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Abstract 

We investigated the neural correlates of accented speech processing (ASP) with an fMRI 

study that overcame prior limitations in this line of research: we preserved intelligibility 

by using two regional accents that differ in prosody but only mildly in phonetics (Latin 

American and Castilian Spanish), and we used independent component analysis to 

identify brain networks as opposed to isolated regions. ASP engaged a speech perception 

network composed primarily of structures related with the processing of prosody 

(cerebellum, putamen, and thalamus). This network also included anterior fronto-

temporal areas associated with lexical-semantic processing and a portion of the inferior 

frontal gyrus linked to executive control. ASP also recruited domain-general executive 

control networks related with cognitive demands (dorsal attentional and default mode 

networks) and the processing of salient events (salience network). Finally, the reward 

network showed a preference for the native accent, presumably revealing people's sense 

of social belonging.    
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1. Introduction 

At the height of fierce battles in World War II, a British soldier meets an Australian 

soldier in a trench. 

British soldier: “Oh! Did we all come here to die?” 

Australian soldier: “Nah, we arrived yesterday.” 
 
 
 
The butt of this popular joke is how, to the ears of the Australian soldier, the British 

soldier pronounces the phrase “to die” as the word “today”, reflecting differences in the 

phonetic repertoires of the two speakers. Our aim here is to study the neural correlates of 

accented speech processing (ASP) by assessing differences in neural activity when 

listening to a non-native regional accent (Latin American Spanish), as compared with a 

native accent (Castilian Spanish), where regional accent is understood to be a distinct 

form of a language spoken in different geographical sites. This design allows us to 

complement prior neuroimaging studies on ASP and, as we argue below, to go beyond 

some of their potential shortcomings. 

There is some consensus that ASP broadly engages the neural circuit elicited when 

listening to speech under adverse conditions (e.g., speech in background noise, time-

compressed speech, etc.). In this respect, it is as if ASP resembles speech processing when 

the signal is deteriorated. Importantly, ASP recruits auditory and speech planning areas 

to a greater extent than does native speech processing (NSP) (see Adank, Nuttall, Banks, 

& Kennedy-Higgins, 2015 for a review). Auditory regions involve the bilateral auditory 

association cortex—large parts of the temporal gyrus and sulcus (STG/STS; BA22), 

including Wernicke’s area in the dominant side and extending to a posterior portion of 

the middle temporal gyrus (MTG; BA21). Planning regions involve the cerebellum, 

portions of the somatosensory cortex, and frontal areas, including the inferior frontal 
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gyrus (IFG; BA44, 45, 47), insula, supplementary motor area (SMA), and portions of the 

motor and premotor cortices. These areas are thought to interact to help find the best 

match between the speaker’s and the listener’s phonetic templates. 

However, a closer look at the six prior studies on ASP (Adank, Davis, & Hagoort, 2012; 

Adank, Noordzij, & Hagoort, 2012; Adank, Rueschemeyer, & Bekkering, 2013; 

Bestelmeyer, Belin, & Ladd, 2015; Callan, Callan, & Jones, 2014; Yi, Smiljanic, & 

Chandrasekaran, 2014) reveals quite considerable heterogeneity in the results (Figure 1). 

Compared to NSP, ASP only recruited auditory association regions in Adank et al. 

(2012a), whereas the studies by Adank et al. (2012b, 2013) also observed the recruitment 

of frontal speech planning regions. Two other studies have found that, relative to NSP, 

ASP recruited speech planning regions plus regions typically involved in domain-general 

executive control (EC) (Callan, et al., 2014; Yi et al., 2014). Finally, Bestelmeyer et al. 

(2015) found no differences in neural activity during ASP compared to NSP.  

================= 

Figure 1 around here 

================= 

 
This heterogeneity probably stems from differences in the specific conditions used in each 

experiment1. Consider, for example, the involvement of auditory association regions. This 

observation comes from those studies (Adank et al., 2012a,b, 2013) in which ASP always 

involved reduced intelligibility (similar to the effects of background noise at +2 decibels, 

as measured by the authors). Thus, the involvement of auditory association regions in 

these experiments might be more attributable to reduced intelligibility (Davis & 

Johnsrude, 2003; Hickok & Poeppel, 2007) than to ASP per se. Indeed, when 

intelligibility is not compromised, neural activity in auditory association regions is similar 

in ASP and NSP (Bestelmeyer et al., 2015; Callan et al., 2014; Yi et al., 2014).  
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Another source of controversy relates to the interpretation given to the involvement of 

frontal speech planning regions in ASP, especially Broca’s area (BA44, 45). According 

to some authors, this involvement does not reflect speech planning processes but, rather, 

the involvement of domain-general EC processes typically engaged in difficult 

processing situations (Venezia, Saberi, Chubb, & Hickok, 2012). This interpretation 

would be consistent with the observation that people’s ability to adapt to novel accents 

correlates with their EC capacities (Adank & Janse, 2010; Banks, Gowen, Munro, & 

Adank, 2015). One way to better understand the role of these frontal regions is to establish 

the networks in which these regions are recruited during ASP: that is, whether they are 

recruited as part of linguistic networks, executive control networks, or both. However, all 

studies to date have used traditional analyses based on the general linear model (GLM) 

(Friston et al., 1995), and thus the researchers could only detect isolated regions involved 

in ASP, as opposed to entire networks.  

It should also be noted that ASP and NPS seem to elicit a different emotional response. 

In this regard, Bestelmeyer et al. (2015) observed higher activity in the amygdala during 

NSP than during ASP, presumably due to in-group versus out-group biases. At present, 

however, the study by Bestelmeyer et al. is the only one to provide evidence about 

differences between NSP and ASP in the modulation of emotionally-related areas.  

1.1. The current study  

We assessed the brain networks associated with ASP in a design with the following 

properties.  

Equating for intelligibility. To this end, we used two regional variations of Spanish: 

Castilian (the variant spoken in northern-east central Spain) and Latin American (the 

variant spoken in Caribbean regions). Participants had the Castilian variant as their own. 

The difference between these two variants of Spanish is roughly comparable to those 
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between the English varieties of London and Chicago. In terms of pronunciation, abrupt 

phonetic contrasts are not encountered between Castilian and Latin American Spanish. 

The most evident phonetic difference between the two variants is the use of the phonemes 

/ş/ and /Θ/ to pronounce the consonant [c]: the phoneme /Θ/ only exists in Castilian, 

which means that native speakers of Latin American Spanish replace it with /ş/: for 

instance, gra/ş/ias instead of gra/Θ/ias to pronounce the word gra[c]ias (the Spanish 

word for “thanks”). The critical point in this regard is that the phoneme /ş/ exists in both 

dialects, which means that native speakers of Castilian (our participants in this study) can 

easily identify it as part of their phonetic repertoire. It is only the fact of encountering /ş/ 

in a word where it is not supposed to be (e.g., gra/ş/ias) that makes native speakers of 

Castilian perceive it as phonetically deviant. Hence, differences in intelligibility at the 

phonetic level between the two variants are minimal. The greatest difference between 

these two varieties relates to prosody—suprasegmental properties of speech such as 

syllable duration and sentence intonation. However, this kind of variation does not 

hamper lexical recognition and, hence, it does not significantly affect intelligibility: TV 

shows and movies are broadcast in either Spain or Latin American countries with no need 

for dubbing2. It should also be noted here that Castilian and Latin American Spanish do 

differ in a few lexical forms: for example, the word “carro” instead of “coche” is used in 

Latin American to refer to “car”. However, the interest of the present study was restricted 

to pronunciation and prosody. Therefore, we avoided differences at the word-form level 

in our materials.  

Naturalistic experimental setting. To create a naturalistic setting we asked participants to 

watch two different types of movie clips that critically differed in the Spanish variant in 

which they were dubbed (Castilian vs. Latin American); we also included a baseline 

condition consisting of clips dubbed in a language that participants could not understand 



 

7 
 

(Dutch). The choice of an audiovisual format (as opposed to auditory-only materials) was 

made in order to use a common real-life context, as is watching soaps, movies, or TV 

shows today. Also in line with a naturalistic scenario, we did not focus on specific 

phonetic or prosodic deviations of Latin American relative to Castilian Spanish: we 

simply allowed the type and frequency of such deviations to occur randomly throughout 

the clips.  

Exploring brain networks by means of independent component analyses (ICA).  Unlike 

previous studies that used GLM-based analyses, we used ICA (see Calhoun, Liu, & Adali, 

2009 for a review), an approach which allowed us to detect the brain networks involved 

in ASP, rather than only isolated regions. This is because, unlike GLM-based analyses, 

ICA can identify a brain region as a component of a different network (Xu, Potenza, 

Calhoun, 2013). GLM-based analyses are blind to this possibility because they cannot 

detect certain types of changes in the neural signal such as transient task-related, slow 

varying modulations (Calhoun et al., 2009). For the sake of completeness, we also 

performed GLM-based analyses, which we will describe and discuss only briefly in the 

supplementary material.  

 
2. Materials and methods 

2.1. Participants 

Thirty native speakers of Castilian, who have always lived in northern-east Spain (within 

the region of Valencia), took part in this study (21 female; mean age = 22.97, SD = 2.31; 

mean years of education = 14.67, SD = 1.18). We did not include any participants who 

had seen Alice in Wonderland (Burton, 2010), the movie from which the clips were 

extracted. All participants reported being right-handed. The mean score on the 

Edinburgh Handedness Inventory (Oldfield, 1971) was 19.8 (SD = 2.91, range: 14-25; 

scores on this scale range from 10 to 50, with lower values for strong right-handedness). 
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No participant reported neurological or psychiatric disorders. They all received 20 EUR 

for participating in this study. All procedures were approved by the ethics committee of 

the Universitat Jaume I (Spain).  

Linguistic background. All participants had Castilian Spanish as a native and dominant 

language and Valencian as a second language, the latter being typologically similar to 

Castilian (both are Romance languages). The two languages have co-official status in the 

region of Valencia, with Castilian having a more prominent presence in social, academic, 

and official contexts. Participants’ proficiency level in Valencian varied from native-like 

to intermediate levels. Additionally, most participants (26 of them) had English as a 

foreign language. Ten of these 26 participants had a second foreign language (besides 

English), which was French for nine of them and German for the remaining one. The most 

common proficiency level in these foreign languages (English, French, and German) was 

intermediate, with only a minority of participants having achieved an upper-intermediate 

or advanced level (Table 1). Participants were required to estimate the percentage of 

exposure they had on a daily basis—in family, work, and social contexts—to each of the 

languages they knew, including Latin American Spanish (the percentages given had to 

sum 100%). They were most frequently exposed to Castilian (60.93%, SD = 15.82), 

followed by Valencian (30.4%; SD = 14.47). The amount of exposure to foreign 

languages was modest (English: 6.17%, SD = 6.44; French/German: 0.2%; SD = 0.92). 

Importantly, participants had little exposure to Latin American Spanish (2.3%, SD = 

5.94). They were also asked to estimate the percentage of series, movies, and TV shows 

they watched in different languages (as before, the percentages had to sum 100%): they 

watched most series, movies, and TV shows in either Castilian (79.5%, SD = 23.9) or 

English (16.7%, SD = 7.6), and only 3.8% (SD = 7.6) of them in Latin American Spanish.  
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================= 

Table 1 around here 

================= 

 
It is important to highlight here that participants’ perception of Latin American Spanish 

was unlikely to be affected by their knowledge of other languages besides Castilian (i.e., 

Valencian, English, French, or German). The fact that only a few participants had 

knowledge of French and German, with a rather low level of proficiency and little 

exposure to them, led us to dismiss any concerns about these languages. Regarding 

Valencian and English, these languages have a richer phonetic repertoire than does 

Spanish, whether Castilian or Latin American. For instance, both Valencian and English 

have the phonemes /z/ (like in “zero”), /ʒ/ (like in “gel”), and /ʃ/ (like in “shell”), whereas 

neither Castilian nor Latin American do. Therefore, no Valencian/English novel phoneme 

(with respect to Spanish) would help a native speaker of Castilian to perceive the deviant 

phonemes of Latin American as more native-like. For example, gra/ş/ias would be 

perceived as deviant from gra[Ɵ]ias regardless of whether the person has knowledge of 

Valencian/English. In a similar vein, the fact that someone is familiar with the prosody 

of Valencian or English should not help him or her to perceive that of Latin American as 

less deviant. With respect to Valencian, this language is very similar to Castilian in terms 

of the relative duration of syllables and intonation, and no Valencian prosodic 

particularities resemble those of Latin American Spanish (see Prieto et al. (2013) for a 

detailed description of Valencian prosodic traits). As for English prosody, it is clearly 

different to that of Spanish, whether Castilian or Latin American (Prieto, Vanrell, Astruc, 

Payne, & Post, 2010). Indeed, neither variant of Spanish shows the most characteristic 

English traits, such as: (i) prominent stressed syllables being much longer than the 

unstressed ones, producing the auditory impression of a Morse-like rhythm; (ii) the 

marking of the most important word within a thought group by a major pitch change on 
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the stressed syllable of that word; and (iii) the speaker leaving the pitch up between 

thought groups to indicate that the sentence continues.  

2.2. Stimuli and experimental design  

Stimuli consisted of 21 clips from the movie Alice in Wonderland (Burton, 2010). 

Participants were assigned to one of the three existing dubbing lists, which varied in the 

language and/or accent in which the same clip had been dubbed: Castilian, Latin 

American, and Dutch (no participant had any knowledge of this language). The order of 

each specific clip was kept constant across lists, which means that the same scanning 

onset was used across language and/or accent. For instance, the scanning onset of 6 

seconds was always used for movie clip 1, which was dubbed in Castilian in list 1, Dutch 

in list 2, and Latin American in list 3. Given that participants were native speakers of 

Castilian, those three dubbing languages/accents gave rise to two experimental conditions 

(native: Castilian; accented: Latin American) and a baseline condition (Dutch). There 

were seven clips per condition, each lasting 30 seconds. Two clips of the same condition 

were never presented consecutively. Clips were separated by a 12-second interval of rest 

(i.e., black screen). Participants were instructed to pay attention to each clip even if they 

could not understand the dialogs (which were those in the baseline condition). 

Procedure. Participants watched the computer screen through MRI-compatible goggles 

and listened to the dialogues through MRI-compatible headphones. After the scanning 

session, participants answered a multiple-choice “movie quiz” about the content of the 

dialogues. There were four response choices, including a “don’t know” option. For 

example, Aunt Emogine said she was waiting for: (a) her daughter, (b) two friends of 

hers, (c) her fiancé, (d) “I don’t know”. There was one question per clip, and thus seven 

questions per condition (native, accented, and baseline), making a total of 21 questions. 

A separate score was computed for each condition (native, accented, and Dutch) as the 
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sum of correct responses (maximum score per condition = 7). Responses could not be 

guessed by the visual context of the clip. Thus, the “don’t know” response was the only 

correct option in the Dutch condition.  

2.3. MRI scanning parameters   

Functional MRI data were collected on a 1.5T Siemens Symphony MRI scanner 

(Erlangen, Germany). Participants were placed in a supine position in the MRI scanner 

and their heads were immobilized with cushions to reduce motion artifacts. Functional 

images were acquired using a T2*-weighted echo-planar MR sequence covering the 

entire brain (TR/TE = 2500/49 ms, matrix = 64x64x28, flip angle = 90º, voxel size = 

3.5x3.5x4.48; slice thickness = 4 mm; slice gap = 0.48 mm). A total of 298 images were 

recorded. The slices were made parallel to the anterior-posterior commissure plane 

covering the entire brain. Before obtaining the functional magnetic resonance images, a 

high-resolution structural T1-weigthed MPRAGE sequence was acquired (TR = 2200 ms, 

TE = 3 ms, flip angle = 90º, matrix = 256x256x160, voxel size = 1x1x1 mm).  

2.4. Image preprocessing 

Data were analyzed using SPM12 software (http://www.fil.ion.ucl.ac.uk/spm/). 

Functional data were slice time-corrected, realigned to the first volume, motion-corrected, 

normalized into standard stereotactic space using the Montreal Neurological Institute 

(MNI) template, and smoothed with a Gaussian kernel (8 mm FWHM). The time series 

were high-filtered to eliminate low-frequency components (filter 128 s).  

2.5. Independent component analysis (ICA)   

We performed a GLM analysis of the component time courses estimated by independent 

component analysis (ICA; Calhoun, Adali, Pearlson, & Pekar, 2001) to determine the 

different brain networks modulated by the experimental conditions (native, accented, and 
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baseline). We then carried out the second-level analyses, which consisted of within-group 

comparisons using the beta-weights obtained from the GLM.  

To obtain the functional brain networks underlying the fMRI data we performed a group 

spatial ICA using the GIFT toolbox (http://icatb.sourceforge.net) and an Infomax 

algorithm (Bell & Sejnowski, 1995). A final number of 20 independent components (ICs) 

was reached with the minimum description length criteria (Li, Adali, & Calhoun, 2007). 

Twenty interactions of the ICA analysis were performed by ICASSO software (Himberg, 

Hyvärinen, & Esposito, 2004) to ensure the stability of the estimated ICs. After ICA 

decomposition, individual IC maps and time courses were then computed using the 

GICA-3 back-reconstruction approach (Calhoun et al., 2001; Erhardt et al., 2011). The 

voxel values for the individual maps represent their contribution to the component time 

course. Therefore, the brain regions that were significantly related with each component 

time course were determined in the whole group through one-sample t-tests in the second-

level analyses with SPM12 (at p < .05 FWE-corrected for multiple comparisons).  

In order to study how functional networks were modulated during the task, we applied a 

GLM on the component time courses using a design matrix representing the task. The 

analyses yielded a set of beta-weights representing the modulation of component time 

courses by the GLM regressors in relation to the baseline. The GLM design matrix 

included separate regressors to model the three task conditions (native, accented, and 

baseline). The six head-motion parameters were included as additional regressors of no 

interest. Regressors were convolved with the canonical hemodynamic response function 

and included time derivatives. The beta-weights associated with the three conditions were 

then used to perform the second-level analyses.  

As ICA is a data-driven approach and some components may represent motion-related or 

physiological signals, we used a three-step IC selection criterion based on prior studies 



 

13 
 

(Sambataro et al., 2010; Ye, Doñamayor, & Münte, 2014): 1) ICs with a stability index < 

0.9 in ICASSO were removed; 2) ICs not primarily located on gray matter (GM) were 

discarded; this was determined by correlating the spatial map of the components with the 

prior probabilistic maps of GM, white matter (WM), and cerebral spinal fluid (CSF) 

provided by the MNI templates of SPM12. We rejected those ICs with a high spatial 

correlation with WM (r2 ≥ 0.02) or CSF (r2 ≥ 0.05) and those with greater spatial 

correlation with WM than with GM; and 3) ICs that were not task-related were excluded. 

A separate one-way repeated measures ANOVA for the beta-weights of each IC with the 

factor “condition” (native, accented, and baseline) was performed. We considered that an 

IC was not modulated during the task if the ANOVA showed no significant main effect 

of condition at p < .05 FDR-corrected.  

After component selection, we performed second-level analyses through pairwise 

comparisons to examine whether and how each condition (native, accented, and baseline) 

differentially modulated the BOLD signal in each task-related IC. P-values were adjusted 

based on Holm-Bonferroni correction for multiple comparisons (Holm, 1979; Ludbrook, 

1998) taking into account three comparisons: native vs. baseline, accented vs. baseline, 

and accented vs. native. Additionally, we calculated Spearman’s correlations with the 

beta-weights of different ICs and with the movie quiz scores. 

 
3. Results 

3.1. Movie quiz 

As the scores of the movie quiz were not normally distributed, we used the Wilcoxon 

Rank test to perform all the analyses of these scores. We first examined whether the 

median (Mdn) of each condition (native, accented, and baseline) differed from every 

other. The results showed that participants understood accented (Mdn = 4.25) and native 
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(Mdn = 4.75) dialogues equally well (V = 192, p = .12). The results also showed no 

difference between the baseline (Mdn = 5) and the accented (V = 123.5, p = .12) or the 

native (V = 170.5, p = .46) conditions. This means that participants were unable to guess 

dialogue contents in the baseline condition, that is, they mainly gave the correct “don’t 

know” response to questions concerning Dutch clips. The fact that participants 

understood dialogue contents in the native and accented conditions but not in the baseline 

one was further confirmed with three separate one-sample tests. The results showed that 

the number of real correct responses in the baseline condition (i.e., not the “don’t know” 

option but the option with the actual content of the dialog; Mdn = 1) did not differ from 

chance (V = 110, p = .99). In contrast, the number of correct responses did differ from 

chance in the accented (V = 465, p = .0001) and native (V = 465, p < .0001) conditions.  

3.2. ICA results 

Six ICs passed the selection criteria and were therefore taken as ICs of interest (Table 2 

and Figure 2); see Supplementary Table 2 and Supplementary Figure 2 for a description 

of another eight ICs that passed the first two component selection criteria (i.e., identifying 

them as stable and primarily located on gray matter) but not the third criterion testing 

task-relatedness. Below, we describe the spatial maps (based on prior studies: Allen et 

al., 2011; Segall et al., 2012) of the six ICs of interest and differences among conditions 

(Figure 2).  

======================= 

Table 2 & Figure 2 around here 

======================= 

Medial visual network. This was composed of the middle occipital lobe, including the 

lingual gyrus and extending into the precuneus. Recent studies have implicated the medial 

visual cortex in audio-visual integration during the processing of non-native speech: it is 
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thought to seek the support of visual cues (mouth movements) to enhance speech 

perception (Barrós-Loscertales et al., 2013). The second-level analyses showed a higher 

positive modulation for the native and accented conditions—which did not differ from 

one another—relative to the unknown language condition (baseline). These differences 

across conditions, however, are difficult to interpret in terms of audio-visual integration. 

This is because this integration could not occur in the present study (at least not 

efficiently) because the mouth movements corresponded to the original language of the 

movie (English). For this reason, we will not discuss this network any further.  

Cerebellar speech perception network. This was mainly composed of the cerebellum, 

probably reflecting differences in prosodic analysis (Ackermann, 2008; Ackermann, 

Mathiak, & Riecker, 2007; Ivry & Keele, 1989), which is the most relevant distinction 

between the two regional accents used. There was also a portion of the left IFG (BA46) 

corresponding to the DLPFC, which is typically associated with EC processes such as 

attention and working memory (Nee et al., 2013). This network also included the 

thalamus and the putamen, two subcortical structures previously associated with 

articulatory planning in the neuropsychological (Avila, González, Parcet, & Belloch, 

2004; Craig-McQuaide, Akram, Zrinzo, & Tripoliti, 2014; Wise, Greene, Büchel, & 

Scott, 1999) and neuroimaging (Abutalebi et al., 2013; Brown et al., 2009; Klein, Zatorre, 

Milner, Meyer, & Evans, 1994) literature. The temporal pole (TP; BA38), extending into 

anterior portions of the middle and inferior temporal gyri (ant-MTG/ITG; BA20, 21) and 

the fronto-polar prefrontal cortex (Fp-PFC; BA10), was also involved in this network, 

which may have contributed to lexical-semantic processing of auditory patterns 

(Schwartz et al., 2009; Walker et al., 2011)3. This IC showed a greater negative 

modulation for the native condition relative to both the baseline and the accented 

condition. There was also a reduced negative modulation for the accented relative to the 
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native condition. These results indicate that accented speech represented a listening 

challenge compared to native speech, but not as much as an unknown language (baseline) 

did.    

Posterior default mode network (DMN). This was predominantly composed of the 

precuneus and the angular and supramarginal (SMG) gyri. It also involved the posterior 

cingulate cortex (PCC), middle frontal gyrus (MFG), and MTG. This IC mainly 

constitutes the posterior part of the DMN (Abou-Elseoud et al., 2010), which is typically 

activated during mind-wandering (Mason et al., 2007). This network exhibited a reduced 

negative modulation for the native relative to both the accented and the unknown 

language (baseline) conditions. The accented and baseline conditions differed marginally 

in the magnitude of this negative modulation (p = .051). These results suggest that 

processing dialogs in an unfamiliar accent (accented condition) or trying to follow the 

events in clips with unintelligible dialogs (baseline condition) was task-engaging and that 

this effort left little room for mind-wandering, as compared with the processing of clips 

with native dialogues.  

Dorsal attentional network (DAN). This was composed of the precuneus, portions of the 

premotor cortex, MFG, superior frontal gyrus (SFG), ACC, and left IFG. The DAN is 

typically related to the EC process of guiding attentional processing in a top-down manner 

(Corbetta & Shulman, 2002). This IC displayed a greater negative modulation for the 

native condition relative to both the accented and the baseline conditions, and also a 

greater negative modulation for the accented condition relative to the baseline. This 

pattern of results indicates that processing clips with accented dialogues demanded more 

attentional control than did those with native dialogues, but not as much as trying to 

follow clips whose dialogues participants could not understand. In both the native and the 

accented conditions, the DAN correlated positively with the cerebellar speech perception 
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network (native condition: r = .452, p < .012; accented condition: r = .46, p < .01). This 

may indicate that the better the match between the phonetic properties of intelligible 

speech (whether accented or native) and participants’ templates, the less attentional 

control was needed.   

Salience network (SN). This was predominantly composed of the ACC. It also comprised 

an extensive portion of the insula, extending towards auditory areas in the STG (including 

Heschl’s gyrus) and also the SMG. There was also an evident bilateral involvement of 

the prefrontal cortex (PFC), including the MFG and IFG. Portions of the cerebellum, left 

lingual gyrus, and the precuneus were also included. The SN is typically associated with 

the processing of salient events (Seeley et al., 2007). This IC showed a negative 

modulation for both the native and accented conditions relative to baseline. It also showed 

a greater negative modulation for the native condition relative to the accented one. These 

results indicate that accented speech was more salient than native speech, but not as much 

as speech in a completely unfamiliar language. This is probably because both Dutch and 

accented speech were perceived as salient, the former being the most salient one. 

Consequently, clips with accented dialogues were more EC-demanding than were clips 

with native dialogues, but to a lesser extent than were Dutch clips. In addition, the SN in 

the accented condition correlated negatively with the movie quiz scores for the same 

condition (rs = -.43, p = .019), such that the greater the engagement of the SN during 

accented speech perception, the worse the participant’s performance on the movie quiz.    

Reward network. This was predominantly composed of the thalamus and the striate body, 

especially the caudate but also the putamen and accumbens nuclei. It also comprised the 

ventral tegmental area (VTA) and the right IFG. All these regions are components of the 

frontal cortical-striatal-thalamic circuit involved in reward, motivation, and emotional 

drive (Haber & Knutson, 2010). Therefore, this IC constitutes part of the reward circuit. 
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This IC showed a positive modulation for the native condition relative to both the 

accented and the baseline conditions. There were no differences between the accented 

condition and the baseline, suggesting that this network is specifically engaged during 

NSP. This pattern of results is consistent with an emotional bias in favor of native speech.  

 
4. Discussion 

We aimed to identify the neural correlates of accented speech processing (ASP) by 

assessing how listening to speech in a non-native regional accent (Latin American) 

differentially modulated neural activity compared to listening to speech in a native accent 

(NSP, Castilian). We observed differences in the brain networks recruited during ASP 

and NSP. First, ASP recruited a cortical-subcortical network involving regions related to 

speech perception to a greater extent than did NSP. Second, compared to NSP, ASP 

differentially modulated three networks that are closely related to domain-general EC 

processes (DAN, posterior DMN, and SN). Third, NSP involved the reward system more 

than ASP did. We now discuss these three main observations in detail.  

I. Modulation of the speech perception network associated with ASP (cerebellar 

speech perception network)  

The results here showed that the mild differences of an unfamiliar accent relative to one’s 

own are enough to challenge the speech perception system. The prominent implication of 

the cerebellum in this network is consistent with the primordial role that neurocognitive 

models of speech perception in adverse conditions give to this structure (Callan, Jones, 

Callan, & Akahane-Yamada, 2004; Guediche, Holt, Laurent, Lim, & Fiez, 2015)4. In this 

respect, it is surprising that only one prior study on ASP has reported cerebellar 

involvement (Callan et al., 2014). In a similar vein, the implication of the thalamus and 

putamen in ASP is a novel observation, since no prior study has reported this, despite the 

well-documented involvement of these structures in phonological-articulatory processes 
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(see Craig-McQuaide et al., 2014 for a review). Other speech perception regions that prior 

studies have associated with ASP were not, however, part of our cerebellar speech 

perception network. First, we did not observe that ASP differentially modulated neural 

activity in the auditory association cortex, as compared with NSP (see Adank et al., 

2012a,b, 2013). This discrepancy probably arises from differences between studies in 

terms of intelligibility during ASP. As we noted in the Introduction, in those previous 

studies ASP only modulated neural activity in the auditory association cortex 

differentially to NSP when the intelligibility of accented speech was reduced. This 

reduction in intelligibility was unlikely to have occurred in the present study, at least not 

to a significant extent, since we used a non-native regional accent close to the native one 

in phonetic terms, and, furthermore, the results of the movie quiz indicated that 

participants understood the dialogues (whether accented or native). Second, ASP 

involved a portion of the IFG within the DLPFC, consistent with the hypothesis that EC 

processes are involved in response to the greater effort required by ASP compared to NPS 

(Venezia et al., 2012). However, Broca’s area did not form part of this network, which is 

surprising given the frequent involvement of this area in ASP studies (Figure 1). We can 

only advance a tentative explanation for this discrepancy. Broca’s area is especially 

sensitive to abrupt phonetic contrasts (e.g., /r/ vs. /l/), and less so to subtle acoustic 

differences between sounds belonging to the same phonetic category—for instance, it 

would be insensitive to the acoustic differences of /s/ in “Sue” and “see” (Lee, Turkeltaub, 

Granger, & Raizada, 2012; Myers, Blumstein, Walsh, & Eliassen, 2009). Thus, the fact 

that abrupt phonetic contrasts are not encountered between Castilian and Latin American 

Spanish could explain the lack of Broca’s area involvement during ASP in our study.  

Finally, it is also important to highlight the bilateral modulation of the network, whereas 

previous studies found a predominantly left-lateralized one. This bilateral pattern is 
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probably related to the fact that—contrary to any prior study—prosody rather than 

phonetics represented the most relevant distinction between the native and non-native 

accents. Indeed, it has been consistently shown that prosody is primarily processed in 

regions of the right hemisphere that are parallel to those composing the classical left 

language networks (Meyer, Steinhauer, Alter, Friederici, & von Cramon, 2004; Sammler, 

Grosbras, Anwander, Bestelmeyer, & Belin, 2015). Notably, the fact that Castilian and 

Latin American Spanish are relatively similar in phonetic terms does not mean that the 

left hemisphere of native speakers of Castilian (our participants) should respond to the 

unfamiliar traits of Latin American speech only mildly—which would have given rise to 

a predominantly right-lateralized pattern of activity (driven by unfamiliar prosodic traits) 

rather than the bilateral one that we actually observed. This is most likely because the 

parallel networks of the right and left hemispheres interact (via the corpus callosum) in 

order to coordinate the processing of prosodic and phonetic information during the course 

of speech comprehension (Friederici & Alter, 2004; Sammler, Kotz, Eckstein, Ott, & 

Friederici, 2010). In fact, it can be seen in Table 2 and Figure 2 that—except in the cases 

of the thalamus and DLPFC (BA46), where the activity was left- and right-lateralized 

respectively—the remaining clusters of activity related to ASP in this network 

(cerebellum; putamen; ant-MTG/ITG, TP; and Fp-PFC) arose bilaterally.  

II. Modulation of the domain-general EC networks associated with ASP (DAN, 

posterior DMN, and SN) 

Accented speech recruited domain-general EC processes throughout classical networks 

associated with two different EC attentional processes: those associated with the degree 

of cognitive effort required by the task at hand (instantiated through the DAN and 

posterior DMN), and those associated with the processing of salient stimuli (instantiated 
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through the SN). In general terms, ASP requires more attentional control and processing 

of salient stimuli, even in the absence of comprehension differences.  

Cognitive effort (DAN and posterior DMN). The DAN is critical for keeping attention 

focused on the task (Corbetta and Shulman 2002), while the DMN is associated with 

mind-wandering and distraction (Mason et al., 2007). Consistent with this, a visual 

inspection of the graphs in Figure 2 reveals that task conditions (native, accented, and 

baseline) modulated the DAN and the posterior DMN antagonistically. In addition, the 

positive correlation between the DAN and the cerebellar speech perception network 

suggests that the degree of cognitive effort was related to speech perception difficulties:  

the more unfamiliar the accent is, the harder it is to process. Focusing on the accented 

versus native comparison, this means that processing dialogues in the non-native regional 

accent was cognitively more demanding than was processing dialogues in one’s own 

accent: it required more attentional control (DAN) at the expense of distraction and 

greater internalization processes (posterior DMN). We do not associate this increased 

attentional control with language-specific processes activated during ASP, which were 

probably engaged through the IFG (BA46) in the cerebellar speech perception network. 

Rather, the fact that the DAN and posterior DMN are two amodal networks makes the 

attentional control more likely to be associated with the effortful processing of the 

message. This interpretation fits well with prior behavioral data. For example, in a study 

in which participants had to determine the veracity of different statements, Munro and 

Derwing (1995) showed that foreign accents delayed sentence processing relative to 

native accents. Similarly, in a study in which participants performed a lexical decision 

task on the last word of different sentences, Floccia et al. (2006) demonstrated that the 

processing of two similar regional accents delayed word recognition. This interpretation 

also fits well with the “cognitive demands” account (Venezia et al., 2012). Further 
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research is needed to clarify what exactly leads to this increase in cognitive demands 

during ASP. One possibility is that the increase has to do with the need to engage bilingual 

language control (bLC) mechanisms. To date, these mechanisms have been primarily 

associated with bilingual language production: they allow bilinguals to correctly speak in 

one language by avoiding interference from the lexical system of the unintended one 

(Abutalebi & Green, 2007, 2008). However, the fact that some of the brain regions 

involved in the DAN—the ACC, premotor sites (BA6), and the DLPFC—are considered 

bLC core neural substrates (Abutalebi et al., 2012) is consistent with the possibility that 

bLC mechanisms also intervene during ASP: they might aid ASP by preventing 

interference from the native’s phonetic/prosodic template. Finally, we acknowledge that 

this “cognitive effort” interpretation needs to be treated with caution, especially with 

regard to the DMN. This is because the results of recent studies cast some doubt on the 

DMN being exclusively associated with mind-wandering and distraction. In fact, it 

appears that the DMN may also be implicated in goal-directed behavior, through flexible 

coupling with task-relevant networks (Vatansever, Menon, Manktelow, Sahakian, & 

Stamatakis, 2015). We did not observe that the DMN correlated positively (not even 

though visual inspection) with any other network. This, in principle, would rule out any 

coupling with other networks. However, we cannot completely rule out the possibility 

that the DMN may play a task-related role during ASP, as the contribution of the DMN 

to the facilitation of task goals is still far from being understood.  

Processing salient events (SN). The SN has been classically associated with the 

identification of salient events in order to guide flexible behavior. Its main components 

are the ACC and anterior insula, although it often includes portions of the fronto-parietal 

cortex as well (Menon, 2015). The type of salient events detected by the SN, however, 

are not necessarily restricted to infrequent oddities. It has been shown that they also 
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include behaviorally important events such as errors, the detection of which leads to 

online adjustments in behavioral control (Ham, Leff, de Boissezon, Joffe, & Sharp, 2013). 

In the specific context of our study, we propose that listeners treated as errors the 

phonetic/prosodic traits that did not match those represented in their native templates. 

These errors, in turn, would have prompted the strategy of adaptively adjusting the speech 

perception system to facilitate the perception of unfamiliar speech features. This 

adaptation may have been instantiated through the two auditory regions that additionally 

composed the SN in this study: the STG and Heschl’s gyrus. The fact that both the 

baseline and the accented conditions enhanced neural activity relative to the native 

condition indicates that unfamiliar speech features drove this “error detection-adaptive 

adjustment” process. Notably, this enhancement in neural activity was more pronounced 

in the case of the baseline than in the accented condition. This probably reflects the greater 

challenge of trying to adapt the listener’s speech perception system to the unfamiliar 

speech features of a completely unknown language. In addition, the negative correlation 

between movie quiz scores and neural activity in the accented condition suggests that the 

proposed “error detection-adaptive adjustment” process impoverished the processing of 

the contents of the message. This interpretation fits well with studies indicating that 

accented dialogues and conversations—even if completely intelligible—are more 

difficult to understand than are native ones (see Cristia et al., 2012 for a review), 

especially if the unfamiliar speech features have to do with prosody (Anderson-Hsieh & 

Koehler, 1988), as we argue to be the case in the present study.  

III. NSP led to higher activity in the reward system than did ASP  

This finding fits well with studies showing that participants tend to judge utterances in 

their own accent as more favorable (Coupland & Bishop, 2007) and trustworthy (Lev-Ari 

& Keysar, 2010) than those in non-native accents (see also, Frances, Costa, & Baus, 
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2018). This observation complements that of Bestelmeyer et al. (2015), who reported that 

a portion of the reward system—the amygdala—responded preferentially to participants’ 

own accent. In their study, the authors tentatively attributed this bias to the possibility 

that the native accent was triggering a social identity effect in their participants (Cohen, 

2012). Since they intentionally used two accents belonging to two rival socio-cultural 

groups (Scottish vs. Southern English), it is possible that the amygdala was not included 

in the reward network modulated by ASP in our study because it only shows a favorable 

response to participants’ own accent if the non-native one evokes conflicting feelings 

related to arousal—we assume such rivalry feelings were not evoked in our study because 

confrontation is not generally a feature of social interactions between Latin Americans 

and Spaniards.  

4.1. Limitations of the current study  

Although our study overcomes some of the limitations of previous research (e.g., the 

control of unintelligibility and a more powerful network analysis; see the Introduction), 

it also has certain shortcomings of its own. 

The first one is to do with the fact that we allowed the type and number of 

phonetic/prosodic differences between Castilian and Latin American Spanish to occur 

randomly across the movie clips. On the one hand, this strategy mimicked accented 

speech scenarios in real life, and so the results of this study may be safely extrapolated to 

daily contexts. We acknowledge, however, that the lack of systematic control over these 

phonetic/prosodic differences restricts the interpretation of the cerebellar speech 

perception network to general phonetic/prosodic differences between the two regional 

accents. This shortcoming also derives from the fact that the bulk of prosodic differences 

between Castilian and Latin American Spanish have yet to be investigated (Hualde & 

Prieto, 2015). A further two limitations concern the use of ICA. First, this technique 
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requires the inclusion of several participants in order to identify stable components, which 

raises the question of how true the results we report in this study might be at the individual 

level. Second, the functional interpretation of these components is relatively open, as the 

role of some brain networks—especially those associated with the DMN—is still far from 

being fully understood. A final shortcoming is the lack of a control group with Latin 

American participants. The inclusion of such a control group would have allowed us to 

determine which ASP effects were listener-specific (i.e., linked to participants’ native 

language) and which are most likely universal.  

 

5. Conclusion 

This study provides the first evidence on how brain networks are differentially recruited 

during ASP as compared to NSP. We identified three different networks: (i) a network 

associated with speech perception, especially with the processing of prosody; (ii) three 

domain-general EC networks associated with cognitive effort and saliency detection; and 

(iii) a network linked to the reward system and probably related to differences in in-group 

versus out-group processing.    
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Table 1. Participants’ knowledge of languages other than 
Castilian. 

 CEFR level  
 A1 A2 B1 B2 C1 C2 Total 
Valencian  - 3 - 4 9 14 30 
English - 6 14 5 1 - 26 
French - 4 5 - - - 9 
German - - 1 - - - 1 
Note. CEFR = Common European Framework of Reference for Languages; A1 
= Beginner, A2 = Elementary, B1 = Intermediate; B2 = Upper-intermediate; 
C1 = Advanced; C2 = Mastery (native-like) 
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Table 2. Brain regions belonging to the ICs of interest 
Component Regiona BA MNI coordinates K t value p value 
   x y z    
Medial Visual Network L Cuneus, precuneus 18/19,7 –3 –76 11 2,975 31.49 .0001 
 R Cuneus, precuneus  18/19,7 15 –58 –4  27.06 .0001 
 Lingual gyrus 17/18 3 –76 17  27.63 .0001 
         
Posterior DMN Precuneus 7 –6 –64 20 2,506 26.85 .0001 
 L PCC 31 –9 –52 23  23.37 .0001 
 R PCC 31 3 –61 26  23.07 .0001 
 L Angular gyrus 39 –39 –67 38 336 12.35 .0001 
 R Angular gyrus 7 42 –61 41 281 11.61 .0001 
 R SMG gyrus 40 48 –58 29  10.34 .0001 
 R Fp-PFC 10 3 47 –7 115 9.94 .0001 
 L MTG 21 –57 –13 –16 19 7.44 .001 
         
DAN Precuneus 7 –18 –61 56 4,159 18.77 .0001 
 L Premotor cortex 6 –24 24 59 223 11.06 .0001 
 R Premotor cortex 6 24 –4 53 158 9.89 .0001 
 L DLPFC (MFG) 9 –39 32 29 184 9.61 .0001 
 L DLPFC (IFG) 46 –45 35 14  8.58 .0001 
 L OFC (SFG) 10 –30 44 20  7.01 .003 
 R DLPFC (MFG) 9 36 44 26 56 7.70 .0001 
 R OFC (SFG) 10 30 32 38  7.45 .001 
 ACC 24 0 –1 38 11 7.15 .002 
         
Reward Network R Thalamus – 6 –13 17 1,495 21.84 .0001 
 L Thalamus – –6 –13 14  20.65 .0001 
 R Caudate – 12 8 2  17.78 .0001 
 L Caudate – –9 11 2  16.15 .0001 
 VTA – 3 –28 –7  10.49 .0001 
 Red nucleus – –6 –16 7  10.3 .0001 
 Accumbens nucleus – –21 –4 5  9.85 .0001 
 R DLPFC 9,46 45 26 17 32 8.57 .0001 
         
Cerebellar Speech  L Cerebellum – –9 –49 –28 2,394 19.73 .0001 
Perception Network R Cerebellum – 15 –49 –25  17.18 .0001 
 L ant-MTG/ITG, TP 20,21,38 –39 –10 –28 103 10.03 .0001 
 R ant-MTG/ITG, TP 20,21,38 42 5 –34 58 9.67 .0001 
 R Putamen – 30 –7 –1 34 9.43 .0001 
 L Putamen – –27 –13 –7 26 7.16 .002 
 L Fp-PFC 10 –30 59 17 20 8.16 .0001 
 R Fp-PFC 10 24 62 16 51 7.61 .001 
 R Fp -PFC 10 42 53 –1 48 7.25 .001 
 R DLPFC (IFG) 46 51 44 5  7.09 .002 
 Thalamus – 0 –19 2 12 6.73 .005 
         
Salience Network R ACC 24,32 6 32 17 2,252 19.29 .0001 
 L ACC 24,32 –3 32 23  18.74 .0001 
 L Insula 13,22 –39 11 –1 760 17.74 .0001 
 L SMG 40 –63 –28 20  10.87 .0001 
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 L STG (Heschl) 22,41,42 –51 –16 8  10.30 .0001 
 R SMG 40 54 –40 44 105 11.36 .0001 
 R OFC (MFG) 10 42 50 8 1,543 16.52 .0001 
 R OFC (IFG) 47 33 17 –4  15.61 .0001 
 R Insula 13,22 39 11 2  15.31 .0001 
 R STG (Heschl) 22,41,42 57 –10 5  12.55 .0001 
 L DLPFC (MFG) 46 –36 38 23 394 12.88 .0001 
 L DLPFC (IFG) 46 –45 41 14  12.41 .0001 
 L OFC (MFG) 10 –39 47 14  12.72 .0001 
 L SMG 40 54 –40 44 105 11.36 .0001 
 R Cerebellum – 39 –55 –34 32 8.71 .0001 
 L Cerebellum – –30 –70 –19 37 7.90 .0001 
 L Lingual gyrus 19 –24 –76 –16  6.47 .011 
 R Precuneus 7 6 –79 38 60 7.14 .002 
 L Precuneus 7 –6 –76 38  6.92 .003 

a Regions with no lateralization (right, left) information showed bilateral activation. Statistical threshold at p < .05 FWE-

corrected for multiple comparisons, K > 10. ACC = anterior cingulate cortex; ant- = anterior; BA = Brodmann areas; DAN 

= dorsal attentional network; DLPFC = dorsolateral prefrontal cortex; DMN = default mode network; Fp-PFC = fronto-

polar prefrontal cortex; IC = independent component; IFG = inferior frontal gyrus; ITG = inferior temporal gyrus; L = Left; 

MFG = middle frontal gyrus; MNI = Montreal Neurological Institute; MTG = middle temporal gyrus; PCC = posterior 

cingulate cortex; PFC = prefrontal cortex; R = right; SFG = superior frontal gyrus; SMG = supramarginal gyrus; STG = 

superior temporal gyrus; TP = temporal pole; VTA = ventral tegmental area. 
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Captions to figures 

Figure 1. Illustration of the approximate brain regions that prior fMRI studies associated 

with accented speech processing (A: left hemisphere, B: right hemisphere). The diamonds 

represent only the local peaks (maxima), regardless of the extent of the cluster reported 

in the original study. Brighter diamonds indicate that the peak maximum was close to the 

cortex surface, whereas blurred diamonds indicate a more medial location (IFG = inferior 

frontal gyrus, IPS = inferior parietal sulcus, MTG = middle temporal gyrus, SFS = 

superior frontal sulcus, SMA = supplementary motor area, STG = superior temporal 

gyrus, STS = superior temporal sulcus). 

Figure 2. The images show the six task-related networks (p < .05 FWE-corrected for 

multiple comparisons; numbers in the images = Z MNI coordinates; K > 10). The graphs 

show the beta weights per condition (native, accented, and baseline) in each task-related 

network (*p-value < Holm-Bonferroni corrected p-value). Error bars represent 95% 

within-subject confidence intervals. 
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Footnotes 

1 ASP was not the exclusive focus in all prior studies, and thus some of them included 

types of listening adversities other than accent (e.g., background noise, Adank et al. 

2012a, 2013; different voices, Adank et al., 2012b; a second language: Callan et al., 

2014). These other listening adversities could have interfered with accented speech 

attunement, which, in turn, may have affected the pattern of brain activity in response to 

ASP. 

2 One of these differences has to do with the relative duration of the pre-tonic, tonic, and 

post-tonic syllables, making the same pitch accent to produce different auditory 

impressions in one and the other Spanish variant. Castilian and Latin American also differ 

in intonation. For instance, the pitch accent in Castilian statements is usually of the rising 

sort, with an initial valley commonly around the onset of the stressed syllable and a rise 

throughout it. In Latin American statements, by contrast, the stressed syllable is 

characterized by a low tone for most of its duration, with the rise being often confined to 

the next syllable. Much of the prosodic variation between Castilian and Latin American, 

however, is yet to be studied—see Hualde and Prieto (2015) for a detailed review of the 

current state of the art. This means that although it is easy to identify the two varieties by 

ear from their broad rhythmic and intonational differences (Hualde & Prieto, 2015), many 

of these differences still need to be formally described. 

3 Theoretically, functional networks need to be interpreted as a whole. In this respect, 

please note that we do not propose to interpret the cerebellar speech perception network 

region-by-region—we mean only that we associate this network with speech perception 

given that it is composed of many areas that have previously been associated with 

different aspects of this concept.   
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4 The model mostly adopted in prior fMRI literature about ASP is the “articulatory-to-

auditory feedback control system” (Callan et al., 2004), which is based on simulation 

theories of action perception (Cattaneo & Rizzolatti, 2009). Other models, however, are 

based on supervised learning mechanisms involving sensory prediction error signals 

rather than simulations (Guediche et al., 2015). As our data say nothing about the specific 

neurocognitive mechanisms behind the modulation that ASP exerts on the speech 

perception network, we will not discuss the hypotheses of each specific model.  









Caption to Supplementary Figure 1

Supplementary Figure 1. Rendered images showing the results of the whole brain 

analyses contrasting each experimental condition against baseline (A and D = lateral 

surface of the left hemisphere; B and E = a more medial view of the left hemisphere; 

C and F = surface of the right hemisphere). The statistical threshold is p < .05 FWE-

corrected for multiple comparisons (K > 20).





Caption to Supplementary Figure 2

Supplementary Figure 2. The eight ICs that passed the first two component selection 

criteria of the ICA (identifying them as stable and primarily located on gray matter) 

but not the third criterion testing task-relatedness. The statistical threshold is p < .05 

FWE-corrected for multiple comparisons (K > 10). The color bars represent the t-

values applicable to the images, while the numbers in the images correspond to the Z 

MNI coordinates.



Supplementary Table 2. Brain regions belonging to the ICs of no interest (i.e., task-unrelated)
Component Regiona BA MNI coordinates K t value p value

x y z
Motor Network R Postcentral gyrus 4 15 –37 65 2,980 20.34 .0001

L Precuneus 4 –3 –40 65 18.73 .0001
L Precentral gyrus 4 –15 –28 62 15.83 .0001

Primary Visual R Lingual gyrus 18 3 –85 –7 1,904 29.27 .0001
Network L MOG 18 –18 –94 11 17.04 .0001

L Lingual gyrus 18 –15 –85 –13 15.45 .0001

Lateral Visual R MOG 19 45 –64 –7 1,706 18.8 .0001
Network R IOG 19 39 –82 –7 15.39 .0001

L Fusiform (temporal) 37 –42 –4 53 1,332 16.2 .0001
L MOG 18 –33 –88 –1 15.91 .0001
L Fusiform (occipital) 19 –33 –76 –19 15.01 .0001

Anterior DMN L MFG 9 –3 50 20 3,427 20.69 .0001
ACC 10 0 44 2 19.79 .0001
L SFG 10 –19 53 26 18.87 .0001
L Angular gyrus 39 –54 –61 23 168 12.01 .0001
R Cerebellum – 30 –82 –34 67 11.58 .0001
L Cerebellum – –24 –82 –37 15 8.96 .0001
L MTG 21 –63 –25 –16 38 8.78 .0001
R MCC 24 6 –16 35 49 8.74 .0001
L Precuneus 31 –3 –52 35 75 8.44 .0001
L IFG 45 –57 20 2 36 7.79 .0001
R Angular gyrus 40 57 –55 26 46 7.73 .0001

L Fronto-Parietal L Angular gyrus 40 –36 –55 44 1,050 30.69 .0001
Network L Postcentral gyrus 2 –51 –31 44 8.27 .0001

L IFG 9 –51 8 35 2,845 19.92 .0001
L MFG 46,6 –51 23 26 19.34 .0001
L MTG 37,21 –57 –40 –13 491 16.74 .0001
R Angular gyrus 40 33 –58 47 142 7.21 .0001
R Cerebellum – 15 –79 –25 180 9.69 .0001
L Caudate nucleus – –12 11 5 39 9.38 .0001
L Putamen – –15 17 –7 6.60 .0008
PCC 23 0 –34 29 33 8.33 .0001
R MFG 46 51 35 20 26 7.88 .0001
R MFG 11 45 47 –4 22 7.63 .0001

R Fronto-Parietal R MFG 8 36 14 50 2,301 18.76 .0001
Network R IFG 9 45 17 29 17.95 .0001

R SFG 9 45 35 26 17.86 .0001
R Angular gyrus 40 39 –58 38 1,061 17.09 .0001
L Angular gyrus 40 –36 –58 47 200 13.06 .0001
R MTG 21,22 63 –46 –4 328 11.87 .0001
L IFG 10 –45 44 1 40 10.64 .0001
L Cerebellum – –33 –64 –34 204 10.34 .0001
R MCC 9,39 3 –37 35 103 9.39 .0001
L MTG 37 –57 –49 –13 12 8.93 .0001
R Precuneus 7 9 –70 41 19 8.57 .0001
L MFG 9 –51 11 35 18 7.11 .002

Primary Auditory R Heschl’s gyri 41,42 57 –16 11 1,008 18.66 .0001



Network R SMG 40 63 –19 23 13.93 .0001
R Postcentral gyrus 2 48 –25 50 10.39 .0001
L Postcentral gyrus 2 –54 –19 35 1,039 16.15 .0001
L Insula (Heschl) 13 –51 –13 11 13.59 .0001
L Heschl’s gyri 41,42 –57 –19 14 11.77 .0001
L Precuneus 19 –27 –76 41 7.29 .001

Secondary L STG 22,21 –57 –28 2 1,567 30.48 .0001
Auditory R STG 22,21,41 60 –25 2 1,542 25.6 .0001
Network L Cuneus 18 –6 –91 17 118 10.42 .0001

R Cuneus 18 3 –88 8 7.89 .0001
L Lingual gyrus 27 –6 –34 –16 32 8.81 .0001
R Lingual gyrus 27 6 –34 –7 7.76 .0001
R Thalamus – 3 –64 32 23 6.68 .006
L Precuneus 7 –3 –64 38 6.67 .006

a Regions with no lateralization (right, left) information showed bilateral activation. Statistical threshold at p < .05 FWE-

corrected for multiple comparisons, K > 10. ACC = anterior cingulate cortex; BA = Brodmann areas; DMN = default 

mode network; IC = independent component; IFG = inferior frontal gyrus; IOG = inferior occipital gyrus; L = Left; MCC 

= mid cingulate cortex; MFG = middle frontal gyrus; MNI = Montreal Neurological Institute; MTG = middle temporal 

gyrus; MOG = middle occipital gyrus; PCC = posterior cingulate cortex; R = right; SFG = superior frontal gyrus; SMG = 

supramarginal gyrus; STG = superior temporal gyrus.
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Supplementary data analysis

GLM-based analysis 

We performed a whole-brain GLM analysis (Friston et al., 1995). In the first-level analysis 

a statistical model was computed for each participant. The GLM design matrix included 

separate regressors for each condition (accented, native, and baseline) by applying a 

canonical hemodynamic response function and its time derivative. The six head-motion 

parameters were included as additional regressors of no interest. The time series were high-

pass filtered with a cut-off frequency of 1/128 Hz to eliminate low-frequency components. 

Finally, statistical contrast images were generated by comparing different conditions. The 

second-level analyses consisted of one-sample t tests (at p < .05 FWE-corrected for 

multiple comparisons at whole-brain level) using the images from the first-level analyses.

Results and discussion

As expected, conspicuous neural activity in brain regions classically associated with 

language comprehension (Hickok & Poeppel, 2007) was observed when comparing either 

the native or the accented condition against the baseline (Dutch dubbed clips), indicating 

that participants understood the dialogues in Castilian and Latin American Spanish but not 

those in Dutch. This neural activity was found in substantial clusters throughout the 

primary and association auditory cortices in the left MTG and left STG, extending from 

Wernicke’s area to the temporal pole (see Supplementary Table 1 and Supplementary 

Figure 1). This activity was bilateral in the most anterior portions of the MTG and the 

temporal pole. The opposite contrasts (i.e., baseline against either experimental condition) 

did not reveal any difference. 
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No differences were observed when comparing the native and accented conditions in either 

direction, which is consistent with Bestelmeyer et al. (2015), with the exception of the 

higher activity in the amygdala that those authors observed during NSP compared to ASP. 

The results of this analysis contrast with those obtained with ICA (see main text), 

suggesting that the latter analysis is better suited to the study of ASP. 

Supplementary Table 1. Whole brain analyses contrasting each experimental condition against baseline.   

Contrast Region BA
MNI 

coordinates K t value p value
x y z

Native > Baseline L ant-MTG, TP 20,21 –54 –7 –16 556 11.33 .0001
L STG, Wernicke’s area 39 –45 –61 20 8.74 .0001
R ant-MTG, STG, TP 20,21,38 57 2 –22 125 9.17 .0001

Accented > Baseline L ant-MTG, TP 21,22 –54 2 –19 342 9.78 .0001
L STG, Wernicke’s area 22 –60 –49 17 8.47 .0001
R ant-MTG, STG, TP 21,22,38 57 2 –22 114 7.58 .001

Statistical threshold at p < .05 FWE-corrected for multiple comparisons, K > 20. Contrast: Accented = Latin American; 

Baseline = Dutch; Native = Castilian. ant- = anterior; BA = Brodmann areas; L = Left; MNI = Montreal Neurological 

Institute; MTG = middle temporal gyrus; R = right; STG = superior temporal gyrus; TP = temporal pole.



We found that accented speech engaged speech perception and executive control 
networks. In addition, the reward network showed a preference for the native accent. 
These results help to advance knowledge about the neural basis of accented speech 
processing, which is an increasingly common listening condition in daily life.

 


