
Noname manuscript No.
(will be inserted by the editor)

Noise Estimation for Hyperspectral Subspace
Identification on FPGAs

Germán León · Carlos González ·
Rafael Mayo · Daniel Mozos ·
Enrique S. Quintana-Ort́ı ·

Received: date / Accepted: date

Abstract We present a reliable and efficient FPGA implementation of a pro-
cedure for the computation of the noise estimation matrix, a key stage for
subspace identification of hyperspectral images. Our hardware realization is
based on numerically stable orthogonal transformations, avoids the numerical
difficulties of the normal equations methods for the solution of linear least
squares problems (LLS), and exploits the special relations between coupled
LLS problems arising in the hyperspectral image. Our modular implementa-
tion decomposes the QR factorization that comprises a significant part of the
cost into a sequence of suboperations, which can be efficiently computed on
an FPGA.

Keywords Hyperspectral images, subspace identification, noise estimation,
least squares problems, FPGAs, high performance, energy consumption

1 Introduction

Onboard hyperspectral sensors gather large amounts of data with a high sam-
pling rate, producing for example more than 18 Mbytes/s for AVIRIS1 and
about 1.33 Mbytes/s for HYPERION2 [6]. Under a conventional linear mixing
model [3], the spectral vectors of these data are a linear combination of a few
endmembers, often much smaller than the number of spectral bands. A crucial

This work was supported by MINECO projects TIN2014-53495-R and TIN2013-40968-P.

G. León, R. Mayo, E.S. Quintana-Ort́ı
Depto. de Ingenieŕıa y Ciencia de Computadores, Univ. Jaume I, Castellón, Spain
E-mail: {leon,mayo,quintana}@uji.es

C. González, D. Mozos
Depto. de Arquitectura de Computadores y Automática, Univ. Complutense Madrid, Spain
E-mail: {carlosgo,mozos}@ucm.es

1 http://aviris.jpl.nasa.gov
2 http://eo1.usgs.gov

2 Germán León et al.

initial step for hyperspectral applications, known as subspace identification,
consists in determining the minimum dimension of the subspace that enables
an accurate and economic representation of the spectral vectors, and reduces
the cost and storage requirements for subsequent hyperspectral operations.

HySime [2] is an effective yet costly hyperspectral dimensionality reduction
algorithm for subspace identification. Exploiting the hardware concurrency of
high performance architectures is therefore crucial to deliver both (near) real-
time response and moderate energy consumption for subspace identification
in a number of scenarios, including biological threat detection, monitoring of
chemical contamination, wildfire tracking, etc.

The key stage in HySime corresponds to the initial estimation of the noise
present in the original hyperspectral image via the noise correlation matrix. In
this paper we target the efficient implementation and execution of this initial
stage of HySime on field programmable gate array (FPGAs). Our hardware
formulation relies on a recent numerically reliable and structure-aware algo-
rithm for noise estimation [1], based on the QR factorization, this algorithm
avoids the numerical pitfalls of the normal equations method [4]. In more de-
tail, in this paper we present a reliable and efficient FPGA implementation
of the modular procedure for the computation of the noise estimation matrix.
Our implementation builds upon the FPGA realization in [7] for the basic
dense QR factorization, specializing that procedure to exploit the structure of
the matrix operands appearing in subspace identification.

The paper is organized as follows. In Section 2 we provide a short overview
of the practical method introduced in [1] to obtain the noise estimation ma-
trix necessary in hyperspectral subspace identification. There, we also describe
how to compute this matrix via a reliable and fast (structure-aware) algorithm
based on the QR factorization. In Section 3 we elaborate in detail the scalar
procedure for the QR factorization that underlies the structure-aware algo-
rithm and its FPGA implementation. Finally, in Section 4 we evaluate the
performance and energy consumption of our FPGA realization, and in Sec-
tion 5 we close the paper with a few concluding remarks.

All experiments employ single–precision floating-point (IEEE 754) arith-
metic. Although fixed point can be employed in some of the components in
hyperspectral image processing, the type of numerical problems being solved
in the two stages of HYSIME (linear least squares systems and eigenvalue
problems) recommend the use of floating-point arithmetic, mainly because of
limited representation rage of fixed precision.

We will employ the following notation in the remainder of the paper. For
a p × q matrix A, partitioned column-wise as A = (a1, a2, . . . , aq), we define
A∂j = (a1, . . . , aj−1, aj+1, . . . , aq), 1 ≤ j ≤ q. Furthermore, A∂j ,∂j denotes the
matrix that results from deleting the j-th column and row vectors of A, and
A∂j ,k is the k-th column vector of A∂j . Given a vector v, ‖v‖2 denotes the
vector 2-norm [4].

Noise Estimation for Hyperspectral Subspace Identification on FPGAs 3

2 Noise Estimation via the Solution of Coupled LLS problems

2.1 Computing the noise correlation matrix

Let us consider that matrix Z ∈ Rn×l, partitioned column-wise as Z =
(z1, z2, . . . , zl) contains the n spectral vectors (or image pixels), each consisting
of l bands. The success of the HySime algorithm for subspace identification is
based on the correlation between neighboring spectral bands of hyperspectral
images [2].

The HySime algorithm for noise estimation assumes that zj is a linear
combination of the remaining l − 1 bands; that is,

zj = Z∂jβj + ξj , (1)

where βj ∈ Rl−1 is the regression vector and ξj ∈ Rn is the modeling error
vector. Least squares estimators for βj and ξj are then given, respectively, by
the solution of the linear least squares (LLS) problem:

β̃j = min
x∈Rl−1

‖Z∂jx− zj‖2, (2)

and the residual

ξ̃j = zj − Z∂j β̃j . (3)

Upon solving the l “coupled” LLS problems in (2), and computing the
ξj parameters for j = 1, 2, . . . , l, the noise correlation matrix can be thus
approximated as

R̃n =
1

n

(
ξ̃1, ξ̃2, . . . , ξ̃l

)T (
ξ̃1, ξ̃2, . . . , ξ̃l

)
∈ Rl×l. (4)

2.2 Solution of coupled LLS problems

The previous elaboration in this section exposes that the key to obtain the
noise correlation matrix lies in the reliable and efficient solution of the coupled
LLS problems in (2). In numerical analysis, it is known that the numerical
difficulties associated with the utilization of the normal equations method for
the solution of LLS problems can be avoided by relying on the QR factorization
[4]. In the particular case of noise estimation, in [1] we presented the following
specialized structure-aware algorithm that exploits the relations between the
coupled LLS problems using the reliable QR factorization.

The structure-aware algorithm in [1] commences with the computation of
the “initial” QR factorization

Z∂1 = Q1R1 = Q1(r2, r3, . . . , rl); (5)

where (r2, r3, . . . , rl) stands for a column-wise partitioning of R1;

4 Germán León et al.

d1 = QT1 z1 =

dt1

db1

 ;
} l − 1

} n− l + 1
(6)

and the model error vector

ξ1 = Q1

(
0
db1

)
. (7)

The remaining l − 1 model error vectors, ξ̃j , j = 2, 3, . . . , l, can be next
inexpensively obtained as follows.

Let us define:

Yj = QT1 (Z∂jΠ), (8)

where Π ∈ R(l−1)×(l−1) simply permutes the first column vector of Z∂j to the
last column vector. Then,

Yj = QT1 (Z∂jΠ) (9)

= QT1 (z2, . . . , zj−1, zj+1, . . . , zl, z1) (10)

= (r2, . . . , rj−1, rj+1, . . . , rl, d1) (11)

=

 U11 U12 u13

0 H22 y23

0︸︷︷︸
j − 2

0︸︷︷︸
l − j

y33︸︷︷︸
1

 ,
} j − 2
} l − j + 1
} n− l + 1

(12)

with U11 upper triangular and H22 upper Hessenberg (i.e., all its entries below
the first subdiagonal equal zero). Therefore, the QR factorization of Yj can be
obtained via, e.g., a sequence of l − j Givens rotations [4], G1, G2, . . . , Gl−j ,
that annihilate the entries in the first subdiagonal of H22; i.e.,

Gl−j · · ·G2G1Yj =

U11 U12 u13

0 U22 h23

0 0 h33

 , (13)

where U22 is upper triangular and h23 = Gl−j · · ·G2G1y23. This can then be
followed by a single Householder reflector [4], say Hj , which annihilates the
entries of h33, so that

HjGl−j · · ·G2G1Yj = Q̄Tj Yj (14)

=

U11 U12 u13

0 U22 u23

0 0 0

=R̄j (15)

Noise Estimation for Hyperspectral Subspace Identification on FPGAs 5

Input: Z ∈ Rn×l containing the spectral vectors

Output: ξ̃j ∈ Rn, j = 1, 2, . . . , l, noise estimations
Cost: 2nl2 − l3/6 flops

Factorize Z∂1
= Q1R1

d1 = QT
1 z1 =

(
dt1

db1

)
, ξ̄1 =

(
0
db1

)
,

with dt1 ∈ Rl−1, db1 ∈ Rn−l+1

for j = 2, 3, . . . , l
Assemble Yj = (r2, . . . , rj−1, rj+1, . . . , rl, d1)
Factorize Yj = Q̄jR̄j , with R̄j upper triangular

and Q̄T
j = HjGl−j · · ·G2G1

dj = Q̄T
j zj =

(
dtj

dbj

)
, ξ̄j = Q̄j

(
0
dbj

)
,

with dtj ∈ Rl−1, dbj ∈ Rn−l+1

end(
ξ̃1, ξ̃2, . . . , ξ̃l

)
= Q1

(
ξ̄1, ξ̄2, . . . , ξ̄l

)
Figure 1 HySimeSA: Noise estimation based on the structure-aware algorithm.

is upper triangular. In other words, Yj = Q̄jR̄j is a QR factorization of Yj ,
and therefore,

dj = Q̄Tj Q
T
1 zj = Q̄Tj rj , (16)

with the proper partitioning, yields the required approximation of the noise
vector

ξ̃j = Q1Q̄j

(
0
dbj

)
. (17)

This “structure-aware” algorithm is formally stated in Figure 1. The ini-
tial QR factorization requires 2l2(n− l/3) floating-point arithmetic operations
(flops), and the computation of d1, ξ̃1 contributes a negligible cost to that
figure. The triangular matrices R̄j are not explicitly constructed, and the or-
thogononal transformations corresponding to Q̄j can be computed and applied
with a cost of only l2/2 flops per band/factorization. The subsequent compu-
tations for dj in (16) and ξ̃j in (17) contribute an insignificant cost. In total,
this structure-aware algorithm performs to 2nl2 − l3/6 flops. At this point we
note that, as in practical hyperspectral imaging n � l, the most significant
part of this computational cost comes from the initial QR factorization.

6 Germán León et al.

3 FPGA Realization of the QR Factorization

3.1 Blocked algorithm

In subspace identification problems for hyperspectral images, the QR factor-
ization in (5) involves a matrix operand Ẑ∂1 comprising up to several hun-
dreds of thousands of rows (image pixels) but a few hundreds of columns only
(bands). Our formulation of the QR factorization takes this into account to
decompose it into a sequence of suboperations that partition the kernel by
blocks and allow an efficient implementation on an FPGA. Concretely, con-

sider Ẑ = Z∂1 ∈ Rn×l̂, with l̂ = l − 1, partitioned by blocks of rows as

Ẑ =

Ẑ1

Ẑ2

...

Ẑnt

 , (18)

where, for simplicity, we assume that n = nt · l̂, so that each block Ẑj contains

l̂ rows. (In case n is not an integer multiple of l̂, we simply need to fill Ẑ with
the appropriate number of rows, with all their entries set to zeros. Given that
n� l̂, this produces a minor increase in the cost of the following algorithm.)
The blocked implementation then begin by computing the QR factorization
of the last block:

Ẑnt
= Q̂nt

R̂nt
, (19)

to then proceed upwards, successively computing the QR factorizations(
Ẑj
R̂j+1

)
= Q̂jR̂j (20)

for j = nt − 1, nt − 2, . . . , 1. Here we note that R̂j+1 is already an upper
triangular matrix, obtained from the QR factorization in the previous step.
By taking into account the triangular structure of this operand, the blocked
algorithm for the QR factorization of Ẑ then exhibits the same computational
cost as that of a conventional QR factorization.

3.2 Scalar procedure

Given a nonzero vector x ∈ Rn, the Householder reflector

H = House(x) = In − τvvT (21)

, where

v = x+ αe1 (22)

Noise Estimation for Hyperspectral Subspace Identification on FPGAs 7

τ = 2/(vT v) (23)

α = ±‖|x||2 (24)

, In denotes the square identity matrix of order n and e1 is the first column
of In, satisfies y = Hx = ∓||x||2e1 [4]; that is, all entries of x are annihilated
by the application (from the left) of the Householder reflector H, except the
first entry of x which, after the application, becomes ∓||x||2.

Figure 2 illustrates the calculation of the QR factorization, via House-

holder reflectors, of a matrix of the form

(
Z̄
R̄

)
where Z̄, R̄ ∈ Rl̂×l̂, and R̄

is upper triangular; see (20). The scalar procedure uses the FLAME nota-
tion [5], and mimics routine geqr2 from the Linear Algebra Package (LA-
PACK) [8]. Internally, the scalar procedure relies on routine larfg to gener-

ate a Householder reflector for the vector
(
ω11, z21, r

T
01, ρ11

)T
. Routine larf

then applies this reflector (from the left) to the trailing submatrix composed
of zT12, Z22, R02 and rT12. The Householder reflector H is not explicitly built,
but applied implicitly using the parameters v, τ . In particular, note that the
application of the Householder reflector to a matrix A can be performed as
HA = (I − τvvT)A = A − τv(vTA), which boils down to a matrix-vector
product, w = vTA, followed by a (scaled) rank-1 update, A = A− τvwT .

In practice, the upper triangular factor overwrites the corresponding entries
of Z̄ and R̄. Furthermore, the parameters vj and τj that define the Householder
reflector Hj (which annihilates the subdiagonal entries in the j-th column of
the matrix) are respectively stored using the annihilated entries of the column

plus the j-th entry of an additional vector of size l̂. (Here, the first entry of v
equals 1 and does not need to be explicitly stored.)

3.3 FPGA implementation

Figure 3 displays the hardware architecture that implements the scalar pro-

cedure for the QR factorization of W =

(
Z̄
R̄

)
. Module Memory provides the

input data matrices Z̄, R̄; module House calculates the Householder reflector;
and module RowHouse applies the Householder reflector to the appropriate
blocks of the data matrix.

As described in the previous two subsections, matrix Ẑ = Z∂j ∈ Rn×l̂ is

partitioned, passed to and processed by the FPGA in blocks of dimension l̂× l̂,
starting from the bottom and proceeding upwards. While processing two of
these blocks, say Ẑj and Ẑj+1, the block immediately above them (i.e., Ẑj−1) is
transferred to the FPGA in order to overlap communication with computation
and avoid idle periods. Module Memory is composed of three banks: input,
upper and lower. The input bank stores the block in transference while the
remaining two banks provide the information to the rest of the processing

8 Germán León et al.

Algorithm:
[
Z̄, R̄

]
:= QR 2x1(Z̄, R̄)

Partition Z̄ →
(
ZTL ZTR

ZBL ZBR

)
, R̄→

(
RTL RTR

RBL RBR

)
where ZTL, RTL are both 0× 0

while n(ZTL) < n(Z̄) do
Repartition

(
ZTL ZTR

ZBL ZBR

)
→

Z00 z01 Z02

zT10 ω11 zT12

Z20 z21 Z22

,

(
RTL RTR

RBL RBR

)
→

R00 r01 R02

rT10 ρ11 rT12

R20 r21 R22

where ω11, ρ11 are both 1× 1

H := House

ω11

z21
r01
ρ11

 larfg returns τ, v s.t. H = I − τvvT

zT12
Z22

R02

rT12

 := H

zT12
Z22

R02

rT12

 larf applies H via τ, v

Continue with(
ZTL ZTR

ZBL ZBR

)
←

Z00 z01 Z02

zT10 ω11 zT12

Z20 z21 Z22

,

(
RTL RTR

RBL RBR

)
←

R00 r01 R02

rT10 ρ11 rT12

R20 r21 R22

endwhile

Figure 2 Unblocked algorithm for the QR factorization using Householder reflectors. n(·)
is a function that returns the number of columns of its input argument.

Figure 3 Hardware architecture used to implement QR factorization and steps involved in
an intermediate iteration.

system. When the factorization of a submatrix is completed, the roles of the
banks are rotated so that the upper bank becomes the lower bank, the input
bank becomes the upper bank, and the lower bank becomes the input one.

The calculation modules (House and RowHouse) work in parallel. As soon
as the first column is updated, the Householder reflector for the next iteration
can be calculated. Thus, steps (3) and (4) in Figure 3 are executed simultane-
ously. The generation of the Householder reflector exhibits a reduced degree

Noise Estimation for Hyperspectral Subspace Identification on FPGAs 9

Figure 4 Hardware architecture used to implement House module.

of parallelism and does not have a contiguous source of data. Therefore, the
design of module House aims to offer low latency and consume a small number
of digital signal processing (DSP) resources. The majority of DSPs are dedi-
cated to the implementation of the RowHouse module to take full advantage
of the parallelism of this operation.

Figure 4 shows the design of the House module to implement the calculation
of v (22) and τ (23).

To perform these calculations, we must first obtain α (24), which implies
the realization of the dot–product of x. Following the design policy we have
just described, the inner dot–product of the reflector calculation has a reduced
size (m << l̂ + 1). To obtain the final result of the dot–product, we use an
accumulator that adds the sequence of partial dot–products obtained. The
accumulator consists of a low latency adder and a complex automaton that
matches the partial sums, in order to reduce the number of sums until reaching
the total sum. Therefore, a circuit is required which takes the input of l̂ +
1 elements and sequentially supplies the input of m elements to the dot–
product operator. For this circuit, shift registers are used in order to reduce
routing resources. Simulations for l̂ = 256 determines that the lowest latency
is obtained with a size of 16 elements in each partial dot–product.

When the dot–product is obtained, then we calculate α and the first ele-
ment of v, following Equations (24) and (22) respectively. At this point, we
have the dot–product of x, α and the first element of v, so we just can calcu-
late τ and v. To avoid the need of the final vector v to calculate τ , we rewrite
Equation (23) in the following sense:

τ = 2/((xTx)− x2
1 + v2

1)/v2
1) (25)

At the end of the reflector calculation, a division is made to all elements of
the column. This calculation is performed in parallel to the last calculation of
τ , which has a latency of 16 cycles. Thus, with 16 dividers in parallel we can
make the division of a column of 256 elements without increasing the overall
latency of the operation.

Once we have calculated the Householder reflector we must apply it to the
rest of the matrix. In Subsection 3.2 we explain that the application of the
Householder reflectorH to a matrixA can be performed asHA = A−τv(vTA).
Figure 5 shows the design of the RowHouse module following this Equation.

10 Germán León et al.

Figure 5 Hardware architecture used to implement RowHouse module.

Figure 6 General scheme of the QR factorization with the selection circuit.

To apply the Householder reflector calculated in the previous stage we will
proceed as follows. First, one column of matrix A is introduced and the dot–
product with v is calculated. Second, the result of the dot–product is multiplied
by τ (changing its sign). Third, we multiply the scalar result calculated in the
previous step by the vector v. Finally, the column of A initially introduced is
multiplied by the vector calculated in the previous step.

There are two versions of module RowHouse. The first one utilizes the
maximum number of floating–point units (following a non-blocking pipeline
architecture). The second version adapts the design depending on the number
of resources, implementing operators of smaller size and multiplexing the data
entry (following a blocking pipeline architecture) in time. Following the design
policy we have described previously, in this paper we use the first one to take
full advantage of the parallelism of this operation, so we can introduce the
different columns of A one by one in each clock cycle.

Each iteration of a submatrix calculation needs l̂+ 1 elements from the 2l̂
elements column provided by the lower and upper banks. Specifically, the i-th
iteration will work with the sub–column Mi={mi...mn+1+i} where ∀mi ∈M .
Figure 6 shows a general scheme of the QR factorization with the selection
circuit (for simplicity in Figure 3 it did not appear). The design of a selection
circuit suitable for FPGA architecture is very important to avoid congestion

Noise Estimation for Hyperspectral Subspace Identification on FPGAs 11

Figure 7 Hardware architecture used to implement the selection circuit.

problems when performing the routing of the circuit, therefore it deserves a
detailed explanation.

To simplify the selection circuit of the sub–column, Mi will be exchanged,
so for the i-th iteration the permuted columnMpi will be {mn+1...mn+1+i,mi...mn}
[see Figure 7]. Thus, it is achieved that the k component can only be mk if

k > i, or mn+1+k otherwise, so the hardware cost will be l̂+1 2:1 multiplexers.
If we not permute the column, the hardware cost is corresponding to a barrel
shifter with hardware cost of l̂+ 1 2l̂:1 multiplexers. The biggest problem of a
barrel shifter of the size required for this problem, is the problem of congestion
in routing resources that prevents its implementation on current FPGAs.

4 Experimental Results

This Section is organized as follows. In Subsection 4.1 we describe the FPGA
board used in our experiments. Subsection 4.2 describes the hyperspectral
data sets that will be used for demonstration purposes. Finally, Subsection
4.3 shows the resources used for our hardware implementation, the processing
time for the data sets and the power consumption.

12 Germán León et al.

(a) (b)

Figure 8 (a) False color composition of the AVIRIS hyperspectral over the Cuprite mining
district in Nevada. (b) U.S. Geological Survey mineral spectral signatures of the exposed
minerals of interest.

4.1 FPGA Architecture

The hardware architecture described in Subsection 3.3 has been implemented
directly coded using VHDL language for the specification of the QR factoriza-
tion. Moreover, we have used the Vivado 2016 environment and the Embedded
Development Kit (EDK) environment to specify the complete system. The full
system has been implemented on a VC709 board, a reconfigurable board with
a single Virtex–7 XC7VX690T, two DDR3 SDRAM DIMM slots which holds
up to 4 GB each one, an RS232 port, and some additional components not
used by our implementation.

The Xilinx Virtex–7 XC7VX690T FPGA has a total of 866,400 slice reg-
isters, 433,200 slice look-up tables (LUTs) and 134,381 LUT-FF pairs. In
addition, the FPGA includes some heterogeneous resources such as 3,600
DSP48E1s and 1,470 distributed block RAMs. In our implementation, we took
advantage of these resources to optimize the design. Block RAMs are used to
implement the FIFOs and the memories, so the vast majority of the slices
are used for the implementation of the QR factorization together with the
DSP48E1s.

4.2 Hyperspectral Image Data Sets

The hyperspectral datasets used in these experiments are the well-known
AVIRIS Cuprite scene, available online in reflectance units3, the AVIRIS World
Trade Center (WTC) scene and the HYDICE Washington DC Mall scene4.
These scenes have been widely used as standard hyperspectral benchmarks.

3 http://aviris.jpl.nasa.gov/freedata
4 https://engineering.purdue.edu/ biehl/MultiSpec/hyperspectral.html

Noise Estimation for Hyperspectral Subspace Identification on FPGAs 13

(a) (b)

Figure 9 (a) False color composition of an AVIRIS hyperspectral image collected by NASAs
Jet Propulsion Laboratory over lower Manhattan on September 16, 2001. (b) Location
of thermal hot spots in the fires observed in World Trade Center area, available [online]:
http://pubs.usgs.gov/of/2001/ofr-01-0429/hotspot.key.tgif.gif.

The AVIRIS Cuprite scene [see Figure 8(a)] comprises a relatively large
area (350 lines by 350 samples and 20-m pixels) and 224 spectral bands between
0.4 and 2.5 µm, with nominal spectral resolution of 10 nm. Bands 1-3, 105-115
and 150-170 were removed prior to the analysis due to water absorption and
low SNR in those bands. The site is well understood mineralogically, and has
several exposed minerals of interest including alunite, buddingtonite, calcite,
kaolinite and muscovite. Reference ground signatures of the above minerals,
available in the form of a U.S. Geological Survey library (USGS)5, are shown
in Figure 8(b)].

For the second image, the instrument was flown by NASA’s Jet Propulsion
Laboratory over the World Trade Center (WTC) area in New York City on
September 16, 2001, just five days after the terrorist attacks that collapsed
the two main towers and other buildings in the WTC complex [see Figure 9].
The data set consists of 614× 512 pixels, 224 spectral bands and a total size
of (approximately) 140 MB. The leftmost part of Figure 9 shows a false color
composite of the data set selected for experiments using the 1682, 1107 and
655 nm channels, displayed as red, green and blue, respectively. The rightmost
part of Figure 9 shows a thermal map centered at the region where the towers
collapsed.

Figure 10 shows a simulated color IR view of an airborne hyperspectral
data flightline over the Washington DC Mall provided with the permission
of Spectral Information Technology Application Center of Virginia who was
responsible for its collection. The sensor system used in this case measured
pixel response in 210 bands in the 0.4 to 2.4 m region of the visible and infrared
spectrum. Bands in the 0.9 and 1.4 m region where the atmosphere is opaque

5 http://speclab.cr.usgs.gov/spectral-lib.html

14 Germán León et al.

Figure 10 IR view of an airborne hyperspectral data flightline of
HYDICE sensor over the Washington DC Mall, available [online]:
https://engineering.purdue.edu/ biehl/MultiSpec/hyperspectral.html.

have been omitted from the data set, leaving 191 bands. The data set contains
1208 scan lines with 307 pixels in each scan line. It totals approximately 145
Megabytes. The image at left was made using bands 60, 27, and 17 for the
red, green, and blue colors respectively.

4.3 Performance Evaluation

Table 1 Summary of resource utilization on the Virtex–7 XC7VX690T.

Resource LUT LUTRAM BRAM DSP
Available 433,200 174,200 1,470 3,600

Memory module 67,147 0 768 0
House module 36,797 886 0 62
RowHouse module 148,518 9,242 129 2,056

QR Factorization 278,357 10,125 1,013 2,118

Table 2 Execution time (in seconds) for our FPGA implementation of the QR factorization.

AVIRIS AVIRIS HYDICE
Cuprite WTC Washington DC Mall
44MB 140MB 145MB

188 bands 224 bands 191 bands

Execution time 1.31 3.36 3.84

We study three metrics of our FPGA implementation: Board usage, com-
putational performance and power consumption.

Table 1 shows the resources necessary for our hardware implementation for
a QR factorization of size l̂ = 256 for the different modules and for the complete
system. Although we can think due the total resources utilization is around
the 65% we can introduce improvements that requires additional resources or
even jointly implements other algorithms, based on our experience, we can say
that congestion problems will occur, making circuit routing impossible.

Noise Estimation for Hyperspectral Subspace Identification on FPGAs 15

In reference to performance, in order to factorize a block of dimension 256×
256, the implementation requires a total of 109,669 clock cycles and proceeds
at 40 MHz. Table 2 shows the execution time for the initial QR factorization
using the AVIRIS Cuprite and WTC scenes, and the HYDICE Washington
DC Mall scene. If we compare the execution times of the AVIRIS Cuprite and
AVIRIS WTC images we can note that it not scale with the image sizes (the
processing time of the AVIRIS WTC image should be 140MB/40MB = 3.5
times the processing time of the AVIRIS Cuprite image, instead of 2.57). This
is due to the fact that as the number of bands increases, fewer penalties occur
between the House and RowHouse modules due to the wait of this last module
to finish the calculation of the Householder reflector. The same idea applies to
the HYDICE Washington DC Mall image, which despite having a very similar
size to the AVIRIS WTC image, has a longer processing time because it has
fewer bands.

Table 3 Execution time (in seconds) for the HySimeSA algorithm using single–precision
on an Intel Xeon E5645 processor [1].

AVIRIS Cuprite AVIRIS WTC
1 core 2.28 8.24
2 cores 1.44 4.93
4 cores 1.05 3.54
6 cores 0.99 3.43

It is interesting to compare our implementation with existing parallel im-
plementations in other platforms like the one we can found in [1], where a
multicore implementation on an Intel Xeon E5645 processor is presented. In
that work, authors show the execution time of the entire HySimeSA algo-
rithm, but given that the initial QR factorization requires 2l2(n − l/3) flops
and the rest of operations requires l3/2 flops, we can consider that the exe-
cution time of the initial QR factorization is practically the execution time
of the entire HySimeSA algorithm. Table 3 resumes the execution time using
single–precision floating-point arithmetic with different number of cores for
the AVIRIS Cuprite and WTC scenes. Comparing Tables 2 and 3, we can see
that our implementation in the Xilinx Virtex–7 XC7VX690T FPGA obtain a
similar result than using 6 cores of the Intel Xeon E5645 processor for larges
images.

Looking at power consumption, the static power consumption is 0.58 Watts
while the dynamic power consumption is 4.03 Watts, for a total of 4.61 Watts.
This power consumption is significantly lower when compared to the parallel
multicore implementation for an Intel Xeon E5645 [1], whose Thermal Design
Power (TDP) is 80 watts (for calculations like the QR factorization, it is
normal to dissipate a power that will be close to that TDP).

16 Germán León et al.

5 Concluding Remarks

We have described an FPGA implementation of the HySime algorithm for
subspace identification that builds upon the numerically-reliable QR factor-
ization for solving the LLS problems in this method. Furthermore, our imple-
mentation exploits the tall-and-skinny structure of hyperspectral images, with
many more rows than columns (i.e., pixels than spectral bands), to compute
this factorization via a specialized, structure-aware algorithm that proceeds
by blocks, from bottom upwards.

Our experimental results using an actual implementation on a Xilinx Virtex-
7 XC7VX690T shows the amount of resources employed by each model of the
FPGA and the global usage using three well-known benchmarks for hyper-
spectral imaging. In addition, these results indicate a fair rate of floating-
point arithmetic operations per second (given the moderate frequency of the
FPGA) and a very appealing low power dissipation, of around 4.61 Watts
only, compared with the several dozens of Watts that are usually required by
a conventional multicore architecture.

References

1. Benner, P., Novaković, V., Plaza, A., Quintana-Ort́ı, E.S., Remón, A.: Fast and reliable
noise estimation for Hyperspectral subspace identification. IEEE Geoscience and Remote
Sensing Letters 12(6), 1199–1203 (2015)

2. Bioucas-Dias, J., Nascimento, J.: Hyperspectral subspace identification. IEEE Trans.
Geo. Rem. Sens. 46, 2435–2445 (2008)

3. Bioucas-Dias, J., Plaza, A., Dobigeon, N., Parente, M., Du, Q., Gader, P., Chanussot, J.:
Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based
approaches. IEEE JSTARS 5(2), 354–379 (2012)

4. Björck, A.: Numerical Methods for Least Squares Problems. Society for Industrial and
Applied Mathematics (SIAM) (1996)

5. Gunnels, J.A., Gustavson, F.G., Henry, G.M., van de Geijn, R.A.: FLAME: Formal linear
algebra methods environment. ACM Trans. Math. Software 27(4), 422–455 (2001). URL
http://doi.acm.org/10.1145/504210.504213

6. Kerekes, J., Baum, J.: Spectral imaging system analytical model for subpixel object
detection. IEEE Trans. Geo. Remote Sens. 40(5), 1088–1101 (2002)

7. León, G., González, C., Mayo, R., , Quintana-Ort́ı, E.S., Mozos, D.: Energy-efficient QR
factorization on FPGAs. In: Proc. 17th Int. Conf. Computational and Mathematical
Methods in Science and Engineering (CMMSE 2017). Cádiz, Spain (2017)

8. Anderson et al, E.: LAPACK Users’ guide, 3rd edn. SIAM (1999)

