator and
the SPS, thus allowing interesting new considerations—such as running a simulation from the actual
parking state detected by the SPS. Our proposal includes the parking spot information and the car
and pedestrian route determination hosted as services in a GIS server. The ability to run a simulation
from current parking state data, and to automatically use the latest environment information, which is
provided by a GIS server, is a distinctive and novel trait of our methodology proposal.
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2.3. SPS Evaluation Metrics

The metrics used for evaluating the benefits of using a Smart Parking System include parking
search time [5,30], mean driving distance [31], wandering ratio [5], walking time [32], and travel density
and average speed [33]. Measurements (most often distance or time) usually start when a car enters
the simulated area [31], when it is near to its destination or makes a request for parking [5], or when
it arrives to a parking lot [30]. In our model, agents using the SPS are guided as soon as they enter
the walled university campus, a city surrogate. The use of total driving distance to achieve credible
comparisons of SPS usage benefits is not recommended, given that drivers travel certain distances
to their destination regardless of their SPS usage. The total distance is generally valuable, however,
and simple to calculate; therefore, we devised a methodology to use the total driving distance in our
experiments. Section 5 shows how we arrived at the methodology through a series of experiments
using our simulator.

In our model, the driver’s travel distance while trying to park might be affected not only by the
driver’s parking choice, destination, and parking availability. An agent that does not use our SPS
may occupy a parking spot already reserved for another agent, forcing the latter to issue a new spot
reservation. The effects of reservation without a physical guarantee, i.e., nothing stopping a driver from
grabbing someone’s reserved spot, are not explored in the literature we reviewed, though reservation
guarantee is a key aspect of SPS [5]. The literature does suggest approaches to enforce the reservation,
but they are either relatively expensive (physical barriers) or not fully effective [2,5,32]. Section 5
shows how we explored the reservation guarantee problem, and comments on the negative impact
it may have for the SPS’ usage. To the best of our knowledge, no previous study has hinted on the
level of SPS utilization under which the reservation guarantee problem is the most notorious for a
given environment.

3. The SPS and the Parking Simulator

The SPS was created and tested at the campus of the Universitat Jaume I (UJI) in Spain. It is a
walled complex and has four vehicle entrances. Its parking spots are free and on-street, with some areas
similar to those in a small town neighborhood and other larger areas similar to that near a sporting
facility. The SPS has detection sensors, smart parking services, and client applications. The magnetic
sensors detect the parking occupancy and deliver that information to the smart parking services
through a wireless network. These services, exposed as REST web services, handle occupancy data
storage and provide search, reservation, and routing functionalities to a smartphone client application.
The application allows visualization of available parking spots, spot reservation, and driver guidance.

Our simulator represents drivers that move across the campus to reach their destinations and
park in spots convenient to them. The simulator’s design allows the usage of the simulated parking
occupancy data as a fake (surrogate) input from the SPS sensors. Therefore, the simulator became
a valuable tool for the SPS development team for testing the SPS before deployment of the actual
occupancy detection sensors in the university campus. Also, the SPS’ parking reservation component
was implemented and tested as a part of the simulator. Therefore, any further refinement to it could
be easily tested through simulations and later be directly used in the SPS. Figure 1 shows the layered
design, after Fowler [34], of our simulator software. The Data layer obtains the necessary information
for running the simulation. The Model layer represents the actual model (its implementation is aided
by an ABM library) along with the implementation of some parts of the SPS. Finally, the Presentation
layer has components that handle the model’s output and user interaction. The layers vertically
communicate using facades [34].

The GIS data and services were hosted using commercial, off-the-shelf GIS server software (Esri
(Esri software company (http://www.esri.com/)) ArcGIS for Server, now ArcGIS Enterprise), which is
used by many city governments and it is available to universities via the Esri educational institution
license. At UJI, this server already hosted production-ready (properly prepared) GIS data and services
regarding the university campus, collected and built for the Smart Campus system [35]. This server

http://www.esri.com/
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provided a common access point to geographical data for the simulation and the SPS. The relevant
hosted GIS services for the simulation and the SPS were: (1) parking spots data, (2) building and
campus entrance points data, and (3) car and pedestrian routing services on a previously digitized
street network. These services are consumed as REST web services. Under this uncoupled schema,
any changes to parking spots, buildings, or routes are immediately available to the SPS, any related
application, and the simulator.
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Car and pedestrian routes

Figure 1. Simulator’s layered organization. SPS = smart parking systems; GIS = Geographic
Information Systems; ABM = Agent-Based Modeling.

4. Parking Simulator Details

The simulator defines an agent-based model representing the parking occupancy created by
drivers within the campus. Its implementation took into account the integration discussed in Section 2.

4.1. The Model

The model represents a ‘virtual week’ period. For each day of the week, agents arrive to the
environment, follow their activity plan, and leave. An agent attempts to park as near to its destination
point as possible. Destinations are particular entrance doors of buildings. In studies, such as Geng
and Cassandras [5], destinations from the same building are aggregated and considered as one.
In our model, given the dispositions of building entrance doors and parking spots, different doors
(potentially far apart) of the same building were considered as distinct destinations. The criterion for
measuring parking-to-destination proximity is walking distance as measured using actual pedestrian
ways (sidewalks and crosswalks).

4.1.1. Agent Profiles

The agent activity plans (agent profiles) define the typical cases of drivers. As an example,
consider a student needing to be at a specific classroom at 09:00. At 08:45, she arrives by car to the
campus through the campus entrance of her choosing. She then parks near the building door she
considers is the best for her destination. After a while, when the class finishes, she walks to her car
and drives to the sports complex, which is far from where her car was previously parked. She parks
near a door of that complex. After completing her sporting activities she drives out of the campus.
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Agents that belong to the same profile have the same type of destinations and similar arrival and
departure times. A random, normally distributed variation is allowed around those times. The profiles
were created considering the actual number of people from a community profile that commonly
visits a building. Agent profiles consider the expected number of people actually driving to the
campus for each of those groups. Activity plans are important for transport simulation [36] and the
agent profiles addressed in this work resemble those from Horni et al. [26] and Dieussaert et al. [24].
The numbers of people defining each profile and those describing facilities’ usage were obtained from
the university administration services and community surveys, which is further explained in Section 5.
We consider that agent profiles built in this way is a plausible alternative to more common approaches
(like car counting at parking spots and at campus entrances) as it requires considerably less effort
and infrastructure.

4.1.2. Search Behavior

Some agents (‘Guided’) rely on the SPS for finding an available parking spot, while other agents
(‘Explorer’) decide for themselves where to park. Studies like Geng and Cassandras [5] have also
used these two behaviors, seeking to quantify the benefits from using an SPS. When an agent is
created, its type is randomly defined under the restrictions established by a model parameter that
controls the proportion between the two types of agents. This model parameter can be dynamically
adjusted. Driving behavior and parking search are complex processes [37–39] and several studies have
applied realistic behaviors [3,13,19,27], even considering recent trends like driver-less vehicles [40]
or specific contexts like a city center [41] and university campuses with specific policies and notable
parking supply shortages [42]. We chose two simple parking search behaviors for our model because
obtaining an approximate parking occupancy, rather than the most realistic one, was enough for our
simulator goal.

Explorer

The ‘Explorer’ search behavior takes inspiration from Dieussaert et al. [24], Benenson et al. [28],
Levy et al. [29], Martens et al. [43], with some simplifications and additions. For example, variations
in car speed or maximum search time are not considered, while variable agents’ maximum walking
distances and two measures for evaluating local parking availability are considered. An ‘Explorer’
agent first tries to park as close as possible to its destination. If it fails, the agent then tries to park in
the first available parking spot it can find. Algorithm 1 presents pseudo-code which briefly describes
the Explorer parking search behavior.

Agents move following the shortest network path to their destinations. An agent starts searching
for parking when it is within a maximum walking distance to its destination. An agent’s maximum
walking distance is a random value (maxWalkDist) within a range. The agents can detect only parking
spaces within a visibility distance, which is defined by a model parameter. While searching, an agent
records the proportion of free-to-total parking spots it detects. The agent decides to park in an available
spot when (1) the current proportion falls below a critical ratio (criticalRatio); or (2) the difference
between the proportion from the previous step and the current proportion is greater than a critical
value (criticalReduc). Both (criticalRatio) and (criticalReduc) are model parameters.

If an agent has completed the route to its destination without being able to park, it tries to park in
the first available parking spot it detects searching first around the target building and then around
other buildings. If it does not find available parking places around any building, the agent returns to a
campus’ exit and leaves.
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Algorithm 1: Explorer agents decision rules
Input: destination, maxWalkDist, criticalRatio, criticalReduc

f ound← false
compute shortest path to destination from current point
while not at the end of path and f ound = false do

if distance to destination ≤ maxWalkDist then
pastratio← ratio
ratio← local available parking spots / local total parking spots
di f f ← ratio − pastratio
if ratio > 0 and (ratio < criticalRatio or di f f > criticalReduc) then

choose closest reachable parking spot and move to it
f ound← true

end if
end if
compute next point in path to move to

end while
if f ound = true then

park()
else

while more destinations to explore and f ound = false do
destination← next entrance of same building or another building
compute shortest path to destination from current point
while not at the end of path and f ound = false do

get local available parking spots
if there is available spots then

choose closest reachable parking spot and move to it
f ound← true

end if
compute next point in path to move to

end while
end while
if f ound = true then

park()
else

leave the campus
end if

end if

Guided

An agent with a ‘Guided’ behavior requests a parking spot reservation from the SPS’s reservation
component, which chooses the best available spot for its destination. It then follows the optimal route
to the spot and occupies it. The reserved spot will not be offered to any other agent until the occupying
agent explicitly releases it. As the reservation process is logical, not physical, before a ‘Guided’ agent
arrives to its reserved parking spot, an ‘Explorer’ agent might find that spot and occupy it. When the
‘Guided’ agent notices that situation, it asks for a new parking spot and heads for it.

4.2. The Simulator

The chosen ABM library for model formalization and implementation was MASON [44],
which facilitated the process of creating an integrated simulation. We additionally used the
GeoMASON extension [45], which incorporates support for vector and raster geospatial data. The final
implementation followed the software design shown in Figure 1.
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The Data layer loads the simulation’s configuration (including agent profiles) from files, reads
the GIS data—which is principally campus cartography—from the GIS Server, and reads parking
place status from the SPS. The GIS data for parking spots and entrances are loaded at simulation start,
but the routing services are used on-demand. The parking place status information are also loaded at
simulation start, thus enabling us to simulate the parking occupancy from a known starting point or
from an SPS-provided parking occupancy.

Figure 2 provides an overall, simplified view of the Model layer design, which includes model
notifications, agents’ behavior, model configuration and smart parking artifacts implementation.
Any component interested in receiving notifications of model changes must subscribe to the
appropriate updater. Distinct agent behaviors are achieved through the basic parking agent
specialization. The SPS’s reservation component, though it is known and used by the simulator,
is implemented independently from the simulation core, thus allowing for easy substitution.
By implementing model controllers it is possible to set up the necessary relations, e.g., updaters,
according to the target application platform.

UPDATERS

RESERVER

MASON

CORE

AgentChange

SlotChange

StatisticChange

Assigner

SimState Steppable

ParkingModel ParkingAgent

ExplorerAgent GuidedAgentModelController

*

Figure 2. Main classes of the Model layer and their relation.

The Presentation layer has components that are notified when the model changes. These
components inform the SPS about those changes (Smart Parking Communication) or show them
(UI Components) in applications that wrap the simulator. The Smart Parking Communication
component delivers occupancy state changes. Three implementations of the simulator’s UI
Components have resulted in three distinct applications: (1) A desktop version that uses MASON
visualization utilities (Figure 3) and shows the parking availability and the agent moving across the
campus, (2) a console version for simplified and faster runs, and (3) a web-hosted version. Having
three different interfaces for different purposes highlights the flexibility of the approach used for
building the simulator. A video showing a simulation run is available online (Demonstration Video:
https://youtu.be/gZj21WtOmio).

https://youtu.be/gZj21WtOmio
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Figure 3. One of the simulator applications running in the foreground, while in the background a
web map shows the parking spots’ current status as stored in the SPS. In the simulator, black squares
represent parked agents. In the web map, red squares represent occupied parking spots.

4.3. Parking Reservation Component

The parking reservation component serves reservation requests in the order they are received.
Several studies have proposed advanced reservation algorithms that take into account, e.g., current
driver travel time, parking pricing, and reservation updates when the parking availability
changes [2,21,32]. As the reservation algorithm was not among this study’s main goals, the reservation
component uses a simple heuristic that only takes into account the parking spots availability and the
walking distance from the spots to the specified destinations. In experimental measurements, network
communication lags for car and pedestrian routing requests had medians of 0.43 and 0.08 s, respectively.
Car route requests are only made when a car starts moving, thus they do not add a significant burden
if made on-demand. An agent’s parking reservation request requires determination of the available
parking spot that is the closest (according to walking distance) to an agent’s destination. To avoid
on-demand pedestrian routing requests associated with parking reservation requests, the parking
reservation component calculates beforehand, then sorts and stores the distances from every parking
spot to every destination. This approach is feasible because the number of destinations (buildings’
doors) and parking spots is 225 and 3809, respectively. Therefore, the time for finding the closest
available spot only depends on the total number of parking spots.

4.4. Final Development Considerations

The simulator development presented in the previous sections also requires additional minor
design and development decisions (All code is shared in a public repository: https://goo.gl/GmWyt1),
such as development platform or execution environment. Furthermore, although the usage of
resulting simulator software artifacts is straightforward, some additional steps are required if an
SPS development is initiated from those artifacts.

https://goo.gl/GmWyt1
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The choice of the development platform (and programming language) depends mainly on
preferences from the development team and additional design considerations (e.g., related to the
SPS design). As can be inferred from Kravari and Bassiliades [17], Crooks et al. [22], it is possible
to accommodate model specification (using an ABM library) to the chosen development platform.
The usage of an ABM library for model implementation implies coding driver behaviors following the
library specifications. For example, using MASON (which is Java-based), driving behavior is coded in
methods from a class. An agent is created as an object from that class, and a method from it is executed
by a discrete event scheduler. In the case of models considering very complex driving behaviors,
the required coding effort may be significant. For those models, a benefit trade-off between re-usability
and coding effort should be considered.

The development platform may also influence the way remote services are consumed.
The REST architectural style is widely used and its support spans most development platforms.
The communication with those services is eased if SDKs exist for the targeted GIS server. For example,
the software company Esri provides several runtime SDKs for client applications to access services
published by Esri ArcGIS Enterprise, as well as for map visualization and geometrical/geodesic
operations. Other SDKs alternative sources could be Mapbox [46] or Geotools [47]. For models that
cover large and congested areas (which simultaneously include several thousands of drivers), a large
number of network requests are issued, which could potentially overload the GIS server especially if
that server already supports multiple users for other purposes. In such situations, a different design
(routing operations computed in the simulation) may be preferable.

For the integration of the simulator core components into an application, already mentioned
in Section 4.2 for the web or desktop versions, most of the effort is devoted to creating a proper
presentation/usage of simulation output and controlling the simulation execution. For example,
the web version wraps the simulator core components with REST web services. A thin web client
uses them to obtain the simulation state (occupancy) and to display it on a map, and to control the
simulation (starting/stopping the simulation and parameters configuration).

Once the simulator is built and tested, the following elements are ready for reuse in an SPS:

1. GIS data and services hosted in a GIS server,
2. software artifacts for remote GIS data read/write operations,
3. reservation component, and
4. visualization components created for simulation testing.

The combination of the enumerated elements with an occupancy detection system (e.g., magnetic
sensors and its communication components) and a user (mobile) application can produce a relatively
simple, yet functional SPS. As an example, the occupancy or availability state storage, the computation
of vehicles routing indications and the maps for visualization are provided by elements in (1). Elements
from (2) can be reused to create a web application that provides a gateway for occupancy state discovery
and update. The update operations are used by the occupancy detection system. The discovery
operations are used by the client application, which also uses elements from (1), and by a web
dashboard to monitor the SPS state, which can also reuse elements from (4). The reservation component
(3) is vital for the SPS and can be readily used in the SPS as it is isolated from the simulation.

5. Case Study: Exploration of SPS Expected Usage

Several experiments were performed to demonstrate the simulator’s potential use and to explore
likely benefits of SPS usage. The model parameters’ values are presented in Table 1.
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Table 1. Model parameters values.

maxWalkDist(m) [50 to 100]
criticalRatio 0.25
criticalReduc 0.15

visDistance(m) 40
carSpeed(km/h) 30

Model parameters maxWalkDist, criticalRatio, and criticalReduc were already explained in
Section 3. Parameter visDistance indicates the distance for which ‘Explorer’ agents consider their
detected parking occupancy for deciding whether to park or not. Parameter carSpeed sets agents’
movement velocity. Agent profile values are not presented here because of their large number of
details. The simulator includes other relevant parameters that are not model parameters, for example,
the GIS data and routing services, and whether to initialize the simulation with the current SPS
occupancy state.

To define destinations, times, and amounts of distinct profiles (groups) of people coming to
the campus by car, a set of root behaviors was created based on actual university data for a typical
academic month. The root behaviors act as templates used to automatically create agent profiles, which
in turn are used as templates for creating agents during a simulation run. The root behaviors used in
the experiments considered the main distinct groups of the university members. They defined tasks
in which the first drivers arrived to the campus around 08:00 and the last ones leaved the campus
around 20:00. The root behaviors included a main task, which was going to a building, and subsequent
optional tasks. Optional tasks were added to agent profiles randomly, complying with the expected
facilities usage. The optional tasks were going to a sport facility, to the library, or to a distant building,
if the optional task’s destination was not already the main task’s destination. We obtained the typical
quantities of each group accessing each facility and their typical staying times, although for profile
creation a group-dependent random variation was applied to staying times. Through driver surveys,
we also estimated the likelihood for each group to use a car inside the campus. By creating agent
profiles automatically from root profiles, we achieved a rich set of over 300 profiles, which is important
in transport simulation [36].

Each experiment consisted of 15 simulation runs with the same parameters. Each experiment
was run for a specific proportion p between ‘Explorer’ and ‘Guided’. It also used a profile set created
using the root behaviors and considering a specific proportion c of people actually using their car on
campus. The maximum amount (N) of people expected to come to the campus on a typical day is
about 15,000. Each root behavior (people profile) b accounts for some part Nb of that amount of people.
For an experiment run using 0.1 as value for c, the number of agents created for root behavior b is
0.1Nb, and the expected total amount of agents is (about) 1500. Parameters p and c allow exploration
of situations with different levels of SPS usage and parking demand, respectively. The measured total
driving distance of each agent considered all stretches of its multi-destination journey. With D(p, c)
denoting the set of all traveled distance measurements for a particular experiment, then:

D(p, c) = DG(p, c) ∪ DE(p, c) (1)

p ∈ P = {20%, 50%, 80%}
c ∈ C = {0.1, 0.2, ..., 1.0},

where DG(p, c) and DE(p, c) denote subsets that contain measurements only from ‘Guided’ agents or
from ‘Explorer’ agents, respectively. We denote the mean values of previous sets as D(p, c), DG(p, c),
and DE(p, c).

Figure 4 presents the case for D(p, c). It shows that the SPS usage should reduce the parking
searching time. There is a drop in mean value for ‘Guided’ agents from proportions 0.1 to 0.2. This may
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be due to the fact that with proportion 0.1, only a few agents, or no agents at all, have as destinations
buildings with a low number of people and located near campus entrances.
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Figure 4. Variation of the mean traveled distance.

The mean traveled distance remained stable in spite of the growing number of drivers.
The parking reservation component reserves parking spots that are uniformly distanced from a
building target door, causing their mean distance to remain stable for ‘Guided’ agents. For ‘Explorer’
agents, we have identified two likely reasons: (1) Parking demand is spread over the day and across
several building doors, and (2) when some drivers arrive to campus (most likely after midday), others
have already left. Furthermore, parking demand and supply are not heterogeneous across the campus;
in a similar way they differ in other scenarios [27], leading to divergences from the expected increase
in the parking search time when the parking demand increases. The relation between parking search
time and parking demand is not trivial [48].

Figure 5 presents another way to use the mean traveled distance for meaningful comparisons.
Each data point d(p, c) of the series is calculated as:

d(p, c) = DE(p, c)− DG(p, c). (2)
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Figure 5. Variation of the mean traveled distance, as expressed by the difference between the mean
distance of ‘Explorer’ and ‘Guided’ populations.
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Figure 5 indicates that the ‘Explorer’ agents have longer driving distances. The difference
stabilizes and stays around 700 m, which may hint at the minimum expected difference in the mean
traveled distance in the campus scenario. An unsuccessful parking search across the parking spaces
that surround a campus’ building would add a value to the accumulated search distance of an agent
that, on average, is above 600 m.

When considering all measurements from all experiments, the mean value was 1737 m and the
standard deviation was 1174, approximately. The two metrics explored so far in this subsection
(DG(p, c)andDE(p, c) and d(p, c)) are affected by the distribution of buildings (and their doors),
parking spots, and campus’ entrances. To avoid that issue, instead of using the mean value, we
considered using percentiles values. First, two sets are defined as follows:

TE(p) =
⋃

c∈C
{DE(p, c), p ∈ P} (3)

TG(p) =
⋃

c∈C
{DG(p, c), p ∈ P}.

Let nE(i, p) and nG(i, p) denote the ith percentiles of TE(p) and TG(p), respectively. The data
points of Figure 6 are those percentiles values, considering three levels of usage of the SPS. The chart
allows comparisons of distance categories, and it suggests that ‘Explorer’ agents are strongly affected
by high parking demand situations, regardless of the usage level of the SPS. In addition, to compare
different levels of usage of the SPS within the same chart, we defined new data points as follows:

d(i, p) = nE(i, p)− nG(i, p), p ∈ P. (4)

Figure 7 shows the data points d(i, p). The metric value of each proportion p ∈ P for a percentile
are very similar to each other for percentiles below 40, but it significantly differs for the percentiles
at about 80. The difference for the highest percentiles is higher for 80% of SPS usage, which is also
noticeable in Figure 6. The reason for the higher difference in high SPS usage situations is that ‘Guided’
agents ‘discover’ and thus take the remaining spots faster than ‘Explorer’ agents.
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Figure 6. Difference in traveled distance between ‘Explorer’ and ‘Guided’ agents, as seen using
percentiles and considering p = 20%, p = 50%, and p = 80%.
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the ‘Explorer’ and ‘Guided’ populations.

Figure 8 shows that the occurrence of the reservation guarantee problem grows as the competition
for parking spaces increases. It is most notable when the ‘Guided’ to ‘Explorer’ proportion value is
50%. The guarantee problem is more notable for proportion of 75% than 25% because in the former
case there are more agents whose reserved spaces are susceptible to be ‘stolen’. Drivers declining to
use the real SPS may be an issue for those who use it. When a driver has its reserved spot ‘stolen’
by another driver, the former needs to keep driving to locate an available spot. Depending on the
parking demand, such additional search may take a long time. Furthermore, regardless of the amount
of time devoted to the additional search, the reservation violation creates discomfort for the driver,
which may lead to a decline in SPS usage. The ‘reservation’ term in an SPS that does not make physical
reservation enforcement could be misleading for a driver, and ’suggestion’ term should be used instead.
When a parking spot is ‘stolen’ and given the occupancy detection capability of the SPS, a driver that
was suggested to take that spot should be alerted and provided with an alternative spot and a new
route indication to it. To avoid alternatives far away from the original suggestion, the latter could be
determined taken into account the availability of other parking spots close to it, an idea that resembles
heuristics applied in PGI systems [2].
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Figure 8. The reservation guarantee problem, explored for several levels of parking demand and agent
types proportions.
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Single Building Analysis

To study a specific high parking demand situation, e.g., in the case of a notorious event hosted in
a campus facility, we ran simulations for which agents tried to park near a randomly chosen entrance
of a particular building during a ‘virtual’ day period. We made them arrive at the campus at similar
times. The parking demand significantly exceeded the parking supply around the building, and the
agents had to park around other buildings. As presented in Figure 9, in the case of the ‘Explorer’
agents, the worst result corresponds to the proportion of ‘Guided’ agents p = 20%, which is a result
not only from competition, but also from the fact that the ‘Explorer’ agents that try to park near the
same building’s entrance follow similar routes while searching for parking, which makes them go
through the least favorable paths. In the case of the ‘Guided’ agents, the worst results correspond to
the proportion p = 50%, which corresponds to when they are the most affected by the reservation
guarantee problem.
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Figure 9. Traveled distance when considering only one campus building.

The correspondence between larger traveled distance and higher parking demand for the
‘Explorer’ agents is in line with the results presented in previous studies [27]. Likewise, the steady
behavior for ‘Guided’ agents corresponds to already reported benefits of parking reservation
systems [2]. However, the comparison between the three studied levels of SPS usage for ‘Explorer’
agents reveals insights different to those obtained when considering the simulations campus-wide
during an entire week. The difference between the two study cases is an indication that the traveled
distance does not only depend on the demand and level of usage of the SPS, but also on the scenario.
The campus traveled distance analysis results from this work should be applied with caution to other
distinct scenarios. The campus has a large amount of parking spots, while in a different scenario,
e.g., a city center, the number of parking spots may be rather small. Depending on the scenario,
the analysis might have to be performed on small extents. The reservation guarantee problem is,
however, inherent to on-street parking, and it should be expected to be the most significant when the
numbers of people using and refusing to use an SPS are similar.

A simple driver model and a simple parking reservation heuristic were used in this work to show
that an SPS development team could be able to assume the simulation development without significant
effort. Having agents with parking search behaviors more advanced than those used in this work
would decrease the traveled distance numbers in the campus scenario, e.g., using learning to avoid
places that are usually crowded. However, we consider that more general results, like the ‘Guided’
agents having lower traveled distances than the ‘Explorer’ agents, and the reservation problem being
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the most significant when the number of the two agent types are similar, should remain true even
when a new a parking search behavior is considered.

6. Conclusions

This paper presented practical considerations from the development of a parking occupancy
simulator. The simulator helped in assessing suitability of an SPS suitability for a university campus,
and its design and development contributed to reduce the SPS development efforts. The simulator
shares software components, GIS data, and services with the SPS. The paper commented on design
decisions made regarding the SPS and the parking occupancy simulator, which may be used in similar
contexts to minimize development efforts. The application of the proposed methodology on the
simulator development will produce software components readily usable in an SPS, as well as GIS
data and services readily available online when published on a GIS sever. The software created for
this work is available in a public repository, for further technical details inspection and to encourage
reproducibility. The paper also presented experimental evaluation of SPS usage benefits using the
simulator. The experiments differentiated profiles of agents that use the SPS and those who decline to
use it. Analysis of experimental results showed how to use the total driving distance as a metric for
evaluating the SPS benefits from a driver point of view. The experimental results also allowed us to
explore the effects of having a parking reservation that is logical but not physical, clearly showing that
the drivers who decline to use the SPS may “steal” a significant number of already reserved parking
spot, which in our experiments reached numbers higher than 100 for a parking demands above the
40 percent of the maximum demand. The guarantee problem becomes more significant as the level
of usage of the SPS increases, topping out at 50%, which may hamper drivers’ acceptability towards
an SPS.

The parking choices used in this work are simple, as they were not among its main goals. Future
improvement directions could include the incorporation of more realistic choices, driving behavior,
and the ability to learn from experience, which may be combined with an improved reservation
algorithm in order to provide agents with updates upon changes in the occupancy state, e.g., when
other alternative spots become available. Additionally, a comprehensive model validation with a
study case for a different scenario and parking occupancy measurements taken in the field is planned
as future work. The design and development guides and experimental analysis presented in this
paper show the convenience of including simulations when considering the application of an SPS
to a scenario, while diminishing possible dissuasive aspects like model complexity or simulation
development efforts, that SPS development teams may consider.
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