

ESCOLA SUPERIOR DE TECNOLOGIA I CIÈNCIES EXPERIMENTALS GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

CIRCUITO DE TRANSPORTE DE BOTELLAS DE LEJÍA PARA LA ALIMENTACIÓN DE UNA MÁQUINA FORMADORA DE BANDEJAS

TRABAJO FIN DE GRADO

AUTORA

Andrea Usó Vidal

DIRECTOR

Javier Andrés de la Esperanza

Castellón, abril de 2018

ÍNDICE GENERAL

l.	MEMORIA	1
II.	ANEXOS	71
III.	PLANOS	149
IV.	PLIEGO DE CONDICIONES	203
V.	PRESUPUESTO	217

I. MEMORIA

ÍNDICE DE LA MEMORIA

1.	Introducción	11
2.	Alcance	12
3.	Antecedentes	13
	3.1 Instalaciones de manufactura y manejo de materiales	13
	3.2 Transporte de sólidos: clasificación	14
	3.3 Tipos de transmisiones por cadena	14
4.	Objeto	18
5.	La empresa	19
6.	Marco teórico	20
	6.1 Geometría de engranajes	20
	6.2 Efecto poligonal	21
	6.3 Fuerza de rozamiento	22
	6.4 Potencia	23
	6.5 Cadencia	24
	6.6 Pandeo	24
	6.7 Flexión	24
7.	Diseño de la instalación	25
	7.1 Descripción y justificación	25
	7.2 Módulos que conforman el circuito	26
8.	Diseño de detalle	29
	8.1 Cadena de platillos	29
	8.2 Disposición de la trasmisión	31
	8.3 Chapas de revestimiento	33
	8.4 Módulo curvo	36
	8.5 Pie del transportador	40
	8.6 Barandilla	43
	8.7 Soporte barandilla transferencia	47
	8.8 Perfil guía de ida	47
	8.9 Guiado reenvío	48
	8.10 Eje motor	52
	8.11 Eje reenvío	55
	8.12 Dimensionamiento de las chavetas	57
9.	Materiales	60
	9.1 Aceros inoxidables	60
	9.2 Poliamida	63
	9.3 Deslidur	64
10). Referencias	67
11	. Resumen del presupuesto	.69

ÍNDICE DE FIGURAS

Fig.	1. Clasificación de las máquinas de transporte continuo (MTC)(MTC)	14
Fig.	2. Cadenas de rodillos	. 15
Fig.	3. Cadenas silenciosas	. 16
Fig.	4. Cadenas de ingeniería	. 16
Fig.	5. Cadenas de platillos	. 17
Fig.	7. Partes de un engranaje	. 20
Fig.	8. Efecto poligonal de la rueda dentada	. 21
Fig.	9. Contacto entre dos superficies	. 23
Fig.	10 Vista de planta circuito de transporte	. 25
Fig.	11. Módulo 1 del circuito de transporte	. 26
Fig.	12. Módulo 2 del circuito de transporte	. 27
Fig.	13. Módulo 3 del circuito de transporte	. 27
Fig.	14. Módulo 4 del circuito de transporte	. 28
Fig.	15 Plano planta charnela	. 29
Fig.	16 Dimensiones base botella	. 29
Fig.	17 Cadena TAB	28
Fig.	18 Cadena sin TAB	28
Fig.	19. Dimensiones cadena de platillos curva	. 30
Fig.	20 Disposición transmisión	. 31
Fig.	21. Diseño del recorrido de la cadena	. 32
Fig.	22. Radio de curvatura mínimo inverso	. 33
Fig.	23. Recorrido de la cadena	. 33
Fig.	24 Dimensiones guiado curvo para 881 TAB	. 36
Fig.	25 Radio de los refrentados en guiado curvo	. 37
Fig.	26 Guiado curvo ida y retorno	. 37
Fig.	27 Vista seccionada taco guía	. 37
Fig.	28 Vista explosionada módulo curvo	. 38
Fig.	29 Distancia entre centros de los taladros	. 38
Fig.	30 Radios de curvatura chapas	. 39
Fig.	31 Componentes del pie del transportador	. 40
Fig.	32 Dimensiones trípode	. 40
	33 Dimensiones cabezal de apoyo	
Fig.	34 Dimensiones pie regulable	. 41
Fig.	35. Barra altura	. 42
Fig.	36 Vista isométrica pieza ensamble	. 42
Fig.	37. Disposición soportes barandilla	. 43
Fig.	38. Componentes soporte barandilla	. 44
_	39. Dimensiones soporte	
Fig.	40. Dimensiones del distanciador	. 45
Fig.	41. Dimensiones de la brida	. 45
Fig.	42. Dimensiones eje soporte	. 46
Fig.	43. Unión bridas	. 46

CIRCUITO DE TRANSPORTE

Fig.	44. Dimensiones guiado barandillas	47
Fig.	45. Dimensiones del soporte transferencia	47
Fig.	46. Perfil guía ensamblado en la estructura	48
Fig.	47. Dimensiones perfil guía	48
Fig.	48. Componentes guiado reenvío	49
Fig.	49. Guiado reenvío ensamblado en el transportador	49
	50. Dimensiones perfil reenvío	
Fig.	51. Dimensiones soporte perfil reenvío	50
Fig.	52. Dimensiones anclaje soporte	51
_	53. Dimensiones patín	
Fig.	54. Componentes ejes motor	52
Fig.	55. Vista explosionada eje motor	52
_	56. Rueda tracción	
Fig.	57. Dimensiones rueda tracción	53
Fig.	58. Ejes motores transferencia frontal y lateral	54
_	59. Dimensiones rodamiento	
	60. Casquillos para la fijación de las ruedas	
Fig.	61. Componentes ejes reenvío	56
Fig.	62. Vista explosionada eje reenvío	56
Fig.	63 Rueda reenvío	57
Fig.	64 Eje reenvío transferencia frontal y lateral	57
Fig.	65. Tipos de chavetas según su geometría	58
Fig.	66 Corte del perfil DESLIDUR por dilatación	66

1. Introducción

En el diseño las instalaciones donde se procesan productos finales, es muy importante la selección del medio de transporte. Ha de favorecer las necesidades del mismo, ayudando al aumento de la producción y disminuyendo los costos de mantenimiento.

A su vez, debe estar diseñado para adaptarse a diferentes volúmenes de transporte o sobrecargas momentáneas.

Actualmente, la cinta transportadora está siendo utilizada en medida creciente debido a que es el medio de transporte que mejor satisface las exigencias económicas y de producción.

A pesar de que son utilizados en mayor medida en el transporte horizontal, también pueden emplearse para el transporte en subidas o bajadas y en curvas.

2. Alcance

El presente documento abarca los siguientes aspectos:

- Elección del medio de transporte más adecuado en función del producto a transportar, de la geometría de éste y de la cadencia de transporte. A partir del análisis de layout, se determinarán la longitud total de transporte, la trayectoria y el entorno de la instalación.
- Estudio y elección del conjunto de piezas comerciales de la instalación a partir de catálogos comerciales
- Estudio y elección de los materiales a utilizar en función del producto a transportar, de la carga a soportar y de los requisitos de diseño.
- Diseño y validación de módulos y otras piezas adicionales que conforman la estructura del transportador.
- Cálculo de la geometría de las piezas y la disposición de los taladros.
- Realización del ensamblaje del conjunto de la instalación y de los subensamblajes.
- Estudio y cálculo de los elementos mecánicos flexibles. Diseño de la transmisión.
- Diseño de los motores de la instalación y potencia requerida.
- Análisis estructural. Evaluación de la resistencia de los esqueletos de la maquinaria.
- Estudio ergonómico de los operarios y análisis de seguridades para dotar al transportador del nivel de seguridad correspondiente a la normativa sobre maquinaria industrial vigente.
- Presupuesto de la instalación. Coste económico.

3. Antecedentes

El mercado de los transportadores para el transporte de productos, está presente desde hace casi cien años. La ingeniería del manejo de productos consiste, de forma simplificada, en pensar cómo un producto debe ser desplazado de un sitio a otro, durante un periodo de tiempo óptimo, con el menor coste posible y con la máxima reducción del esfuerzo físico.

Así pues, surgen diferentes modos de transmisión en función de las necesidades del producto y con ello una gran variedad de opciones en el mercado

3.1 Instalaciones de manufactura y manejo de materiales

El manejo de materiales y productos se puede definir como la organización y disposición de éstos para favorecer su movimiento a lo largo del proceso industrial, comprende todas las operaciones a las que se expone el producto y en la mayoría de los casos, se incluye el manejo de materiales y productos como una parte integrante del proceso.

El atractivo del transporte mecánico ha ido en aumento debido a que ha ido aumentando la mano de obra y aparte del aspecto económico, existen ciertos procesos en los que la intervención del hombre resulta peligrosa. Con el uso del transporte mecánico, aumenta la seguridad de las personas y a su vez el riesgo de accidentes, al estar menos expuestos a ellos.

El diseño de las instalaciones industriales donde se manejan materiales y productos finales es una cuestión fundamental que afecta directamente a la futura productividad y rentabilidad de la empresa. La calidad de los procesos y los costes variables del producto están directamente relacionados con el diseño de la instalación. Según el libro publicado por Matos Ramírez[1], los gastos en el transporte contribuyen entre un 30 y 60% de los costos de fabricación de una empresa o entidad. Y teniendo en cuenta que el hecho de cómo se transporten los materiales o productos no aumenta el valor efectivo del producto final, será de vital importancia diseñar los equipos de transporte de acuerdo a sus parámetros técnicos más racionales para así explotarlos y amortizarlos de la manera más óptima posible.

El manejo de materiales significa sencillamente, mover el material. El avance y desarrollo de las nuevas tecnologías a lo largo de los años ha tenido un efecto positivo sobre los trabajadores y su ergonomía. Los trabajos que requieren gran esfuerzo físico y manejo de cargas pesadas han disminuido notablemente gracias a la implantación de equipos para el manejo de los materiales. El dinero invertido en cualquier empresa debe ser justificado y no cabe ninguna duda que los equipos para el manejo de los materiales es un gran avance tanto industrial como económico, ya que ha permitido una disminución de la mano de obra y sobretodo ha alcanzado volúmenes de producción impensables[2].

3.2 Transporte de sólidos: clasificación

Los equipos de transporte industrial son máquinas destinadas a transportar diferentes tipos de materiales a granel, en sacos, paquetes o botellas.

De acuerdo con el principio de funcionamiento de estas máquinas se dividen en máquinas de transporte periódico (MTP) o máquinas de transporte continuo (MTC).

Se hace referencia a máquinas de transporte periódico cuando los equipos realizan el transporte en un intervalo de tiempo o período y en muchos casos se realiza el transporte en vacío. Ejemplo: grúas, montacargas y elevadores.

Las máquinas de transporte continuo, las cuales serán objeto de este proyecto, se caracterizan por mantener un flujo constante de carga (materiales o productos), sin intervalos ni interrupciones.

Éstas últimas también las podemos clasificar en dos grandes grupos: transportadores con órgano de tracción flexible y sin órgano de tracción flexible. En la siguiente figura se muestran las más comunes.

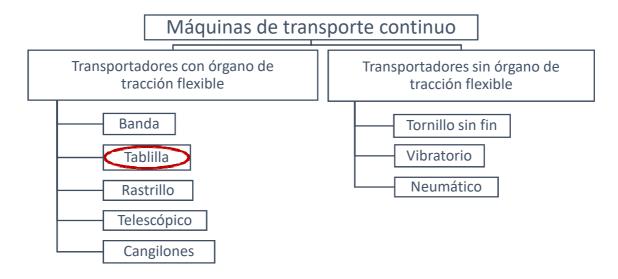


Fig. 1 Clasificación de las máquinas de transporte continuo (MTC)

3.3 Tipos de transmisiones por cadena

Generalmente se puede hablar de tres tipos principales de transmisión de potencia, ellos son transmisión por engranajes, por banda o por cadena. Para determinar el tipo de transmisión a utilizar existen varios factores como la potencia transmitida, la distancia entre ejes, la relación de velocidades, el coste económico, la limitación geométrica o la exposición a materiales que pueden provocar corrosión de sus partes.

A lo largo de este trabajo se analiza la transmisión por cadena, donde las características más destacadas de las transmisiones por cadena son:

- La relación de velocidades es prácticamente constante
- Tienen la capacidad de soportar grandes cargas
- Presentan una buena resistencia al desgaste
- Permiten operar en condiciones de humedad
- No se deterioran notoriamente no el paso del tiempo, aceites o grasas.
- Son más económicos que los engranajes, aunque con un costo mayor al de las bandas.

La transmisión por cadena se puede aplicar en diferentes ámbitos como la construcción, maquinaria agrícola, vehículos a motor, bicicletas, minería o procesos de fabricación.

Existen todo tipo de cadenas en el mercado dependiendo de su aplicación, presentan diferentes configuraciones y formas geométricas. Una clasificación general que engloba la mayoría de tipo de cadenas en la industria sería:

- Cadenas de rodillos
- Cadenas silenciosas
- Cadenas de ingeniería
- Cadenas de platillos

Cadenas de rodillos

Las cadenas de rodillos son ampliamente utilizadas en la industria y también son el complemento de las bandas transportadoras que hacen que éstas no deslicen.

Están formadas por la unión continuada de eslabones interiores y exteriores y están unidos mediante ejes que llevan un rodillo giratorio. Esta característica les dota la capacidad de articular durante el engranaje con las ruedas dentadas.

Fig. 2. Cadenas de rodillos

Cadenas silenciosas

Son un tipo de cadenas de transmisión que están construidas por eslabones cuyas caras de contacto son rectas. En este tipo de cadenas se excluyen los rodillos, por lo que también son conocidas como cadenas de mallas. Éstas presentan dientes invertidos, diseñados para engranar con los dientes de la rueda.

Se emplean en aplicaciones de alta velocidad y altas cargas, como su nombre indica se utilizan en transmisiones de potencia en las que se requiera eliminar ruidos, debido a que son más silenciosas que otros tipos de cadena.

Fig. 3. Cadenas silenciosas

Cadenas de ingeniería

Este tipo de cadenas incluye una amplia gama de diseños, se emplean en aplicaciones técnicas y presentan diferentes geometrías en función de la necesidad de transporte.

Se fabrican para ciertos usos o aplicaciones donde las cadenas estándar de transmisión, no cubren la necesidad. Habitualmente, se diseñan con acoplamientos a base de aletas, pivotes o empujadores.

Fig. 4. Cadenas de ingeniería

Cadenas de platillos

Las cadenas transportadoras de platillos constituyen un elemento de transporte básico en todas las líneas de envasado, empaquetado o llenado.

Dentro de las cadenas de platillos, también existen varios tipos cuyas características se adecuan a las distintas aplicaciones.

Estas cadenas están articuladas de tal forma que permiten curvas en su trayectoria, una característica significativa que permite realizar tramos curvos y rectos en la misma transmisión. Hay modelos que trabajan como una cinta continua al encajar unos eslabones con otros y hay otros modelos que están articulados para poder trabajar en recorrido curvo.

Las tablillas pueden ser de plástico o de acero, son silenciosas, debajo coeficiente de rozamiento y pueden trabajar sin lubricación.

Son un práctico sistema de traslado de productos, principalmente de envases de vidrio o plástico. Son altamente utilizadas en las líneas de llenado de media y alta capacidad, siendo su función principal el traslado del producto incluso dentro del equipo de llenado, evitado de éste modo el contacto directo del operador con el producto y permitiendo la automatización de los procesos.

Fig. 5. Cadenas de platillos

Habiendo analizado los distintos tipos de cadenas, se termina que el transporte de las botellas de lejía se va a realizar mediante cadenas de platillos, debido a que es la opción idónea para el transporte de este tipo de producto.

4. Objeto

El objeto de este proyecto centra su atención en la construcción de un circuito de transporte para la industria química, más concretamente para un fabricante de lejía.

Se ha realizado el diseño del transportador en función de las máquinas anexas y del producto a transportar, teniendo siempre presente los requisitos de diseño del cliente. El transportador nos permite desplazar las botellas desde la máquina de embotellado hasta la máquina formadora de bandejas.

El circuito de transporte diseñado combina tramos curvos y rectos.

Debido ala distribución de la planta de producción, se han ajustado las dimensiones del transportador para optimizar el espacio disponible y a su vez el recorrido de las botellas.

Respecto al modo de transmisión, se ha optado por la cadena de platillos, también llamada cadena de tablillas o charnela. Se debe a que es la solución más funcional y de mayor calidad para el transporte de envases y más aun si hablamos de botellas de lejía.

Con ello, se pretende dar solución útil a la petición del cliente mediante la aplicación de las distintas disciplinas de la Ingeniería. Se trata de dar profundidad a algunos campos vistos durante el grado y extender conocimientos en los campos que así lo requieran. En este caso, se aplican conceptos teóricos y prácticos del diseño mecánico, así como conceptos de selección de materiales en la realización de dicho proyecto.

El siguiente proyecto es el objetivo de la asignatura ET1040 Trabajo Final de Grado correspondiente al curso 2017/2018 del Grado en Ingeniería en Tecnologías Industriales de la Universidad Jaume I.

El circuito de transporte de botellas de lejía es un proyecto propuesto por la empresa IPLA. Por ello, se desea emplear la oportunidad de realizar un proyecto dentro del ámbito profesional.

5. La empresa

Ingeniería Plana Alta, S.A.L. (IPLA) es una empresa situada en la localidad de Castellón de la Plana, dedicada al diseño y fabricación de maquinaria e instalaciones para el transporte, paletizado y almacenamiento de los más diversos productos. Además de estar especializada en los mercados industrial, hortofrutícola y mármol.

Fig. 6 Ubicación Ingeniería Plana Alta S.A.L.

En IPLA se adaptan y renuevan para cada uno de sus clientes, consiguiendo soluciones personalizadas. Dispone de un departamento técnico en continuo desarrollo de las soluciones ya implantadas, así como diseña nueva maquinaria para solucionar nuevas necesidades.

Desarrollan múltiples soluciones destinadas al envasado y los finales de línea para frutas y verduras. A través de los más de 20 años de experiencia en el sector son un referente en la fabricación de maquinaria, especialmente en el sector citrícola y del plátano.

También aporta soluciones en el ámbito de los finales de línea en los más diversos sectores productivos. Así pues cuenta con una dilatada experiencia en la movimentación y paletización de todo tipo de envases.

El servicio ofrecido por IPLA no reside tan solo en sus productos sino en la capacidad y experiencia de sus técnicos para aportar soluciones a la medida de las necesidades de cada cliente.

6. Marco teórico

A lo largo de este apartado se muestran conceptos matemáticos y físicos utilizados en el diseño del circuito de transporte.

6.1 Geometría de engranajes

Engranaje es un término utilizado para referirse a un tipo de mecanismo que transfiere potencia mecánica a través de dos ruedas dentadas entre diferentes partes de una máquina. En el caso de la transferencia a estudiar, el eje de la rueda de tracción está conectado a un motor y trasmite el movimiento hasta otro eje que está a una cierta distancia a través de una cadena. La rueda que está conectada al motor se le denomina rueda conductora y la que recibe el movimiento se le denomina rueda conducida. Tanto la rueda conductora como la rueda conducida, son engranajes de dientes rectos y presentan las siguientes partes.

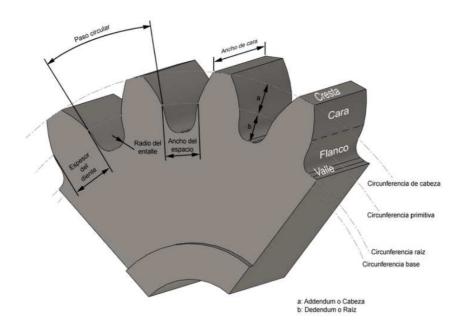


Fig. 7. Partes de un engranaje

Los **dientes** del engranaje es la parte que realiza el esfuerzo de empuje y a través de ellos se transmite la potencia a la cadena. El perfil del diente está formado por dos curvas envolventes de curvas simétricas respecto al eje que pasa por el centro del mismo.

La **circunferencia primitiva** o diámetro de paso es una característica muy significativa. Es la circunferencia a lo largo de la cual engrana la cadena con la rueda.

El **paso** es la longitud de la circunferencia primitiva que corresponde a un diente y un vano consecutivo.

El **número de dientes**, como su nombre indica, es el número que dientes total que tiene la rueda y se simboliza como Z.

El **diámetro exterior**, es el diámetro que forma la parte exterior del engranaje, es decir el que pasa por el extremo de los dientes.

La **distancia entre centros** es la distancia que existe entre el eje de la rueda conductora y la conducida.

6.1 Rueda conductora y rueda conducida

Tanto un engranaje como una cadena tienen una rueda conductora y una conducida. La principal diferencia entre las transmisiones es que en un engranaje las ruedas conductora y conducida están en contacto y se transmiten la potencia directamente. En cambio, en la transmisión por cadena, las ruedas se encuentran a una cierta distancia y la rueda conductora trasmite la potencia a la rueda conducida a través de la cadena, la cual engrana con las dos ruedas mediante un trayecto cerrado.

La ecuación de transmisión entre las ruedas es la siguiente:

$$\omega_1 \cdot Dp_1 = \omega_2 \cdot D_{P2} \tag{1}$$

Si ambas ruedas son iguales, es decir, tienen el mismo diámetro primitivo, girarán a la misma velocidad. Como los productos tienen que ser iguales, la rueda que tenga el diámetro primitivo más pequeño, girará a una velocidad mayor.

Las ruedas conducida y conductora tienen sentidos de giro invertidos en un engranaje, y el mismo sentido en una transmisión por cadena.

6.2 Efecto poligonal

En las cadenas de transmisión, cada vez que se produce el engrane de un eslabón de la cadena con la rueda dentada, se produce una variación en la trayectoria como en la velocidad de la cadena.

Este fenómeno se conoce como efecto poligonal se explica mediante la siguiente imagen:

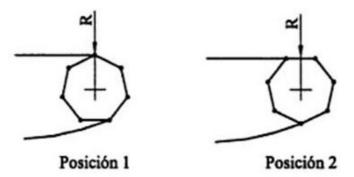


Fig. 8. Efecto poligonal de la rueda dentada

La velocidad lineal de la rueda, viene expresada en función de su velocidad angular (ω) y de su diámetro de primitivo o de paso (Dp):

$$v = \frac{\omega \cdot \mathrm{Dp}}{2} \tag{2}$$

O lo que es lo mismo, $v = \omega \cdot Rp$, la velocidad angular por su radio primitivo.

Si se realiza la unión de cada diente de la rueda, la geometría que se obtiene es una polígono, de ahí su nombre. Por lo que como se puede observar en la Fig. 8, en la posición 1 el radio de engrane con la cadena está situado en un vértice del polígono, en cambio, en la posición 2, engrana con una arista del polígono.

El radio de engrane de la posición 1 será mayor que el de la posición 2, por lo que como indica la ecuación (2), la velocidad lineal de la rueda sufrirá un variación. Así como la velocidad lineal de la cadena.

Con esto, se deduce que a mayor número de dientes posea la cadena, mayor número de vértices poseerá el polígono, tendiendo a semejarse a una circunferencia. Con ello, la variación lineal de la velocidad será mucho menor. Para reducir el efecto poligonal, se aconseja un número de dientes mínimo de Z = 19 dientes.

6.3 Fuerza de rozamiento

Para conocer la fuerza de rozamiento, es necesario realizar ensayos que evidencien sus características esenciales [4]. La fuerza de rozamiento tiene, en general, un valor desconocido salvo en dos situaciones:

- 1. Cuando el cuerpo está a punto de deslizar, donde la fuerza de rozamiento estática adquiere su valor máximo: $F_R = \mu_S \cdot N$.
- 2. Cuando está deslizando, donde la fuerza de rozamiento dinámica presenta un valor constante: $F_R = \mu_K \cdot N$.

Donde:

N es la fuerza que ejerce el plano sobre el bloque, y en un deslizamiento horizontal, equivale a la fuerza peso del bloque.

 μ_{S} y μ_{K} son los coeficientes de rozamiento estático y dinámico, respectivamente.

Características esenciales de la fuerza de rozamiento:

- La fuerza de rozamiento se opone al movimiento de un bloque sobre un plano.
- La fuerza de rozamiento es proporcional a la fuerza normal que ejerce el plano sobre el bloque.
- La fuerza de rozamiento no depende del área aparente de contacto.

Con el concepto de fuerza de rozamiento introducido, la explicación de ésta depara en las mismas superficies de los sólidos.

Todas las superficies, aún las que están más pulidas, a escala microcopia presentan una gran rugosidad.

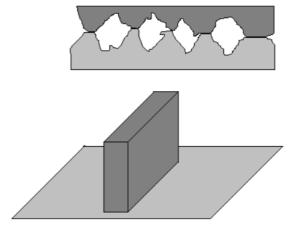


Fig. 9. Contacto entre dos superficies

Cuando el bloque comienza a deslizar sobre el plano, debido a su rugosidad se produce el choque constante entre picos y valles, es decir la incrustación de los picos de la superficie del bloque en los valles de la superficie del plano. Esta rugosidad debe romperse para que el deslizamiento se produzca, por lo que ahí es donde se origina la fuerza de rozamiento.

Esta es una explicación a grandes rasgos para entender el concepto de fuerza de rozamiento, las investigaciones actuales que estudian el rozamiento a escala atómica demuestran que la explicación dada es muy general y que la naturaleza de la fuerza de rozamiento es muy compleja.

6.4 Potencia

La potencia se transmite entre los diferentes elementos de una transmisión. En el objeto del proyecto, el elemento encargado de transmitir la potencia entre la rueda conductora y la conducida son las cadenas de platillos.

Se puede definir la potencia como fuerza por velocidad lineal mediante la siguiente expresión:

$$P = F \cdot v \tag{3}$$

Donde:

F es la fuerza de rozamiento y ves la velocidad lineal de la cadena.

6.5 Cadencia

La cadencia refería a una trasportador, se define como la regularidad en el intervalo de paso de un producto.

La cadencia es proporcional a la velocidad lineal de trasporte e inversamente proporcional a la distancia existente entre producto, es decir, a mayor distante entre productos menor cadencia.

Explicado de otro modo, se refiere a la cantidad de unidades de un producto que pasan a lo largo de un periodo de tiempo

6.6 Pandeo

El pandeo es un fenómeno que se produce en una pieza estructural, las cuales presentan una sección longitudinal mucho mayor que la sección transversal.

Este fenómeno se produce cuando la pieza está sometida a compresión, en el que se alcanza un estado de equilibrio elástico y una nueva configuración deformada diferente de la inicial y con movimientos transversales cuando se aplican valores de carga de compresión considerables.

6.7 Flexión

Se puede definir la flexión como un tipo de deformación que presenta un elemento estructural alargado en una dirección perpendicular a su eje longitudinal. Con alargado se refiere a la dimensión longitudinal es dominante frente a las otras.

El esfuerzo que provoca la flexión se denomina momento flector y también está determinado por el esfuerzo axil a compresión. En este caso se habla de flexión compuesta, la cual es el objeto de análisis de este proyecto.

7.1 Diseño de la instalación

7.1 Descripción y justificación

La instalación consta de un transportador de una longitud total de 21,16 m donde se encuentran combinados tramos curvos y rectos. Véase Fig. 10.

Para el diseño de la misma, se ha optado por dividir la máquina en cuatro módulos, por el hecho de que para el transporte del producto a lo largo de toda la longitud se precisan cuatro motores. Se divide el circuito de transporte por módulos en función del número de transmisiones.

Se realizan un total de cuatro curvas a 45º y dos transferencias laterales en las que el producto se transfiere de un módulo a otro lateralmente. Más adelante se explica con más detalle en qué consiste una transferencia lateral.

La última transferencia entre el módulo 3 y el módulo 4 será frontal, al tratarse de una zona de acumulación de botellas debido a que alimentará la máquina formadora de bandejas.

El circuito de transporte está diseñado para tener una cadencia y una velocidad lineal en sus transmisiones igual a la velocidad lineal de la máquina antecesora. Las botellas pasan por el proceso de llenado y son desplazadas a lo largo del transportador hasta la máquina formadora de bandejas, esta última máquina tiene la capacidad de formar una bandeja de 8 botellas cada 12 minutos.

El formato de la bandeja será de 2 x 4, para la formación de éstas es necesario que las botellas entren en la máquina formadora de bandejas en acumulación, es decir, que no exista espacio entre las botellas. Para ello, al final del módulo 4 se instalará un tope que provocará que las botellas se acumulen.

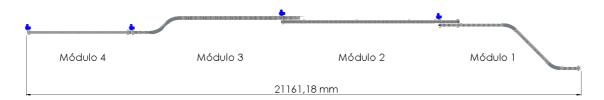


Fig. 10 Vista de planta circuito de transporte

El peculiar diseño del recorrido es a petición del cliente y está justificado por la distribución que presenta la planta de producción. En primer lugar, las máquinas anexas no están alineadas por lo tanto el transportador no podría realizar la unión entre la máquina de llenado y la máquina formadora de bandejas mediante un recorrido recto.

Este hecho justifica la existencia de dos tramos curvos a 45º para orientar el recorrido y alinearlo con la máquina formadora de bandejas, pero sigue sin justificar la presencia de los

dos tramos curvos restantes. Se debe a que cuentan con un espacio reducido en la nave, donde hay que tener en cuenta las zonas de paso y el espacio entre máquinas. Por ello, para optimizar el espacio disponible y que el transporte de botellas no interfiera ni moleste en los otros procesos de la línea de producción, el transportador presenta dicho recorrido.

Como se aprecia en la Fig. 10, existen dos módulos que realizan un recorrido completamente recto, el módulo 2 y el módulo 4. Los módulos 1 y 3 combinan tramos curvos y rectos. A continuación se presenta el diseño de cada módulo.

7.2 Módulos que conforman el circuito

Módulo 1

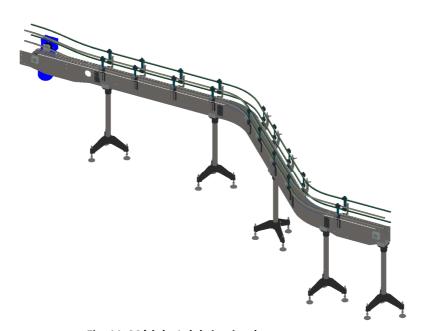


Fig. 11. Módulo 1 del circuito de transporte.

El inicio del circuito de transporte comienza en el módulo 1, donde las botellas que entran a este módulo proceden del proceso de llenado anterior. Las botellas entran frontalmente al circuito y a lo largo del recorrido combinan tramos curvos y rectos, realizando dos curvas a 45º. El tramo total que recorren las botellas tiene una longitud de 5,89 m. Plano nº 1.1.

Las botellas entran por la parte izquierda del módulo, teniendo el eje motor un sentido de giro anti horario.

Las botellas salen del módulo 1 lateralmente y comienza la alimentación de producto en el módulo 2.

Módulo 2

Fig. 12. Módulo 2 del circuito de transporte.

Siguiendo el recorrido, se inicia la entrada al segundo módulo lateralmente. El transporte de las botellas a lo largo de este tramo es completamente recto con una longitud total de 5,98 m. Plano nº 1.2.

Módulo 3

Fig. 13. Módulo 3 del circuito de transporte.

El siguiente tramo es el módulo 3, que al igual que el módulo 1 combina tramos curvos y rectos. Esta vez con una distancia menor entre los recorridos curvos. Plano nº 1.3.

Módulo 4

Fig. 14. Módulo 4 del circuito de transporte.

El módulo 4 es el inmediatamente anterior a la máquina formadora de bandejas. Presenta un recorrido totalmente recto con una transmisión de 3770 mm de distancia entre ejes. Las botellas realizan la entrada a éste último módulo mediante una transferencia frontal y a lo largo de este tramo las botellas estarán en acumulación. Plano nº 1.4.

Es el tramo de menor longitud, se opta crear éste último con menor distancia entre ejes debido a que es el módulo que mayor peso debe soporta por la acumulación.

Aunque las cadenas de platillos tienen la dureza suficiente para resistir el peso del producto en acumulación, cuando menor sea la distancia entre centros menor cantidad de producto existirá en acumulación con lo que menor peso tendrá que soportar la estructura.

Por el mismo motivo menor será la potencia de diseño necesaria del motorreductor y por lo tanto se tendrá la oportunidad de acceder a modelos más económico.

Generalmente, los componentes que conforman el circuito son iguales para los 4 módulos. A excepción de las curvas a 45º y sus respectivas chapas de revestimiento curvas que solo se presentan en los módulos 1 y 3. Por otro lado, las transferencias laterales necesitan de un diseño particular de su eje motor y eje de reenvío, debido a que la distancia entre chapas de revestimiento es mayor. También tiene la particularidad del sistema de guiado de las barandillas y soportes de barandilla especiales para estas transferencias.

Todos los módulos presentan la misma altura de transporte. Al conjunto de componentes que le proporcionan esta altura, se le ha denominado pie del transportador y se compone principalmente de una barra cilíndrica hueca de acero que en un parte inferior está unida a un trípode que distribuye las cargas axiles existentes.

8. Diseño de detalle

8.1 Cadena de platillos

La cadena de platillos, también llamada cadena de tablillas, charnela o table top en inglés.

La cadena a utilizar es una pieza comercial de una empresa catalana llamada AVE Chains.

De entre tantos modelos y tamaños de charnela, el primer filtro para cumplir con la funcionalidad del transportador es que la cadena pueda realizar tramos curvos. También se debe considerar el material a transportar, se trata de botellas de lejía de 5L. Para determinar el ancho de charnela es necesario atender a las dimensiones de la base de la botella. Véase Fig. 16.

Considerando las medidas, se establece que la botella va a ser transportada en la dirección de su eje longitudinal o eje de simetría. Por tanto el ancho de botella que tendremos en cuenta para determinar el ancho de la charnela será el acotado como 112.47 mm. Se selecciona la charnela con K=114.3 mm

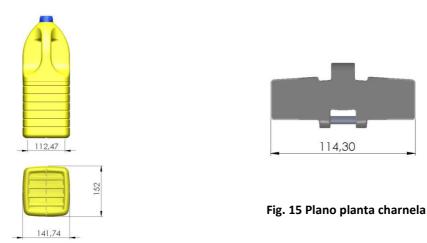


Fig. 16 Dimensiones base botella

Una vez escogido el ancho de charnela de K= 114,3 mm, el segundo punto a considerar es que sea de acero inoxidable pensando en el futuro mantenimiento del transportador y además presenta la ventaja de tener menor adherencia de la suciedad y agentes externos.

Respecto a paso de la cadena, la mayoría presentes en el catálogo tienen un paso de p=38,1 mm. Resulta ser una medida estándar en todos los fabricantes de cadenas de platillos.

Los diferentes tipos de cadenas presentados a lo largo del catálogo se pueden dividir en dos grandes grupos: cadenas TAB y cadenas sin TAB. La Fig. 17 y en la Fig. 18 son dos ejemplos que muestran la diferencia entre una cadena con este sistema y otra sin él.

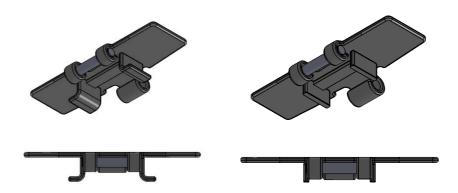


Fig. 17 Cadena TAB

Fig. 18 Cadena sin TAB

El término TAB es utilizado por la mayoría de fabricantes para referirse a un tipo de cadenas de platillos con un sistema de guiado que presenta la ventaja de sostener la cadena a las guías de deslizamiento en el retorno.

La cadena a seleccionar debe de presentar esta particularidad ya que para tramos rectos existe todo tipo de sistemas de guiado de retorno pero en recorrido curvo es interesante que las cadenas sean de tipo TAB para facilitar el transporte disminuyendo el rozamiento entre el guiado y la cadena, ya que de esta manera la superficie de contacto es mucho menor.

La cadena seleccionada está fabricada totalmente en acero inoxidable y pertenece a la familia 881, con código SSS881-O-450 TAB. Permite realizar curvas a un radio mínimo de 500 mm, el módulo curvo está diseñado para que la cadena realice una curva a 610 mm, por lo que la cadena cumple con la funcionalidad. Cada eslabón de la cadena está formado por dos piezas, el platillo o la superficie donde descansan las botellas y el pasador, que es el elemento de unión entre eslabones.

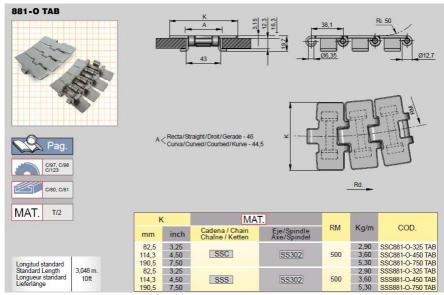


Fig. 19. Dimensiones cadena de platillos curva

8.2 Disposición de la trasmisión

La disposición idónea para una transmisión es aquella en la que la línea entre centros de piñones es horizontal o con una inclinación inferior a 45º.

Las transmisiones verticales deben evitarse siempre que sea posible. Este tipo de sistema fuerza a que las cadenas estén siempre bien tensadas porque en caso contrario, la cadena desengranará con el piñón que esté situado en la parte inferior. A pesar de que se consiga tensar lo suficiente la cadena para que esto no ocurra, las cadenas sufren de estiramiento debido a su uso.

Cuando la distancia entre centros es muy larga y con piñones pequeños, las cadenas deberán tener la comba en la parte inferior. En caso contrario se corre el peligro de que el tramo superior de la cadena choque con el tramo inferior a medida que la cadena se estira.

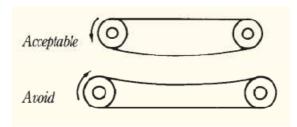


Fig. 20 Disposición transmisión

El objeto del proyecto es una cadena de platillos con distancia entre centros relativamente larga y en comparación con la longitud, piñones pequeños.

El propósito es transportar las botellas horizontalmente y éstas deben desplazarse a lo largo del ramal tensionado. Por tanto, contemplando el efecto de la gravedad no cabe duda que el ramal tensionado sea el superior de la cadena.

Para el diseño del recorrido de la cadena será necesario atender a las recomendaciones de Ave Chains. La cadena, en el eje de tracción, no está totalmente tensionada y presenta una comba al comienzo del reenvió. Para conocer el número de eslabones a comprar, es necesario diseñar el recorrido de la misma.

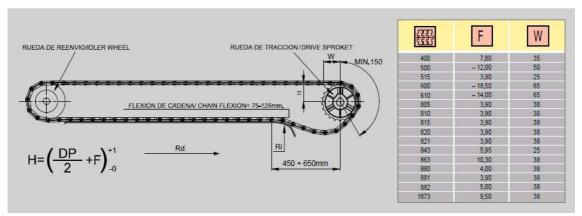


Fig. 21. Diseño del recorrido de la cadena

La distancia vertical entre el separador de la cadena y el eje de la rueda se obtiene mediante la fórmula siguiente:

$$H = (\frac{Dp}{2} + F)_{-0}^{+1} \tag{4}$$

Donde:

Dp es el diámetro de la rueda que se presenta más adelante. Dp = 129,26 mm. **F** es un factor que depende del tipo de cadena escogido.

La cadena escogida pertenece a la familia 881 con F= 3,90 mm.

Con estos datos, se obtiene $H = 68,53^{+1}_{-0}$ mm.

Por otra parte, la distancia entre el final del guiado de ida y el eje de la rueda de tracción, para la cadena 881 es W = 38 mm.

La cadena debe estar en contacto con la rueda de tracción en 150º como mínimo. La cadena diseñada está en contacto en 155º.

También es una a distancia a dimensionar, ésta se encuentra entre la rueda de tracción y el guiado de reenvío, es decir, la distancia a lo largo de la cual se localiza la comba.

La longitud de arco en proyección horizontal del radio negativo de la primera curvatura al salir de la rueda de tracción debe ser 650mm y la del radio positivo hasta que ha cadena empieza a ser guiada completamente horizontal, debe ser de 450 mm.

Como se indica en la Fig. 22, siendo la familia 881, el radio de curvatura inverso al entrar al guiado de reenvió debe ser mayor o igual a Ri = 50 mm.

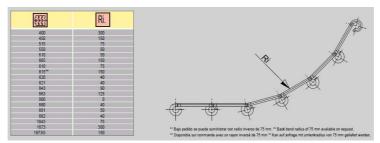


Fig. 22. Radio de curvatura mínimo inverso

El recorrido de la cadena se ha realizado en función de las dimensiones que indica el catálogo.



Fig. 23. Recorrido de la cadena

8.3 Chapas de revestimiento

Todas las chapas de revestimiento son diseños propios ajustados a las dimensiones de los diferentes módulos del transportador. Todas ellas tienen un espesor de 3mm y una anchura de 167 mm. Excepto en la caso de las chapas de revestimiento de los cabezales, donde varia la anchura para proteger la comba de la cadena. Las longitudes de la chapa están determinadas en función del largo de los diferentes módulos.

Estas chapas aparte de realizar la función de revestir el transportador y ensamblar sus distintos componentes, están plegadas en la parte superior donde irán colocados los perfiles guía por los que se desplazará la cadena de platillos. Más adelante se explica con detalle los componentes aquí nombrados.

En el apartado del documento III. Planos, muestran los distintos taladros necesarios para ensamblar los pies del transportador, las barandillas, el motor y las chapas que unen los módulos entre sí.

Las chapas de revestimiento de los extremos tienen dimensiones diferentes porque es donde están situadas las ruedas tanto de tracción como de reenvío. En la rueda de tracción, la cadena de platillos realiza una comba en la parte inferior por tanto el hecho de que las chapas de revestimiento de los extremos tengan una anchura mayor es para que la cadena quede totalmente cubierta y protegida por seguridad de posibles enganchones con los operarios.

A lo largo de este apartado de diseño de detalle se definen los componentes aquí nombrados.

La tabla siguiente recoge las chapas de revestimiento para los diferentes módulos.

NOMBRE	MÓDULO	CÓDIGO	APARIENCIA	PLANO nº:
Chapa revestimiento 1710	1	CRR_1710_1		15
Chapa revestimiento 1710 simétrica	1	CRR_1710S_1		NA
Chapa revestimiento 1590	1	CRR_1590_1		16
Chapa revestimiento 1590 simétrica	1	CRR_1590S_1		NA
Chapa revestimiento cabezal 750	1&3	CRR_C_750_13		17
Chapa revestimiento cabezal 750 simétrica	1&3	CRR_C_750S_13		NA
Chapa revestimiento curva exterior	1&3	CR_CUE_13		18
Chapa revestimiento curva interior	1&3	CR_CUI_13		19
Chapa revestimiento 980	2	CRR_980_2		20

Chapa revestimiento 980 simétrica	2	CRR_980S_2	NA
Chapa revestimiento 2000	2&3&4	CRR_2000_234	21
Chapa revestimiento 2000 simétrica	2&3&4	CRR_2000S_234	NA
Chapa revestimiento cabezal transferencia 1000	1&3	CRR_CT2_1000_ 13	22
Chapa revestimiento cabezal transferencia 1000	1&3	CRR_CT2_1000S _13	NA
simétrica Chapa revestimiento 1740	3	CRR_1740_3	23
Chapa revestimiento 1740 simétrica	3	CRR_1740S_3	NA
Chapa revestimiento cabezal 490 extremo	4	CRR_CE_490_4	24
Chapa revestimiento cabezal 490 extremo simétrica	4	CRR_CE_490S_4	NA

8.4 Módulo curvo

Guiado curvo

Existen guiados curvos con diferentes radios de curvatura y con diferentes dimensiones para ajustarse al tipo de cadena.

El catálogo presenta un guiado para tipo de cadena TAB y otro para las cadenas que no tienen esta particularidad. Para la cadena escogida 881 TAB el catálogo presenta el siguiente guiado curvo, como se observa en la Fig. 24, el guiado es para cadena triple pero existe la posibilidad de descargarse la pieza para una única guía.

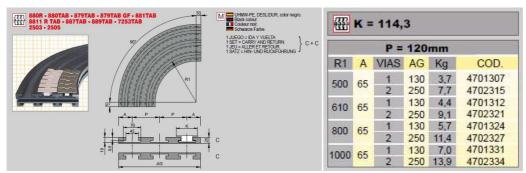


Fig. 24 Dimensiones guiado curvo para 881 TAB

Se escoge el guiado curvo con código 4701312 con R1= 610mm y VIAS=1.

Esta pieza comercial necesita operaciones adicionales para cumplir con su deseada funcionalidad, según se describe:

- En primer lugar, la pieza original está diseñada para realizar una curva a 90º pero para el objeto del proyecto la curva que deben realizar las botellas es a 45º. Se realizan a lo largo del circuito un total de cuatro curvas a 45º. Por tanto, se ha hecho un corte de la pieza a 45º para cumplir con la funcionalidad.
- Por otro lado, para poder sujetar el guiado curvo a las chapas de revestimiento que conforman la armadura del transportador, se realizan seis refrentados que servirán para atornillar el guiado a los tacos, los cuales tienen la función de unir el guiado con las chapas de revestimiento.

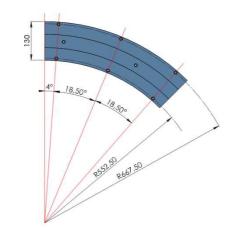


Fig. 25 Radio de los refrentados en guiado curvo

En la Fig. 26 se muestra la vista trimétrica de los guiados curvos en la que se aprecia que el guiado de retorno (inferior) es la pieza simétrica en planta del guiado curvo de ida (superior).

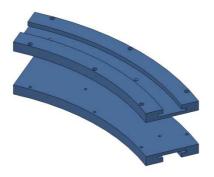


Fig. 26 Guiado curvo ida y retorno

Tacos guía

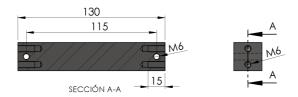


Fig. 27 Vista seccionada taco guía.

Cómo ya se ha descrito, para poder ensamblar y sujetar el guiado curvo con las chapas curvas de revestimiento que conformarán la estructura del transportador, se va a utilizar unas piezas en forma de tacos.

Estas piezas tienen dos taladros roscados pasantes de métrica seis en la cara de la pieza que será coincidente con la guía curva. Y dos taladros más de métrica seis de 15mm de profundidad de rosca en ambos extremos del taco, que serán coincidentes con las chapas curvas de revestimiento.

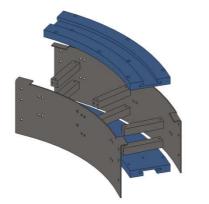


Fig. 28 Vista explosionada módulo curvo

El taladro de referencia es el taladro 1, el cual será concéntrico con los refrentados del guiado curvoj Error! No se encuentra el origen de la referencia. Habrá que tener en cuenta para realizar los cálculos que el taladro 2 y el taladro 3, están situados a 7mm del taladro 1(distancia entre centros). Véase en la Fig. 29.

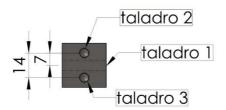


Fig. 29 Distancia entre centros de los taladros

Partiendo de los refrentados para tornillo realizados sobre el guiado, y sabiendo que éstos están situados con respecto a la vertical a 4°, 22.5° (4 + 18.5) y 41° (4 + 18.5 + 18.5). Se procede a calcular la longitud de arco a la que están situados los taladros, para así, realizar a la misma distancia los taladros sobre las chapas curvas de revestimiento. El guiado curvo y las chapas curvas de la armadura, estarán ensamblados mediante los tacos. Véase en la Fig. 28.

Chapas curvas de revestimiento

Estas piezas están diseñadas para armar la estructura del transportador y en este caso en el tramo curvo. Ya que todos los tramos curvos realizan la curva a 45º las chapas de

revestimiento para todos los tramos serán idénticas y sólo es necesario el diseño de un solo módulo.

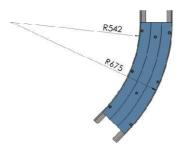


Fig. 30 Radios de curvatura chapas

Son chapas fabricadas en acero inoxidable de 3mm de espesor que están conformadas en frío para conseguir el radio de curvatura objetivo. Los radios de curvatura interior y exterior dependen de las dimensiones del guiado curvo ya que se deben ceñir a las dimensiones de su propia curvatura.

Cálculos para obtener la longitud de arco a la que realizar los taladros en las chapas curvas de revestimiento, tanto interior como exterior.

$$L_{\text{refrentado 1i}} = R_{\text{refrentado 1i}} \alpha \tag{5}$$

Para poder aplicar esta fórmula es necesario pasar los grados a radianes.

grados =
$$\frac{\pi}{180}$$
 = 0,0698 radianes

De la ecuación (5) se obtienen las diferentes longitudes dónde realizar el refrentado en las chapas curvas de revestimiento. Se recogen en la siguiente tabla:

Tabla 1. Longitudes de arco de los refrentados

Longitudes de arco de los refrentados				
α (°)	4	22,5	41	
α (rad)	0,070	0,393	0,716	
Rrefrentado i (mm)	552,500	552,500	552,500	
Lrefrentado i (mm)	38,572	216,966	395,361	
Rrefrentado e (mm)	667,500	667,500	667,500	
Lrefrentado e (mm)	46,600	262,127	477,653	

8.5 Pie del transportador

Para dar soporte a la estructura del transportador, el principal proveedor AVE chains muestra a lo largo de su catálogo dos opciones de soporte, bípode o trípode. Considerando que los pies del transportador deberán soportar el peso de las botellas de lejía llenas se opta por realizar el diseño con un trípode para que la carga esté más distribuida y no quede limitada la cantidad de botellas a transportar. Plano de conjunto nº 2.

Fig. 31 Componentes del pie del transportador

Como se observa en la Fig. 31, el pie del transportador se compone de diferentes piezas. Todas las piezas que conforman el subensamblaje del pie son comerciales excepto la pieza que permite ensamblar el pie con las chapas de revestimiento que es un diseño propio.

Trípode



Fig. 32 Dimensiones trípode

Para pieza que ensamblará con la barra y estará en contacto con el suelo, existen dos opciones, bípode o trípode, ambas le proporcionan estabilidad a la estructura.

Se selecciona un trípode, es una pieza fabricada de poliamida reforzada con diámetro de taladro 60,3 que puede soportar una fuerza de trabajo de 10.000 N. El código de la pieza es 8310012.

Cabezal de apoyo

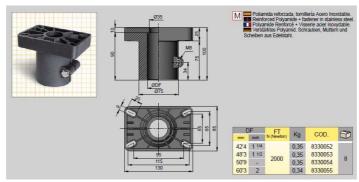


Fig. 33 Dimensiones cabezal de apoyo

Como consecuencia de la elección del trípode con diámetro de taladro 60,3 se selecciona el cabezal de apoyo. Esta pieza es el elemento de unión entra la barra altura y la pieza de ensamble con la estructura, con código 8330055.

Pie regulable

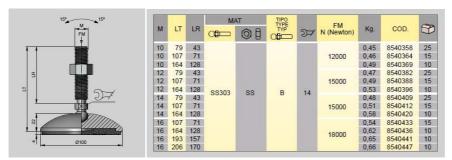


Fig. 34 Dimensiones pie regulable

Los pies regulables van roscados al trípode, esto resulta ventajoso ya que podemos ajustar la altura del transportador en función de las máquinas anexas y no es necesario calcular al milímetro la longitud de la barra que da altura al transportador.

Está fabricado en acero inoxidable que le proporciona mayor durabilidad y menor mantenimiento. Se selecciona el eje de métrica 16 y LR 157 mm con código 8540441.

Barra altura

Se necesita una barra de sección redonda de diámetro 60,3 mm, el mismo diámetro que presenta el trípode y el cabezal de apoyo. La barra irá ensamblada concéntricamente a estas dos piezas. Se busca una barra hueca ya que la sección es suficiente para resistir el peso del transportador.

Se encuentra un proveedor que ofrece barras del diámetro que se precisa. Es la empresa Condesa Grupo, que fabrica todo tipo de tubos, tanto estructurales como de precisión.

En el Anexo 6 se encuentra la tabla de dimensiones para tubos redondos que fabrica esta empresa. Para el diámetro de tubo 60,3 mm, existe una gran variedad de espesores. Se selecciona un espesor de barra e_b = 2,5 mm.

Las longitudes habituales de suministro son de 6000 mm y 12000 mm. La barra diseñada tiene una longitud de 730 mm, por lo que será necesario cortar las barras de suministro a la longitud de diseño. Plano nº 12.

Fig. 35. Barra altura

Pieza ensamble

El transportador tiene una anchura total de 136mm. La pieza de ensamble va atornillada a los lados exteriores de las chapas de revestimiento. Esto determinará las dimensiones de la pieza de ensamble. En el plano nº 11 se puede ver con mayor detalle las dimensiones de la pieza así como las cotas de los refrentados.

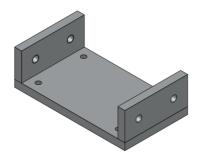


Fig. 36 Vista isométrica pieza ensamble

8.6 Barandilla

El soporte de la barandilla se compone de un conjunto de piezas que su función principal es guiar y soportar los perfiles de las barandillas. Como se puede observar en la Fig. 37 los soportes están situados en ambos lados del transportador, atornillados a las chapas de revestimiento.

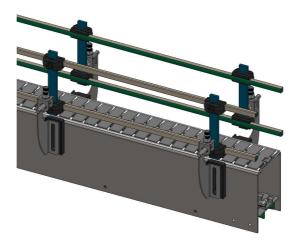


Fig. 37. Disposición soportes barandilla

Debido a la altura de la botella, $h_{botella}$ =0,366 m es necesario que el guiado de la barandilla vaya a dos alturas para impedir que la botella salga de la transmisión en caso de posibles golpes o enganchones.

Como se puede observar en la Fig. 38, en la parte superior del soporta va pasante un eje que comunica esta pieza con la pieza de unión entre las bridas. El eje es ajustable para darle la distancia necesaria a las bridas. La distancia necesaria depende del ancho de la botella.

Las bridas son pasantes a la pieza de unión y la posición de éstas está fijada mediante tornillos prisioneros. Por otro lado, el distanciador, permite que el soporte esté más alejado de las chapas de revestimiento para así permitir tener una achura mayor entre los guiados de cada lado del transportador. Plano nº 3.

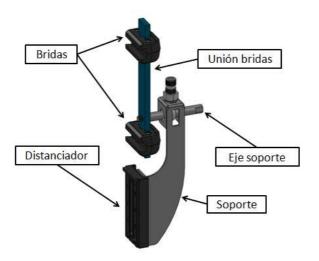


Fig. 38. Componentes soporte barandilla

Soporte

Para la selección del soporte se ha requerido que éste fuera de acero inoxidable. De entre dos modelos, se ha escogido el que todos sus componentes están fabricados en acero inoxidable incluso en cabezal de ajuste de rosca. El soporte seleccionado presenta un DF = 12mm y código 8161450.

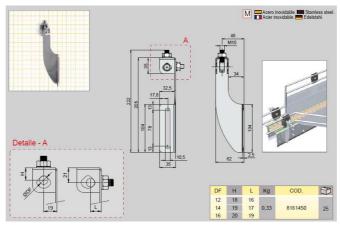


Fig. 39. Dimensiones soporte

Distanciador

Todos los distanciadores disponibles a lo largo del catálogo están fabricados de poliamida reforzada y presentan unas características similares entre ellos.

Pero la elección del distanciador está determinada por el soporte previamente seleccionado, existe un distanciador se acopla con este soporte, con código 8190810.

Fig. 40. Dimensiones del distanciador

Brida

Debido a la altura de las botellas, no era suficiente con una brida que enroscara por la parte de atrás directamente con el eje. Por ello se ha debido seleccionar un tipo de brida que tuviera un agujero pasante para permitir que el diseño del soporte de la barandilla tuviera dos alturas.

Se selecciona la brida con esta característica, con tornillería en acero inoxidable y de perfil cónico ya que el guiado de la barandilla se presentará más adelante tiene la misma sección cónica. El código de la brida es 8210169.

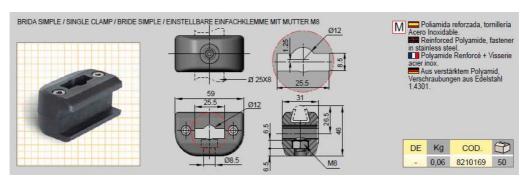


Fig. 41. Dimensiones de la brida

Eje soporte

El eje soporte seleccionado es de acero inoxidable y tiene un diámetro de 12mm, al igual que el agujero del soporte. En su extremo presenta una roscado exterior de métrica 8 con una longitud total LT=100mm. Código 82220385.

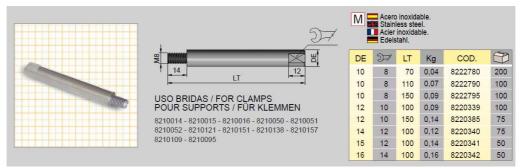


Fig. 42. Dimensiones eje soporte

Unión bridas

Esta pieza es el elemento de unión entre el eje del soporte y las bridas. Cómo se puede observar en el plano nº 14, la pieza tiene un espesor de e=8mm, una longitud total de L=200mm y una achura de a=25,50 mm. También presenta un agujero por donde irá roscado el eje soporte de métrica 8.

Fig. 43. Unión bridas

Guiado barandillas

El guiado está formado por dos componentes, uno el mismo guiado de sección cónica y otro el perfil que va pasante por el guiado.

La guía de la barandilla está fabricada de acero inoxidable y es la parte que está insertada en cada brida de arista.

El perfil es el que se encuentra en lado de las botellas y tendrá un posible contacto con ellas, sobretodo en la transferencia lateral donde las botellas se transferirán de un módulo a otro

gracias al trayecto que del guiado. El perfil está fabricado de deslidur, que tiene un coeficiente de rozamiento mínimo. Se selecciona el guiado con código 30005.

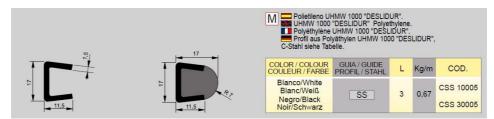


Fig. 44. Dimensiones guiado barandillas

8.7 Soporte barandilla transferencia

El soporte de acero inoxidable seleccionado para el guiado general de todos los módulos no tiene un cabezal orientable donde insertar el eje. El eje quedará siempre perpendicular a las chapas de revestimiento.

En el caso de las transferencias, debido a que los guiados de las barandillas presentan recorridos en diagonal, es necesario que el cabezal de soporte sea orientable para orientar el eje hacia el guiado.

Es por ello que se debe seleccionar otro soporte que cumpla esta característica. La empresa AVE no dispone de soportes con cabezal orientable fabricados de acero inoxidable por lo que se ha seleccionado un soporte fabricado en poliamida reforzada con tornillería en acero inoxidable. Se selecciona el soporte en función del diámetro del eje seleccionado previamente para el soporte de acero inoxidable, para que pueda servir la misma estructura de la barandilla. Presenta un DF=12,5 mm con código 8115175.

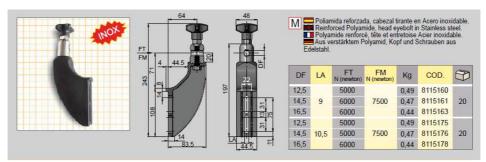


Fig. 45. Dimensiones del soporte transferencia

8.8 Perfil guía de ida

Las cadenas de platillos descansan sobre los perfiles guía. Es una pieza fabricada de deslidur, material que contribuye a que se produzca el mínimo rozamiento entre cadena y guías.

Como se puede ver en la siguiente figura, estas piezas están insertadas en el plegado de las chapas rectas de revestimiento.

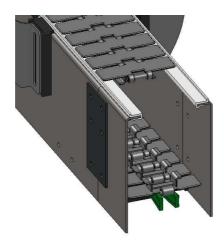


Fig. 46. Perfil guía ensamblado en la estructura

Del mismo modo que para los tramos curvos se utiliza una pieza de guiado de este mismo material, para los tramos rectos se opta por realizar el plegado de chapa e insertar estos perfiles debido a que es una alternativa más económica y además proporciona un menor peso a la estructura.

Se ha seleccionado la guía de color blanco con W=20mm e I=3mm, que acopla con la chapa de 3mm de espesor, con código P20275.



Fig. 47. Dimensiones perfil guía

8.9 Guiado reenvío

De la misma manera que es necesario un material de bajo coeficiente de rozamiento para la ida, lo es para el retorno, aunque este guiado tenga una estructura completamente diferente. Como se puede apreciar en la siguiente imagen, está formado por diferentes piezas que ensambladas entre ellas realizan la función necesaria para el guiado de la cadena.

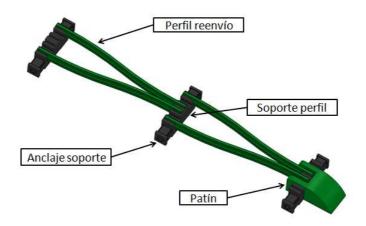


Fig. 48. Componentes guiado reenvío

La parte superior de la tablilla, es decir, la que está en contacto con las botellas en la ida, es la parte que está en contacto con el guiado de reenvío. Como se puede observar en la Fig. 49, el guiado de reenvío debe empezar y finalizar a una cierta distancia de los ejes de tracción, tanto eje motor como el eje reenvío. Más importante aún es en el eje motor debido a que el guiado debe respetar la curvatura de la comba e iniciar cuando ésta haya finalizado.

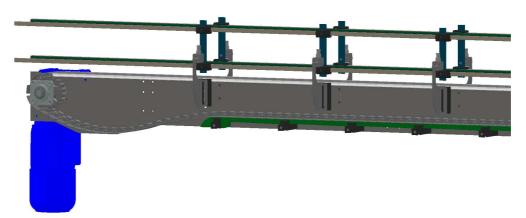


Fig. 49. Guiado reenvío ensamblado en el transportador

A continuación, se describe la selección de las piezas que forman el guiado de reenvío:

Perfil reenvío

Es una pieza fabricada en deslidur que tiene una longitud de L=25mm. Debido a que es un material muy maleable se realiza el doblado manualmente para que cada perfil pueda acoplar con los soportes. Es la pieza que está en contacto con la cadena. Código P20240.

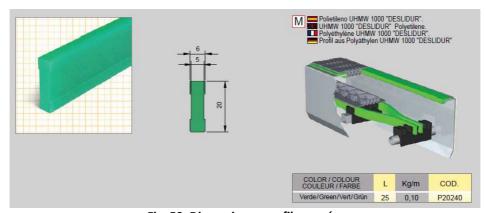


Fig. 50. Dimensiones perfil reenvío

Soporte perfil reenvío

Es una pieza fabricada en poliamida reforzada que tiene diferentes cortes de la misma sección que el perfil y es el elemento de conexión entre los perfiles y en caso de que se encuentre en un extremo, también del patín. La geometría característica de sus lados permite que el soporte esté fijado a las chapas de revestimiento mediante las piezas de anclaje. Código 8025615.

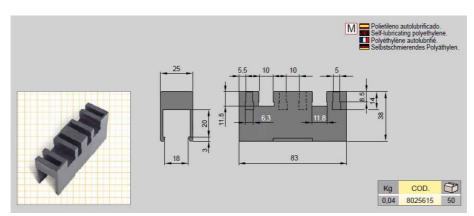


Fig. 51. Dimensiones soporte perfil reenvío

Anclaje soporte

Consta de una pieza fabricada en poliamida reforzada y con tornillería de acero inoxidable. Presenta una geometría exterior que le permite ser insertada en los lados del soporte para así fijar todo el sistema de guiado a las chapas de revestimiento. Código 1485540.

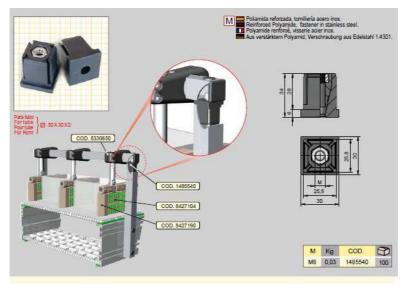


Fig. 52. Dimensiones anclaje soporte

Patín

Esta pieza está completamente fabricada con deslidur.

El patín se coloca en cada extremo del guiado de reenvío. El guiado de reenvío no está instalado en todo el recorrido completo. Como ya se ha comentado, finaliza cada vez que se encuentra con un eje motor o un eje reenvío.

Aparte de guiar la cadena durante el reenvío, en el caso del eje motor, gracias a la inclinación que presenta ayuda a que la comba de la cadena realice la curvatura necesaria para pasar a estar completamente horizontal. Código 8025105.

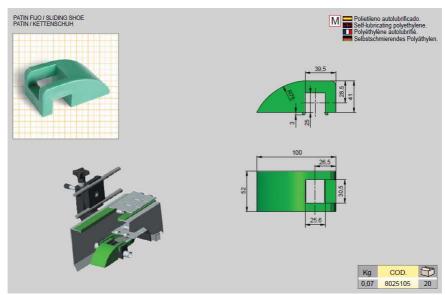


Fig. 53. Dimensiones patín

8.10 Eje motor

Existen cuatro ejes motores dispuestos a lo largo del circuito, dos de ellos poseen el eje más largo debido a que están situados en la transferencia lateral y la distancia entre las chapas de revestimiento, donde se colocan los rodamientos, es mayor. Plano nº 4.

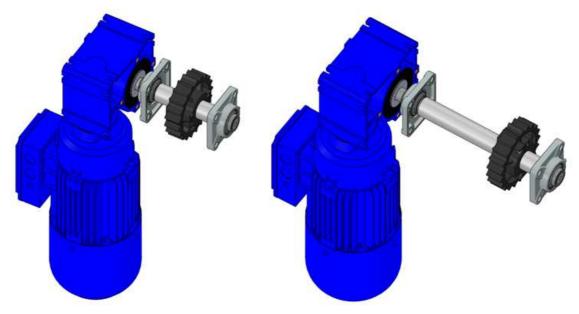


Fig. 54. Componentes ejes motor

Para poder observar bien el montaje del eje y la disposición de sus componentes se realiza una vista explosionada del eje. La longitud total del eje abarca la inserción de todos sus componentes.

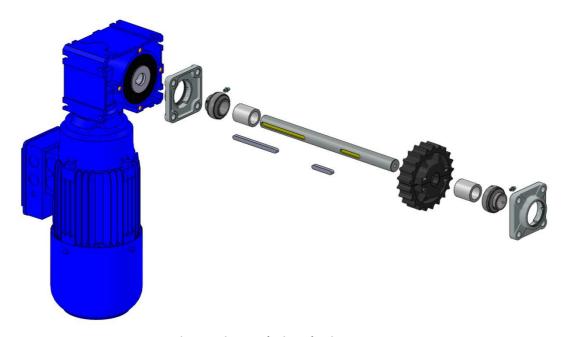


Fig. 55. Vista explosionada eje motor

Rueda tracción

La rueda de tracción está seleccionada del mismo catálogo que la cadena de platillos. El fabricante es AVE chains y para el tipo de cadena escogido, presentan tres opciones de piñón de tracción (Ver Anexo 3). Las tres ruedas del catálogo que engranan con el tipo de cadena están fabricadas de poliamida reforzada. Dos de ellas son muy similares y tienen la ventaja de que están partidas, es decir, se pueden montar y desmontar del eje sin necesidad de tener que retirarlas por uno de sus extremos. Esto resulta ventajoso a la hora de realizar reparaciones y mantenimiento.

Fig. 56. Rueda tracción

Estas ruedas a parte tener la característica común de estar partidas, presentan similitudes respecto a las mismas posibilidades de número de dientes y diámetro primitivo. Lo que determina la elección es que la tornillería de la rueda de color negro es más accesible que la otra de color blanco, ambas son de acero inoxidable. Por este simple hecho y pensando en futuras reparaciones, se selecciona la rueda de tracción con código 6621258.

Tiene número de dientes z=21 con diámetro de paso Dp=129,26 mm. El diámetro del eje es de 25 mm.

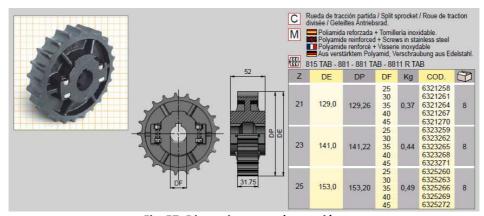


Fig. 57. Dimensiones rueda tracción

Eje motor

El eje es un diseño propio, que se ha dimensionado en función del diámetro interior de la rueda de tracción y del ancho de la estructura del transportador.

Debido a las transferencias laterales, ha sido necesario el diseño de dos ejes motores, con las mismas características pero con un largo diferente. Se puede observar esta pieza con más detalle en el plano nº 9.

La pieza cuenta con un agujero de métrica 8 en sus dos extremos para fijarla a los rodamientos. También se han realizado dos chaveteros, uno para el motor y otro para la rueda de tracción, donde sus dimensiones serán las mismas que las de las chavetas con las tolerancias correspondientes que se encuentran descritas en el apartado 8.13 Dimensionamiento de las chavetas.

Fig. 58. Ejes motores transferencia frontal y lateral

Rodamientos

Se seleccionan los rodamientos en función del diámetro del eje pero también se tiene en cuenta que tengan la geometría adecuada para poder ser atornillados a las chapas de revestimiento.

Se selecciona un rodamiento fabricado totalmente en acero inoxidable con un cara completamente plana para que ensamble con la chapara de revestimiento mediante cuatro agujeros pasantes de 12mm de diámetro. El diámetro del eje es 25mm.

Fig. 59. Dimensiones rodamiento

Casquillos

Los casquillos son diseños propios ya que se han diseñado en función de la longitud del eje y de la disposición de la rueda. Su misión es distanciar la rueda de la chapa de revestimiento y al mismo tiempo fijarla en su posición para que ésta no pueda moverse a lo largo del eje. Los casquillos se insertan en el eje y están en contacto por un lado con la rueda y por el otro, con el rodamiento.

Se han diseñado dos casquillos de longitudes diferentes debido a que el eje de transferencia tiene una longitud mayor y por ello se necesita un casquillo más largo.

Para el eje sin transferencia se utilizan dos casquillos, uno en cada lado de la rueda, con una longitud de 39,5 mm cada casquillo.

En el eje con transferencia lateral, para centrar la rueda, se utiliza un casquillo de longitud 39,5 mm y otro casquillo de 172,5 mm.

Los casquillos tienen las mismas dimensiones para el eje motor que para el eje de reenvío. Están fabricados en poliamida reforzada y presentan un diámetro interior $D_{I_C} = 25,5$ mm y exterior $D_{E_C} = 35,5$ mm.

En los planos nº 7 y 8 están acotadas las dimensiones de los casquillos.

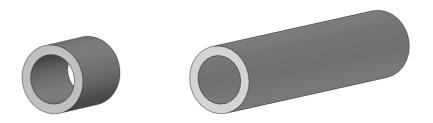


Fig. 60. Casquillos para la fijación de las ruedas

8.11 Eje reenvío

El eje de reenvío presenta una disposición y características similares al eje de tracción. Está diseñado con los mismo rodamientos y se han utilizado los acoples de las mimas dimensiones debido a que la distancia entre chapas de revestimiento es la misma.

Obviamente, ni la rueda de tracción ni el eje presentan chaveteros, debido a que en este caso la potencia no se transmite a través del eje, sino a través de la rueda. Plano nº 5.

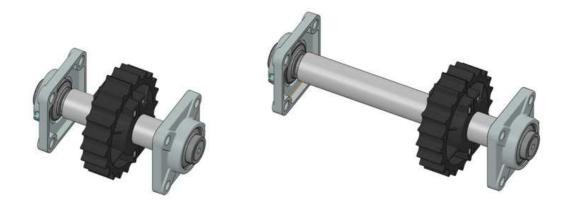


Fig. 61. Componentes ejes reenvío

Como en el caso del eje de tracción, se dispone de una vista explosionada del eje para visualizar de una mejor forma el ensamble de sus componentes.

Fig. 62. Vista explosionada eje reenvío

Rueda reenvío

Una vez seleccionada la rueda en tracción, la rueda de reenvió se selecciona en función de ésta. También está fabricada de poliamida reforzada y con tornillería de acero inoxidable.

Ambas ruedas presentarán el mismo número de dientes debido a que es de interés que los ejes estén alineados y para conseguir un desplazamiento completamente horizontal será necesario que ambas ruedas tengan el mismo diámetro de paso.

Se selecciona la rueda con código 6621536. Al igual que la rueda de tracción, el número de dientes es z=21 con diámetro de paso Dp=129,26mm. El diámetro del eje es de 25mm.

Fig. 63 Rueda reenvío

Eje de reenvío

Los ejes de reenvío tienen las mismas dimensiones que los ejes motores, a diferencia de que en éstos no existen los chaveteros. También poseen dos agujeros de métrica 8 en sus extremos para fijarlos a los rodamientos. El eje de reenvío se representa con mayor detalle en el plano nº 10.

Fig. 64 Eje reenvío transferencia frontal y lateral

8.12 Dimensionamiento de las chavetas

Es necesario realiza el dimensionamiento de dos chavetas, una para el motor y otra para la rueda de tracción. Mediante el catálogo de Rodavigo, S.A, se establecen las dimensiones con la tolerancia necesaria.

Según la normativa UNI 6604-69 – DIN 6885, existen dos tipos de chavetas:

- Forma A: los extremos presentan forma redondeada con radio para hacia mitad de la
- Forma B: los extremos son rectos.

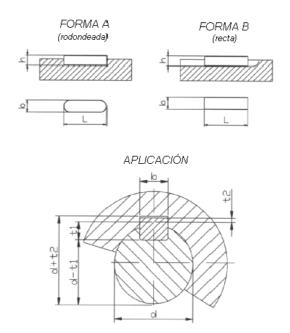


Fig. 65. Tipos de chavetas según su geometría.

El material de las chavetas puede ser:

- Acero C45 con R 59 daN/mm²
- Acero inoxidable AISI 316 con R 59 daN/mm²

En el Anexo 5, se encuentra la relación entre el diámetro del eje y la sección de la chaveta. El empleo de chavetas de sección más pequeña es posible si su resistencia es suficiente al esfuerzo que debe trasmitir. El empleo de chavetas de sección más grande es desaconsejado.

En primer lugar conocemos el diámetro del eje, factor importante para el dimensionamiento. Se entra a la tabla sabiendo que el eje tiene un diámetro de 25mm (más de 22 hasta 30).

Las dimensiones de chaveta para este diámetro son b x h = 8 x 7 con las siguientes tolerancias:

$$b = 8_0^{+0.036}$$

$$h = 7^{0}_{-0.090}$$

La dimensión de h, es decir la altura total de la chaveta, se divide en t_1 y t_2 , siendo t_1 la parte de chaveta que irá insertada en el chavetero del eje y t_2 , la parte de chaveta que irá en la rueda de tracción o en el motor.

Se aconseja un valor nominal de t_1 =5 y t_2 =3,3.

En el Anexo III 5, se escoge la longitud de la chaveta (L) en función de los parámetros ya determinados b y h. Existen una gran posibilidad de longitudes de chaveta.

Para el motor, se selecciona una chaveta de L= 110mm.

Para la rueda de tracción, se selecciona una chaveta de L= 50mm.

Finalmente, según esta misma tabla se establece un valor $det_1=4mm$ y $t_2=3,3mm$ para el chavetero. Es decir, ambos chaveteros tendrán una profundidad de 4mm.

Ahora, según la longitud de chaveta se le asigna una tolerancia u otra. Entrando a la tabla para la longitud de chaveta de la rueda L = 50mm (más de 28 hasta 80) tendrá una tolerancia de:

$$L = 50 \, {}^{0}_{-0.30}$$

Para la longitud de chaveta del motor L= 110mm (más de 80) tendrá una tolerancia de:

$$L = 110^{\,0}_{\,-0.50}$$

De la misma manera que las chavetas presentan esta tolerancia, los chaveteros de la rueda y el motor presentarán una tolerancia de $L=50^{+0.30}_{0}$ y $L=110^{+0.50}_{0}$.

9. Materiales

Los principales materiales utilizados para el diseño del transportador son: acero inoxidable, poliamida y DESLIDUR.

9.1 Aceros inoxidables

Existen varios tipos de aceros inoxidables que poseen diferencias entre sí.

Según la definición de la norma Europea EN 10088-1, los aceros pueden considerarse inoxidables cuando tienen un contenido mínimo de cromo del 10,5% y un máximo de 1,2% de carbono.

La resistencia a corrosión de los aceros inoxidables puede verse mejorada si se le añaden otros elementos de aleación como níquel, molibdeno, nitrógeno, titanio o niobio. Esto proporciona una amplia gama de aceros inoxidables resistentes a la corrosión para diferentes condiciones de trabajo.

Los tipos de aceros inoxidables se diferencian entre sí dependiendo de la cantidad de elementos de aleación y la concentración de éstos en el acero. Según las propiedades que se desean obtener se le añaden unos elementos de aleación u otros.

Por tanto, los aceros inoxidables no pueden considerarse resistentes a la corrosión en todas las condiciones de trabajo. Dependiendo del tipo, habrá ciertas condiciones en las que se pierda la capa pasiva y no pueda recomponerse. En ese caso la superficie se convierte en activa y se produce la corrosión.

El AISI designa la mayor parte de los aceros inoxidables como series 200, 300 y 400.

Los tres grupos principales son los martensíticos, los ferríticos y los austeníticos[6]:

Acero inoxidable martensítico

Los aceros inoxidables martensíticos pertenecen a la serie 400. Son aleaciones de hierro y cromo con un contenido entre un 12% y 18% de éste último elemento y en los que la adición de níquel u otros elementos no influye apreciablemente en las propiedades corrosivas de la aleación. Estas aleaciones responden al tratamiento térmico de manera semejante a la mayoría de los aceros especiales de aleación baja, y por un tratamiento térmico conveniente adquieren una amplia gama de propiedades mecánicas, debido a la formación de martensita y la posibilidad de revenirla.

Este tipo de aceros se emplea para herramientas de corte, instrumentos quirúrgicos, muelles, cojinetes de bolas y placas de prensa. También son muy solicitados en la industria petroquímica, por ejemplo para turbinas de vapor y de gas.

Acero inoxidable ferrítico

Los aceros inoxidables ferríticos también pertenecen a la serie 400. Contienen de un 14 a un 30% de cromo y en oposición a los martensíticos, no son virtualmente endurecibles. Los aceros comprendidos en este grupo se endurecen en pequeño grado, y en la condición recocida desarrollan su máxima plasticidad, ductilidad y resistencia a la corrosión y a la oxidación. Aunque en general son soldables, algunos grados de acero ferrítico pueden ser propensos a la sensibilización de la zona afectada por el calor de la soldadura y al agrietamiento en caliente del metal de soldadura.

Debido a su menor contenido en cromo y níquel, los aceros inoxidables ferríticos son generalmente menos costosos que sus homólogos austeníticos.

Las principales aplicaciones de este tipo de aceros son tanques de agua, calentadores, elementos de electrodomésticos. También se utilizan con frecuencia para el diseño de tubos de escape, utensilios de cocina y algunas series también permiten su uso en ambientes exteriores más corrosivos.

Acero inoxidable austenítico

Los aceros inoxidables austeníticos pertenecen a las series 200 y 300 AISI. Este tipo de acero, además de cromo como elemento de aleación, posee níquel como elemento importante. Contienen de un 16 a un 25% de cromo y de un 6 a un 22% de níquel. Como los ferríticos, no se pueden endurecer por tratamiento térmico, ya que la austenita no se transforma en martensita.

En la condición recocida no son magnéticos y poseen una buena combinación de resistencia a tracción y de ductilidad. Se pueden trabajar en frío, adquiriendo así una amplia zona de propiedades mecánicas y en esta condición, pueden hacerse magnéticos.

El uso de los aceros inoxidables austeníticos es prácticamente ilimitado y se encuentran en diferentes aplicaciones como la industria aeronáutica, industrial lechera, procesamiento de alimentos, industria textil, industria química o para ornamentos arquitectónicos.

También existen los aceros inoxidables austenoferríticos, también llamados aceros dúplex que están constituidos microestructuralmente por dos fases, ferrita y austenita[6].

Para el objeto de este proyecto se centra la atención en éste último. Los aceros inoxidables austeníticos se pueden dividir en dos categorías según la clasificación AISI:

- Serie AISI 300. Aleación de Cromo Níquel.
- Serie AISI 200. Aleación de Cromo Manganeso Nitrógeno.

La serie 300 es más extensa y comúnmente utilizada con porcentajes de níquel entre 6 y 37%. También pueden contener molibdeno, cobre, silicio, aluminio, titanio y niobio,

elementos que son utilizados para conferir ciertas características. En la Tabla 2 se muestran algunos ejemplos para estos aceros.

Tabla 2. Aceros inoxidables austeníticos serie 300.

Tipo AISI	Descripción	Aplicaciones más comunes	
302 (18% Cr, 8% Ni)	Aleación básica		
303 (18% Cr, 9% Ni, 0.15% S)	Agregado de S para mejorar maquinabilidad.	Conectores, cerraduras, tuercas y tornillos, partes maquinadas, partes para bombas.	
304 (18% Cr, 8% Ni)	Menos % C (0.08%) que el 302 para mejorar resistencia a la corrosión intergranular.	Equipo químico de procesos, manejo de alimentos y equipos para hospitales.	
304L (18% Cr, 8% Ni)	Menos de 0.03% C (para reducir los riesgos de corrosión intergranular.	Reducción de carbono para evitar la corrosión intergranular en la soldadura.	
309/309S (23% Cr, 13% Ni)	Más Cr y Ni para aumentar la resistencía a la formación de escamas a altas temperaturas. 309 0.2% C y 309S 0.08% C	Calentadores de aire, equipos para tratamientos térmicos de aceros.	
316 (17% Cr, 12% Ni, 3% Mo)	Agregado de Mo, mejora la resistencia a la tracción a altas temperaturas. 0.08%C	Equipos para el procesamiento de alimentos, farmacéuticos, fotográficos, textil.	
316 L (17% Cr, 12% Ni, 3% Mo)	Reducción del % de C para evitar la corrosión intergranular durante la soldadura. 0.03%C.	Intercambiadores de calor, prótesis temporarias.	
330 (21% Cr, 36% Ni)	Más Ni para aumentar la resistencia al shock térmico y carburación.	Hornos de recocido, partes para turbinas de gas e intercambiadores de calor.	
347 (18% Cr, 10% Ni)	Estabilizado con Nb y Ta para evitar los carburos de Cr.	Tanques soldados para el almacenamiento de sustancias químicas orgánicas.	

En la serie 200 el níquel se encuentra en menor proporción y mantiene la estructura austenítica con altos niveles de nitrógeno. El manganeso, de 5 a 10%, es necesario para aumentar la solubilidad del nitrógeno en la austenita. Se caracterizan por un alto valor de límite elástico y tensión de rotura pero su ductilidad es baja si se compara con los de la serie 300[7]. En la Tabla 3 se recogen algunos ejemplos.

Tabla 3. Aceros inoxidables austeníticos serie 200.

Tipo AISI	Descripción	
201 (6% Mn, 0.25% N además 4.5% Ni, 17% Cr, 0.15% C)	Se reemplaza parcialmente el Ni por N y Mn.	
202 (8% Mn y 0.25% N, además 5% Ni, 0.15% C, 18% Cr)	Se reemplaza parcialmente el Ni por N y Mn.	
205 (15% Mn y 0.35% N, además 1.5% Ni, 0.2% C, 17% Cr)	Se reemplaza parcialmente el Ni por N y Mn.	

El material escogido para la mayoría de las piezas que conformarán el transportador es el acero inoxidable austenítico serie 304 AISI. Todas las piezas escogidas del catálogo de ave chains están diseñadas en acero inoxidable y muchas de las piezas que son de algún tipo de plástico, también tienen la tornillería de acero inoxidable 304. Para las piezas que son diseños propios también se ha escogido el grado 304.

Esto es debido a que el acero inoxidable de grado 304 es considerado el más versátil y es el más utilizado de los aceros inoxidables austeníticos. Es capaz de satisfacer una amplia variedad de requisitos físicos por lo que muchas empresas industriales lo emplean para gran variedad de aplicaciones. Por sus propiedades y funcionalidades compite con el acero de grado 316, son los dos grados de acero inoxidable más comunes. La diferencia clave de este acero es su adición de molibdeno, el cual mejora la resistencia a corrosión, en particular contra los cloruros.

Por el hecho de que el acero inoxidable no tiene que estar en contacto directo con la lejía, no es necesaria la utilización del grado 316 y además el acero 304 tiene una mayor capacidad para hacer frente a un impacto físico y resulta mejor económicamente que el grado 316.

9.2 Poliamida

Las poliamidas (PA), también conocidas con nylon, con polímeros semicristalinos. Las poliamidas poseen un magnífico cuadro de propiedades mecánicas, una tenacidad muy elevada y unas excelentes características de deslizamiento y resistencia al desgaste. Sus propiedades varían desde la dura y tenaz (PA 66) hasta la blanda y flexible (PA12).

La poliamida reforzada es una variante de la poliamida que está reforzada con fibra de vidrio. Es poliamida 6.6 reforzada con 30% de fibra de vidrio (PA 66 – 30% GF). La adición de fibra de vidrio al nylon conduce a incrementos importantes de la resistencia, de la rigidez así como de las temperaturas de distorsión por calor. Todo ello combinado con un bajo peso específico. A continuación, en la Tabla 4 se muestran las características mecánicas de la poliamida reforzada.

Las ruedas de tracción y de reenvío y otros componentes como las barandillas, están constituidos de poliamida reforzada.

Este material tiene una amplia gama de aplicaciones en construcción de maquinaria, automoción, transporte y otras técnicas de suministro, sector textil y de envases y embalajes, maquinaria para rellenar bebidas, maquinaria de impresión, aparatos domésticos y electrónica.

Tabla 4. Características mecánicas de la Poliamida 6.6 reforzada con 30% de fibra de vidrio.

Características mecánicas	Método/Prueba (DIN /ASTM)	Seco	Húmedo	Unidad
Densidad	53479	1,35		g/cm³
Elongación en punto de fluencia	53455			MPa
Resistencia al desgarre	53455	200	140	MPa
Resistencia a la rotura por alargamiento	53455	3,5	5	%
Módulo de elasticidad a la tracción	53457	9700	7500	MPa
Módulo de elasticidad a la flexión	53457			MPa
Dureza Brinell (por penetración de bola)	53456	270	200	MPa
Resistencia al impacto	53453	13	17	KJ/m²
Resistencia a la fluencia tras 1000 h. de carga estática				MPa
Resistencia al alargamiento, por 1%, tras 1000 hrs		40		MPa
Coeficiente de fricción contra acero endurecido y afilado p=0,05 N/mm², v=0,6 m/s		0,45-0,5		-
Desgaste por fricción, en las mismas condiciones				m/km

9.3 Deslidur

Chains presenta con detalle este material [9].

Este material es un tipo de Polietileno de baja presión y ultra elevado peso molecular. También llamado Polietileno UHMW 1000, presenta un grado de polimerización muy alto. El peso molecular extremadamente alto (entre 4,5 y 8 millones) garantiza decisivas mejoras en las propiedades antideslizantes del polietileno, a saber, resistencia al choque, resistencia a la rotura y resistencia a la flexión y otros importantes valores técnicos. Los valores permanecen favorables incluso a las más bajas temperaturas. Además DESLIDUR es autolubricante. Los perfiles para el guiado de la cadena, todo el guiado de retorno y las guías de las barandillas están fabricados en este material. El en Anexo 3, catálogo de la empresa AVE

Ventajas del uso de DESLIDUR

- Incrementa la duración y conservación de las cadenas de rodillos, de platillos o correas.
- Disminuye el ruido en las instalaciones, al rozar el perfil o la guía DESLIDUR con el acero el ruido disminuye considerablemente si se compara con otros materiales, mejorando así el ambiente de trabajo.
- El uso de los perfiles DESLIDUR disminuye las necesidades de potencia por tener un coeficiente de rozamiento mínimo.
- Los perfiles DESLIDUR son auto lubrificados por consiguiente disminuyen las necesidades de mantenimiento.
- Las temperaturas de trabajo se encuentran entre -40°C y 80°C, junto con la nula absorción de la humedad, permiten adaptarse a una amplia gama de usos.

Propiedades de deslizamiento y coeficiente de fricción

Es un material cuyas propiedades de deslizamiento son excelentes. Mediante unas mediciones comparativas con otros plásticos se ha demostrado que en caso de fricción seca deslizante contra metales, tales como el acero, latón o cobre, presenta unas propiedades auto lubrificantes. Las propiedades de deslizamiento de emergencia son favorables, esto es, los casquillos de los cojinetes hechos de este material que soportan los árboles, son insensibles a la suciedad. Esta condición impide el llamado "gripado" de los árboles.

Absorción de agua

DESLIDUR es hidrófugo y no presenta ningún fenómeno de hinchamiento. Por esta razón, sus sobresalientes propiedades son independientes del índice de humedad del medioambiente de la pieza terminada, a diferencia de otros plásticos que absorben la humedad.

Usos y montajes

DESLIDUR se comporta correctamente en un intervalo de temperatura constante entre 40°C y 80°C, excepcionalmente y en intervalos cortos de tiempo puede llegar hasta los 120°C.

Uno de los puntos importantes a tener en cuenta en el montaje, es el coeficiente de dilatación lineal: 2mm / metro por cada 10ºC de variación en el rango comprendido entre 20º y 100ºC.

Para evitar las consecuencias de este fenómeno se puede optar por ejemplo, por cortes a 45º, en cada unión o conexión del perfil, este sistema es utilizado principalmente con perfiles soportados por guías metálicas.

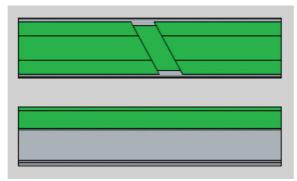


Fig. 66 Corte del perfil DESLIDUR por dilatación.

Aplicaciones DESLIDUR

Existe una gran variedad de aplicaciones, entre ellas la manutención mecánica. La industria del envase, embalaje y llenado de bebidas utilizan piezas hechas de DESLIDUR en razón a sus propiedades de deslizamiento, resistencia a la abrasión y marcha silenciosa. No se necesita pintar ni lubricar el material.

La industria cárnica, pesquera y de productos alimenticios también utiliza este material. Dura varias veces más que la madera, no se produce putrefacción y es higiénicamente impecable. En virtud de sus propiedades especiales, ante todo por no pegarse y ser fácil de limpiar, se emplean las piezas de este material.

La industria química hace uso de este material debido a la resistencia excepcional a las acciones químicas y a la corrosión por fisuración tensional. No lo atacan las soluciones acuosas de ácidos y sales, así como tampoco la mayoría de los disolventes.

10. Referencias

- [1] Matos Ramírez, N. (2011). Transportadores industriales (conveyors).
- [2] [Meyers, F. E. (2006). Diseño de instalaciones de manufactura y manejo de materiales. Pearson educación.
- [3] Martínez, H., & Obdulio, H. (2011). *Predicción, Experimentación y Simulación en la Enseñanza de la Fuerza de Rozamiento* (Doctoral dissertation, Universidad Nacional de Colombia).
- [4] Martínez, H., & Obdulio, H. (2011). *Predicción, Experimentación y Simulación en la Enseñanza de la Fuerza de Rozamiento* (Doctoral dissertation, Universidad Nacional de Colombia).
- [5] MIRAVETE, Antonio; LARRODÉ, Emilio; DE MARCO, Antonio Miravete. Los transportes en la ingeniería industrial (teoría). Reverte, 1998.
- [6] Molera Solá, P. (1990). Metales resistentes a la corrosión (Vol. 35). Marcombo.
- [7] Tratamientos Térmicos de los AcerosInoxidables [PDF]. (s.f.). Facultad Regional Rosario. Recuperado de https://www.frro.utn.edu.ar/repositorio/catedras/mecanica/5_anio/metalografia/16-TT_aceros_inoxidables_v2.pdf
- [8] Sanmetal, s.a. (s.f). *Termoplásticos PA 66 PA 66 GF 30.* Recuperado de http://www.sanmetal.es/productos/termoplasticos/poliamida-66-pa-66/8
- [9] AVE Chains (s.f). *Catálogo General 2016*. Recuperado dehttp://www.avetm.com/Documentacion/Default.aspx

11. Resumen del presupuesto

Desglose del presupuesto de ejecución de material (PEM):

TOTAL Capítulo 1: Chasis	2.969,40 €
TOTAL Capítulo 2: Accesorios	11.557,65€
TOTAL Capítulo 3: Transmisión	3.979,60€
TOTAL Capítulo 4: Tornillería	62,52€
TOTAL Capítulo 5: Mano de obra	6.250,00€

TOTAL PEM	24.819,17 €
-----------	-------------

Ver apartado V. PRESUPUESTO, para una explicación más detallada del mismo.

II. ANEXOS

ÍNDICE DE LOS ANEXOS

ANEXO 1 CÁLCULO TRANSMISIÓN	
A1.1. Longitud y peso de la cadena	71
A1.2. Peso de la botella	72
A1.3. Peso que ejercen las botellas sobre la cadena	73
A1.4.Cálculo del motor reductor	75
A1.5. Selección del motorreductor	
A1.6. Comprobación de los rodamientos	86
ANEXO 2 CÁLCULO ESTRUCTURA	89
A2.1. Pandeo	89
A2.2. Flexión	
ANEXO 3. CATÁLOGO COMPONETES DEL TRANSPORTADOR	105
ANEXO 4. CATÁLOGO MOTORREDUCTOR	129
ANEXO 5. CATÁLOGO CHAVETAS	137
ANEXO 6. CATÁLOGO BARRA ALTURA	142

ANEXO 1. CÁLCULO TRANSMISIÓN

A1.1.Longitud y peso de la cadena

La cadena no está totalmente tensionada. En su recorrido presenta una comba en la parte inferior de la rueda de tracción, por tanto, no se puede determinar matemáticamente el recorrido de la misma mediante las ecuaciones convencionales.

Además, dos de los módulos presentan tramos de recorrido curvo, dificultando aún más su cálculo matemático.

En su defecto, se ha extraído la longitud de la cadena de los croquis realizados en SolidWorks, midiendo el perímetro del recorrido de cada transmisión.

Longitudes de cadena obtenidas de SolidWorks:

- Módulo 1: L_{C1} = 12251,38 mm

- Módulo 2: L_{C2} = 12411,96 mm

- Módulo 3: L_{C3} = 13681,81 mm

Módulo 4: L_{C4} = 7991,96 mm

El paso de la cadena es un dato que proporciona el catálogo, tiene un valor de p = 38,1 mm.

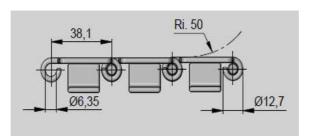


Fig. 67 Paso de la cadena

Sabiendo el paso de la cadena y dividiendo éste entre la longitud de cadena (L_C) de cada módulo, resulta el número de eslabones necesario para ensamblar la cadena.

$$N^{\underline{o}}_{\text{eslabones}} = \frac{L_{\text{C}}}{p} \tag{6}$$

El número de eslabones no es necesario para el cálculo del peso de la cadena debido a que en el catálogo proporcionan el valor del peso en Kg/m. Por tanto, es suficiente con conocer la longitud de la cadena. Se ha calculado de todas formas para conocer el número de piezas necesarias a comprar.

Se tiene el peso de la cadena P_c = 3,6 Kg/m.

La Tabla 5 recoge el peso total de la cadena en cada módulo.

Tabla 5. Longitud de cadena y el peso total de la cadena de cada módulo.

MÓDULO	Lc (mm)	Nºeslabones	Nº entero_eslabones	Pc(N)
Módulo 1	12251,38	321,56	322	432,67
Módulo 2	12411,96	325,77	326	438,34
Módulo 3	13681,81	359,10	360	483,19
Módulo 4	7991,96	209,76	210	282,24

A1.2 Peso de la botella

Se procede a calcular el peso de la botella de lejía. Al pasar por el circuito de transporte las botellas ya han pasado por el proceso de llenado por tanto se calculará el peso total teniendo en cuenta el peso del envase y peso de la lejía.

$$F_{P_botella} = F_{P_envase} + F_{P_lejía}$$
 (7)

La lejía comúnmente conocida, está formada por hipoclorito de sodio en disolución con agua cuyo densidad es $\rho_{lejía}$ = 1,11 g/cm³

$$m = \rho_{lejía} \cdot V \tag{8}$$

 $V = 5 L = 5000 cm^3$

 $m = 1,11 \cdot 5000 = 5550 g = 5,55 Kg$

$$F_{P_lej\acute{a}} = m \cdot g \tag{9}$$

F_{P leiía}= 54,423 N

CIRCUITO DE TRANSPORTE

Se conoce el material del envase de plástico, HDPE (Polietileno de Alta Densidad) y se tiene diseñada como pieza la botella de lejía en SolidWorks. Por tanto, mediante las propiedades físicas se puede saber la masa exacta del envase, siendo ésta:

Se obtiene el peso de cada botella en Newtons.

$$m_{botella}$$
= 5,703 Kg

A1.3 Peso que ejercen las botellas sobre la cadena

Ahora, se quiere conocer la cantidad de botellas que soportará cada módulo del transportador. Sabiendo la longitud total de cada módulo y la separación entre las botellas lo largo del transportador, se obtendrá la cantidad de botellas y con ello, el peso que ejercerán sobre la cadena de platillos.

La longitud de la transmisión de cada módulo está obtenida del croquis de la cadena realizado en SolidWorks.

La separación entre botellas se obtiene de la siguiente forma:

Cadencia

Las botellas que entran al circuito de transporte por el módulo 1, vienen del proceso de llenado, con una cadencia de C=40 botellas/min. La máquina formadora de bandejas necesita alimentarse a la misma cadencia para forma las bandejas.

El caso es que el módulo 4 hará la función de acumulador de botellas para que cuando éstas entren en la máquina formadora de bandejas lo hagan a una distancia mínima de separación entre botellas.

Velocidad

Por la otra parte, la velocidad lineal de la cadena está determinada por la máquina antecesora del proceso de llenado. Las botellas salen del proceso de la máquina embotelladora a una velocidad de v = 30,7 m/min. A lo largo del circuito las botellas se deberán desplazar a una velocidad igual o mayor que a lo largo del proceso anterior. Si por

el contrario, se desplazasen a una velocidad menor, se podrían producir colapsos y choques entre botellas.

Esta velocidad, v = 30,7 m/min es la que se quiere conseguir en todas las transmisiones, desde el módulo 1 hasta el módulo 4. Si no se pudiera alcanzar esa velocidad exacta, se establecerá la inmediatamente superior.

Distancia entre botellas

Para calcular el peso que soportará la cadena, debemos determinar primero el espacio entre botellas (s). Éste será el cociente entre la velocidad y la cadencia.

$$v = C \cdot s \tag{10}$$

$$s = \frac{30.7}{40} = 0.7675 \, m = 767.5 \, mm$$

De la ecuación (10) se obtiene que las botellas estarán dispuestas sobre la cadena a una distancia de 0,7675m (de centro a centro de su eje longitudinal). La distancia se separación real entra una botella y la siguiente es de 0,6155 m.

Fig. 68 Distancia entre botellas para el módulo 1, 2 y 3.

Esta distancia entre botellas (s), es la que tendrán las botellas que circulen por el módulo 1, módulo 2 y módulo 3.

En el caso del módulo 4, por el hecho de estar en acumulación, no existe distancia entre botellas y están en contacto.

Las botellas pasan del módulo 3 al módulo 4 mediante una transferencia frontal. Para alimentar la máquina embandejadora y que las botellas puedan ser manipuladas por las palas de manera óptima, es condición precisa que las botellas se dispongan en acumulación.

Fig. 69Botellas en acumulación a lo largo del módulo 4

Número de botellas

Dividiendo la longitud de cada módulo por la distancia a la que van separadas las botellas, resulta el número de botellas que tendrá que soportar la transmisión.

$$N_{\text{botellas}}^{o} = \frac{L_{\text{m\'odulo}}}{S_{\text{m\'odulo}}} \tag{11}$$

En la siguiente tabla se recoge el peso total que ejercen las botellas sobre cada módulo.

Tabla 6. Peso total que ejercen las botellas sobre la cadena

MÓDULO	LONGITUD (mm)	Nº BOTELLAS	FpB_i(N)
Módulo 1	5898,18	7,68	429,76
Módulo 2	5980	7,79	435,73
Módulo 3	5901,18	7,69	429,98
Módulo 4	3770	24	1342,15

Como queda reflejado en la tabla, debido a la acumulación a lo largo del último módulo, el peso que ejercen las botellas es notablemente mayor que en los demás módulos.

A1.4.Cálculo del motor reductor

Para el cálculo del motor partimos de un requisito principal que es la velocidad lineal de la cadena.

La velocidad lineal de la transmisión es de v = 30,7 m/min = 0,5166 m/s.

Velocidad angular

A partir de la velocidad lineal y del diámetro de paso de la cadena Dp= 129,26mm, obtenemos la velocidad angular de la rueda de tracción.

$$v = \omega \cdot \frac{\mathrm{Dp}}{2} \tag{12}$$

$$\omega = \frac{2 \cdot v}{Dp}$$
 = 7,916 rad/s = 75,60 rpm

Tal y como se ha explicado en el diseño de detalle, la rueda de tracción (o conductora) y la rueda de reenvío (o conducida) tienen el mismo número de dientes z=21.

Por lo que al tener el mismo diámetro de paso, ambas ruedas llevarán la misma velocidad angular.

 $\omega_{entrada} = \omega_{salida}$

La velocidad angular tanto de la rueda de tracción como de la rueda de reenvío es 74,821 rpm.

La relación de transmisión que se obtiene es:

$$i = \frac{\omega_{\text{salida}}}{\omega_{\text{entrada}}} = 1 \tag{13}$$

Potencia

El parámetro principal para dimensionar el motor es la potencia necesaria para poder transportar la carga a lo largo de la transmisión.

Existen un total cuatro transmisiones, por lo que habrá que dimensionar cuatro motores. Se numerarán los motores del uno al cuatro en función del módulo al que corresponden.

Para obtener la potencia, las cargas a considerar son el peso de las botellas y el peso de la cadena, siendo la masa de la cadena $m_c = 3.6 \text{ Kg/m}$.

La potencia se define como fuerza por velocidad.

$$P = F v$$
 (14)

Fuerza de rozamiento

Considerando que la fuerza la ejerce el peso de las botellas y de la cadena al deslizarse por las guías, está fuerza será la fuerza de rozamiento. Los cálculo se realizan con a fuerza de rozamiento estática donde μ_s es la constante de proporcionalidad que se denomina coeficiente estático de rozamiento.

Se debe a que la fuerza de rozamiento estática en mayor que la fuerza de rozamiento dinámica, o dicho de otra manera, $\mu_s \rightarrow \mu_k$ por lo que se realizan los cálculos para el momento justo en el que la cadena comienza a deslizar, es decir, la situación más desfavorable.

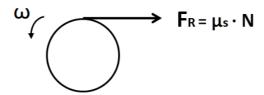


Fig. 70. Fuerza de rozamiento

Tal y como se refleja en la siguiente figura, en los módulos 1,2 y 3 la fuerza de rozamiento la provoca únicamente la cadena al deslizarse por las guías.

$$F_R = F_{R1} = \mu_{S_U} \cdot F_{PT} \longrightarrow F_{PT} = F_{PB} + F_{PC}$$

Fig. 71. Fuerza de rozamiento existente en la transmisión. Para los módulos 1, 2 y 3.

Donde:

 μ_{s_u} es el coeficiente de rozamiento entre cadenas y guías F_{PB} es la fuerza peso de las botellas F_{PC} es la fuerza peso de la cadena de platillos

En el caso del módulo 4, tiene un sistema de retención que obliga a las botellas a acumularse y permanecer fijas mientras la cadena sigue avanzando, esto provoca que exista una segunda fuerza de rozamiento en el mismo sentido que la primera. Esta fuerza se produce entre la base de las botellas y la cadena.

Por tanto existen dos fuerzas de rozamiento, una la que provoca el peso de las botellas y la cadena sobre las guías (F_{R1}) , y otra la que provoca la botella al estar retenida mientras la cadena sigue en movimiento (F_{R2}) . La situación más desfavorable sucede cuando el recorrido

de la cadena está todo ocupado por las botellas. Esto es un máximo de 24 botellas dispuestas.

$$F_{R} = F_{R1} + F_{R2}$$

$$F_{R1} = \mu_{S_U} \cdot F_{PT} \longrightarrow F_{PT} = F_{PB} + F_{PC}$$

$$F_{R2} = \mu_{S_H} \cdot F_{PT} \longrightarrow F_{PT} = F_{PB}$$

Fig. 72. Fuerzas de rozamiento existentes en la transmisión del módulo 4

Donde:

 μ_{s_u} es el coeficiente de rozamiento entre cadenas y guías μ_{s_H} es el coeficiente de rozamiento entre cadena y producto \mathbf{F}_{PB} es la fuerza peso de las botellas \mathbf{F}_{PC} es la fuerza peso de la cadena de platillos

Coeficiente de rozamiento

Se quiere conocer el coeficiente de rozamiento entre las guías y la cadena. Las guías, tal y como se ha explicado en el apartado 8. Diseño de detalle, están fabricadas de Polietileno de Ultra Alto Peso Molecular (UHMWPE), por sus siglas en inglés y también conocido como DESLIDUR. La cadena está fabricada en acero inoxidable.

En la Tabla 8 se encuentra el coeficiente de rozamiento estático del polietileno, UHMPE es tipo de polietileno que se caracteriza por una fricción baja, de todos modos, se acepta el coeficiente de rozamiento entre acero y polietileno $\mu_{S\ U}=0,15$.

Tabla 7. Coeficiente de rozamiento entre cadena y guías.

			Material	de las gui	ías
Mat. del platillo	Lubric.	Acero	Bronce	Nylon	Polietileno
Acero	En seco	0'45	0'45	0'30	0'15
	Lubricada	0'20	0'20	0'15	0'10
Acetato	En seco	0'25	0'25	0'20	0'10
	Lubricada	0'10	0'10	0'15	0'8

También es dato necesario el coeficiente de rozamiento entre las botellas y la cadena. El envase de las botellas es un tipo de material plástico, Polietileno de Alta Densidad (HDPE).

Tabla 8. Coeficientes de fricción entre cadena y producto.

		Mater	ial de los p	latillos
Producto transportado	Lubric.	Acero inox.	Acetal	Acetal baja fricción
Plástico o cartón	En seco	0'30	0'20	0'15
	Lubricada	0'15	-	-
Vidrio o cerámica	En seco	0'50	0'30	0'25
	Lubricada	0'25	0'20	0'15
Metálicos	En seco	0'45	0'30	0'25
	Lubricada	0'15	0'20	0'20

Se establece un coeficiente de fricción entre el HDPE y el acero tiene un valor de μ_S H = 0,25.

Fuerza, par y potencia necesaria

Sustituyendo la fuerza de rozamiento ($F_R = \mu_s N$) en la ecuación (14) se obtiene la potencia necesaria para accionar la rueda de tracción.

$$P_{N} = \mu_{s} N v$$
 (15)

Donde:

N es la fuerza normal

 $oldsymbol{v}$ es la velocidad lineal de la cadena.

Este es el valor de potencia que necesita ser transmitido a la rueda de tracción para mover la cadena de platillos. Pero debido a que la potencia de entrada a la transmisión difiere de la potencia de salida, la potencia del motor a dimensionar será mayor debido a las pérdidas de potencia por el rendimiento de los elementos de la transmisión.

Rendimiento estimado de la transmisión por cadena de platillos es η_C = 0.95

La potencia mínima que debe tener el motor a seleccionar considerando los rendimientos es la siguiente:

$$P_{\rm M} = \frac{P_{\rm N}}{n_{\rm C}} \tag{16}$$

Del apartado 1.1 de este mismo anexo, se tiene como dato el peso de cada cadena (F_{PC i}).

- Módulo 1: F_{PC 1} = 432,67 N

- Módulo 2: F_{PC 2} = 438,34 N

- Módulo 3: F_{PC 3} = 483,19 N

Módulo 4: F_{PC_4} = 282,24 N

Del apartado A1.3 Peso que ejercen las botellas sobre la cadena este anexo, se extrae el peso que ejercen las botellas sobre cada módulo (F_{PB i}).

- Módulo1:F_{PB 1}= 429,76N

- Módulo 2: F_{PB 2}= 435,73 N

- Módulo 3:F_{PB 3}= 429,98 N

Módulo 4: F_{PB 4}= 1342,15N

Conociendo la carga total que provocará que exista una fuerza de rozamiento a la que tiene que hacer frente el motor, se determina la potencia de cada módulo mediante la ecuación (12).

De la ecuación de equilibrio en el eje Y, se obtiene que la fuerza normal es igual al peso. $\Sigma F_y = 0$.

Ya es dato conocido el valor de los pesos que se ejercen sobre las guías, el peso de las botellas y el peso de la cadena. Por tanto, se conoce también el peso total.

Para el cálculo de las potencias, se ha tenido en cuenta que la velocidad del último módulo es diferente a las demás.

Obtenidos todos los datos, se realizan los cálculos para cada módulo. Se recogen en la siguiente tabla:

Tabla 9. Potencia del motor para cada módulo.

MÓDULO	F _{PT} (N)	Frt (N)	v (m/s)	Pn (W)	Pм(W)
Módulo 1	862,43	129,37	0,51	66,19	69,68
Módulo 2	874,07	131,11	0,51	67,08	70,62
Módulo 3	913,17	136,98	0,51	70,09	73,77
Módulo 4	1624,40	579,20	0,51	296,36	311,95

Par de salida del reductor:

$$M = F_{RT} \cdot \frac{D_P}{2} \tag{17}$$

$$M = \frac{P_M}{\omega} \tag{18}$$

Mediante la ecuación (17) se obtiene el par necesario sin tener en cuenta el rendimiento de la cadena. En la ecuación (18) se calcula el par de salida del reductor, ya habiendo considerado el rendimiento de la transmisión.

El par que como mínimo debe soportar el reductor para cada módulo se recoge en la siguiente tabla:

Tabla 10. Valores de par de cada transmisión

Motorreductor	Módulo 1	Módulo 2	Módulo 3	Módulo 4
FRT (N)	129,37	131,11	136,98	579,20
Mr (N·m)	8,36	8,47	8,85	37,43

A1.5 Selección del motorreductor

A partir de los datos obtenidos, se presenta el procedimiento para la elección del motorreductor.

La empresa IPLA, es cliente habitual de Motores Nord, fabrican una amplia gama de productos incluyendo motorreductores, motores, reductores industriales, variadores de frecuencia y arrancadores. Debido a que ofrecen una gran variedad de alternativas para diferentes aplicaciones, se pretende encontrar la solución a lo largo de su catálogo.

Se intenta encontrar un motorreductor de tipo sinfín debido a que es el tipo más sencillo y económico. Se compone corona dentada que está en contacto permanente con un husillo en

forma de tornillo sin-fin. Cada vuelta del tornillo sinfín provoca el avance de un diente de la corona y en consecuencia, la reducción de velocidad en la salida.

Si fuera posible, se intentará seleccionar el mismo motorreductor para las cuatro transmisiones. Existen diferentes valores de potencia necesaria para cada transmisión, pero se perseguirá la elección de un mismo modelo por el simple hecho de tener un solo modelo en el stock.

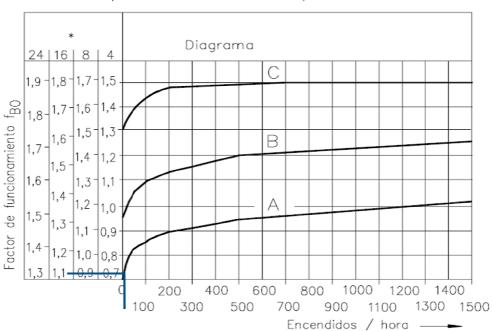
Para la selección del reductor se indica la potencia nominal del motor (P_1) , el par de salida del reductor (M_2) , la velocidad de salida (n_2) y los factores de servicio (f_B) resultantes para la combinación de reductores de sinfín UNIVERSAL con motores normalizados de corriente alterna de 4 polos.

Factores de servicio

El factor de servicio f_B indica la seguridad del reductor a la potencia instalada indicada. Cada aplicación soporta cargas específicas debidas a golpes, arranques, funcionamiento intermitente y temperaturas elevadas y exige por ello un factor de funcionamiento f_{Bmin} para garantizar un funcionamiento fiable.

A la hora de elegir el reductor en las listas de selección, se confirmará que el accionamiento elegido tendrá un factor de servicio f_B igual o mayor que el factor de servicio mínimo $f_{Bmin.}$

El factor de servicio mínimo f_{Bmin} necesario se calcula del siguiente modo:


$$f_{Bmin} = f_{B0} \cdot f_{B1} \cdot f_{B2} \tag{19}$$

El factor de servicio f_{B0} tiene en cuenta el tipo de carga A, B o C, la frecuencia de arranques y el tiempo diario de marcha.

- Se considera que la máquina diseñada corresponde al tipo de sobrecarga A, ya que se incluiría dentro de la familia de las cintas transportadoras ligeras.
- El flujo de transporte es continuo, ya que debe responder a la cadencia de la máquina embotelladora. El último módulo está diseñado para presenta acumulación a lo largo de su recorrido y es posible que se llegue acumular un exceso de botellas y por ello se deben producir paradas para que la acumulación no llegue a la transmisión anterior. Por supuesto, cada parada requiere su posterior arranque. Se estiman un máximo de 5 encendidos/hora.
- El transportador está diseñado para trabajar durante dos turnos al día, es decir, 16 horas.

Con estos datos se entra en la siguiente tabla y se obtiene un f_{B0} = 1,1.

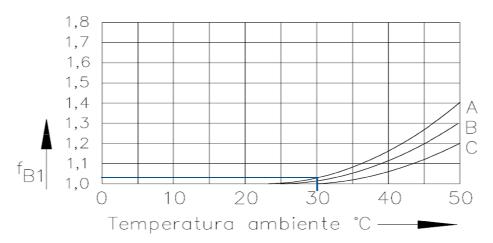
* Tiempo de funcionamiento horas / día

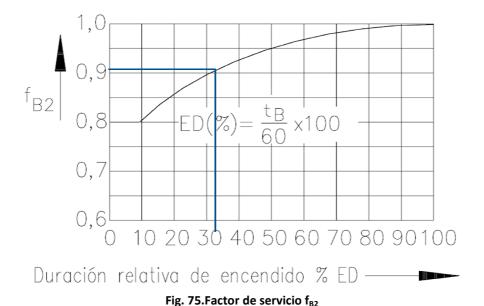
Fig. 73. Factor de servicio f_{B0}

El factor de servicio f_{B1} tiene en cuenta los cambios de temperatura del ambiente.

El circuito de transporte está diseñado para una empresa de la provincia de Castellón, se estima que la máxima diferencia de temperaturas entre verano e invierno es 30 ºC.

Entrando a la gráfica con este valor y siendo una máquina de tipo de sobrecarga A, se obtiene un $f_{B1} = 1,04$.




Fig. 74. Factor de servicio f_{B1}

El factor de servicio f_{B2} tiene en cuenta el funcionamiento intermitente.

Para averiguar la duración relativa de encendido, primero hay que establecer el tiempo de parada por hora. Habiendo estimado que se producen un máximo de 5 encendidos/hora, se estima que el tiempo de parada por hora será un máximo de t_B = 20 min/hora.

Con este valor de t_B se obtiene que la duración relativa de encendido es ED (%) = 33,33%.

La grafica, para este valor de ED, establece un factor de servicio $f_{\rm B2}$ =0,91.

Habiendo calculado todos los factores de servicio, de la ecuación (19) se obtiene que el factor de servicio mínimo es el siguiente:

$$f_{Bmin} = 1.1 \cdot 1.04 \cdot 0.91 = 1.041$$

Los datos de partida para la búsqueda y selección del motor son:

	Mr (Nm)	Рм (KW)	ω _{min} (rpm)	f Bmin
Módulo 1	8,36	0,070	75,40	1,04
Módulo 2	8,47	0,071	75,40	1,04
Módulo 3	8,85	0,074	75,40	1,04
Módulo 4	37,43	0,312	75,40	1,04

En un principio, se pretendía comprar los cuatro motores iguales para que en la impresa a instalar la máquina, solo fuera necesario tener un motor en stock. Pero debido a la diferencia de potencia y par, el motor a seleccionar para los módulos 1,2 y 3 será de menor potencia. Si se instalase un motor de alta potencia para que cumpliese para todos los módulos, existiría una gran pérdida de potencia. No conviene.

Para los módulo 1, 2 y 3 se selecciona un motorreductor sinfín de la marca MotorNord de potencia nominal 0,18 kW que cumple con las condiciones de par, velocidad angular y factor de servicio. El motor seleccionado tiene las siguientes características. (Anexo 4).

SK 1 SI 40 – IEC63 - 63L/4						
P_1 [kW] n_2 [rpm] M_2 [Nm] i f_E						
0,18	82	15	20	3		

Para el módulo 4, se selecciona un motorreductor sinfín también de la marca MotorNord con una potencial nominal de 0,55 Kw con las siguientes características.

SK 1 SI 50 – IEC80 - 80S/4						
P ₁ [kW]	n ₂ [rpm]	M ₂ [Nm]	i	f _B		
0,55	84	47	20	1,7		

A1.6 Comprobación de los rodamientos

El rodamiento seleccionado del catálogo de AVE Chains, pertenece al grupo de rozamientos UCF, en la tabla siguiente, extraída del Anexo 3, se muestra la fuerza máxima que puede soportar un rodamiento en las diferentes direcciones de aplicación.

Tipo / Type / Typ: UCF Tipo / Type / Typ: UCL-UFL Test Punto Rotura / Breaking Point Test Ø20 Ø25 Ø30 Ø35 Ø40 Ø20 Ø25 Ø30 Ø35 Ø40 19100 16450 16900 17350 15950 11750 11375 10250 12150 17700 18500 19250 11000 13850 13350 13950 14050 15150 3650 3350 3350 3520 8500 11100 14200 14900 Valores en Newtons / Informations Values in Newtons Valores en Newtons / Informations Values in Newtons

Tabla 11 Carga máxima según el tipo de rodamiento

Se va a estudiar la fuerza máxima a la que están sometidos dos pares de rodamientos.

Par de rodamientos 1

El primer par de rodamiento es el que está ubicado en el eje motor del módulo 4, donde aparte de considerar la fuerza de rozamiento entre cadena y guías, se considerará también la fuerza de rozamiento que existe entre las botellas y la cadena.

Esta última fuerza de rozamiento se debe a que existe un tope para mantener las botellas en acumulación y éste provoca la retención de las botellas mientras la cadena sigue en marcha.

Las fuerzas de rozamiento se extraen del Anexo 1 del apartado A1.4.Cálculo del motor reductor.

Dónde para el primer par de rodamientos se tiene una fuerza de rozamiento total de F_{R4} = 579,20 N.

Como se puede observar en la Fig. 72, esta fuerza de rozamiento total es la suma de la fuerza de rozamiento entre la cadena y la guía y la fuerza de rozamiento entre la cadena y el producto.

En la Fig.76, se muestran las fuerzas que actúan sobre el eje, la fuerza de rozamiento se encuentra en el centro de la rueda de tracción y ésta a su vez, se encuentra en el centro de la distancia entre los dos rodamientos.

Con este apunte, no es necesario realizar $\sum M_O = 0$. Sabiendo que ambos rodamientos están situados a una distancia L_1 , se puede establecer que la fuerza de reacción existente en cada rodamiento tendrá un valor de $\frac{F_{R4}}{2}$.

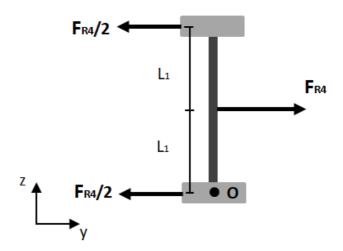


Fig. 76. Esquema simplificado del eje motor del módulo 4

$$\frac{F_{R4}}{2}$$
 = 289,60 N

De la **¡Error! No se encuentra el origen de la referencia.** se extrae para el tipo de rodamiento UCF, P = 13000N.

Por lo que 289,60 < 13000. El rodamiento soportará la fuerza de rozamiento existente.

Par de rodamientos 2

El segundo rodamiento a estudiar es el situado en los ejes de las transferencias laterales, donde un rodamiento está situado a una distancia mayor de la rueda de tracción.

Todos los ejes de transferencia tiene el mismo diseño, por lo que se escoge, el módulo 2, el cual presenta una fuerza de rozamiento ligeramente mayor que el módulo 1. Los dos módulos donde existen transferencias laterales.

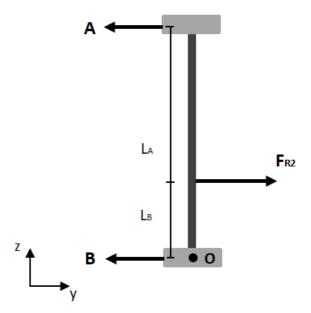


Fig. 77. Esquema simplificado de eje motor del módulo 2

Dónde el valor de F_{R2}= 131,11 N

Realizando el sumatorio de fuerzas en el eje Y, $\sum F_y = 0$, se obtiene la primera ecuación:

$$F_{R2} = A + B \tag{20}$$

Realizando el sumatorio de momentos en O, \sum $M_{O}=0$, se obtiene la segunda ecuación:

$$F_{R2} \cdot L_B = A \cdot (L_A + L_B) \tag{21}$$

Donde:

Sustituyendo en la ecuación (21), se obtiene A = 34,527 N.

Y sustituyendo en la ecuación (20), se obtiene B = 96,582 N.

Ambos rodamientos estarán sometidos cargas menores de P=13000 N.

ANEXO 2. CÁLCULO ESTRUCTURA

Todos los módulos del transportador están sujetos mediante patas, las cuales se componen de varios elementos ensamblados.

El elemento principal de las barras que permite elevar el transportador a una cierta altura, es una barra de acero inoxidable AISI 304, de sección redonda y hueca. Esta barra tiene una tensión elástica que no debe superarse nunca para que la barra...

Todas las patas de todos los módulos se componen de los mismos elementos. Como ya se ha explicado, el último módulo (módulo 4) es el que mayor carga tendrá que soportar debido a que a lo largo de su longitud las botellas se disponen en acumulación. Por tanto el módulo más desfavorable será el módulo 4.

El módulo 4 está levantado por tres patas. La pata que mayor esfuerzo axial tendrá que soportar será la del centro debido a que existe una luz mayor entre patas.

En cambio, la pata que estará sometido a una mayor flexión será la pata del motor, debido a que está situada en un extremo y solo tiene momentos flectores por un lado. Al existir solo momentos flectores por un ala, éstos no pueden compensarse y provoca un elevado momento flector, perjudicial para la barra.

A2.1 Pandeo

Se realiza la comprobación a pandeo para la pata central del módulo 4 ya que se considera la más desfavorable debido a la disposición de las botellas en acumulación. Como se puede observar en la Fig. 78, la pata central es la que debe soportar mayor fuerza axil debido a que la luz que existe entre la pata central y sus anexas es considerablemente mayor.

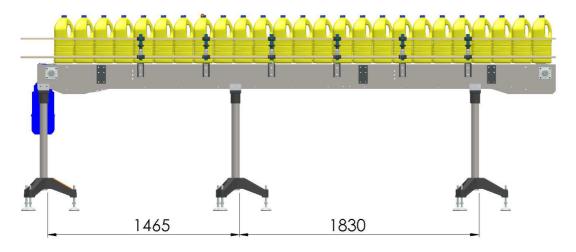


Fig. 78. Distancia entre patas en el módulo 4.

Se calcula el peso de la estructura de la máquina para posteriormente calcular su densidad lineal. Con la ayuda del catálogo de las piezas comerciales, se averigua el peso de cada componente. Para las piezas que son diseños propios, se averigua la masa de estas piezas mediante el SolidWorks, una vez añadido el material correspondiente.

Para el cálculo de la masa total se ha desestimado el peso del eje motor y el peso del eje reductor, debido a que están situados fuera de la luz que afecta a la pata central. Y en todo caso, si afectara, se calcularía como una masa puntual.

La masa total del módulo 4 se recoge en la siguiente tabla:

Tabla 12. Masa de cada componente del módulo 4.

	MÓC			
NOMBRE	CÓDIGO	MASAunitaria [kg]	UNIDADES	MASATOTAL [Kg]
Cadena platillos	SSS881-O-450 TAB	3,6 Kg/m	L= 7,991 m	28,771
Soporte barandilla	8162467	0,33	12	3,960
Distanciador soporte	8190810	0,06	12	0,720
Eje soporte	8220339	0,09	12	1,080
Brida perfil cónico	8210169	0,06	24	1,440
Distanciado bridas	DIS_BRID	0,0323	12	0,388
Soporte barra altura	SBA_GEN	1,683	3	5,049
Pletina unión módulos	PUM_GEN	0,226	6	1,356
Perfil guía	P30275	0,12 Kg/m	L = 11,96 m	1,435
Patín reenvío	8025105	0,07	2	0,140
Perfil retorno	P20240	0,1 Kg/m	L = 6,2 m	0,650
Soporte perfil retorno	8025601	0,04	13	0,52
Unión chapa perfil retorno	1485540	0,03	22	0,660
Unión perfil retorno	8025601	0,04	11	0,440
Perfil barandilla	P20350	0,21 Kg/m	L = 15,80 m	3,318
Guía barandilla	CSS 30005	0,67 Kg/m	L= 15,80 m	10,586
Chapa cabezal 490	CCARR490	2,476	2	4,952
Chapa cabezal 490 sim	CCARR490S	2,476	2	4,952
Chapa revestimiento 980	CRR980S	4,83	1	4,830
Chapa revestimiento 980 sim	CRR980	4,83	1	4,830
Chapa revestimiento 2000	CRR2000	9,869	2	19,738
Chapa revestimiento 2000 sim	CRR2000S	9,869	2	19,738
		MASA TOT	AL [Kg]	119,553

La longitud total que abarca la pata central es la siguiente:

$$L_3 = \frac{L_1}{2} + \frac{L_2}{2} \tag{22}$$

Donde L_1 es la luz que existe entre la pata central y la pata de su izquierda y L_2 es la luz entre la pata central y la de su derecha.

$$L_3 = \frac{1,465}{2} + \frac{1,83}{2} = 1,647 \text{ m}$$

La longitud total del módulo 4 es L_{módulo 4}=3,77 m

Sabiendo la masa total de la máquina y la longitud total, se determina la densidad de carga lineal de los componentes del transportador (q_1).

$$q_1 = \frac{m_{\text{máq}}}{L_{\text{módulo 4}}} \tag{23}$$

 $q_1 = 31,71 \text{ Kg/m}$

Para determinar la masa de las botellas en acumulación se tiene como dato el ancho de la botella a_b = 0,152 m. Mediante la ecuación (24) se averigua el número de botellas que irán lo largo del la longitud total del módulo 4.

$$N_{\text{botellas}}^{\circ} = \frac{L_{\text{m\'odulo 4}}}{a_{\text{b}}}$$
 (24)

El número de botellas obtenido es $N^o_{botellas}$ = 24,8 y sabiendo que cada botella tiene una masa de $m_{botella}$ = 5,703 Kg, la masa total de las botellas será $m_{botella}$ = 141,44 Kg.

Se tienen los datos necesarios para definir la densidad de carga lineal provocada por las botellas de lejía (q_2) .

$$q_2 = \frac{m_{\text{botella_T}}}{L_{\text{m\'odulo 4}}} \tag{25}$$

 $q_2 = 37,51 \text{ Kg/m}.$

En la Fig. 79 se representan las dos cargas distribuidas a lo largo de L₃.

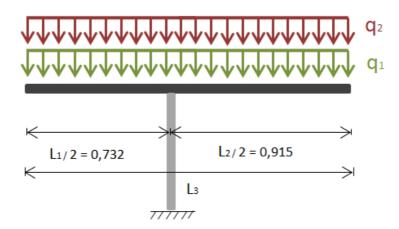


Fig. 79. Cargas distribuidas que soporta la pata central.

La fuerza puntual resultante de q_1 y q_2 se calcula multiplicando la densidad de carga por la longitud del tramo en el que está aplicada la carga.

$$Q_X = q_x \cdot L_X \tag{26}$$

$$Q_1 = q_1 \cdot L_3 = 52,226 \text{ Kg}$$

 $Q_2 = q_2 \cdot L_3 = 61,779 \text{ Kg}$

Como se muestra en la ambas cargas están aplicadas en $\frac{L_3}{2}$.

La distancia al centro de la pata resulta de: $\frac{L_2}{2} - \frac{L_3}{2} = 0,092 \text{ m}.$

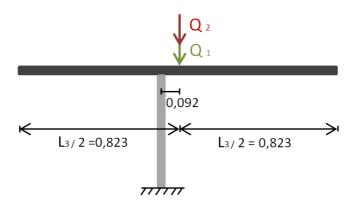


Fig. 80. Cargas puntuales que soporta la pata central.

Se quieren desplazar las cargas puntuales al centro de la pata, al desplazar la carga puntual se obtiene la misma carga y el momento que provoca ésta. Para este apartado de pandeo no

es de interés el momento que provoca debido a que solo se quiere valor el esfuerzo axil que soportará la barra.

Por tanto, la masa total que deberá soportar será $Q_T = Q_1 + Q_2 = 114,005$ Kg. $Q_T = 1118,389$ N

Con la nomenclatura de pandeo; N_{Rd} = 1118, 389 N

La condición necesaria y suficiente para que la barra cumpla a pandeo es:

$$\frac{N_{Rd}}{N_{b,Rd}} < 1 \tag{27}$$

Para averiguar el valor de $N_{b,Rd}$ se comienza por calcular la longitud de pandeo de la barra. Se trata de una barra biempotrada con L = 0,6672 m.

La longitud equivalente de pandeo se define como L_e = $\beta \cdot L$. Para un barra empotrada-empotrada, β = 0,5.

$$L_e = 0.333 \text{ m}$$

La fórmula de pandeo de Euler generalizada es:

$$N_{cri} = \frac{\pi^2 \cdot E \cdot I_y}{L_e^2}$$
 (28)

Donde:

E es el módulo de Young del material. (Pa) I_y es el momento de inercia en el eje y. (m⁴) L_ees la longitud de pandeo. (m)

El modulo de Young se ha extraído de la donde se encuentras las propiedades mecánicas del acero AISI 304, material de diseño de la barra a calcular.

Tabla 13. Propiedades mecánicas del acero AISI 304.

Módulo de	Límite	Tensión de	Alargamiento	Reducción de área	Módulo de
Young	elástico	rotura	%	%	Poisson
2 · 10 ¹¹ Pa	200 MPa	512 MPa	45	80	0.26

La sección de la barra es redonda y hueca, donde el momento de inercia en el eje Y es el mismo que en el eje Z.

Fig. 81. Diámetro interior y exterior barra.

Al tratarse de una barra de sección redonda, se realiza solo la comprobación a pandeo en un eje, ya que el momento de inercia en ambos ejes es el mismo.

El momento de inercia de esta sección es:

$$I_{y} = \frac{1}{4}\pi R^{4} - \frac{1}{4}\pi r^{4}$$
 (29)

Donde:

R es el radio exterior **r** es la radio interior

Con los siguientes datos se sustituye en la ecuación (28):

$$I_y = 4,531 \times 10^{-4} \text{ m}^4$$

 $L_e = 0,333 \text{ m}$
 $E = 2 \times 10^{11} \text{ Pa}$

Se obtiene una carga crítica $N_{cri} = 806,557 \times 10^7 N$

La esbeltez reducida se define como $\bar{\lambda}$. Cuanto más esbelto sea un elemento, mayor será la reducción de su resistencia debida al probable efecto de pandeo sobre el mismo.

$$\bar{\lambda} = \sqrt{\frac{A \cdot f_y}{N_{cri}}} \tag{30}$$

Donde:

 ${\bf A}$ es el área de la sección transversal de la barra ${\bf f}_y$ es el límite elástico del material que compone la barra ${\bf N}_{cri}$ es la carga crítica de pandeo

El área de la sección es:

$$A = \pi R^2 - \pi r^2 \tag{31}$$

 $A = 1.815 \times 10^{-3} \text{ m}^2$

$$f_y = 200 \text{ x} 10^6 \text{ Pa}$$

Con todos los datos, sustituyendo en la ecuación (30) se obtiene $\overline{\lambda}=6{,}709~{\rm x}~10^{-3}$.

Se entra en la siguiente tabla conociendo el perfil de la barra y el material, que es un acero AISI 304.

S235 a S355 Tipo de acero Tipo de sección Eje de pandeo (1) Perfiles laminados en I h/b > 1,2 $t \le 40 \text{ mm}$ 40 mm < t ≤ 100 mm t > 100 mm $t \le 40 \text{ mm}$ t > 40 mm Agrupación de perfiles laminados soldados Tubos de chapa simples o agrupados laminados en caliente Perfiles armados en cajón (2) soldadura gruesa: a/t > 0,5 b/t < 30 h

Tabla 14. Curva de pandeo según la sección transversal.

Si la esbeltez reducida $\overline{\lambda} < 2$, no es necesario hallar la curva de pandeo y su correspondiente coeficiente de imperfección (α). Como indica la Fig. 82 se puede realizar una aproximación y establecer el coeficiente de pandeo X=1.

$$\chi = \begin{cases} \frac{1 \, si \, \bar{\lambda} < 0.2}{1} \\ \frac{1}{\phi + \sqrt{\phi^2 - \bar{\lambda}^2}} si \, \bar{\lambda} \ge 0.2 \end{cases}$$

Fig. 82. Coeficiente de pandeo.

Una vez conocido el coeficiente de pandeo X, se puede determinar la resistencia de cálculo a pandeo de la barra, para posteriormente comprobar si cumple.

$$N_{b,Rd} = X \cdot A \cdot f_{vd} \tag{32}$$

Donde X y A son valores conocidos y f_{yd} es la resistencia de diseño del acero y es igual a su límite elástico minorado por el coeficiente γ_{M1} .

$$f_{yd} = \frac{f_y}{\gamma_{M1}} \tag{33}$$

Donde:

$$f_y = 200 \text{ x} 10^6 \text{ Pa}$$

 $\gamma_{M1} = 1.05$

Con ello, la resistencia de diseño es:

$$f_{vd} = 190,476 \times 10^6 \text{ Pa}$$

De la ecuación (32) se obtiene que $N_{b,Rd} = 345714,28 \text{ N}$

$$N_{Rd} \ll N_{b,Rd}$$

Como era de esperar, debido a la pequeña longitud de pandeo, la barra soportará con creces el axil al que está sometido.

A2.2 Flexión

Se produce el fenómeno de flexión en la barra que da altura al transportador debido al momento flector que se provoca ya que la esfuerza axil no está concentrada en el eje longitudinal de la barra.

Las barras están sometidas al esfuerzo axil que provoca la propia estructura del transportador y al esfuerzo que provocan las botellas de lejía a lo largo de todo el recorrido. A parte de este esfuerzo axil, las barras pueden estar sometidas a flexión si los momentos flectores no se compensan y el momento total resultante es considerable.

El último módulo del transportador, como ya se ha comentado, es el que más peso reúne debido a la disposición de las botellas en acumulación. Es por ello que los momentos flectores provocados pueden llegar a ser más grandes.

En concreto, la última pata del transportador que está situada en el extremo del módulo es considerada la más desfavorable. Se debe a que al estar situada en el extremo, los momentos flectores provocados en sentido horario por el final del tramo, no pueden ser compensados por el otro lado. En la Fig. 78 se puede observar la pata referida en este párrafo, es la situada debajo del motor.

Al actuar un esfuerzo normal y momento flector sobre la barra, ésta está sometida a flexión compuesta.

Se dice que existe flexión compuesta normal cuando la línea de fuerza es coincidente con el eje de simetría de la sección. La línea de fuerza es la línea que une el punto donde está aplicada la fuerza con el punto en proyección del centro de gravedad de la barra.

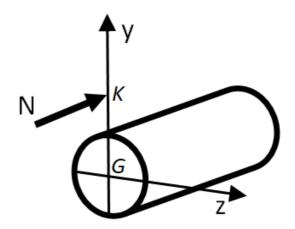


Fig. 83. Línea de fuerza. Flexión compuesta normal.

Navier Stokes formula la siguiente ley para la flexión compuesta:

$$\sigma_{\rm nx}(x,y,z) = \frac{N(x)}{A(x)} - \frac{M_z(x)}{I_z(x)}y + \frac{M_y(x)}{I_v(x)}z < f_{\rm yd}$$
(34)

Por tanto el esfuerzo de flexión compuesta será la suma del esfuerzo axil más el esfuerzo de flexión simple.

$$\sigma_{\text{F.C.}} = \sigma_{\text{A}} + \sigma_{\text{F.S.}} \tag{35}$$

Se desprecia el momento flector en el eje Y debido a que las patas están situadas en el centro del eje longitudinal de la estructura, y al ser una estructura completamente simétrica los momentos flectores provocados en ese eje se compensan en su totalidad.

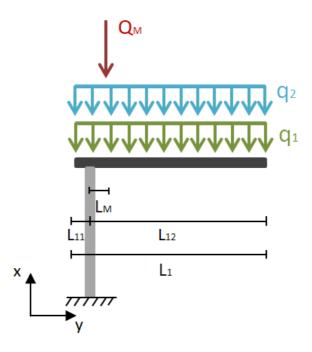


Fig. 84. Representación gráfica de las cargas que provocan flexión.

En la figura superior se puede observar una representación simplificada de las fuerzas que provocan flexión en la barra.

q₂ es la densidad lineal de las botellas dispuestas a lo largo del transportador.

q₁es la densidad lineal de todos los componentes que conforman el transportador.

 $\mathbf{Q}_{\mathbf{M}}$ es la fuerza que provoca el eje motor que se ha considerado como fuerza puntual, el eje motor, está separado del centro de la barra a una distancia $\mathbf{L}_{\mathbf{M}}$.

L₁₂ es igual a la luz existente entre la pata anexa y la pata a estudiar dividido entre dos.

 L_{11} es la longitud del tramo del transportador del lado izquierdo y $L_1 = L_{12} + L_{12}$.

Una vez establecido que se desprecia el momento flector existente en el eje Z, la ley de Navier resulta:

$$\sigma_{\rm nx}(x,y) = \frac{N(x)}{A(x)} - \frac{M_{\rm Z}(x)}{I_{\rm Z}(x)}y < f_{\rm yd}$$
 (36)

Donde:

- **N** (x) es la suma de las cargas axiles aplicadas.
- A(x) es el área de la sección transversal del cilindro hueco.
- M_z (x) es el momento en el eje z resultante de las cargas aplicas.
- I_z (x) es el momento de inercia en el eje Z.
- f_{yd} es la resistencia de diseño del acero y es igual a su límite elástico minorado por el coeficiente γ_{M1} .
- y es la distancia máxima desde el centro del cilindro debido a que el valor de la tensión máxima se localiza en la periferia. Por tanto z será igual al radio exterior del cilindro (R).

Los valores de las densidades lineales son:

$$q_1$$
= 29,160 Kg/m = 286,063 N/m q_2 = 37,518 Kg/m = 368,068 N/m

Debido a que las fuerzas están aplicadas a lo largo de la misma longitud, se suman para conseguir una única densidad lineal.

$$q_1 + q_2 = 654,131 \text{ N/m}$$

$$\frac{L_1}{2} = 0,7325 \text{ m}$$

La carga puntual de estas cargas distribuidas se sitúa en L₁/2 siendo:

$$Q_1 + Q_2 = \frac{(q_1 + q_2) \cdot L_1}{2}$$
 (37)

$$Q_1 + Q_2 = 239,575 \text{ N}$$

El peso provoca el conjunto del eje motor se recoge en la siguiente tabla:

Tabla 15. Peso de cada componente que conforma el eje motor.

PESO EJE MOTOR					
MOTOR	IEC 8080 S/4	9	1	9,000	88,290
REDUCTOR	SK 1 SI 50	4,1	1	4,100	40,221
Rodamiento	312125MTSS	0,7	2	1,400	13,734
Eje motor transferencia	D06133940	1,771	1	1,771	17,374
Rueda tracción	6321258	0,37	1	0,370	3,630
				16,641	163,248
				Masa T [Kg]	Peso T [N]

Debido a la excentricidad de la carga, al trasladar ésta al eje longitudinal de la barra, provoca un momento flector. Es decir una carga excéntrica al trasladarse, equivale a la misma carga más un momento flector igual a la carga por la distancia a la que se ha trasladado.

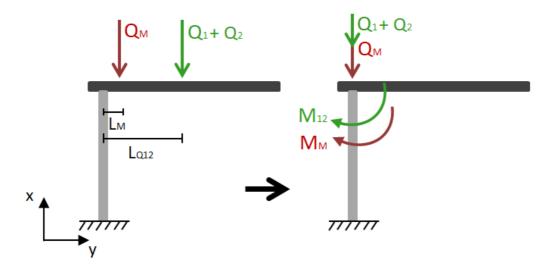


Fig. 85. Representación simplificada. Excentricidad de cargas.

$$L_{Q12} = \frac{L_1}{2} - L_{11} = 0,687m$$

$$Q_1 + Q_2 = 239,575 \text{ N}$$

$$M_{12} = (Q_1 + Q_2) \cdot L_{Q12} = 164,588 \text{ Nm}$$

$$\begin{array}{c} L_{M} = 0.06 \text{ m} \\ Q_{M} = 163.284 \text{ N} \end{array} \hspace{0.5cm} M_{M} = Q_{M} \cdot L_{M} = 9.797 \text{ Nm}$$

$$\overline{\mathrm{M}_{\mathrm{M}}} = -9,797 \, \mathrm{\bar{k}} \, \mathrm{Nm}$$

$$\overline{\mathrm{M}_{12}} = -164,588\,\mathrm{\bar{k}}\,\mathrm{Nm}$$

$$\overline{\mathrm{M_T}} = -174,385 \, \mathrm{\bar{k}} \, \mathrm{Nm}$$

El momento flector resultante tiene sentido horario.

Se conoce el momento resultante y la fuerza axil. Por otra parte, el área de la sección trasversal, se obtiene de la ecuación (31) del apartado de pandeo de este mismo anexo siendo $A=1.815\,\mathrm{x}10^{-3}\,\mathrm{m}^2$.

El momento de inercia también es conocido y se extrae de la ecuación (29) y tiene un valor de $I_v=4,531 \times 10^{-4} \ m^4.$

La distancia y que multiplica al momento flector del eje z, es igual al radio exterior del cilindro, y= 0,0603 m.

Con todos los datos, se sustituye en la ecuación (30) para obtener el valor de la flexión compuesta.

$$\sigma_{nx}(x,y) = 155089,489 \text{ Pa}$$

Para que no se produzca el fenómeno de torsión, el valor de $\sigma_{nx}(x,y)$ tiene que ser menor que la resistencia de diseño del acero AISI 304, material de diseño de la barra.

$$f_{yd} = \frac{f_y}{\gamma_{M1}} = 190,476 \text{ x} 10^6 \text{ Pa}$$

Se puede afirmar que la barra cumple la condición de Navier Stokes para que no se produzca flexión compuesta.

$$f_{vd} >> \sigma_{nx}(x,y)$$

Abreviaturas Abbreviations Abréviations Abkürzungen

XXVII

Índice códigos Code index Index code **Inhalt Code**

XXVIII - XXXV

ÍNDICE FOTOGRÁFICO PHOTOGRAPHIC INDEX **INDEX PHOTOGRAPHIQUE FOTOGRAFISCHES REGISTER**

> Pies **Feets Pieds Füsse**

> > IV

Componentes Conveyor Composants Bauteile

IV - IX

Cadenas **Chains Chaines** Ketten

X - XX

Curvas Curves **Courbes** Kurven

XXI

Ruedas **Sprockets** Roues Kettenräder

XXII - XXIII

Perfiles Profiles **Profils Profile**

XXIV - XXVI

Rodamientos Bearings Paliers Flanschlager

XXVII

Aluminio **Aluminium Aluminium Aluminium**

XXVIII

Otros productos Other products **Autres produits** Andere Produkte

XXIX

Pies y elementos de soporte / Feets / Pieds / Füsse

Componentes / Conveyor / Composants / Bauteile

Cadenas / Chains / Chaines / Ketten

C1 - C77

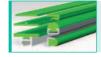
Curvas / Curves / Courbes / Kurven

C78 - C91

A1 - A32

B1 - B102

Ruedas / Sprockets / Roues / Kettenräder


C92 - C129

n

J

ш

a

Perfiles / Profiles / Profile

D1 - D29

Rodamientos / Bearings / Paliers / Flanschlager

E1 - E15

Aluminio / Aluminium / Aluminium / Aluminium

F1-F29

Otros productos / Other products / **Autres produits / Andere Produkte**

G1 - G5

Información técnica / Technical information / **Informations techniques / Technische Informationen**

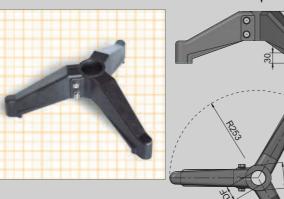
T1 - T12

ABRÉVIATIONS / ABKÜRZUNGEN

AV: A	Aluminio anodizado Antivibración	Anodized aluminium	Aluminium anodisé	
AW:	Antivibración	, a	Aluminium anouise	Eloxiertes aluminium
		Antivibration	Antivibration	Schwingungsdämpfend
BI ·	Acetal blanco	White Acetal	Acétal blanc	Acetal, weiß
	Acetal azul	Blue Acetal	Acétal bleu	Acetal, blau
	Código	Code	Code	Code
	Acetal gris	Grey Acetal	Acétal gris	Standard Azetal, grau
	Diámetro exterior	Outside diameter	Diamètre extérieur	Kopfkreis-Durchmesser
	Diámetro taladro	Pilot Bore	Diamètre d'axe	Bohrungsdurchmesser
	Diámetro primitivo	Primitive diameter	Diamètre primitif	Teilkreis-Durchmesser
	Diámetro varilla	Round Profile diameter	Diamètre	Stangen Durchmesser
. – .	Fuerza deslizamiento	Sliding load	Effort de glissement max.	Ausziehkraft
	Fuerza máxima	Max. load resistance	Résistance de charge max.	Max. zulässige Belastung
	Fuerza trabajo	Max. advisable working load	Charge active max. de travail.	Ausziehkraft
	Pulgadas	Inches	Pources	Zoll
	Ancho platillo Kilogramos por metro	Plate width	Largeur de la palette Kilos par mètre	Plattenbreite
	Kilogramos por unidad	Kilograms per meter Kilograms per unit	Kilos unité	Kilogramm pro Meter
Kg: k KV: k	Kilogramos por unidad Kevlar [®]	Kevlar [®]	Kevlar [®]	Kilogramm pro Stück Kevlar [®]
	Longitud	Length	Longueur	Länge
	Acetal marrón	Brown Acetal	Acetal brun	Acetal braun
	Longitud rosca	Thread length	Longueur filetée	Gewindelänge
	Longitud total	Total length	Longueur totale	Gesamtlänge
	Rosca Métrica	Metrical thread	Filetage métrique	Gewindedurchmesser
	Milímetros	Millimeter	Millimètres	Millimeter
_	Paso	Pitch	Pas	Teilung
	Poliamida	Polyamide	Polyamide	Polyamid
PBT: F	Poliéster	Polyester	Polyester	Polyester
PE: F	Polietileno	Polyethylene	Polyéthylène	Polyäthylen
PP+FV: F	Polipropileno + FV	Polypropylene + FV	Polypropylène + FV	Polypropylen + Glasfaser
	PP especial	Special PP	PP spécial	PP besonderes
MAT:	Material	Material	Matèriel	Material
	Latón Niquelado	Nickel Plated Brass	Laiton nickelé	Vernickelter Messing
	Sentido de giro inverso	Back bend radius	Sens de courbure inverse	Negativer Umlenkradius
	Radio mínimo de curvatura	Min. curve radius	Rayon de courbure minimal	Mindesrkurvenradius
	Sentido de la marcha	Running direction	Sens de marche	Laufrichtung
	Acero	Steel	Acier	Stahl
	Acero Inox.	Stainless Steel.	Acier Inox.	Edelstahl.
	Acero Inox. 303 Std.	Stainless Steel 303 Std.	Acier Inox. 303 Std.	Edelstahl 303 Std.
	Acero Inox. DIN 1.4301 28 HRC	Stainless Steel DIN 1.4301	Acier Inox. DIN 1.4301	Edelstahl DIN 1.4301
_	Acero Inox. Supertenaz	28 HRC Superior Stainless Steel	28 HRC	28 HRC
	Standard	Standard Standard	Acier Inox. Supertenace Standard	Spezial Edelstahl Standard
	Acero Zincado	Zinc Plated Steel	Acier zingué	Verzinkter Stahl
	AGGIO ZITIGAGO	Zino rialed oleci	Adici ziligue	VOIZIIIRUGI OLAIII
	Cadenas	Chains	Chaînes	Kettenserie
	Ruedas y carretes a utilizar ver pág.	Sprockets and idlers to use see page.	Roues a utiliser.	Kettenräder und Umlenkrollen siehe Sette.
	Cadena con goma.	Rubber top chain.	Chaîne avec revêtement caoutchouc.	Ketten mit Gummiauflage.
	Cadena Estándar.	Standard chain.	Chaîne standard.	Standard Ketten.
	Cadena de acumulacion.	Accumulation chain.	Chaîne standard.	Stauförderketten.
C	Caracteristicas	Characteristics	Caractéristiques	Bezeichnung
M	Material	Material	Matériel	Material
	Embalaje recomendado	Recommended packaging	Conditionnement recommandée	Verpackung
	·			
0 0	Tornillería	Fasteners	Visserie	Verschraubung
	Eje	Spindle	Tige	Spindel
(Tuerca	Nut	Écrou	Mutter

Delrin® con Kevlar® son marcas registradas de E.I. Dupont y afiliados / Delrin® with Kevlar® are trade marks by E.I. Dupont and affiliated

FM T FT

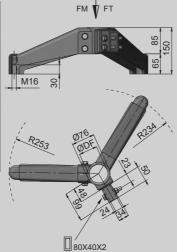

84

M16

150

ELEMENTS DE SOUTIEN / STÜTZBEINE

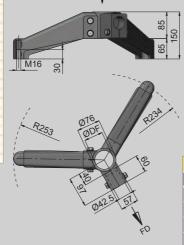
TRIPODE / TRIPOD TRIPODE / ZWEIBEIN-STÜTZFÜSSE


- Poliamida reforzada, insertos roscados en latón niquelado , tornillería s / tabla. M
 - Reinforced polyamide, bushings in nickel plated brass, screws according to table.
 - Polyamide renforcé, inserts vissés en laiton nickelé, visserie v/table.

 Verstärktes Polyamid, Gewindebuchsen aus vernickeltem Messing, Schrauben und Muttern siehe Tabelle.

D	F		FM	FD	FΤ	Va	COD.	
mm	inch		N (Newton)	(Newton)	N (Newton)	Kg	COD.	
42,4	1 1/4				8000	1,90	8310005	
48,3	1 1/2	SS	16000		8500	1,90	8310008	10
50,9	-	33	16000	-	9000	1,90	8310010	10
60,3	2				10000	1,90	8310012	

BIPODE / BIPOD BIPODE / DREIBEIN-STÜTZFÜSSE


- Poliamida reforzada, insertos roscados en latón niquelado, tornillería M
 - s / tabla.

 Reinforced polyamide, bushings in nickel plated brass, screws according to table.
 - Polyamide renforcé, inserts vissés en laiton nickelé, visserie v/table. Verstärktes Polyamid, Gewindebuchsen aus vernickeltem Messing, Schrauben und Muttern siehe Tabelle.

F	B B	FM	FD	FΤ	Kα	COD	
inch	в— в	(Newton)	(Newton)	(Newton)	itg	COD.	
1 1/4				7500	1,70	8310023	
1 1/2	00	12000	_	8000	1,60	8310024	15
-	33	13000		8500	1,60	8310025	10
2				9000	1,60	8310026	
	inch 1 1/4 1 1/2 -	inch 1 1/4 1 1/2 - SS	1 1/4 1 1/2 - SS 13000	1 1/4 1 1/2 SS 13000 -	inch (Newton) (Newton) (Newton) (Newton) 7500 8000 8500	No. No.	No. No.

BIPODE / BIPOD BIPODE / DREIBEIN-STÜTZFÜSSE


FM FT

- Polia s / tabla. Poliamida reforzada, insertos roscados en latón niquelado , tornillería M
 - Reinforced polyamide, bushings in nickel plated brass, screws according to table.
 - Polyamide renforcé, inserts vissés en laiton nickelé, visserie v/table.
 Verstärktes Polyamid, Gewindebuchsen aus vernickeltem Messing, Schrauben und Muttern siehe Tabelle.

D	F	8-8	FM	FD	ĘŢ	Ka	COD.	
mm	inch	و سو	(Newton)	(Newton)	(Newton)	Kg	COD.	
42,4	1 1/4				7500	1,60	8310037	
48,3	1 1/2	SS	12000	7500	8000	1,60	8310038	15
50,9	-	33	13000	7500	8500	1,60	8310039	15
60,3	2				9000	1,60	8310040	

PIE REGULABLE INOXIDABLE Ø80 / ARTICULATED FEET STAINLESS Ø80 🛭

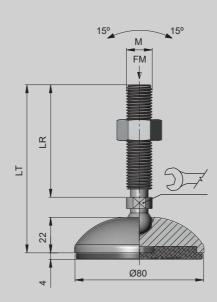
🛮 PIED RÉGLABLE INOXYDABLE Ø80 / GELENKFÜSSE EDELSTAHL Ø80 🔳 🔀

TIPO EJE / SPINDLE TYPE TYPE TIGE FILETÉ / SPINDEL-TYP

M Sase en Acero Inoxidable, eje y tuerca s / tabla. Goma, shore 70.

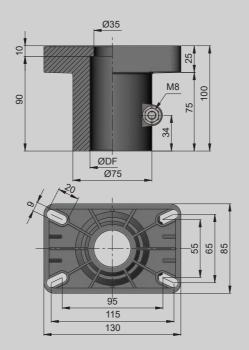
Goma, snore 70.

Sase in Stainless Steel, spindle and nut as in the table.


Rubber, 70 shore.

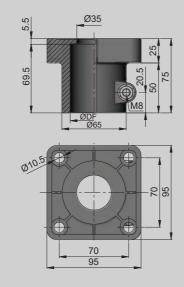
Base en Acier Inox. axe et écrou v / table.

Patín, shore 70.


Fuß aus Edelstahl, Gewindestange und Mutter siehe Tabelle.

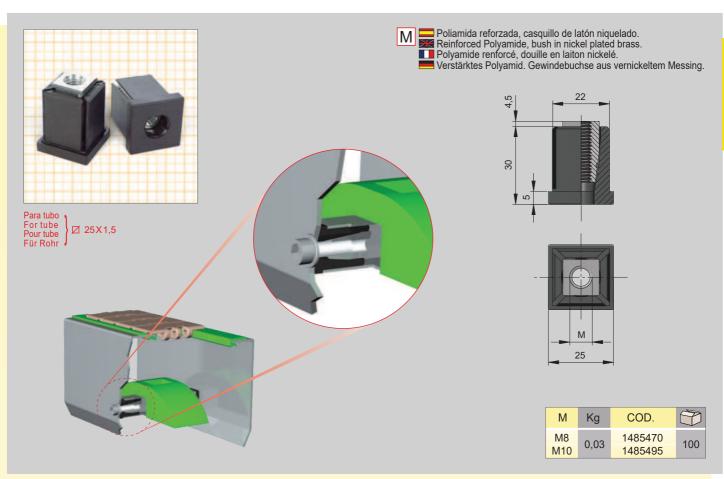
Aus Gummi in 70° Shore A.

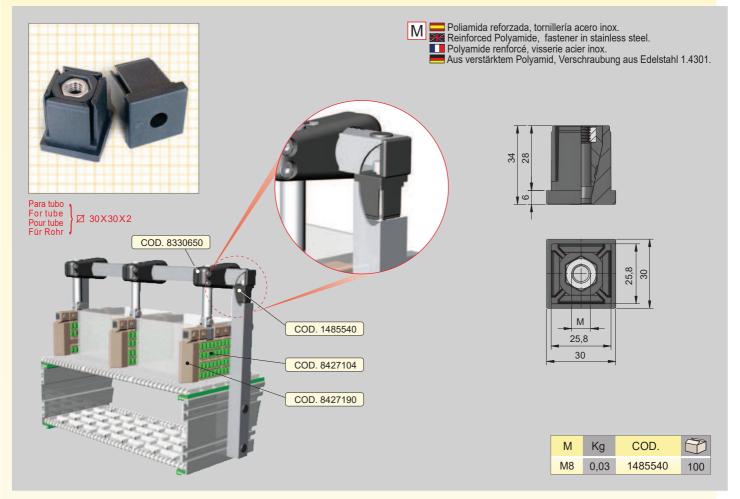
			MA	AT	TIPO TYPE		FM			-
M	LT	LR			TYP O	27	N (Newton)	Kg.	COD.	
10	79	43						0,45	8540358	25
10	107	71					12000	0,46	8540364	15
10	164	128						0,49	8540369	10
12	79	43						0,47	8540382	25
12	107	71					15000	0,49	8540388	15
12	164	128	SS303	SS	В	14		0,53	8540396	10
14	79	43	00000	00				0,48	8540409	25
14	107	71					15000	0,51	8540412	15
14	164	128						0,58	8540420	10
16	107	71						0,54	8540433	15
16	164	128					18000	0,62	8540436	10
16	193	157					10000	0,65	8540441	10
16	206	170						0,66	8540447	10



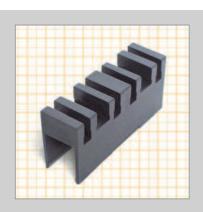
Poliamida reforzada, tornillería Acero Inoxidable.
Reinforced Polyamide + fastener in stainless steel.
Polyamide Renforcé + Visserie acier inoxydable.
Verstärktes Polyamid. Schrauben, Muttern und Scheiben aus Edelstahl.

	F	FT	17	000	
mm	inch	N (Newton)	Kg	COD.	
42'4	1 1/4		0,35	8330052	
48'3	1 1/2	2000	0,35	8330053	8
50'9	-	2000	0,35	8330054	Ö
60'3	2		0,34	8330055	

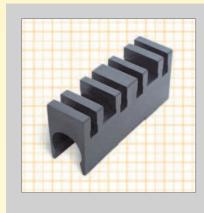


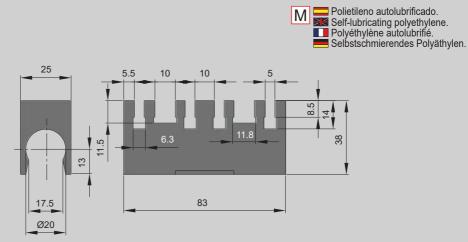

Poliamida reforzada, tornillería Acero Inoxidable.
Reinforced Polyamide + fastener in stainless steel.
Polyamide Renforcé + Visserie acier inoxydable.
Verstärktes Polyamid. Schrauben, Muttern und Scheiben aus Edelstahl.

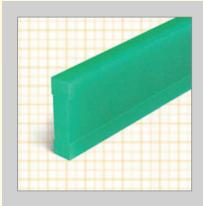
48,3 1 1/2 1500 0,30 8330112 15	D	F	FT	Kg	COD	
1500	mm	inch	inch N (Newton)		COD.	
1500	48,3	1 1/2	1500	0,30	8330112	4.5
50,9 - 0,30 8330114	50,9	-	1500	0,30	8330114	15

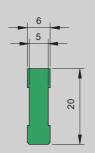




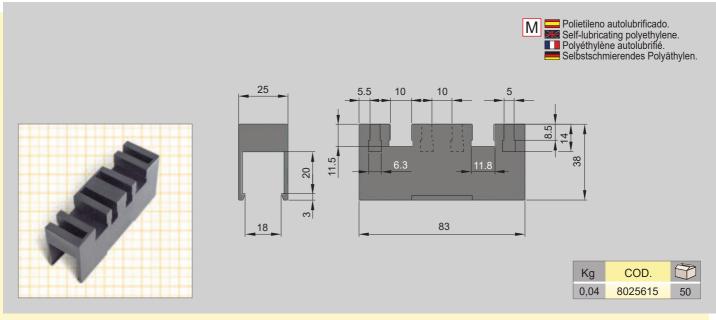

SOPORTE PERFIL RETORNO / RETURN PROFILE SUPPORT

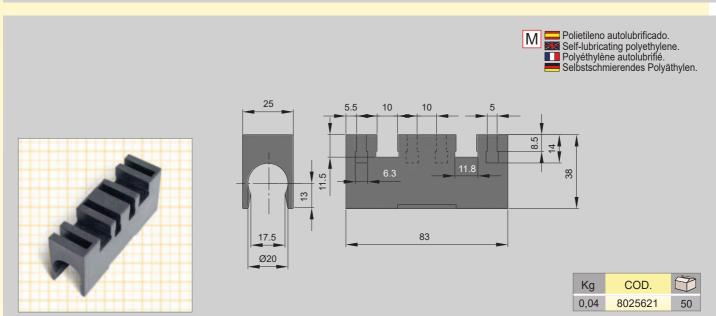

SUPPORT PROFIL RETOUR / RÜCKSTELLUNGSPROFILHALTER

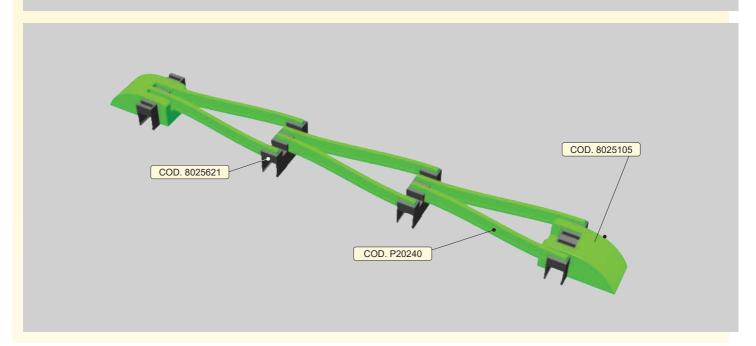



Kg	COD.	
0,04	8025601	50

Kg	COD.	
0,04	8025630	50

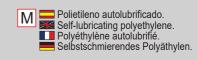


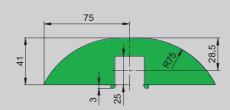




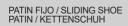
COLOR / COLOUR COULEUR / FARBE	L	Kg/m	COD.
Verde/Green/Vert/Grün	25	0,10	P20240

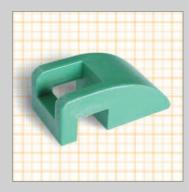
🛮 SUPPORT PROFIL RETOUR / RÜCKSTELLUNGSPROFILHALTER 🔳



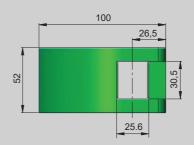


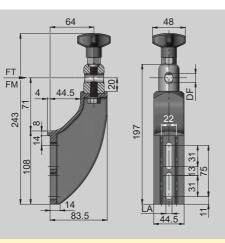
PATIN FIJO DOBLE / DOUBLE SLIDING SHOE PATIN / DOPPELKETTENSCHUH





Kg	COD.	
0,12	8025104	10

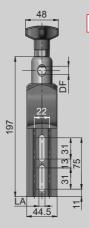

Polietileno autolubrificado.
Self-lubricating polyethylene.
Polyéthylène autolubrifié.
Selbstschmierendes Polyäthylen.



Kg	COD.	
0,07	8025105	20

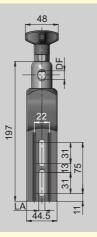
SOPORTES PARA BARANDILLAS / ADJUSTABLE BRACKETS

SUPPORT GUIDES / VERSTELLBARE GELÄNDERHALTER



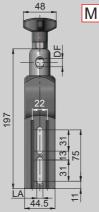
Poliamida reforzada, cabezal tirante en Acero inoxidable.
Reinforced Polyamide, head eyebolt in Stainless steel.
Polyamide renforcé, tête et entretoise Acier inoxidable.
Aus verstärktem Polyamid, Kopf und Schrauben aus Edelstahl.

DF	LA	FT N (newton)	FM N (newton)	Kg	COD.	
12,5		5000		0,49	8115160	
14,5	9	6000	7500	0,47	8115161	20
16,5		6000		0,44	8115163	
12,5		5000		0,49	8115175	
14,5	10,5	5000	7500	0,47	8115176	20
16,5		6000		0,44	8115178	



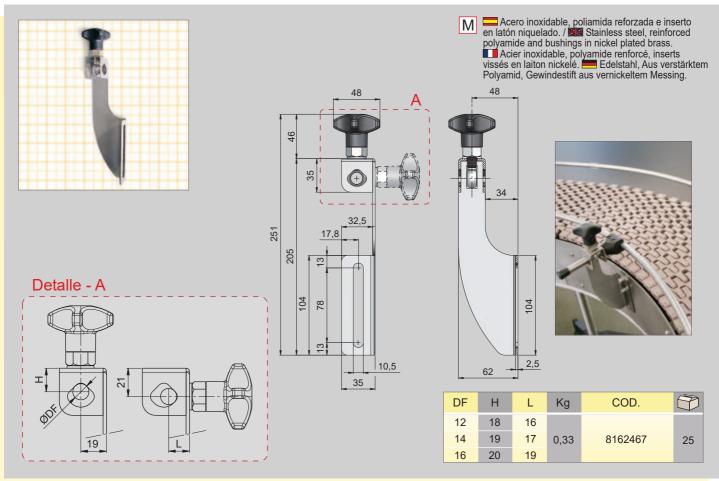
M Poliamida reforzada, cabezal e inserto en latón niquelado, tirante inox. Reinforced Polyamide, head and bushing in nickel plated brass, eyebolt in Stainless steel. Polyamide renforcé,tête et inserts laiton nickelé, entretoise Acier inoxidable. Aus verstärktem Polyamid, Kopf und Schrauben aus vernickeltem Messing, Buchse aus Edelstahl.

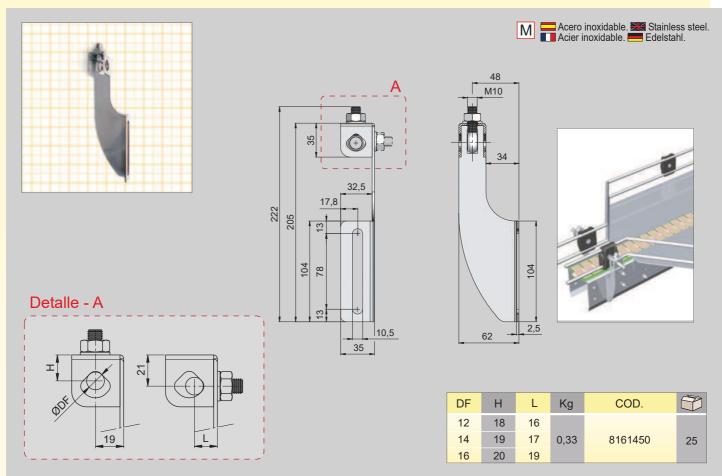
DF	LA	FT N (newton)	FM N (newton)	Kg	COD.	
12,5		5000		0,49	8115038	
14,5	9	6000	7500	0,47	8115039	20
16,5		6000		0,44	8115040	
12,5		5000		0,49	8115041	
14,5	10,5	5000	7500	0,47	8115042	20
16,5		6000		0,44	8115043	



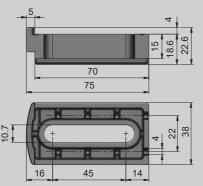
Poliamida reforzada, cabezal tirante en Acero inoxidable.
Reinforced Polyamide, head eyebolt in Stainless steel.
Polyamide renforcé, tête et entretoise Acier inoxidable.
Aus verstärktem Polyamid, Kopf und Schrauben aus Edelstahl.

DF	LA	FT N (newton)	FM N (newton)	Kg	COD.	
12,5		5000		0,49	8115185	
14,5	9	6000	7500	0,47	8115186	20
16,5		6000		0,44	8115187	
12,5		5000		0,49	8115190	
14,5	10,5	6000	7500	0,47	8115191	20
16,5		6000		0,44	8115193	



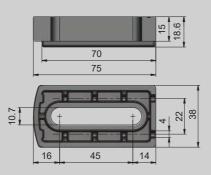


Poliamida reforzada, cabezal e inserto en latón niquelado, tirante inox. Reinforced Polyamide, head and bushing in nickel plated brass, eyebolt in Stainless steel. Polyamide renforcé,tête et inserts laiton nickelé, entretoise Acier inoxidable. Aus verstärktem Polyamid, Kopf und Schrauben aus vernickeltem Messing, Buchse aus Edelstahl.


DF	LA	FT N (newton)	FM N (newton)	Kg	COD.	
12,5		5000		0,49	8115059	
14,5	9	6000	7500	0,47	8115060	20
16,5		6000		0,44	8115061	
12,5		5000		0,49	8115062	
14,5	10,5	6000	7500	0,47	8115063	20
16,5		6000		0,44	8115064	

DISTANCIADOR PARA SOPORTES / SUPPORT SPACER ENTRETOISE POUR SUPPORTS / ABSTANDSHALTERUNG

SOPORTES A UTILIZAR / SUPPORTS TO USE / POUR SUPPORTS / GEBRAUCHSHALTORUNGEN



8110092NV	8110263
8110093NV	8110264
8110094NV	8110265
8110095NV	8110268
8110096NV	8110269
8110097NV	8110270

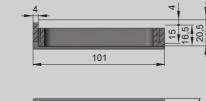
Kg	COD.	
0,03	8190807	50

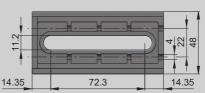
DISTANCIADOR PARA SOPORTES / SUPPORT SPACER ENTRETOISE POUR SUPPORTS / ABSTANDSHALTERUNG

Poliamida reforzada. Reinforced polyamide. Polyamide renforcé. Verstärktes Polyamid.

SOPORTES A UTILIZAR / SUPPORTS TO USE / POUR SUPPORTS / GEBRAUCHSHALTORUNGEN

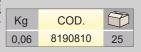
8110030NV 8110272 8110031NV 8110273 8110032NV 8110274 8110033NV 8110276 8110034NV 8110277 8110035NV 8110278

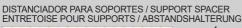



8110012NV 8110016NV

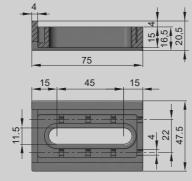
Kg	COD.	
0,03	8190808	50

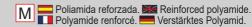
Poliamida reforzada. Reinforced polyamide.
Polyamide renforcé. Verstärktes Polyamid.


SOPORTES A UTILIZAR / SUPPORTS TO USE / POUR SUPPORTS / GEBRAUCHSHALTORUNGEN



8110024 8110150 8110025 8110151 8110026 8110152 8110027 8110156 8110028 8110157 8110029 8110158




8110018 8110137 8110019 8110138 8110020 8110139 8110021 8110142 8110022 8110143 8110023 8110144 * Utilizar preferiblemente con Use preferably with Utiliser de préférence avec

SOPORTES A UTILIZAR / SUPPORTS TO USE / POUR SUPPORTS / GEBRAUCHSHALTORUNGEN

8110015

Kg	COD.	
0,05	8190801	50

USO BRIDAS / FOR CLAMPS POUR SUPPORTS / FÜR KLEMMEN

8210134 - 8210212 - 8210525 - 8210270 - 8210277

M Acero inoxidable, tuerca, Acero Inox Stainless steel, nut in Stainless steel
Stainless steel, nut in Stainless steel
Axe inoxidable + écrou Axe inoxidab
Edelstahl, Mutter aus Edelstahl.

DE	27	LT	Kg	COD.	
12	10	100	0,09	8220301	75
12	10	118	0,11	8220321	50
12	10	150	0,13	8220322	50
14	12	100	0,12	8220302	75
15	12	100	0,14	8220303	50
16	14	100	0,16	8220304	50

USO BRIDAS / FOR CLAMPS POUR SUPPORTS / FÜR KLEMMEN

8210038 - 8210039 - 8210040 - 8210071 - 8210072 8210073 - 8210112 - 8210155 - 8210142 - 8210161 8210317 - 8210184

M	Acero inoxidable. Stainless steel. Acier inoxidable.
	Edelstahl.

DE	LT	Kg	COD.	
12	100	0,09	8220335	100
12	150	0,13	8220380	50
14	100	0,12	8220336	75
15	100	0,14	8220337	50
16	100	0,16	8220338	50

USO BRIDAS / FOR CLAMPS POUR SUPPORTS / FÜR KLEMMEN

8210014 - 8210015 - 8210016 - 8210050 - 8210051 8210052 - 8210121 - 8210151 - 8210138 - 8210157 8210109 - 8210095

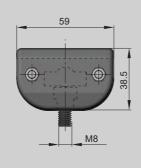
N/I	Acero inoxidable. Stainless steel.
IVI	Stainless steel.
	Acier inoxidable.
	Edelstahl.

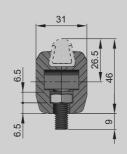
DE	D	LT	Kg	COD.	
10	8	70	0,04	8222780	200
10	8	110	0,07	8222790	100
10	8	150	0,09	8222795	100
12	10	100	0,09	8220339	100
12	10	150	0,14	8220385	75
14	12	100	0,12	8220340	75
15	12	100	0,14	8220341	50
16	14	100	0,16	8220342	50

USO BRIDAS / FOR CLAMPS POUR SUPPORTS / FÜR KLEMMEN

8210026 - 8210027 - 8210028 - 8210074 - 8210075 8210076 - 8210125 - 8210129 - 8210146 - 8210165 8210097 - 8210239

M	Acero inoxidable. Stainless steel.
	Acier inoxidable. Edelstahl.


DE	DI	LT	Kg	COD.	
12	10	100	0,09	8220343	100
14	12	100	0,12	8220344	75
15	12	100	0,14	8220345	50
16	14	100	0,16	8220346	50

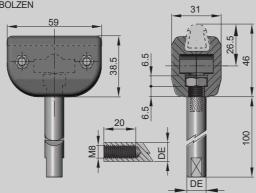

BRIDAS PARA PERFIL CONICO / CLAMPS FOR CONICAL SIDE GUIDES

BRIDES POUR PROFIL CONIQUE / KLEMMEN FÜR KONISCHE PROFILE

BRIDA SIMPLE / SINGLE CLAMP / BRIDE SIMPLE / EINFACHKLEMME MIT GEWINDESTIFT M8

Poliamida reforzada, tornillería Acero Inoxidable. Reinforced Polyamide, fastener

in stainless steel.


Polyamide Renforcé + Visserie acier inóx.

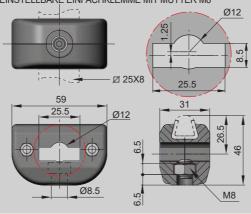
Aus verstärktem Polyamid, Verschraubungen aus Edelstahl 1.4301.

DE	Kg	COD.			
-	0,06	8210165	50		

BRIDA SIMPLE CON EJE / SINGLE CLAMP WITH ROD BRIDE SIMPLE AVEC AXE / EINFACHKLEMME MIT BOLZEN

Poliamida reforzada, eje y tornillería Acero Inoxidable.

Reinforced Polyamide, pin and astener in stainless steel.


Polyamide Renforcé + axe et Visserie acier inox.

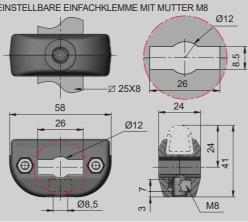
Aus verstärktem Polyamid, Bolzen und Verschraubungen aus Edelstahl 1.4301.

DE	Kg	COD.	
12	0,14	8240166	
14	0,16	8240167	30
16	0,18	8240168	

BRIDA SIMPLE / SINGLE CLAMP / BRIDE SIMPLE / EINSTELLBARE EINFACHKLEMME MIT MUTTER M8

M Poliamida reforzada, tornillería Acero Inoxidable.

Reinforced Polyamide, fastener in stainless steel.


Polyamide Renforcé + Visserie acier inóx.

Aus verstärktem Polyamid, Verschraubungen aus Edelstahl 1.4301.

DE	Kg	COD.	
-	0,06	8210169	50

BRIDA SIMPLE / SINGLE CLAMP / BRIDE SIMPLE / EINSTELLBARE EINFACHKLEMME MIT MUTTER M8

M Poliamida reforzada, tornillería Acero Inoxidable.


Reinforced Polyamide, fastener in stainless steel.

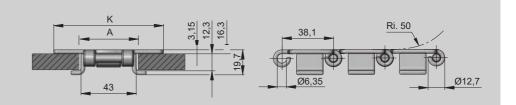
Polyamide Renforcé + Visserie acier inóx.

Aus verstärktem Polyamid, Verschraubungen aus Edelstahl 1.4301.

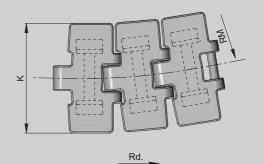
DE	Kg	COD.	
-	0,05	8210461	80

881-0 TAB

C/97, C/98 C/123


C/80, C/81

MAT.


T/2

Longitud standard Standard Length Longueur standard Lieferlänge

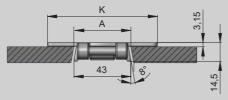
3,048 m. 10ft

A < Recta/Straight/Droit/Gerade - 46 Curva/Curved/Courbed/Kurve - 44,5

K		MA	T.	514	16. (0.05	
mm	inch	Cadena / Chain Chaîne / Ketten	Eje/Spindle Axe/Spindel	RM	Kg/m	COD.	
82,5	3,25				2,90	SSC881-O-325 TAB	
114,3	4,50	SSC	SS302	500	3,60	SSC881-O-450 TAB	
190,5	7,50				5,30	SSC881-O-750 TAB	
82,5	3,25				2,90	SSS881-O-325 TAB	
114,3	4,50	SSS	SS302	500	3,60	SSS881-O-450 TAB	
190,5	7,50				5,30	SSS881-O-750 TAB	

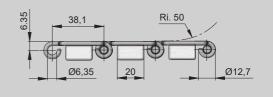
881-0

C/97, C/98 C/123, C/126

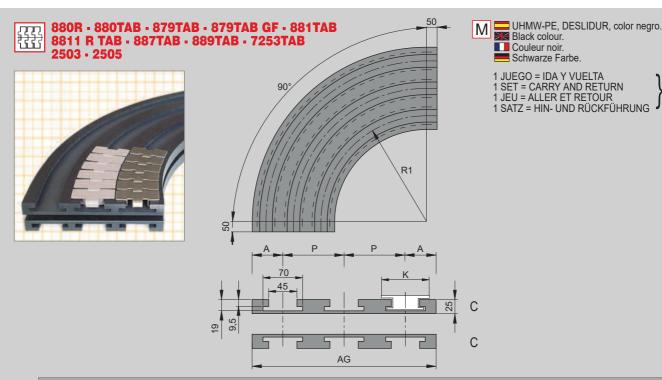

C/78, C/81

MAT.

T/2


Longitud standard Standard Length Longueur standard Lieferlänge

3,048 m. 10ft



Rd.

×

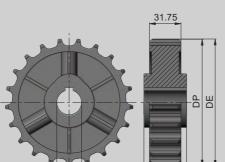
K		MA	T.				
mm	inch	Cadena / Chain Chaîne / Ketten	Eje/Spindle Axe/Spindel	RM	Kg/m	COD.	
82,5	3,25		SS302		2,90	SSC881-O-325	
114,3	4,50	SSC		500	3,60	SSC881-O-450	
190,5	7,50				5,30	SSC881-O-750	
82,5	3,25				2,90	SSS881-O-325	
114,3	4,50	SSS	SS302	500	3,60	SSS881-O-450	
190,5	7,50				5,30	SSS881-O-750	

∰ K = 82,5

P = 84mm						P = 85mm						P = 88mm						
R1	Α	VIAS	AG	Kg	COD.	R1	Α	VIAS	AG	Kg	COD.	F	R1	Α	VIAS	AG	Kg	COD.
		1	100	2,4	4701001		57	1	114	3,0	4701002	2	00	50	1	100	1,4	4701200
		2	184	4,4	4702003			2	185	4,8	4702107				2	188	4,6	4702211
F00	F0	3	268	6,7	4703006	500		3	270	6,9	4703109		00	F0	3	276	7,2	4703214
500	0 50	4	352	9,3	4704009	500	50	4	355	9,5	4704112	50	00	50	4	364	10,0	4704217
		5	436	12,1	4705012			5	440	12,4	4705115				5	452	13,2	4705220
		6	520	15,2	4706015			6	525	15,5	4706118				6	540	16,6	4706223
		1	100	2,9	4701018			-	-	-	-				-	-	-	-
		2	184	5,3	4702021			2	185	5,3	4702121				2	188	5,5	4702226
610	50	3	268	7,9	4703024	610	50	3	270	8,0	4703124	6	10	50	3	276	8,4	4703229
010	50	4	352	10,8	4704027	010	00	4	355	11,0	4704127		10	00	4	364	11,6	4704232
		5	436	13,9	4705028			5	440	14,2	4705130				5	452	15,1	4705235
		6	520	17,4	4706031			6	525	17,7	4706133				6	540	18,9	4706238
		1	100	3,7	4701034			-	-	-	-				-	-	-	-
		2	184	6,7	4702037			2	185	6,7	4702136				2	188	7,0	4702241
800	50	3	268	9,9	4703040	800	50	3	270	10,0	4703139	8	00	50	3	276	10,5	4703243
		4	352	13,4	4704043			4	355	13,6	4704142				4	364	14,3	4704247
		5	436	17,1	4705046			5	440	17,4	4705145 4706148				5	452	18,5	4705250
		6 1	520 100	21,1	4706049 4701052			6	525	21,5	4700140				6	540	22,9	4706253
		2	184	4,6	4701052			2	185	8,2	4702151				2	188	8,5	4702256
		3	268	8,1 12,0	4703058			3	270	12,2	4702151				3	276	12,7	4703259
1000	50	4	352	16,1	4704061	1000	50	4	355	16,3	4703154	10	000	50	4	364	17,2	4704262
		5	436	20,4	4705064			5	440	20,8	4705161				5	452	22,0	4705265
		6	520	25,0	4706067			6	525	25.5	4706164				6	540	27.2	4706268

∰ K = 114,3

	P = 120mm								
R1	Α	VIAS	AG	Kg	COD.				
500	65	1	130	3,7	4701307				
300	03	2	250	7,7	4702315				
610	65	1	130	4,4	4701312				
010	03	2	250	9,1	4702321				
800	65	1	130	5,7	4701324				
000	05	2	250	11,4	4702327				
1000	65	1	130	7,0	4701331				
1000	03	2	250	13,9	4702334				


∰ K = 190,5

	P = 196mm								
R1	Α	VIAS	AG	Kg	COD.				
500	100	1	200	6,7	4701413				
300	100	2	396	15,6	4702417				
610	100	1	200	8,0	4701415				
010	100	2	396	18,1	4702423				
800	100	1	200	10,3	4701426				
000	100	2	396	22,6	4702429				
1000	100	1	200	12,1	4701432				
1000	100	2	396	27,3	4702435				

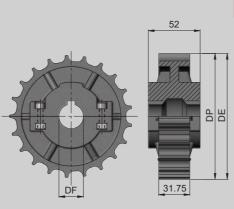
Otras dimensiones, radio o número de vías se pueden fabricar bajo pedido / Other dimensions, radio or ways can be made under request Autres dimensions, radiums ou numéro de vois sur demande / Sonderlängen, Radius oder Bahnen auf Anfrage möglich

- * Prisionero bajo pedido.
- * Axial locking under request.
- * Perçage et taraudage sur demande.
- * Gewindestift auf Anfrage

DF

Rueda de tracción / Drive sprocket / Roue de traction / С

Antriebsrad.

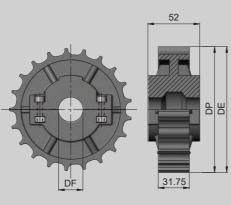

Poliamida reforzada. Reinforced polyamide.

Polyamide renforcé. Aus verstärktem Polyamid. M

815 TAB - 881 - 881 TAB - 8811 R TAB

Z	DE	DP	DF Kg		COD.	
19	117,0	117,34	25 30 35 40	0,21	6319224 6319228 6319233 6319237	10
21	129,0	129,26	25 30 35 40	0,25	6321225 6321229 6321234 6321238	10
23	141,0	141,22	25 30 35 40	0,31	6323226 6323230 6323235 6323239	10
25	153,0	153,20	25 30 35 40	0,36	6325227 6325231 6325236 6325240	10

Rueda de tracción partida / Split sprocket / Roue de traction C divisée / Geteiltes Antriebsrad.


M

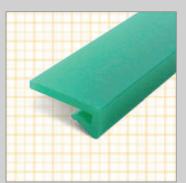
Poliamida reforzada + Tornillería inoxidable.
Polyamide reinforced + Screws in stainless steel
Polyamide renforcé + Visserie inoxydable
Aus verstärktem Polyamid, Verschraubung aus Edelstahl.

815 TAB - 881 - 881 TAB - 8811 R TAB

Z	DE	DP	DF	Kg	COD.		
21	129,0	29,0 129,26		0.37	6321258 6321261 6321264	8	
	123,20	40 45	,,,,,	6321267 6321270			
22	141.0		25 30		6323259	8	
23	23 141,0	141,22	35 40 45	0,44	6323265 6323268 6323271		
			25		6325260		
25	153,0	153,20	30 35	0,49	6325263 6325266	8	
			40 45		6325269 6325272		

- Rueda de reenvio partida / Split idler wheel / Roue de renvoi divisée / Geteiltes Umlenkrad. С
- Poliamida reforzada + Tornillería inoxidable.
 Polyamide reinforced + Screws in stainless steel
 Polyamide renforcé + Visserie inoxydable

 - Aus verstärktem Polyamid, Verschraubung aus Edelstahl.

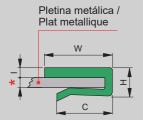

815 TAB - 881 - 881 TAB - 8811 R TAB

	Z	DE	DP	DF	Kg	COD.	
1	21	129,0	129,26	25 30 35 40 45	0,37	6621536 6621537 6621538 6621539 6621541	8
	23	141,0	141,22	25 30 35 40 45	0,44	6623547 6623548 6623549 6623550 6623551	8
<u>*</u>	25	153,0	153,20	25 30 35 40 45	0,49	6625557 6625558 6625559 6625560 6625562	8

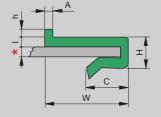
PERFILES PARA EMBOTELLADO Y ENVASADO / GUIDES FOR BOTTLING AND PACKAGING

PROFILS POUR EMBOUTEILLAGE ET PACKAGING / PROFILE FÜR DIE ABFÜLLUNG UND VERPACKUNG

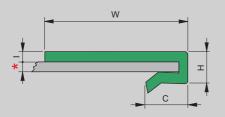
PERFIL SECCION "P" / PROFILE SECTION "P" / PROFIL - TEIL "P"



M Polietileno UHMW 1000 "DESLIDUR".

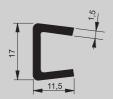

UHMW 1000 "DESLIDUR" Polyethylene.

Polyéthylène UHMW 1000 "DESLIDUR".

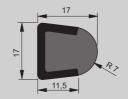

Profil aus Polyäthylen UHMW 1000 "DESLIDUR".

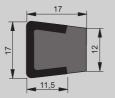
COLOR / COLOUR COULEUR / FARBE	W	Н	С	1	Α	h	L	Kg/m	COD.
Verde/Green/Vert/Grün	20	10,5	14,5	3	-	-	50	0,11	P20269
Verde/Green/Vert/Grün	25	10.5	20	2	_		50	0.12	P20274
Negro/Black/Noir/Schwarz	25	10,5	20	3			50	0,12	P30274

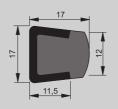
COLOR / COLOUR COULEUR / FARBE	W	Н	С	1	А	h	L	Kg/m	COD.
Verde/Green/Vert/Grün	20	9	13	3	2.5	2.5	50	0.12	P20275
Negro/Black/Noir/Schwarz	20	9	13	3	2,5	2,5	50	0,12	P30275
Verde/Green/Vert/Grün	25	9	13	2	2.5	2.5	50	0.12	P20271
Negro/Black/Noir/Schwarz	25	9	13	3	2,5	2,5	50	0,12	P30271

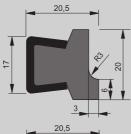


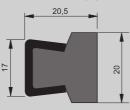
COLOR / COLOUR COULEUR / FARBE	W	Н	С	1	Α	h	L	Kg/m	COD.
Verde/Green/Vert/Grün	40	10.2	20	3	-	-	50	0,16	P20282
Negro/Black/Noir/Schwarz	40	40 10,3							P30282


* Perfil para utilizar con chapas de 1,5 a 3 mm. / Wearstrip to be used with plate width of 1,5 to 3 mm. Profil à utiliser sur tôle de 1,5 à 3 mm. / Klemmprofile passend für Materialstärke von 1,5 bis 3 mm.


J


PROFILS DE GUIDAGE CONIQUES / KONISCHE FÜHRUNGEN




Polietileno LIHMW 1000 "DESLIDUR"
M Polietileno UHMW 1000 "DESLIDUR". WHMW 1000 "DESLIDUR" Polyethylene.
Polyéthylène UHMW 1000 "DESLIDUR".
Profil aus Polyäthylen UHMW 1000 "DESLIDUR"
C-Stahl siehe Tahelle

COLOR / COLOUR COULEUR / FARBE	GUIA / GUIDE PROFIL / STAHL	L	Kg/m	COD.
Blanco/White Blanc/Weiß	SS	3	0.67	CSS 10005
Negro/Black Noir/Schwarz	33	3	0,01	CSS 30005

COLOR / COLOUR COULEUR / FARBE	GUIA / GUIDE PROFIL / STAHL	L	Kg/m	COD.
Blanco/White Blanc/Weiß	SS	3	0,69	CSS 10010
Negro/Black Noir/Schwarz		3		CSS 30010

COLOR / COLOUR COULEUR / FARBE	GUIA / GUIDE PROFIL / STAHL	L	Kg/m	COD.
Blanco/White Blanc/Weiß		3	0.69	CSS 10015
Negro/Black Noir/Schwarz	SS	3	0,09	CSS 30015

<u></u>		
	20,5	
A		1
17		25
<u> </u>		
	21	1
_		1
Ť		

Otras longitudes bajo pedido. / Another sizes by order
Autres Longueurs á la demande. / Sondermaße auf Anfrage

COLOR / COLOUR COULEUR / FARBE	GUIA / GUIDE PROFIL / STAHL	L	Kg/m	COD.
Blanco/White Blanc/Weiß	SS	0	0.74	CSS 10022
Negro/Black Noir/Schwarz	33	3	0,71	CSS 30022

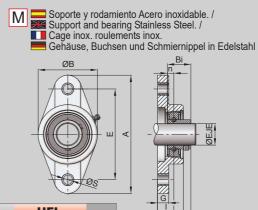
COLOR / COLOUR COULEUR / FARBE	GUIA / GUIDE PROFIL / STAHL	L	Kg/m	COD.
Blanco/White Blanc/Weiß		3	0.74	CSS 10020
Negro/Black Noir/Schwarz	SS	3	0,74	CSS 30020

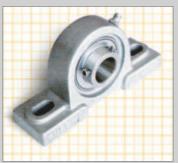
COLOR / COLOUR COULEUR / FARBE	GUIA / GUIDE PROFIL / STAHL	L	Kg/m	COD.
Blanco/White Blanc/Weiß	SS	3	0.78	CSS 10025
Negro/Black Noir/Schwarz	55	3	0,76	CSS 30025

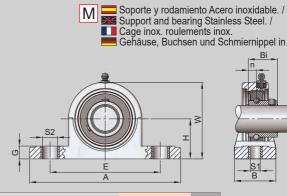
COLOR / COLOUR COULEUR / FARBE	GUIA / GUIDE PROFIL / STAHL	L	Kg/m	COD.
Blanco/White Blanc/Weiß	00	3	0.82	CSS 10030
Negro/Black Noir/Schwarz	SS	3	0,02	CSS 30030

SS - Acero inoxidable. / Stainless steel Acier inox. / Edelstahl 1.4301

31


PALIERS / FLANSCHLAGER





Dimens	Dimensiones en mm. / Sizes in mm. / Measures en mm. / Abmessungen in mm.										
ØEJE	Α	Е	G	L	ØS	Z	- 1	ØB	Kg	COD.	4
Ø20	112	90	11	25	12	33,2	15	60	0,45	324120MTSS	10
Ø25	124	99	13	26,5	12	35,8	16	68	0,55	324125MTSS	10
Ø30	141	116,5	13	30	15	40,2	18	80	0,80	324130MTSS	5
Ø35	155,5	130	14	33	15	44,4	19	90	1,20	324135MTSS	5
Ø40	171,5	143,5	14	36	15	51,2	21	100	1,60	324140MTSS	4

SOPORTE OMEGA UCP / OMEGA SUPPORT UCP PALIER A SEMELLE UCP / EDELSTAHL-STEHLAGER SERIE UCP

M

chmiernippel in Edelstah
Bi
S1 B

Dimens	Dimensiones en mm. / Sizes in mm. / Measures en mm. / Abmessungen in mm.												
ØEJE	Н	Α	Е	В	S1	S2	G	W	Bi	n	KG	COD.	
Ø20	33,3	127	95	38	12	19	15	65	31	12,7	0,75	336120MTSS	10
Ø25	36,5	140	105	38	12	19	16	70	34,1	14,3	0,85	336125MTSS	10
Ø30	42,9	165	121	48	15	21	18	83	38,1	15,9	1,40	336130MTSS	5
Ø35	47,6	167	127	48	15	21	19	94	42,9	17,5	2,00	336135MTSS	4
Ø40	49,2	184	137	54	15	23	19	100	49,2	19	2,50	336140MTSS	4

Nuestro Departamento Técnico en constante desarrollo y en colaboración con los más importantes suministradores de materias primas, está en condiciones de desarrollar con nuestros clientes, soluciones específicas para otras aplicaciones.

- · Material Antiestático.
- · Altas temperaturas.

ACERO TRATADO

- Resistencia a los rayos ultravioletas.
- Our constantly developing engineering departament, in collaboration with the leading raw materials spplierts, offers our clients the possibility of specific solutions to suit their particular application needs.
 - Antistatic material.
- · High temperatures.
- · Ultraviolet ray resistant.

Notre département technique, en constant développement et en collaboration avec les plus importants fournisseurs de matières premières, peut développer avec nos clients, des solutions spécifiques pour d'autres applications.

+120

- -matériel antistatique
- -hautes températures
- -résistance aux rayons ultra-violets

TEMPERATURAS EXTREMAS DE FUNCIONAMIENTO EN CONTINUO **EXTREME TEMPERATURES FOR CONTINUOUS WORKING**

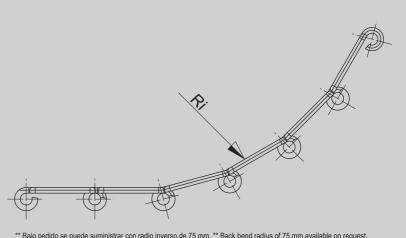
TEMPERATURA MINIMA MINIMUM TEMPERATURE TEMPERATURE MINIMALE MINDESTTEMPERATUR TEMPERATURA MAXIMA / MAXIMUM TEMPERATURE TEMPERATURE MAXIMALE / HÖCHSTTEMPERATUR Amb. Seco / Dry enviroment Amb. humedo / Wet environement ACETAL LF ACETAL D POLIPROPILENO REFORZADO (PP+FV) + 85 + 85 + 70 + 105 + 80 + 120 + 5 + 105 POLIAMIDA REFORZADA POLIETILENO UHMW-PE - DESLIDUR + 90 + 120 - 10 + 80 -40+ 70 ACERO INOXIDABLE SSC ACERO INOXIDABLE 304 (SSS) + 260 + 400 - 40

+ 180 + 100 + 130

CARGAS DE ROTURA / BREAKING LOADS |

-40

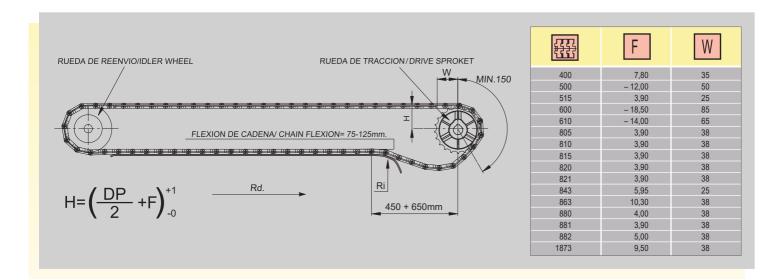
-40


-20

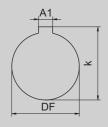
##	M	Newtons
400	AW	6500
450	AW	1500
515	SSS	10400
550	LF	6500
600	AW	8000
610	AW	8000
805	SSS SSC	19000 19000
810	SSS SSC	4500 4500
815	SSS SSC	10200 10400

[]	M	Newtons
820	LF / KV	3200
821	LF / KV	6500
828	LF / KV	5200
880	LF / KV	5200
880 R	LF / KV	4500
881	SSS SSC	10000 9500
882	LF / KV	8000
900	LF	4000
1700	AW / LF	6500
9000	LF/PP	4500
9100	LF/PP	4500

RADIOS DE GIRO INVERSO / BACK BEND RADIUS


	Ri.
400	300
450	150
515	75
550	50
610	50
805	150
810	75
815**	150
820	40
821	40
843	90
863	125
900	0
880	40
881	50
882	40
1843	75
1873	300
1873G	150

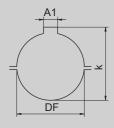
^{*} Bajo pedido se puede suministrar con radio inverso de 75 mm. ** Back bend radius of 75 mm available on request.


^{**} Disponible sur commande avec un rayon inversé de 75 mm ** Kan auf anfrage mit umlenkradius von 75 mm geliefert werden.

MEDIDAS DE MONTAJE DE PIÑONES / SPROCKETS ASSEMBLY SIZES

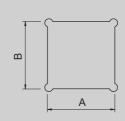
MEDIDAS DE EJE / HOLE SIZE |

DF	A1	K
25 +0,021	8 +0,036	28,3+0,02
30 +0,021	8 +0,036	33,3+0,02
35 +0,025	10 +0,036	38,3+0,02
40 +0,025	12 +0,043	43,3+0,02
45 +0,025	14 +0,043	48,8+0,02
50 +0,028	14 +0,043	53,8+0,02



RUEDA REENVÍO / IDLER WHEEL

[DF
	25 ^{+0,4} +0,2
	30+0,4
	35+0,4
	40+0,4
	45+0,4
	50+0,4



DF	A1	K
25 -0,022	8 +0,036	28,3 +0,02
30 -0,022	8 +0,036	33,3 +0,02
35 -0,026	10 +0,036	38,3 +0,02
40 -0,026	12 +0,043	43,3 +0,02
45 -0,026	14 +0,043	48,8 +0,02
50 -0,026	14 +0,043	53,8 +0,02

RUEDA EJE CUADRADO / ROUE AVEC AXE CARRÉ

Α	В
25 +0,5	25 +0.5
30 +0,5	30 +0,5
35 +0,5	35 +0.5
40 +0,5	40 +0,5
45 +0,5	45 +0,5
50 +0.5	50 +0.5

Tipo / Type / Typ: UCF											
Modulo de Carga / Mode of Load /	Test Po	unto Rotu	ra / Break	ing Point	Test						
	Ø20	Ø20 Ø25 Ø30		Ø35	Ø40						
P	15950	13000	18000	18500	19100						
P	10250	12150	17700	18500	19250						
PV	3650	3350	3350	3520	3790						
Valores en Newton	s / Inform	nations V	alues in N	Newtons							

Tipo / Type / Typ: UCL-UFL											
Modulo de Carga / Mode of Load	Test Punto Rotura / Breaking Point Test										
	Ø20	Ø25	Ø30	Ø35	Ø40						
P P	11750	11375	16450	16900	17350						
P	11000	13850	13350	13950	14050						
AP P VP	8500	11100	14200	14900	15150						
Valores en Newtons	s / Inform	ations Va	lues in N	lewtons							

Tipo / Type / Typ: UCP										
Modulo de Carga / Mode of Load	Test Punto Rotura / Breaking Point Test									
	Ø20	Ø20 Ø25 Ø30		Ø35	Ø40					
P	8800	11375	16450	16900	17350					
₽₩	7700	13850	13350	13950	14050					
P	500	11100	14200	14900	15150					
Valores en Newton	s / Inform	nations Va	alues in N	Newtons						

Tipo / Type / Typ: UCPA											
Modulo de Carga / Mode of Load	Test Punto Rotura / Breaking Point Test										
	Ø20	Ø25	Ø30	Ø35	Ø40						
P	8210	8540	10370	12150	12230						
IP IP IP	6900	7010	6580	8080	9100						
P	2980	2850	4950	8160	9100						
Valores en Newton	s / Inform	ations Va	alues in N	lewtons							

- Bajo pedido / Under request / Sur demande / Auf Anfrage.
- Rodamiento con excéntrica.
 Looking with excentric ring.
 Bagues excentriques.
 Mit exzenter Sicherungsring.
 Rodamientos acero inoxidable. /
 Roulements acier inoxidable. /
 Edelstahl Flanschlager.

REDUCTORES DE SINFIN SERIE UNIVERSAL

VELOCIDADES CONSTANTES

G 1035 ES • 60 HZ • mm

NORD Motorreductores

info

Reductores de sinfín UNIVERSAL Características técnicas

Pares

Los Pares máximos de salida M_{2max} representan los límites de carga bajo una carga homogénea. El dimensionado correcto se realiza según el capítulo de selección de reductores bajo observación de los factores de funcionamiento.

Los Pares límite de salida M_{2grenz} se soportan estáticamente y brevemente también en funcionamiento sin que se produzcan deterioros en el reductor. Los Pares límite de salida M_{2grenz} representan el límite superior de la carga admisible y no deben superarse tampoco en caso de sacudidas.

Pa	Pares máximos de salida M _{2max} a n ₁ =1750 min ⁻¹												
Modelo	SK 1SI 31	SK 1SI 40	SK 1SI 50	SK 1SI 63	SK 1SI 75								
M _{2max}	30 Nm	50 Nm	90 Nm	160 Nm	260 Nm								
	Pare	es límite de	salida M _{2g}	renz									
Modelo	SK1SI 31	SK1SI 40	SK1SI 50	SK 1SI 63	SK 1SI 75								
M2grenz	75 Nm	125 Nm	225 Nm	400 Nm	650 Nm								

Velocidad

Los reductores están diseñados para una velocidad de motor o de entrada de hasta 1800 min-1. Las velocidades mayores reducen la vida útil.

Si desea disponer de velocidades mayores, consúltenos.

Relaciones de reducción

Todas las relaciones de reducción, también las de los reductores dobles

se nombran exactamente y completas. (p. ej., i=10 es i=10.000000000....)

Los tornillos sin fin de los reductores de sinfín UNIVERSAL son de avance a derechas. Ello determina el sentido de giro.

	Serie de relaciones de reducción												
5	7,5	10	12,5	15	20	25	30	40	50	60	80	100	
	Relaciones de reducción unificadas para los 5 tamaños de												

Relaciones de reducción unificadas para los 5 tamaños de reductores unificados

Grado de rendimiento

El acabado especial de los flancos de los dientes y el lubricante sintético de serie hacen que los reductores de sinfín UNIVERSAL alcancen altos grados de rendimiento. En los reductores de sinfín nuevos, el grado de rendimiento en el rodaje durante el funcionamiento normal se eleva por la entrada en funcionamiento del dentado de la corona. Los pares de salida y las potencias reflejados en las listas de selección tienen en consideración el grado de rendimiento η con el reductor en marcha.

Grados de rendimiento η a n ₁ =1750 min ⁻¹													
isch	5	7,5	10	12,5	15	20	25	30	40	50	60	80	100
SK 1SI 31: η [%]	87	83	80	77	72	68	65	56	51	47	43	37	32
SK 1SI 40: η [%]	89	85	83	81	76	72	69	61	56	52	48	42	37
SK 1SI 50: η [%]	91	88	86	84	80	77	74	66	62	58	54	48	43
SK 1SI 63: η [%]	l		l			l			l	l	l	l	l I
SK 1SI 75: η [%]	93	91	90	89	85	83	81	79	70	67	64	59	54

Gracias a la lubricación hidrodinámica del dentado, el rendimiento de los reductores de sinfín aumenta con la velocidad de accionamiento. En el arranque a Partir del estado parado, el rendimiento de arranque η_a es bajo. Éste se debe tener en cuenta para el Par motor cuando se ha de arrancar bajo carga, habiendo los siguientes valores orientativos para el rendimiento de arranque η_a en función de la reducción i_{Sch} :

Grados de rendimiento de arranque η _a													
isch	5	7,5	10	12,5	15	20	25	30	40	50	60	80	100
SK 1SI 31 hasta : η a [%] SK 1SI 75	72	67	62	59	53	47	43	36	31	27	25	20	17

Lubricación

Los reductores de sinfín vienen de fábrica lubricados de por vida con un aceite sintético de larga duración y alta calidad con base de poliglicol. Ello los hace libres de mantenimiento.

Los reductores de sinfín Universal de los tamaños 63 y 75 vienen equipados de serie con tapones de aceite. Esto les permite prever opcionalmente un tapón de venteo de aire para la puesta en servicio. El módulo de venteo opcional viene con unas instrucciones breves de colocación del tapón de venteo en función de la posición de montaje.

Le asesoraremos gustosamente.

Número de pedido del módulo de venteo de aire: 60693500

Tipo de lubricante: CLP PG 220 DIN51502											
Modelo	SK 1SI 31	SK 1SI 40	SK 1SI 50	SK 1SI 63	SK 1SI 75						
Cantidad	30ml	55ml	95 ml	180 ml	360 ml						

Reductores de sinfín UNIVERSAL Características técnicas

Condiciones ambientales

Gracias a la resistencia natural a la corrosión de las superficies de aluminio, la serie de reductores de sinfín UNIVERSAL es adecuada para la instalación en recintos cerrados y al aire libre. Se debe evitar el contacto con medios agresivos o con materiales corrosivos (aire contaminado, gases, ácidos, lejía, sales, etc.). Para estos casos, se puede suministrar un revestimiento de pintura con suplemento de precio. Consúltenos.

La serie de reductores de sinfín UNIVERSAL es adecuada para temperaturas ambiente de -25° a 40°C. Si las temperaturas son bajas, se debe tener en cuenta que debido a la viscosidad del lubricante, se precisará un Par más alto para el arranque.

Autobloqueo

Con característica de irreversibilidad, los pares incluso mayores de la salida (corona) no pueden hacer girar en ningún sentido el reductor parado cuando se ha desconectado el motor. En el autobloqueo en marcha, llamado también autofrenado, el accionamiento se para obligatoriamente cuando se desconecta el motor.

Con un factor de aceleración de masas $\rm m_{af} > 1$, (véase capítulo Selección de reductor – página 12) la inversión de la carga en el funcionamiento a empujes puede hacer que el autobloqueo provoque un bloqueo repentino o vibraciones, (véase VDI 2158). Para estos casos se deben elegir reductores sin irreversibilidad.

La irreversibilidad y el autofrenado de los reductores de sinfín depende de la parde reducción:

Irreversib	ilidad en reducto	ores de sinfín UN	IIVERSAL			
$i_{sch} = 5 - 10$	$i_{sch} = 12.5 - 40$	$i_{sch} = 50 - 80$	i _{sch} = 100			
reversible	no hay información fiable relativa a irreversibilidad	Irreversibilidad durante la parada y en ausencia de vibraciones	Irreversible			
sin autofrenado	sin autofrenado	no hay información fiable relativa al autofrenado	Autofrenado en n ₁ <1800 min ⁻¹ (SK 1SI 63 n ₁ <850 min ⁻¹)			

Fuerzas radiales y fuerzas axiales

En las listas de selección se reflejan las fuerzas radiales admisibles ${\sf F}_{\sf R}$ y ${\sf F}_{\sf RF}$ que junto con los pares ${\sf M}_2$ pueden actuar sobre los ejes de salida. El cálculo de los valores para fuerzas radiales se basa en el punto de aplicación en el punto medio del eje insertable. Los valores ${\sf F}_{\sf R}$ tienen validez para los ejes insertables 60393000, 60493000, 60593000, 60693000, 60793000, 60393100, 60493100, 60593100, 60693100, 60793100. Los valores ${\sf F}_{\sf RF}$ tienen validez para los ejes insertables largos 60393200, 60493200, 60593200, 60693200, 60793200 de los modelos con brida. Para una aplicación de fuerza en el centro del eje hueco, la fuerza radial admisible es de $2x{\sf F}_{\sf R}$.

El cálculo de las fuerzas radiales admisibles se basa en la dirección desfavorable de la fuerza y tiene en cuenta el rodamiento del reductor, la carcasa de éste y los ejes insertables.

El eje hueco de salida de los reductores de sinfín UNIVERSAL está soportado con rodamientos de bolas de dimensiones mayores a las convencionales. Ello los hace adecuados para absorber además de fuerza radial, también fuerzas axiales en el lado de salida

Fuerza axial admisible del eje de salida F _A [N]										
SK 1SI 31	SK 1SI 40	SK 1SI 50	SK 1SI 63	SK 1SI 75						
1800 N	3200 N	4800 N	6300 N	8000 N						

La fuerza radial admisible que actúa sobre el centro del eje de entrada libre en el módulo de eje de entrada libre – modelo W es de 1200N (n° pedido 60494200) ó 1500N (n° de pedido 60794200).

Dimensiones y pesos

Encontrará planos a escala y planos dimensionales CAD en la página web de NORD www.nord.com en Internet. Además, existe el CD-ROM «NordPAC», con el que se pueden elaborar cómodamente planos a escala y planos dimensionales. No dude en pedirnos el CD-ROM.

Notas sobre los planos a escala de las página 54 a 68:

- kBre y g1Bre son dimensiones de motor con freno
- Taladros roscados en el extremo de eje: DIN 332, hoja 2
- Chavetas de ajuste: DIN 6885, hoja 1
- Centrajes de brida: H7 ó j6
- Tolerancias de diámetro del entrecentros de los taladros de la brida: DIN 42948

Peso del módulo de reductor de sinfín										
SK 1SI 31	SK 1SI 40	SK 1SI 50	SK 1SI 63	SK 1SI 75						
1,3 kg	2,4 kg	4,1 kg	7,6 kg	12 kg						

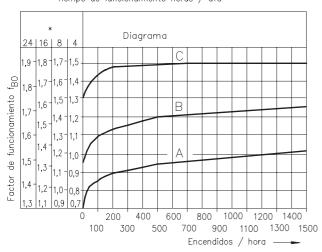
info

Reductores de sinfín UNIVERSAL Características técnicas

Selección de reductor

Las listas de selección indican los Pares de salida del reductor M_2 , las velocidades de salida n_2 y los factores de servicio f_B resultantes para la combinación de reductores de sinfín UNIVERSAL con motores normalizados de AC de 4 polos. El factor de servicio f_B indica la seguridad del reductor a la potencia instalada indicada.

Cada aplicación soporta cargas específicas debidas a, p. ej., golpes, arranques frecuentes, funcionamiento intermitente y temperaturas ambiente elevadas, y exige por ello un factor de funcionamiento mínimo f_{Bmin} , para garantizar un funcionamiento fiable. A la hora de elegir un reductor con ayuda de las listas de selección, recuerde que el accionamiento elegido debe tener un factor de servicio f_{B} igual o mayor que el factor de servicio mínimo f_{Bmin} .


La lista de selección « n_1 = 1400 / 900 / 500 / 250 min $^{-1}$ » a Partir de la página 50 se utiliza cuando no se van a montar motores AC normalizados de 4 polos. Esta lista de selección se basa en el factor de servicio f_B = 1,0. Teniendo en cuenta el factor de servicio mínimo f_{Bmin} , la potencia instalada del motor puede ser de P_{emax} / f_{Bmin} como máximo.

El factor de servicio mínimo f_{Bmin} necesario para una aplicación se calcula del siguiente modo:

$$f_{Bmin} = f_{B0} \cdot f_{B1} \cdot f_{B2}$$

El factor de servicio f_{B0} tiene en cuenta el tipo de carga A, B o C, la frecuencia de arranques y el tiempo diario de marcha. El factor de servicio f_{B1} tiene en cuenta los cambios de temperatura ambiente. El factor de servicio f_{B2} tiene en cuenta el funcionamiento intermitente. Los siguientes diagramas sirven para determinar los factores de servicio f_{B0} , f_{B1} y f_{B2} .

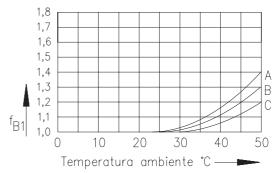
* Tiempo de funcionamiento horas / día

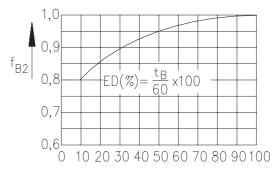
Ejemplos de tipo de carga de reductores:

- A Tornillos sin fin de transporte ligeros, ventiladores, cintas de montaje, cintas transportadoras ligeras, agitadores pequeños, elevadores, máquinas limpiadoras, máquinas de llenado, máquinas de control, transportadores de correa.
- B Devanadoras, alimentadoras para máquinas de procesamiento de la madera, montacargas, equilibradoras, agitadores y mezcladoras medianas, bobinadoras, puertas correderas, sistemas de limpieza de establos, envasadoras, plegadoras, bombas de engranaje.
- C Cizallas, prensas, estampadoras, canteadoras, tambores de limpieza y pulido, vibradoras, trituradoras

Los tipos de carga A, B y C se definen del siguiente modo:

- **A**: Funcionamiento regular y m_{af} ≤ 0,25
- **B**: Funcionamiento irregular y $m_{af} \le 3$
- C: Funcionamiento muy irregular y m_{af} ≤ 10


Donde el factor de aceleración de masas maf es:


$$m_{af} = \frac{J_{ex.red.}}{J_{mot.}}$$

J_{ex.red.} = Todos los momentos de inercia externos del motor de accionamiento reducidos al eje del motor

J_{mot} = Momento de inercia del motor

Para m_{af} > 10, consúltenos.

Duración relativa de encendido % ED ----

Reductores de sinfín UNIVERSAL Características técnicas

Motores AC de NORD

Los motores del módulo de motor AC IEC son motores trifásicos de rotor en jaula de cuatro polos con autoventilados. Son adecuados tanto para el funcionamiento de red, como para el funcionamiento con convertidor. Los motores AC llevan de forma estándar una brida IEC-B14.

Si se desea, se pueden suministrar con brida B5, motores monofásicos de 2, 6 u 8 polos, motores de dos velocidades, encóders integrados, ventilaciones forzadas, motores conforme a ATEX y CUS/UL y otros. Pida el catálogo de motores M7000.

Las siguientes normas son aplicables en los motores AC de

IEC 60 034-1 (DIN EN 60 034-1) IEC 60 034-5 (DIN EN 60 034-5) IEC 60 034-6 (DIN EN 60 034-6) IEC 60 034-8 (DIN EN 60 034-8)

- Disposiciones generales

- Tipos de protección

- Tipos de refrigeración

- Designaciones de conexión y sentido de giro

IEC 60 034-9 (DIN EN 60 034-9) IEC 60 034-11 (DIN EN 60 034-11) - Protección térmica integrada

- Límite de emisión acústica

IEC 60 034-14 (DIN EN 60 034-14) - Oscilaciones mecánicas IEC 60 038 (DIN EN 60 038)

- Tensiones normalizadas IEC

Dat	Datos técnicos del módulo de motor AC IEC a 460V/60Hz										
Modelo	P ₁ [kW]	n ₁ [min-1]	I _N [A]	cos φ	M _N [Nm]	M _A /M _N	MK/MN	IA/IN	J [gm ²]		
63S/4	0,12	1665	0,52	0,57	0,70	2,5	2,9	3,7	0,21		
63L/4	0,18	1690	0,63	0,58	1,00	2,3	2,6	3,7	0,28		
71S/4	0,25	1725	0,61	0,70	1,40	2,4	3,1	4,9	0,71		
71L/4	0,37	1705	0,98	0,67	2,10	2,5	3,0	4,9	0,86		
80S/4	0,55	1715	1,30	0,71	3,10	2,1	2,6	4,4	1,08		
80L/4	0,75	1720	1,75	0,70	4,20	2,3	2,8	4,6	1,45		
90S/4	1,10	1735	2,35	0,72	6,10	3,0	3,5	5,9	2,32		
90L/4	1,50	1730	3,05	0,75	8,30	3,0	3,4	6,0	3,09		
100L/4	2,20	1725	4,50	0,74	12,1	2,9	3,4	5,8	4,46		
100LA/4	3,00	1735	5,80	0,77	16,6	3,0	3,3	6,0	6,00		
112M/4	4,00	1740	7,20	0,81	22,1	2,5	23,2	6,4	11,90		

Tipo de funcionamiento: S1 (funcionamiento continuo)

IP 55 Tipo de protección: Clase de aislante:

Tensiones: Δ230V/Y400V a 50Hz y Y460V a 60Hz Δ400V/Y690V a 50Hz y Δ460V a 60Hz

P₁: Potencia nominal; n₁: Velocidad nominal; I_N : Corriente nominal; M_N: Par nominal; M_K: Par de vuelco: M_A: Par de arranque; cos φ: Factor de potencia; J: Momento de inercia

Motores con freno NORD

Los motores del módulo de motor AC IEC también están disponibles con freno. Los motores con freno vienen caracterizados en las listas de selección y en los planos a escala con el símbolo (1) Los motores con freno NORD son motores de AC NORD con frenos electromagnéticos integrados de acción de resorte. El desbloqueo de los frenos se realiza mediante los electroimanes de corriente continua, la aplicación del freno se realiza directamente por efecto de los muelles de presión cuando se interrumpe la corriente. El anillo de ajuste posibilita una reducción continua del Par de freno hasta el 50%.

De forma estándar, la tensión continua de las bobinas de freno es de 205 V ó 180V DC. De este modo, el rectificador montado en la caja de bornes permite la conexión del freno a la alimentación de corriente trifásica $\Delta 230V/Y400V$ AC o $\Delta 400V/Y690V$ AC.

Se pueden suministrar también otras tensiones de bobina, otros Pares de freno, tipos de protección más altos, anillos de protección contra el polvo, placas de fricción inoxidables, palancas manuales de desbloqueo y otras opciones. Pida el catálogo de motores M7000.

Datos técnicos de los frenos de los motores con freno											
Modelo	M _B	P ₂₀	W _{max}	a							
	[Nm]	[W]	[J]	[mm]							
63S/4 BRE5 63L/4 BRE5	5	22	3000	0,2							
71S/4 BRE5 71L/4 BRE5	5	22	3000	0,2							
80S/4 BRE5	5	22	3000	0,2							
80L/4 BRE10	10	28	6000	0,2							
90S/4 BRE10	10	28	6000	0,2							
90L/4 BRE20	20	39	12000	0,2							
100L/4 BRE20	20	39	12000	0,2							
100LA/4 BRE40	40	42	25000	0,3							
112M/4 BRE40	40	42	25000	0,3							

Tipo de protección: IP 55

Tensión de bobina: 205V DC adecuada para Δ230V/Y400V AC

180V DC adecuada para Δ400V/Y690V AC

Momento de freno;

P₂₀: Potencia de la bobina; W_{max}: Trabajo máximo debido al rozamiento por juego a

Holgura nominal

G

1035

60 Hz

Nombre del modelo de

Transmisión total del reductor Módulo de transmisión del

Velocidad de salida del reductor

Par máx. de salida (f_B=1.0) a una velocidad de reductor de

Potencia máx. de accionamiento

Velocidad de salida del reductor

Par máx. de salida (f_B =1.0) a una velocidad de reductor de n_1 =1150 min $^{-1}$

Potencia máx. de accionamiento $(f_B=1,0)$ en la entrada del reductor

Velocidad de salida del reductor

Par máx. de salida ($f_{\rm B}$ =1.0) a una velocidad de reductor de $\rm n_1$ =8500 min $^{-1}$

Potencia máx. de accionamiento (f_B=1,0) en la entrada del reductor

Velocidad de salida del reductor

Potencia máx. de accionamiento

Número de pedido Módulo de reductor de sinfín

Número de pedido

Módulo de etapa previa

Módulo de montaje de motor

normalizado IEC véase página .

(f_B=1,0) en la entrada del reductor

reductor

reductor Reductor de sinfín Módulo de transmisión del

reductor Etapa previa

n₁=1750 min

www.nord.com

	Ü
Ç	7
	O

Reductores Características de sinfín técnicas UNIVERSAL

Estructura

ı de

de

selección

	motor (60Hz, 4 polos)	Ŝ	70	motor (60Hz, 4 polos)	[M]
	Velocidad de salida del reductor (50Hz, 4 polos)	[min ⁻¹] [Nm	n ₂	Velocidad de salida del reductor (60Hz, 4 polos)	n ₂ M ₂ [min-1] [Nm:
	Par de salida * Par máx. de salida para f _B =0,8	E S	M ₂	Par de salida * Par máx. de salida para f _B =0,8	M ₂
	Factor de funcionamiento		ਛੰ	Factor de funcionamiento	fB
	Transmisión total del reductor		iges	Transmisión total del reductor	iges
n ₁ = 1750 min ⁻¹	Módulo de transmisión del reductor Reductor de sinfín Módulo de transmisión del		i _{sch} i	Módulo de transmisión del reductor Reductor de sinfín Módulo de transmisión del	İsch
50 m	reductor Etapa previa		vor	reductor Etapa previa	İvor
lin-1	Fuerza radial admisible en el lado de salida con eje insertable	Ξ	F R	Fuerza radial admisible en el lado de salida con eje insertable	Z - R
n ₁ = 1	Fuerza radial admisible en el lado de salida con brida B5 de salida	Ξ	두 뭐	Fuerza radial admisible en el lado de salida con brida B5 de salida	Z R
= 1150 min ⁻¹	Nombre del modelo del reductor de sinfín con engranaje cilíndrico completo. En los pedidos, especifique	Planos a escala página	Modelo	Nombre del modelo del motorreductor de sinfín con engranaje cilíndrico completo. En los pedidos, especifique	Modelo Planos a escala: página
n ₁ = 850 min ⁻¹	además pedidos, especinique además la transmisión total del reductor i _{ges} y el diseño	a escala: véase	ö	además la transmisión total del reductor i _{ges} y el diseño	yio
nin-1	Número de pedido Módulo de reductor de sinfín	Página		Número de pedido Módulo de reductor de sinfín	Página
n ₁ = 100 min ⁻¹	Número de pedido Etapa previa	Página		Número de pedido Etapa previa	Módu Página
h ₁	Número de pedido Módulo de montaje de motor normalizado IEC B14 pequeño	IEC B14 C90 Página	Módulos d	Número de pedido Módulo de montaje de motor normalizado B14	Ilos del r IEC 63 B14 C90 Página
Módulos del reduc	Número de pedido Módulo de montaje de motor normalizado IEC B14 grande	IEC B14 C120 Página	del reducto alter-nativa:	Número de pedido Módulo de motor normalizado IEC 230V/400V 60Hz	Módulos del motorreductor le motorreductor le motorreductor le motor eductor le motor le
del redu	Número de pedido Módulo de montaje de motor normalizado B5	IEC B5 A140 Página	alter- nativa:	Número de pedido Módulo de motor normalizado IEC	altern. altern. Motor free 63S/4 I
77				aan franc interrede	

vor n₂ n₂

Modelo

[min⁻¹] [Nm]

[kW]

[min⁻¹]

[MM]

[kW]

[min⁻¹] [Nm]


Έ S

Potencia nominal del

[min⁻¹] [Nm] Par máx. de salida (f_B =1.0) a una velocidad de reductor de n_1 =100 min $^{-1}$ [kW] (f_B=1,0) en la entrada del reductor

con freno integrado

230V/400V 60Hz

Potencia nominal del

Motorreductores de sinfín UNIVERSAL 4 polos 60Hz

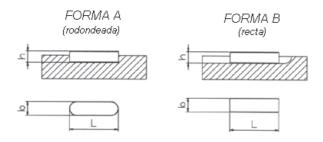
0,18kW

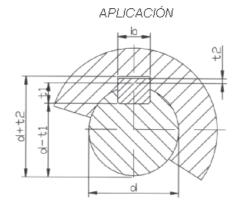
									Modelo		Módul	os del motorre	
P ₁ [kW]	n ₂ [min ⁻¹]	M ₂ [Nm]	f _B	i _{ges}	İ _{sch}	i _{vor}	F _R	F _{RF}			IEC 63 B14 C90	Motor 63L/4	Motor con freno 63L/4 BRE5
									60 - 67	60 - 67	73	74	74
0,18	326 217 163 130 109 82 65 54 41 33	5 6 8 10 11 14 17 17 21 24	5,1 4,2 3,1 2,4 2,6 1,9 1,5 1,7 1,3	5 7,5 10 12,5 15 20 25 30 40 50	5 7,5 10 12,5 15 20 25 30 40 50		1140 1300 1420 1520 1610 1750 1800 1800 1800	790 910 990 1040 1040 1030 1030 1030 1020	SK 1 SI 31 – IEC63 - 63L/4	60391050 60391080 60391100 60391130 60391150 60391200 60391250 60391300 60391500	Números 60395010 " " " " " " "	de pedido de los 31510020 "" "" "" "" "" "" "" ""	s módulos 31510044 "" "" "" "" "" "" ""
									SK 1 SI 40 -		Números	de pedido de los	s módulos
	82 65 54 41 33 27 20 16	15 18 19 23 26 29 35 38	3,0 2,3 2,6 2,0 1,6 1,4 1,1 0,9	20 25 30 40 50 60 80 100	20 25 30 40 50 60 80 100		3200 3200 3200 3200 3200 3200 3200 3200	1840 1840 1840 1840 1830 1830 1820 1820	(IEC63 - 63L/4)	60491200 60491250 60491300 60491400 60491500 60491600 60491800 60491000	60495010 	(31510020) 	(31510044) " " " " " " " " "
	33 27 20 16	30 33 39 44	2,6 2,2 1,7 1,4	50 60 80 100	50 60 80 100		4800 4800 4800 4800	3740 3740 3740 3730	SK 1 SI 50 – IEC63 - 63L/4	60591500 60591600 60591800 60591000	Números 60495010 "	de pedido de los 31510020 " "	s módulos 31510044 "
	20 16	43 50	2,7 2,2	80 100	80 100		6300 6300	3450 3450	SK 1 SI 63 – IEC63 - 63L/4	60691800 60691000	Números 60495010	de pedido de los 31510020 "	s módulos 31510044

Motorreductores de sinfín UNIVERSAL 4 polos 60Hz

									Modelo		Módul	os del motorre	
P ₁ [kW]	n ₂ [min ⁻¹]	M ₂ [Nm]	f _B	i _{ges}	İ _{sch}	i _{vor}	F _R	F _{RF}			IEC 80 B14 C120	Motor 80S/4	Motor con freno 80S/4 BRE5
									62 - 69	62 - 69	73	74	74
0,55	334 223 167 134 111 84 67 56	14 20 26 31 35 45 53 57	2,7 2,2 1,6 1,3 1,4 1,0 0,8 0,9	5 7,5 10 12,5 15 20 25 30	5 7,5 10 12,5 15 20 25 30		2600 2960 3200 3200 3200 3200 3200 3200	1840 1840 1830 1830 1820 1810 1790	SK 1SI 40 - IEC80 - 80S/4	60491050 60491080 60491100 60491130 60491150 60491200 60491250 60491300	Números 60495030 " " " "	de pedido de los 33010020 " " " " " "	módulos 33010046 " " " " " "
	167 134 111 <mark>84</mark> 67 56 42 33	27 33 37 47 57 61 75 88	2,8 2,2 2,3 1,7 1,3 1,5 1,1 0,9	10 12,5 15 20 25 30 40 50	10 12,5 15 20 25 30 40 50		4800 4800 4800 4800 4800 4800 4800 4800	3740 3740 3740 3730 3730 3720 3710 3700	SK 1SI 50 - IEC80 - 80S/4	60591100 60591130 60591150 60591200 60591200 60591300 60591400 60591500	60495030	de pedido de los 33010020 " " " " " " "	módulos 33010046 " " " " " " "
	334 223 167 134 84 67 56 42 33 28 21	14 21 27 34 50 60 65 81 96 108 128	6,4 6,4 4,9 3,8 2,9 2,3 2,5 1,8 1,4 1,2 0,9	5 7,5 10 12,5 20 25 30 40 50 60 80	5 7,5 10 12,5 20 25 30 40 50 60 80		6300 6300 6300 6300 6300 6300 6300 6300	3460 3460 3460 3450 3440 3440 3430 3410 3400 3370	SK 1SI 63 – IEC80 - 80S/4	60691050 60691080 60691100 60691130 60691200 60691250 60691300 60691400 60691500 60691600 60691800	Números 60495030 " " " " " " " " " " " " " " " " " " "	de pedido de los 33010020 " " " " " " " " "	módulos 33010046 " " " " " " " " " " " "
	42 33 28 21 17	87 102 117 143 164	2,9 2,3 1,9 1,4 1,1	40 50 60 80 100	40 50 60 80 100		8000 8000 8000 8000 8000	8000 8000 8000 8000 8000	SK 1SI 75 – IEC80 - 80S/4	60791400 60791500 60791600 60791800 60791000	Números 60795030 " "	de pedido de los 33010020 " " "	módulos 33010046 " " " "

Chavetas




La lengüeta o chaveta normalmente es usada para la transmisión del momento torsor que eje ar cubo.

Chaveta según la normativa UNI 6604-69 – din 6885

Forma A: los extremos con forma redondeada, con radio par hacia mitad de la base.

Forma B: los extremos rectos.

Material:

- Acero C45 con R 59 daN/mm²
- Acero inox AISI 316 con R 59 daN/ mm²

La relación entre diámetro de eje y la sección de la chaveta se indica en la tabla de dimensiones de la pagina siguiente, si se refiere a las de uso normal.

El empleo de chavetas de sección más pequeña es posible si su resistencia es suficiente al esfuerzo que debe transmitir. El empleo de chavetas de sección más grande es desaconsejado.

En el caso de exigencia particular las formas A y B pueden ser conbinadas, es decir un extremo redondeado y otro recto. En tal caso el símbolo de la forma es C.

En las tablas de a continuación también encontramos chavetas con secciones o largo especiales no unificados, el material y la tolerancia son las mismas que aquellas unificadas según la norma UNI 6604-69 – DIN 6885.

Tabla de tolerancia de chavetas y chaveteros de alojamiento (mm)

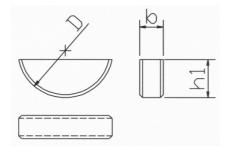

Campo		(Chaveta												
aplicaci Diámet		Dimen	Sección		Dim.			Largo Tolerancia	sobre h			E		ndidad	ıbo
eje	10	normal	Tolera	n sobre	nom.		Por eje			Por cubo)	t			2
d		b x h	b ^{h9}	h*	b	Н9	N9	P9	D10	Js9	P9	Nom	Tol.	Nom	Tol.
De Hasta	6 8	2x2	0	0	2	+0,025	-0,004	-0,006	+0,060		-0,006	1,2		1	
Más de hasta	8 10	3x3	-0,025	-0,025	3	0	0	-0,000	+0,000	±0,012	-0,000	1,8		1,4	
Más de Hasta	10 12	4x4			4							2,5	+0,1 0	1,8	+0,1 0
Más de Hasta	12 17	5x5	0 -0,030	0 -0,030	5	+0,030	0 -0,030	-0,012 -0,042	+0,078 +0,030	±0,015	-0,012 -0,042	3		2,3	
Más de Hasta	17 22	6x6			6							3,5		3,5	
Más de Hasta	22 30	8x7	0		8	+0,036	0	-0,015	+0,098		-0,015	5		3,3	
Más de Hasta	30 38	10x8	-0,036		10	0	-0,036	-0,013	+0,040	±0,018	-0,013	5		3,3	
Más de Hasta	38 44	12x8		0 -0,090	12							5		3,3	
Más de Hasta	44 50	14x9	0		14	+0,043	0	-0,018	+0,120		-0,018	5,5		3,8	
Más de Hasta	50 58	16x10	-0,043		16	0	-0,043	-0,018	+0,120	±0,021	-0,018	6		4,3	
Más de Hasta	58 60	18x11			18							7		4,4	
Más de Hasta	65 75	20x12			20							7,5	+0,2 0	4,9	+0,2 0
Más de Hasta	75 85	22x14	0	0	22	+0,052	0	0.022	10.140		-0,022	9		5,4	
Más de Hasta	85 95	25x14	0 -0,052	0 -0,110	25	0	0-0,052	-0,022 -0,074	+0,149 +0,065	±0,026	-0,022	9		5,4	
Más de Hasta	95 110	28x16			28							10		6,4	
Más de Hasta	110 130	32x18			32							11			
Más de Hasta	130 150	36x20			36							12		8,4	
Más de Hasta	150 170	40x22	0 -0,062		40	+0,062	0 -0,062	-0,026 -0,088	+0,180 +0,080	±0,031	-0,026 -0,088	13		9,4	
Más de Hasta	170 200	45x25			45							15		10,4	
Más de Hasta	200 230	50x28			50							17		11,4	
Más de Hasta	230 260	56x32			56							20	10.2	12,4	10.2
Más de Hasta	260 290	63x32	0		63	10.074	_	0.022	10.222		0.000	20	+0,3	12,4	+0,3
Más de Hasta	290 330	70x36	0 -0,074		70	+0,074	0 -0,074	-0,032 -0,106	+0,220 +0,100	±0,037	-0,032 -0,106	22		14,4	
Más de Hasta	330 380	80x40			80							25		15,4	
Más de Hasta	380 440	90x45			90	+0,087		0.627	.0.255		0.027	28		17,4	
Más de hasta	440 500	100x50	0 -0,087		100		0 -087	-0,037 -0,124	+0,260 +0,120	±0,043	-0,037 -0,124	31		19,5	
		•	* L	a toleran	cia es h	9 para la	sección	cuadrada y	h11 para	a la recta	ngular.				•

Tabla de tolerancia de longitudes L (mm)

Lo	ngitud	Tolerancia chaveta	Tolerancia chavetero			
Hasta	28	0	+0,20			
Hasta	20	-0,20	0			
Más Hasta	28	0	+0,30			
Hasta	80	-0,30	0			
Más do	90	0	+0,50			
Más de	80	-0,50	0			

Chavetas de disco según normativa DIN 6888 - ISO 3912

Material:

• Acero C45 con R59 daN/mm²

La relación entre diámetro de eje y la sección de la chaveta se indica en la tabla de más de abajo, en lo referente a la de empleo normal.

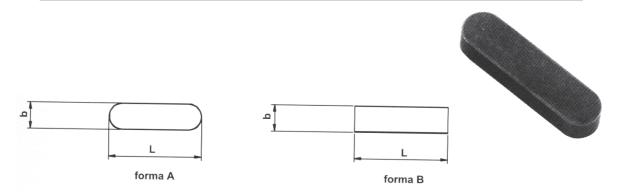

El empleo de chavetas de sección más pequeña es posible si su resistencia es suficiente el esfuerzo a transmitir. El empleo de chavetas de sección más grande es desaconsejable.

Tabla de tolerancia de chavetas de disco (mm)

I	Diametro	del eje d	l	Chaveta	CHAVETA											
Par a tra	ansmitir		ara namieto	estandar bxh 1x D o forma	Ва	ise b	Alt	tura h1	diaı	metro d	Angulo/radio					
>	<	>	<	equival.	Nom	Tolh9	Nom	Tol.h11	Nom	Tol.h12	Min.	Max.				
3	4	3	4	1x1,4x4	1		1,4	0	4	0 -0,120	0,16	0,25				
4	5	4	6	1,5x2,6x7	1,5	0 -0,025	2,6	-0,060	7	0 -0,150 0 -0,180						
5	6	6	8	2x2,6x7	2		2,6	,	7							
6	7	8	10	2x3,7x10	2		3,7	0	10							
7	8	10	12	2,5x3,7x10	2,5		3,7	-0,075	10							
8	10	12	15	3x5x13	3		5		13							
10	12	15	18	3x6,5x16	3		6,5		13							
12	14	18	20	4x6,5x16	4		6,5		16	-0,100						
14	16	20	22	4x7,5x19	4		7,5		19		0,25	0,40				
16	18	22	25	5x6,5x16	5	0	6,5	0	16							
18	20	25	28	5x7,5x19	5	-0,030	7,5	-0,090	19							
20	22	28	32	5x9x22	5		9		22	0						
22	25	32	36	6x9x22	6		9		22	-0,210						
25	28	36	40	6x10x25	6	<u> </u>	10		25							
28	32	40	-	8x11x28	8		11	0	28							
32	38	-	-	10x13x32	10		13	-0,110	32		0,40	0,60				
	P	ara la cha	aveta de d	dimensiones no no	ormaliz	adas la to	leranci	ia de refere	ncia es	la misma.						

UNI 6604 - DIN 6885 INOX

b ^{h9} xh ^{h11}	L mm													Chavetero									
U XII		L mill															t_1	d+t ₂					
3 x 3	10	12	14	15	16	18	20	22	25	28	30	32	35	36	40	45	50					1,8	d+1,4
4 x 4	10	12	14	15	16	18	20	22	25	28	30	32	35	36	40	45	50					2,5	d+1,8
5 x 5	10	12	14	15	16	18	20	22	25	28	30	32	35	36	40	45	50	55	60			3	d+2,3
6 x 6	12	14	15	16	18	20	22	25	28	30	32	35	36	40	45	50	55	60	70	80		3,5	d+2,8
8 x 7	15	20	22	25	28	30	32	35	36	40	45	50	55	60	70	80	90	100	110			4	d+3,3
10 x 8	20	22	25	28	30	32	35	36	40	45	50	55	60	70	80	90	100	110	120			5	d+3,3
12 x 8	25	28	30	32	35	36	40	45	50	55	60	70	80	90	100	110	120	130	140			5	d+3,3
14 x 9	35	36	40	45	50	55	60	70	80	90	100	110	120	130	140	150						5,5	d+3,8
16 x 10	40	45	50	55	60	70	80	90	100	110	120	130	140	150								6	d+4,3
18 x 11	50	55	60	70	80	90	100	110	120	130	140	150										7	d+4,4
20 x 12	50	60	70	80	90	100	110	120	130	140	150											7,5	d+4,9

Características generales del producto

En qué consiste

En el Grupo Condesa disponemos de una amplia gama de tubos en diferentes formas (redondo, cuadrado, rectangular y elíptico). En cuanto al proceso de fabricación disponemos de diferentes tipos de perfiles tubulares, tales como:

- Conformados en frío y sin tratamiento térmico posterior suministrados en "negro", es decir, en el estado obtenido directamente de laminación.
- Conformados en frío y acabados en caliente.
- Conformados en caliente.

La utilización de perfiles tubulares de acero da origen a estructuras resistentes, que permite al proyectista disponer de un campo más amplio donde trabajar la estética de sus diseños, ligeras y rentables, aportando además un potencial expresivo mayor, que facilita a su vez el diseño de una estética más atractiva de los mismos.

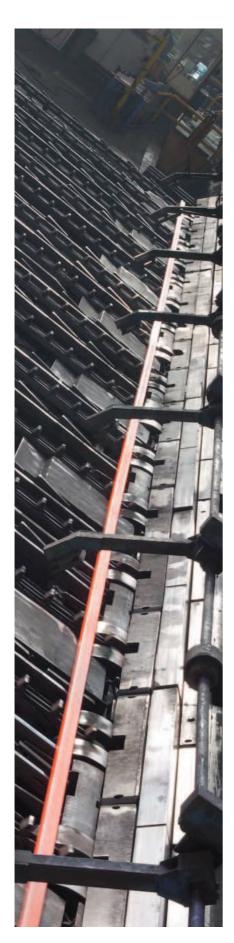
• Sus ventajas principales son:

En cuanto a diseño

Estructuras más ligeras y diáfanas. Elementos de mayor longitud y menor número de uniones.

Grandes luces. Cerchas y celosías más transparentes con posibilidad de eliminar los arriostramientos transversales.

Soportes más esbeltos. Mayores longitudes, menores secciones, que pueden reducirse aún más con el empleo de perfiles tubulares rellenos de hormigón.


Soluciones económicas. Uniones directas fáciles de ejecutar, plazos de construcción reducidos y fácil mantenimiento, son fruto de un diseño correcto y garantía de plazo y precio competitivos.

Capacidad expresiva. Secciones circulares, cuadradas, rectangulares y elípticos, varios espesores de pared por cada tamaño de perfil tubular, ausencia de aristas vivas, etc., son elementos que proporcionan posibilidades innovadoras y distintivas a arquitectos e ingenieros.

Características generales del producto

En cuanto a resistencia

A la compresión. Los perfiles tubulares admiten elementos más esbeltos que los perfiles abiertos para una misma carga de compresión centrada y bajo las mismas condiciones. Si se trata de pilares, el relleno de hormigón consigue secciones aún más reducidas.

A la torsión. La rigidez a torsión es la más elevada de todos los perfiles comerciales de acero. Por la misma razón, su comportamiento es inmejorable frente al pandeo lateral o alabeo.

A la flexión. Su comportamiento es próximo al de un IPN, y mejor que el de los perfiles abiertos frente a flexión en dos direcciones por su reparto del material en dos ejes.

A la tracción. El empleo de uniones soldadas en toda su extensión hace que se utilice al completo la sección resistente en las uniones, al contrario que en el caso de las atornilladas o con cartelas.

A la fatiga. El amplio número de aplicaciones mecánicas en las que podemos encontrar los perfiles tubulares de acero, son una prueba de su perfecto comportamiento ante este tipo de solicitaciones.

Fluido-dinámica. Su reducida oposición al empuje de los fluidos en movimiento los hace indicados en estructuras a la intemperie o submarinas, como postes, mástiles, torres, grúas, etc., permitiendo utilizar en ellas perfiles más ligeros.

Al fuego. Proteger los perfiles tubulares de acero mediante recubrimientos superficiales es más sencillo y económico que en los perfiles abiertos debido a la ausencia de cavidades y a la menor superficie a recubrir.

Protección Pasiva:

Las estructuras de perfiles tubulares ofrecen mayor resistencia al fuego que las de perfiles abiertos debido a la menor superficie expuesta al fuego con relación a la masa (menor factor de forma/masividad).

Las estructuras mixtas basadas en perfiles tubulares rellenos de hormigón, tienen un excelente comportamiento frente al fuego gracias al retardo alcanzado por su mayor inercia térmica.

Protección Activa:

Rellenas de agua, o con circulación de la misma por efecto termo-sifón, las estructuras tubulares irrigadas proporcionan resistencia al fuego casi ilimitada. El mantenimiento de la circulación de agua, con restitución de las pérdidas que se produzcan por vaporización, asegura una refrigeración de la estructura tal que su temperatura, al cabo de un tiempo, se estabiliza sobre valores no muy superiores a la temperatura de cambio de estado del agua, muy inferior, por tanto, a la temperatura crítica del acero.

Además de:

- Introducir elementos más largos en las estructuras.
- Reducir el número de uniones.
- Eliminar riostras.
- Eliminar rigidizadores y cartelas.
- Relleno de hormigón incrementa los m² útiles por planta.
- Su forma facilita su mantenimiento.
- · Aligerar el peso.
- Constituir soluciones estructurales rentables.

Características generales del producto

Composición química y propiedades mecánicas

Análisis de colada para productos de espesor $T \le 40$ mm. según EN 10219 y $T \le 120$ mm. según EN 10210.

	% MÁXIMO DE LA MASA									
DESIGNACIÓN DE ACERO		С								
	EDIO	CALIENTE		Si	Mn	Р	S	Ν		
	FRIO	≤40	<40≤120							
S 275 J0H	0,20	0,20	0,22	-	1,50	0,035	0,035	0,009		
S 355 J2H		0,22		0,55	1,60	0,030	0,030	-		

Características mecánicas de los perfiles tubulares para construcción de acero no aleado según normas EN 10219 y EN 10210.

DESIGNACIÓN DE ACERO	LÍMITE ELÁSTICO MÍNIMO N/mm²	KESIS I ENCIA A	LA TRAC	CCIÓN	MÍN	AMIENTO IIMO %	RESISTENCIA A LA FLEXIÓN POR CHOQUE		
	ESPESOR NOMINAL T ≤ 16 mm	ESPESOR I	\L		ESOR		ENERGÍA MEDIA		
			FRIO	CALIENTE		11NAL 10 mm	TEMPERATURA DE RECARGO	MIN.AUTORIZADA PARA LAS PROBETAS NORMALIZADAS	
		T < 3 mm	3 mm ≤T ≤ 40 mm	3 mm ≤T ≤ 40 mm	FRÍO	CALIENTE	°C		
C 275 101 1	275	120/500			20 -	22		27	
S 275 J0H	275	430/580	410	/560	20 a	23	U	27	
S 355 J2H	355	510/680	470	/630	20 a	22	-20	27	

a. Para tamaños de perfil D/T < 15 (sección circular) y (B+H)/2T < 12,5 (sección cuadrada y rectangular) el alargamiento mínimo se reduce a la mitad.

Condiciones y opciones de suministro

Condiciones de suministro

Las longitudes habituales de suministro son de 6.000 mm a 12.000 mm, aunque bajo consulta pueden suministrarse otros largos entre 4.000 mm y 16.000 mm.

Además de ello, es posible suministrar otros largos bajo consulta.

Opciones de suministro

Las opciones que se listan a continuación son bajo consulta.

- · Cordón de soldadura interior eliminado
- · Posicionado de soldadura
- Tolerancias a medida en los cantos, dimensiones interiores y exteriores
- Acabados y tratamientos superficiales
 - Acabado de extremos de tubo largo
 - Biselado (únicamente en tubo redondo).
 - Granallado y pintado
 - Mediante este proceso se elimina por completo la calamina y cualquier otro contaminante que pudiera llevar el material. Esta es la técnica más avanzada para la limpieza de aceros laminados tanto en frío como en caliente. Para ello disponemos de instalaciones de granallado y pintado posterior ("shopprimer") que lo protege hasta su uso. Nuestro proceso de control está basado en la norma EN 10238 de grado SA 2 1/2 con o sin imprimación.
 - Los tubos imprimados o pintados son perfectamente soldables y no crean humos ni toxinas.
 - Galvanizado por inmersión
 - Se sumergen los tubos una vez conformados en tanque de zinc fundido para aportarles una mayor protección contra la corrosión.

Empaquetado y flejado

Formato paquete rectangular (estándar)

En tubos rectangulares o cuadrados se realizan unos paquetes con eslinga de metal en forma rectangular.

Paquete hexagonal (estándar)

En tubos redondos se realizan unos atados con eslinga de metal en forma hexagonal para optimizar su protección y manipulación.



Gama de producto: FRÍO

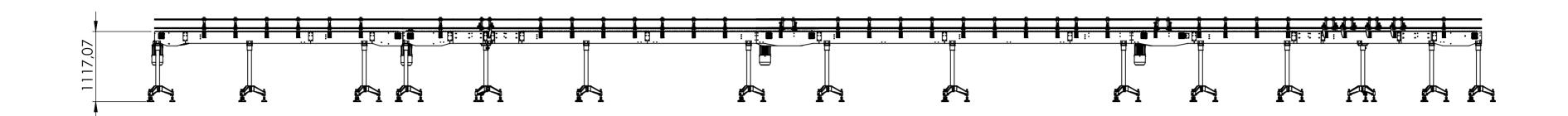
GAMA DE TUBO ACABADO EN FRÍO. Medidas en milímetros

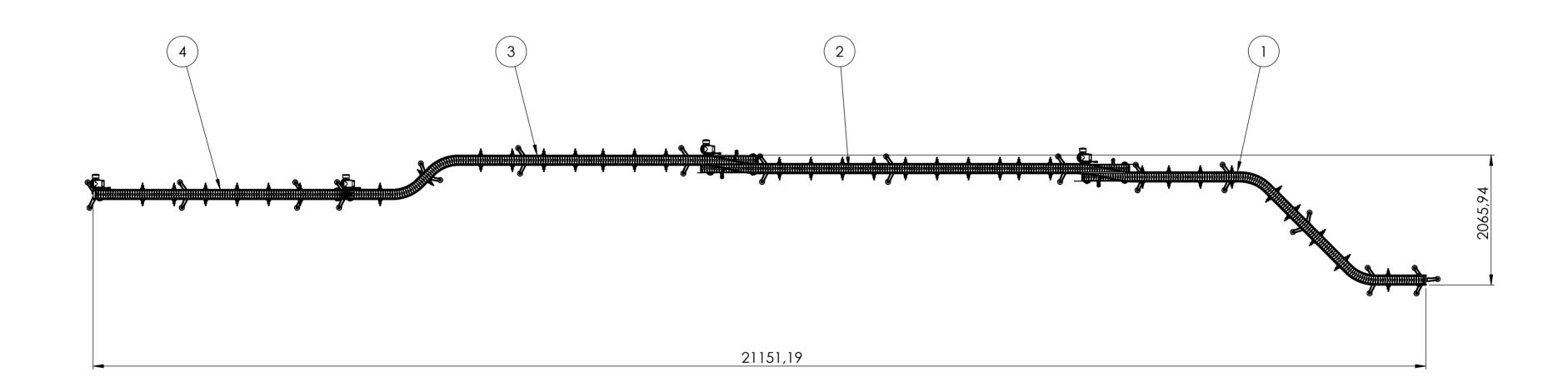
Gama perfil tubular en frío - redondo

Gama pertii tu	ibuiai	eninc	- red	Onido													Z		
DIÁMETRO																			
EXTERIOR									ESPES	ORT	(mm)								
ESPECÍFICO											,								
D																			
(mm)	1,5	2	2,3	2,5	2,9	3	3,2	3,6	4	5	6	6,3	7	8	10	12	12,5	14,2	16
			:	:	:	:	:	:							:				<u> </u>
17,2							:												
21,3						-													-
25																			
26,9																			
28																			
30						<u> </u>													
32																			
33,7																			
35				•			:								:				
37,5							:												
38 39																			
39							:	:											
40																			
41,5																			
42						:													
42,4																			
44,5							:												
45																			
48			:		:	:	:	:			:				:				
48,3				:		:	<u>:</u>												
48,6							:												
49,4			:	:	:	:	:	:							:				
50				:	:	:	:	:							:				
51							:												
52			:	:	-	:	:	<u> </u>							:				
52																			
55																			
56							:												<u> </u>
57																			
58																			
60				: :			:												
60,3																			
61,5																			
62				•	:		:	:											
62,2							:												
63																			
63,5							:												
66							:												
68																			
70							:												
71,5							:								:				:
72																			
75,5					:	:	:	:											
76			:		:	:	:	:			:				:				
76, I							<u>. </u>												
80						:	:												
82,5						:	:												
83																			
84																			
88,9			:		:	:	:	:			:				:				
00,7						-									:				
89																			
90																			
95																			
96																			
Daaibilidad da fab			11. 1			Daia	1.5												

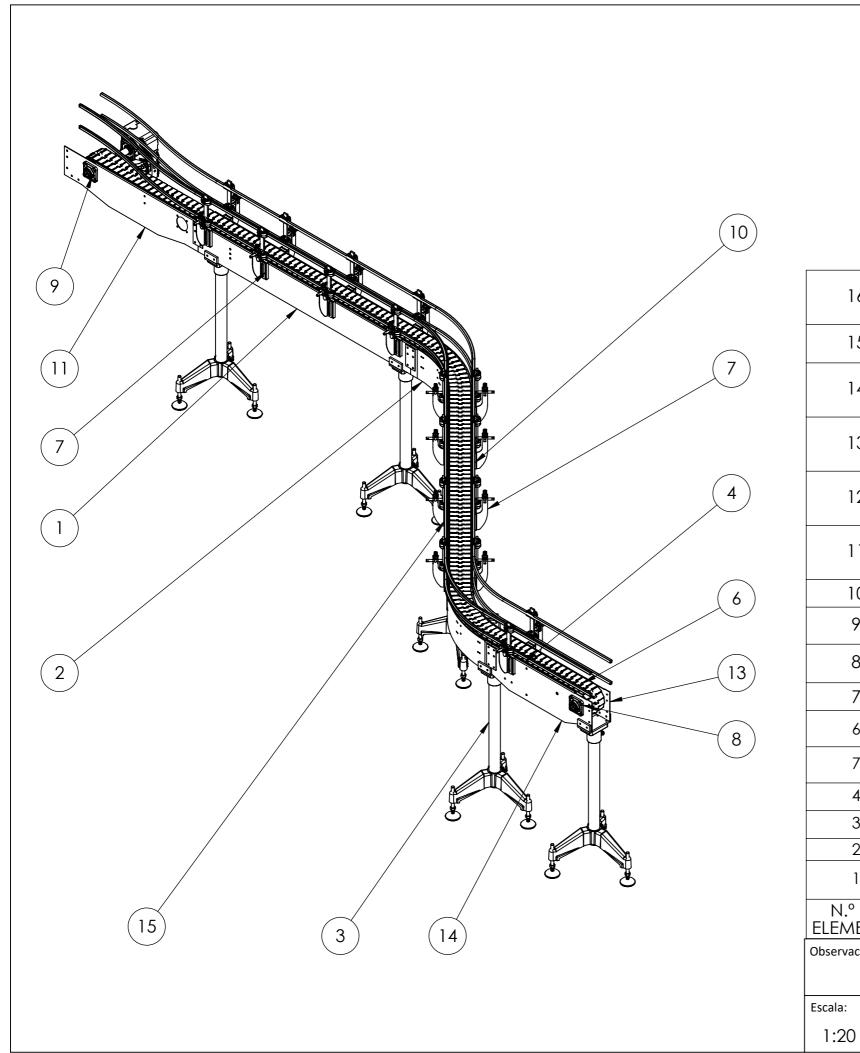
Posibilidad de fabricar otras medidas y en otros aceros. Bajo consulta.

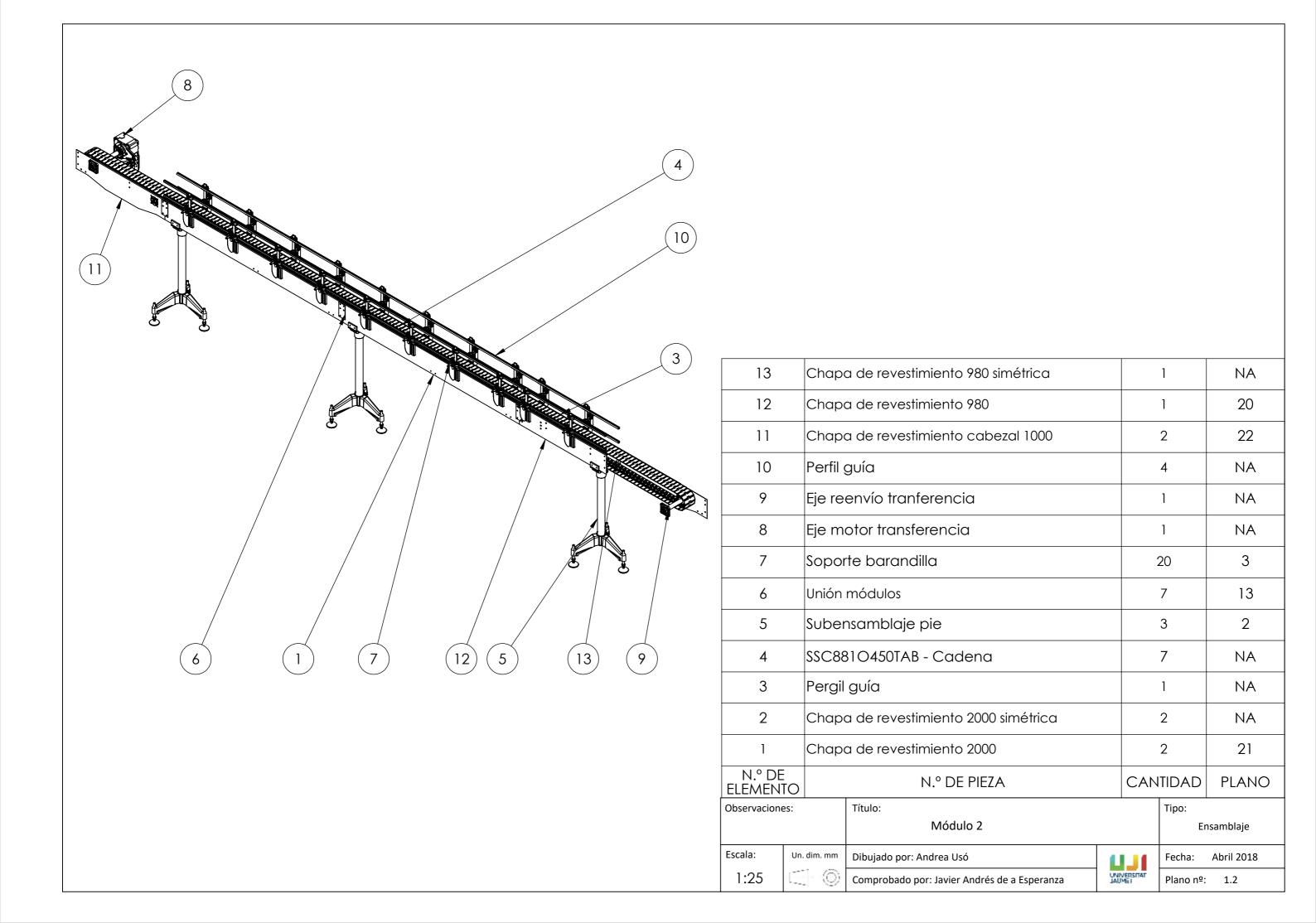
III.PLANOS

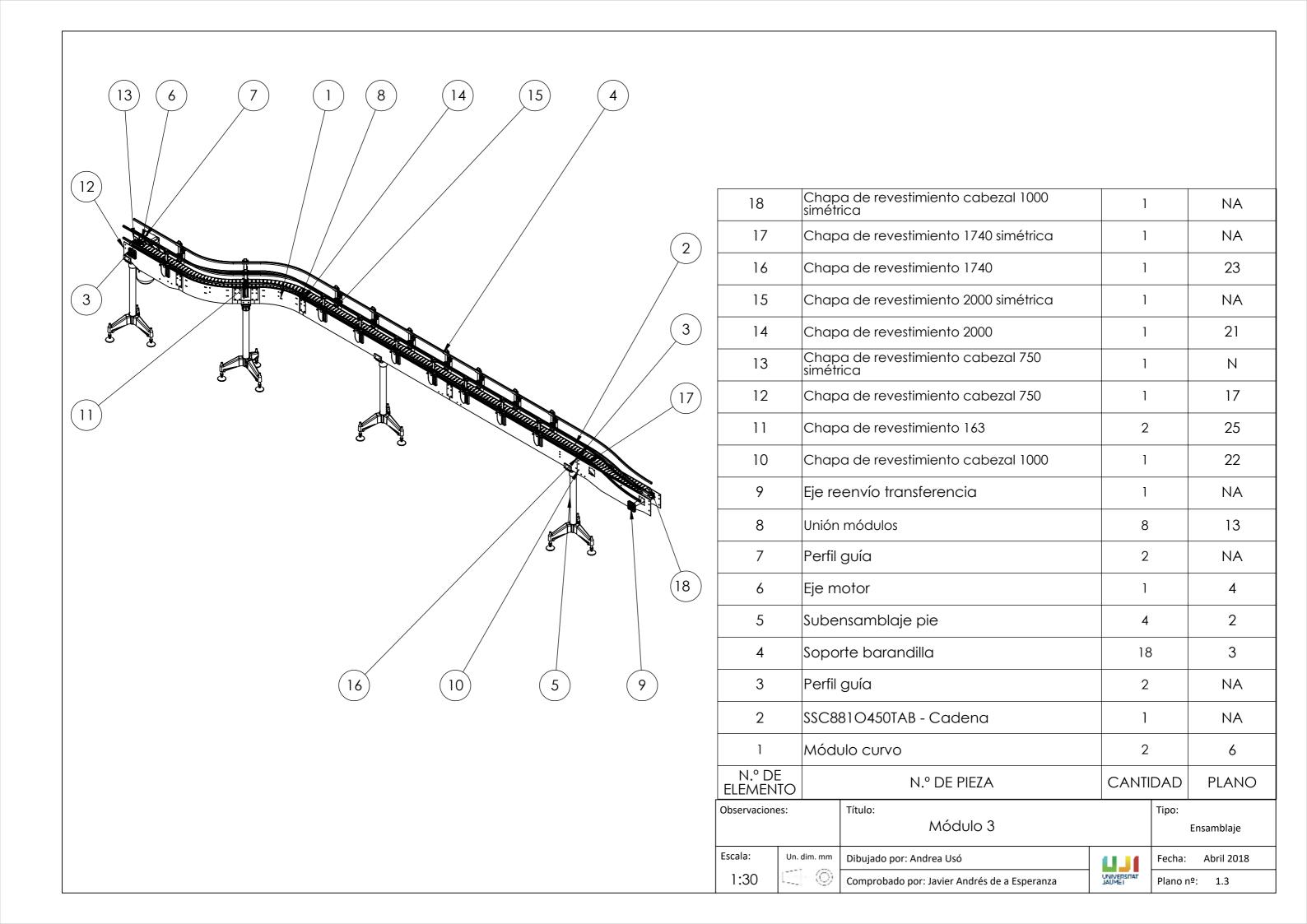


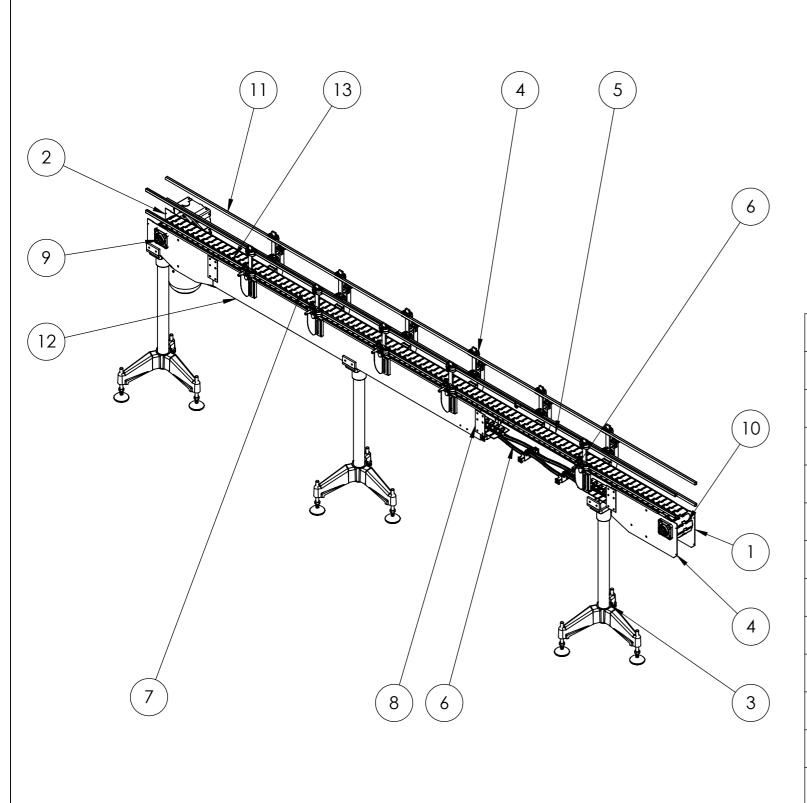


ÍNDICE DE PLANOS

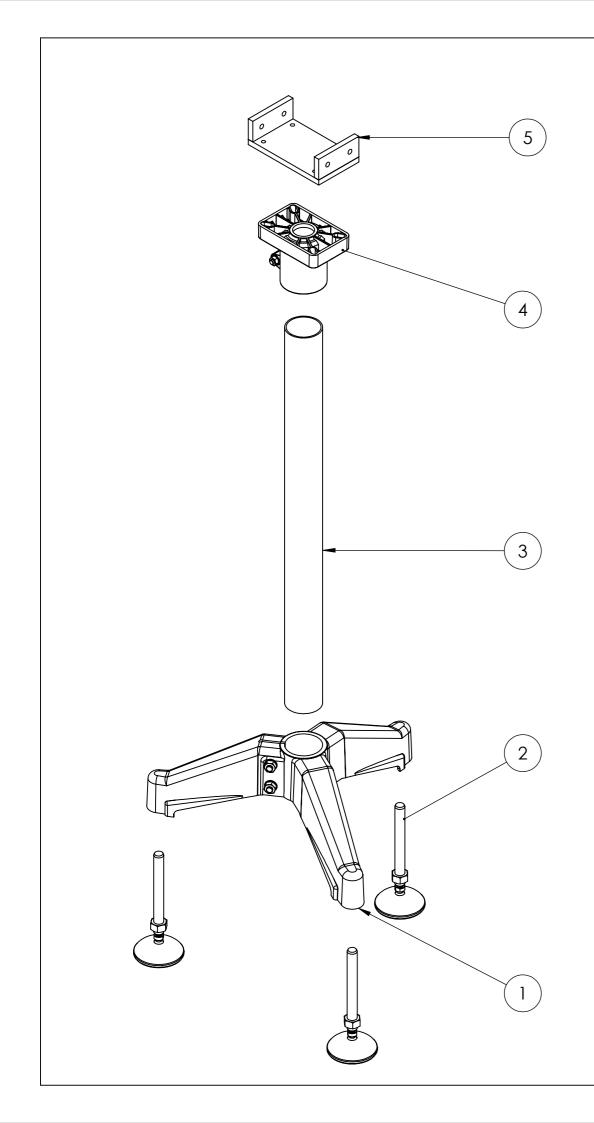

- 1. Plano Conjunto
 - 1.1 Módulo 1
 - 1.2 Módulo 2
 - 1.3 Módulo 3
 - 1.4 Módulo 4
- 2. Subensamblaje patas
- 3. Soporte barandilla
- 4. Conjunto eje motor
- 5. Conjunto eje reenvío
- 6. Submódulo curvo
- 7. Casquillo
- 8. Casquillo transferencia
- 9. Eje motor
- 10. Eje reenvío
- 11. Pieza ensamble
- 12. Barra altura
- 13. Unión módulos
- 14. Unión bridas
- 15. Chapa de revestimiento 1710
- 16. Chapa de revestimiento 1590
- 17. Chapa de revestimiento cabezal 750
- 18. Chapa de revestimiento curva exterior
- 19. Chapa de revestimiento curva interior
- 20. Chapa de revestimiento 980
- 21. Chapa de revestimiento cabezal 1000
- 22. Chapa de revestimiento 1740
- 23. Chapa de revestimiento cabezal 490


4	1	MÓDULO 4			1
3	3	MÓDULO 3			1
2	2	MÓDULO 2			1
1 MÓDULO 1					1
N.º ELEM	DE ENTO	SUBENSAMBLAJE	CANTIDAD		
bservaciones:		Título: Circuito de transporte		Tipo:	Ensamblaje
scala:	Un. dim. mm	Dibujado por: Andrea Usó		Fecha:	Abril 2018
1:50		Comprobado por: Javier Andrés de la Esperanza	UNIVERSITAT JAVMET	Plano r	nº: 1




16	Chap	a de revestimiento 1710 simétrica		1	NA
15	Chap	a de revestimiento 1710		1	15
14	Chap	a de revestimiento cabezal 750 simétrico	a	1	NA
13	Chap	a de revestimiento cabezal 750		1	17
12	Chap	a de revestimiento 1590 simétrica		1	NA
11	Chap	a de revestimiento cabezal 1000		1	22
10	Guía	barandilla		4	NA
9	Eje m	otor transferencia		1	NA
8	Eje re	envío		1	5
7	Unión	módulos		10	13
6	SSC88	31O450TAB - Cadena		1	NA
7	81624	167 - Soporte barandilla		18	3
4	Perfil	guía		15	NA
3	Sube	nsamblaje pie		5	2
2	Subm	iódulo curvo		2	6
1	Chapa de revestimiento 1590			1	16
N.º DE ELEMENT		N.º DE PIEZA		CANTIDAD	PLANO
Observacione	Dbservaciones: Título: Módulo 1			Tipo: Ensan	nblaje
Escala:	Un. dim. mm	Dibujado por: Andrea Usó	<u>u</u>	Fecha: Ab	ril 2018

Comprobado por: Javier Andrés de a Esperanza

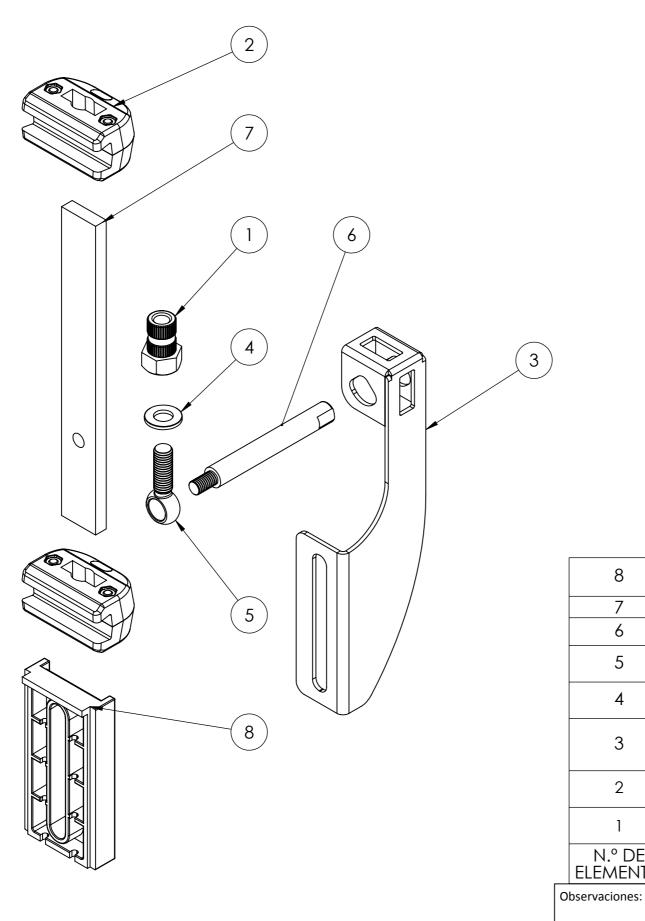

Plano nº: 1.1

15	CI	hap	a de revestimiento 980 simétrica		1	NA
14	CI	hap	a de revestimiento 980		1	20
13	CI	hap	a de revestimiento 2000 simétrica		1	NA
12	CI	hap	a de revestimiento 2000		1	21
11	G	uiac	lo barandillas		4	NA
10	Eje	e ree	envío		1	5
9	Eje	e mo	otor		1	4
8	Ur	Unión módulos 6			6	13
7	С	Cadena			1	NA
6	G	Guiado reenvío			3	NA
5	Pe	erfil ç	guía		14	NA
4	Sc	por	te barandilla	12		3
3	Su	uber	samblaje patas		3	2
4	CI	hap	a de revestimiento cabezal 490		2	24
1		hap nétr	a de revestimiento cabezal 490 ica		2	NA
N.º DE	N.º DE ELEMENTO		N.º DE PIEZA	СА	NTIDAD	PLANO
	Observaciones:		Título: Módulo 4		Tipo:	Ensamblaje
Escala:	Un. dim	n. mm	Dibujado por: Andrea Usó	41.0	Fecha	: Abril 2018
1:20		ф·	Comprobado por: Javier Andrés de a Esperanza	UNIVERSITA JAUMET	Plano	nº: 1.4

5	Pieza ensamble		1	11
4	8330055 - Cabezal de apoyo		1	NA
3	Barra altura		1	12
2	8540441 - Pie regulable	3		NA
1	8310012 - Tripode	1		NA
N.º DE ELEMENTO	N.º DE PIEZA	CANTIDAD		PLANO
Observaciones:	Título: Subensamblaje patas		Tipo: Ens	amblaje

Fecha: Abril 2018

Plano nº: 2


Escala:

1:6

Un. dim. mm

Dibujado por: Andrea Usó

Comprobado por: Javier Andrés de a Esperanza

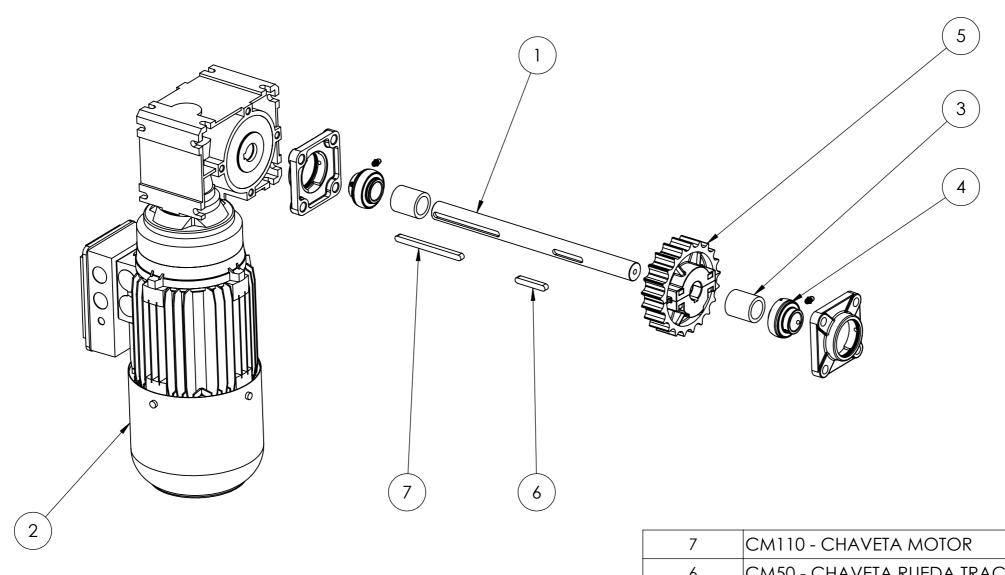
8	3	8190	0815 - Distanciador soportes	1		NA	
7	7	Unić	on bridas	1		14	
6	5	8220	0385 - Eje 100mm soporte	1		NA	
5	5	Torn	illo tirante M10(D12.5) soporte	1		NA	
4	1	DIN 1	125(M10) - Arandela soporte	1		NA	
3	3	8161	1450 - Soporte barandilla	1		NA	
2	2	8210)169 - Brida perfil cónico	2		NA	
1		8120	0577 - Pomo hembra	1		NA	
N.° ELEMI			N.º DE PIEZA	CANTIDA	۸D	DESCRIPCIÓN	
Observacio		Título:		Tip	0:		

Ensamblaje

Fecha: Abril 2018

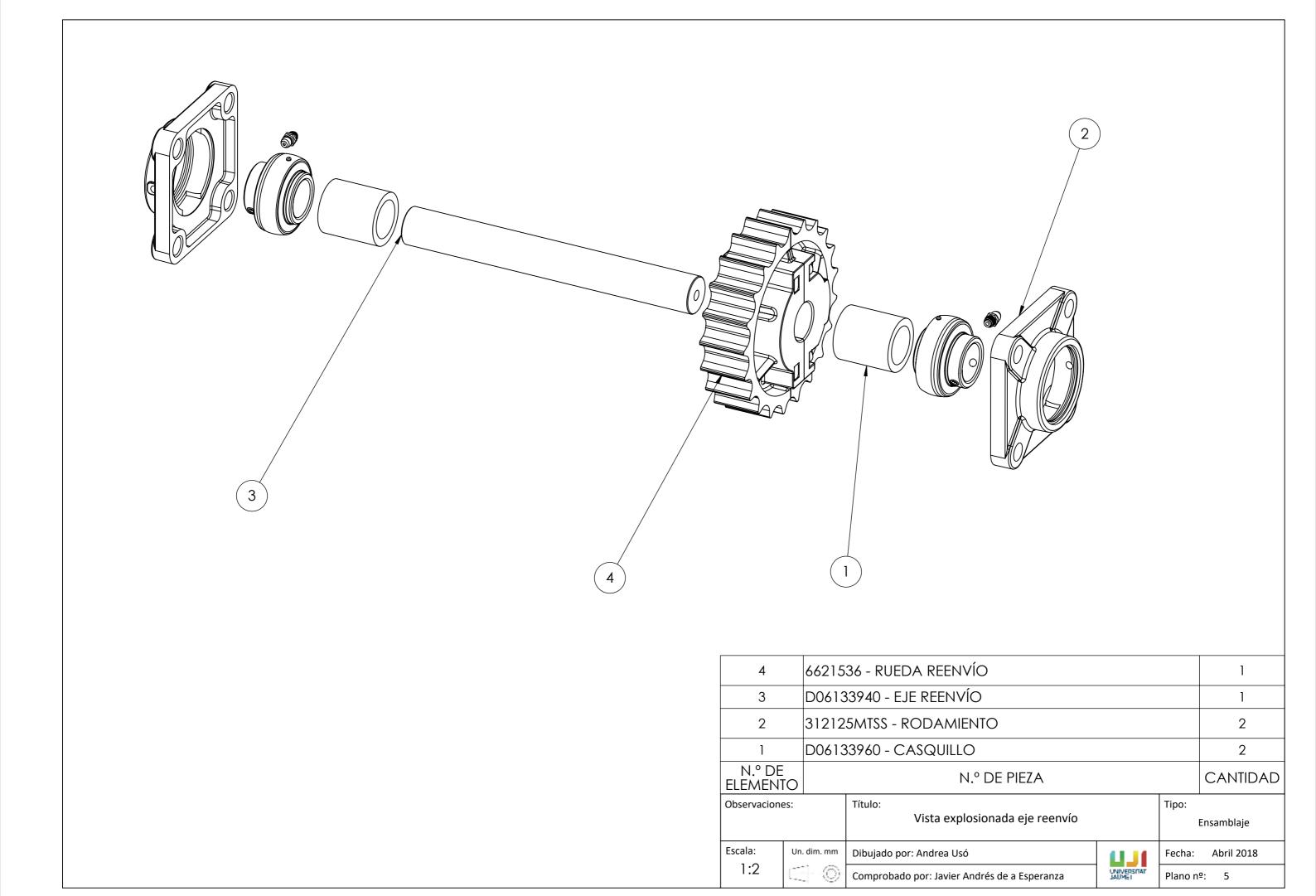
Plano nº: 3

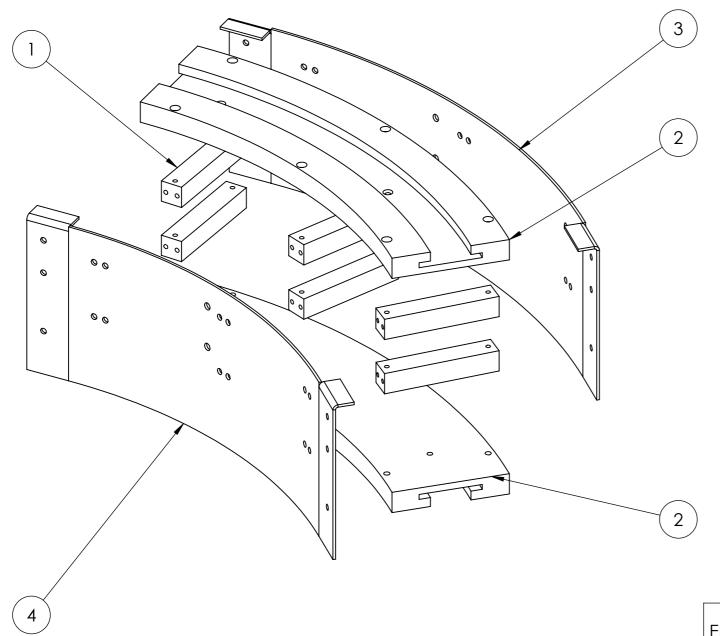
Soporte barandilla


Comprobado por: Javier Andrés de a Esperanza

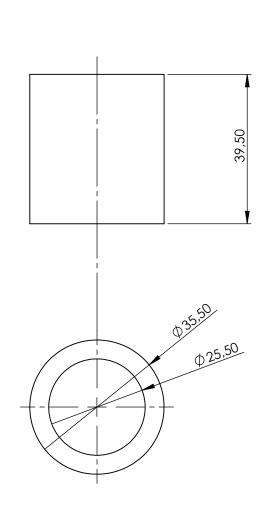
Dibujado por: Andrea Usó

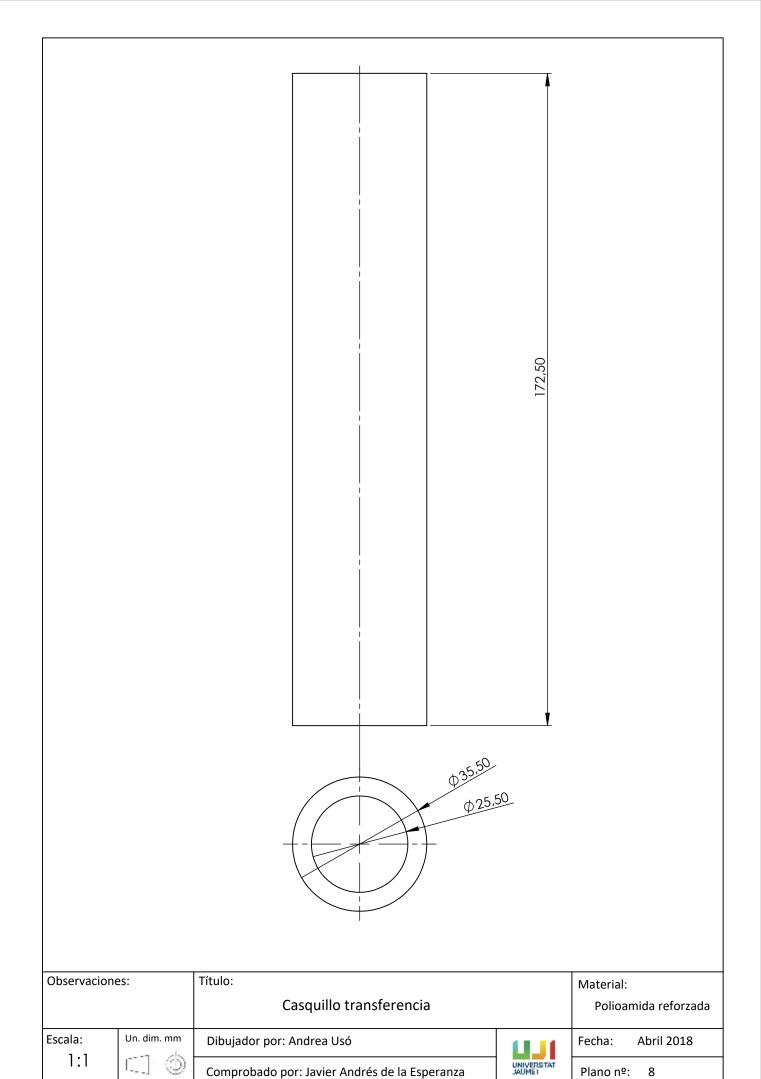
Escala:

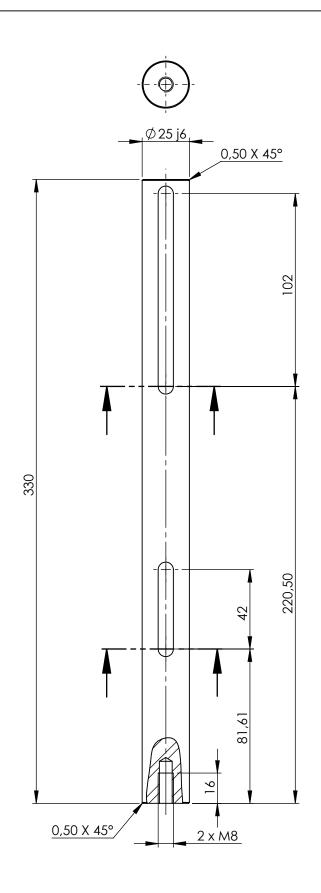

1:2


Un. dim. mm

7	CM11	0 - CHAVETA MOTOR		1			
6	CM50	- CHAVETA RUEDA TRACCIÓN		1			
5	63212	58 - RUEDA TRACCIÓN		1			
4	31212	12125MTSS - RODAMIENTO					
3	D0613	006133960 - CASQUILLOS					
2	MOTO	MOTORREDUCTOR - SK 1 SI40 - IEC63 - 63L/4					
1	D0613	D06133940 - EJE MOTOR					
N.º DE ELEMENTO		N.º DE PIEZA					
Observaciones:		Título:	Tino				

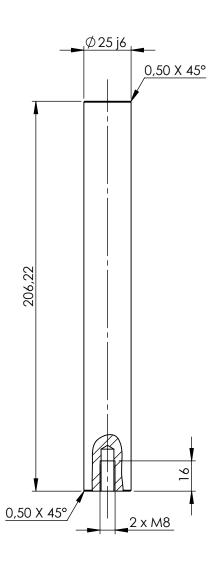

Observaciones:		Título:	Tipo:	
		Vista explosionada eje motorreductor	Ensamblaje	
Escala:	Un. dim. mm	Dibujado por: Andrea Usó		Fecha: Abril 2018
1:5		Comprobado por: Javier Andrés de a Esperanza	UNIVERSITAT JAUMET	Plano nº: 4

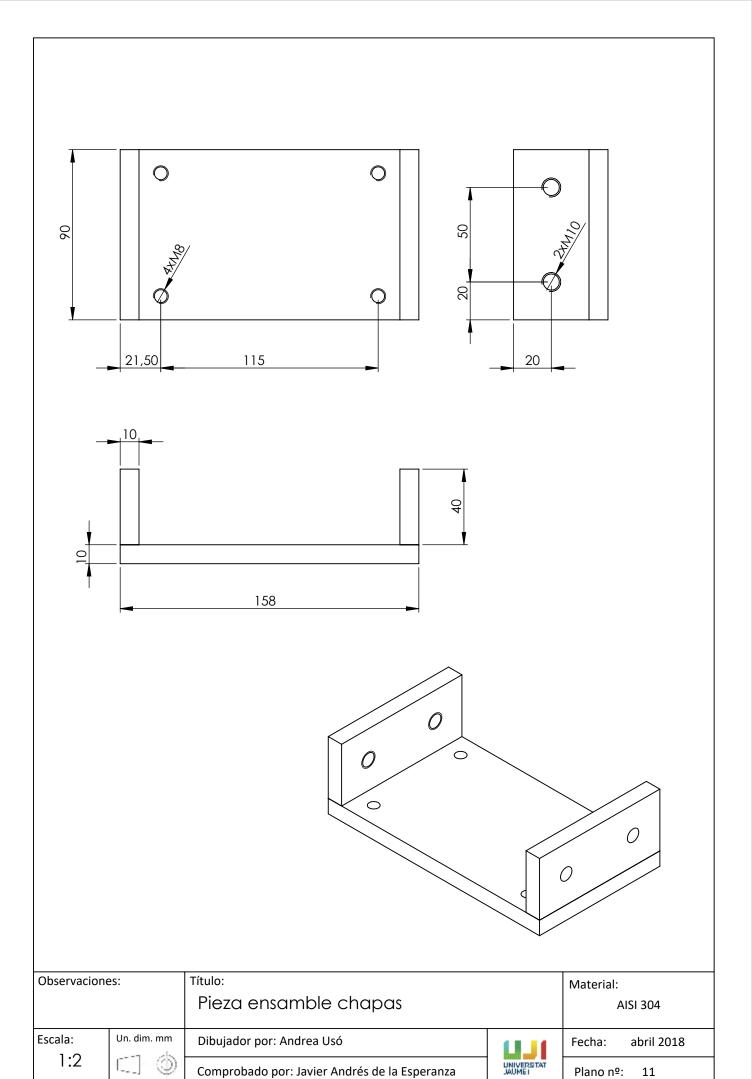


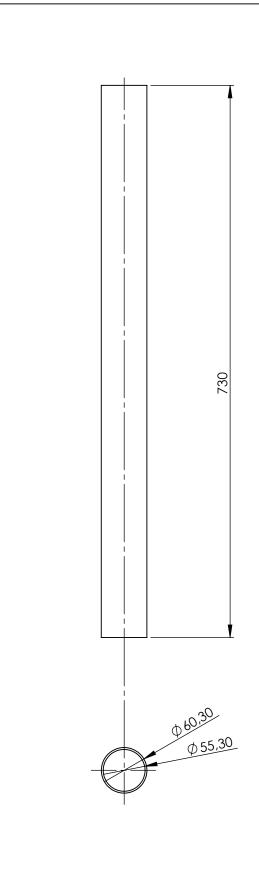

N.º DE ELEMENTO	N.º DE PIEZA	CANTIDAD	PLANO
4	Modulo curvo interior	1	19
3	Modulo curvo exterior	1	18
2	C26101.2 - Guiado curvo	2	NA
1	Tacos guía	6	NA

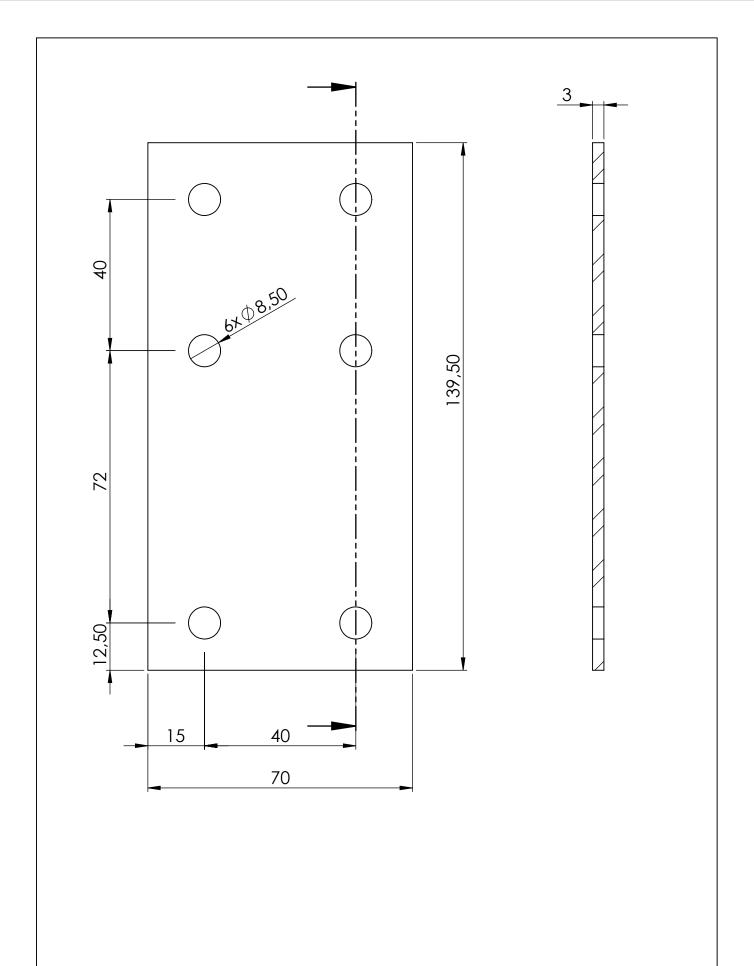
Observaciones:		Título: Submódulo curvo	Tipo: Ensamblaje	
Escala:	Un. dim. mm	Dibujado por: Andrea Usó		Fecha: Abril 2018
1:4		Comprobado por: Javier Andrés de a Esperanza	UNIVERSITÄT JAUMET	Plano nº: 6

Observacion	es:	Título: Casquillo		Material: Poliamida reforzada
Escala:	Un. dim. mm	Dibujador por: Andrea Usó		Fecha: Abril 2018
1:1		Comprobado por: Javier Andrés de la Esperanza	UNIVERSITAT JAJJME I	Plano nº: 7

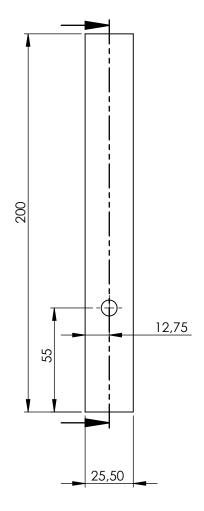



ESCALA 1:1

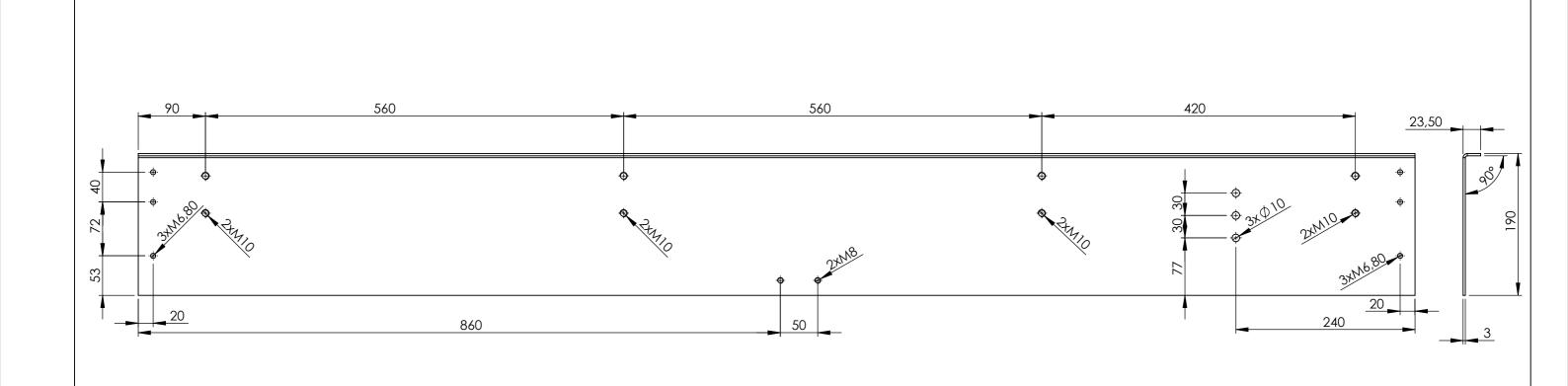

Observaciones:		Título: Eje motor		Material: F-114	
Escala:	Un. dim. mm	Dibujador por: Andrea Usó	шш	Fecha:	Abril 2018
1:2	Comprobado por: Javier Andrés de la Esperanza	UNIVERSITAT JAUMET	Plano nº:	9	

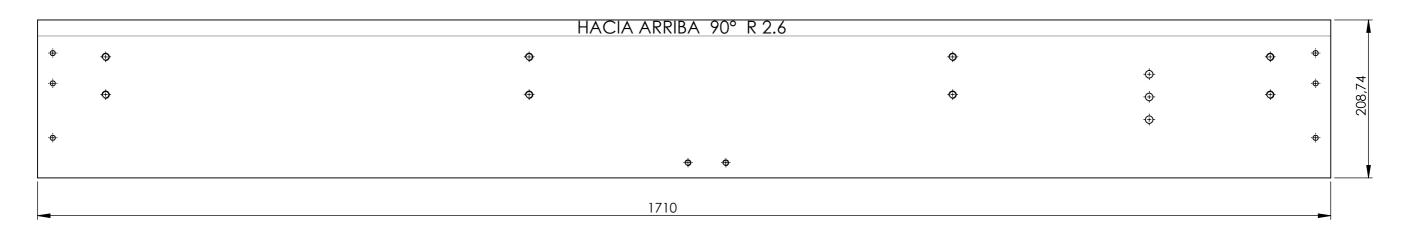


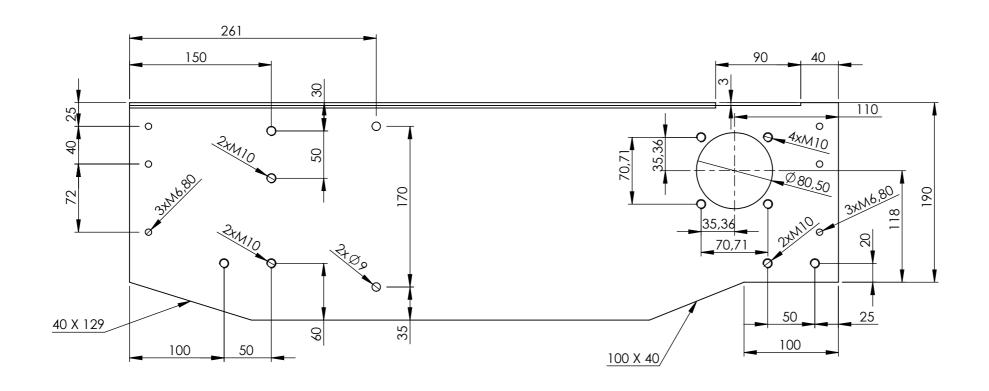
Observaciones:		Título:		Material:	
		Eje reenvío		F-114	
Escala: Un. dim. mm	Dibujador por: Andrea Usó	11.11	Fecha: Abril 2018		
	Z	Comprobado por: Javier Andrés de la Esperanza	UNIVERSITAT JAJJME I	Plano nº: 10	

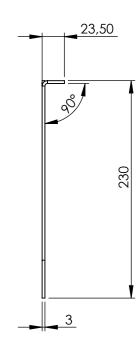


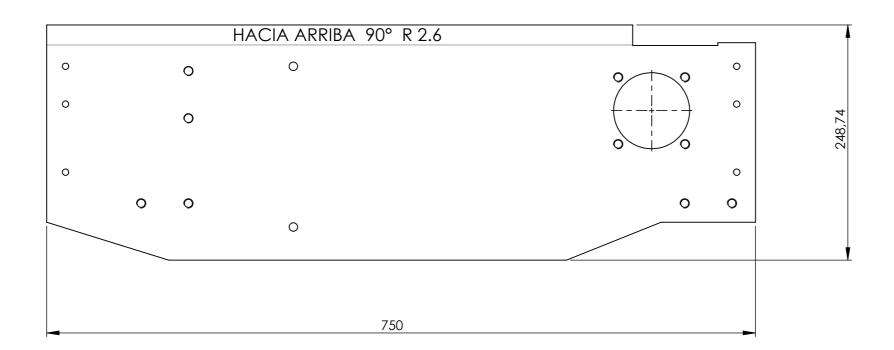
Observacione	es:	Título: Barra altura		Material: AISI 316
Escala:	Un. dim. mm	Dibujador por: Andrea Usó	411	Fecha: Abril 2018
1:5	:5	Comprobado por: Javier Andrés de la Esperanza	UNIVERSITAT JAUMET	Plano nº: 12



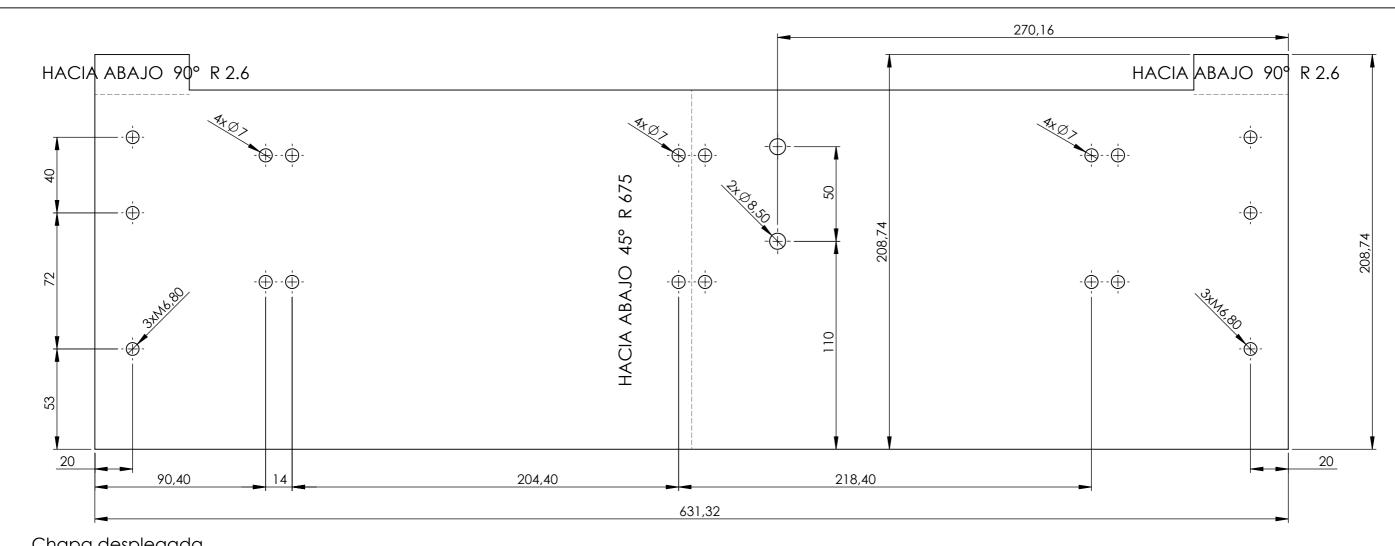

Observacion	es:	Título: Unión chapas de revestimiento		Material: AISI 304
Escala:	Un. dim. mm	Dibujador por: Andrea Usó	шш	Fecha: abril 2018
1:1	Comprobado por: Javier Andrés de la Esperanza	UNIVERSITAT JAUMET	Plano nº: 13	

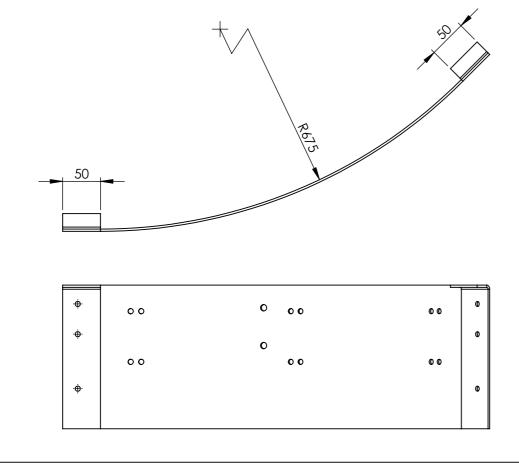

Observaciones:		Título:		Material:	
		Unión bridas		AISI 304	
Escala:	Un. dim. mm	Dibujador por: Andrea Usó	шл	Fecha: Abril 2018	
1:2		Comprobado por: Javier Andrés de la Esperanza	UNIVERSITAT JAUMET	Plano nº: 14	

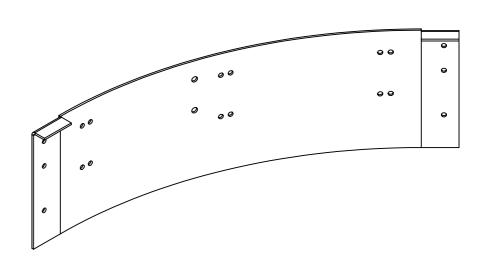


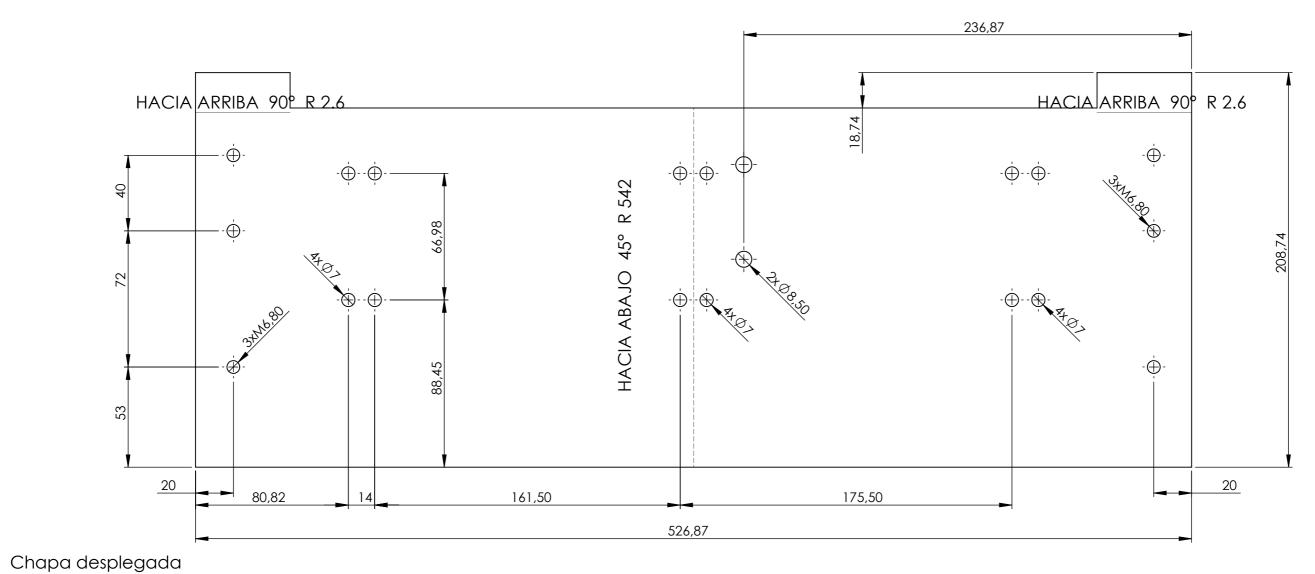


Chapa desplegada

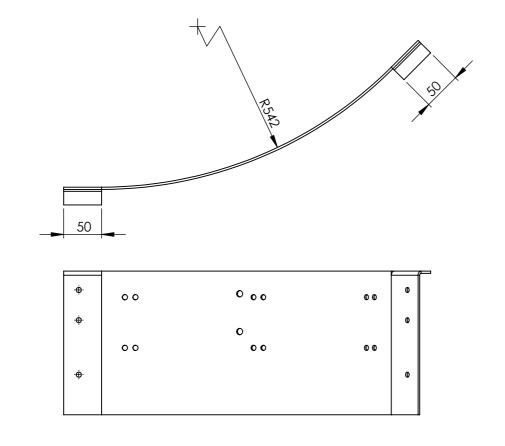

Observaciones:		Título:		Material:	
		Chapa de revestimiento 1710		AISI 304	
Escala:	Un. dim. mm	Dibujado por: Andrea Usó		Fecha: Abril 2018	
1:5		Comprobado por: Javier Andrés de a Esperanza	UNIVERSITAT JAUMET	Plano nº: 15	

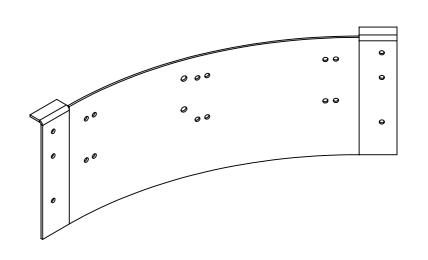



Observaciones:		Título:		Material:
		Chapa de revestimiento cabezal 750		AISI 304
Escala:	Un. dim. mm	Dibujado por: Andrea Usó		Fecha: Abril 2018
1:4		Comprobado por: Javier Andrés de a Esperanza	UNIVERSITAT JAUMET	Plano nº: 16

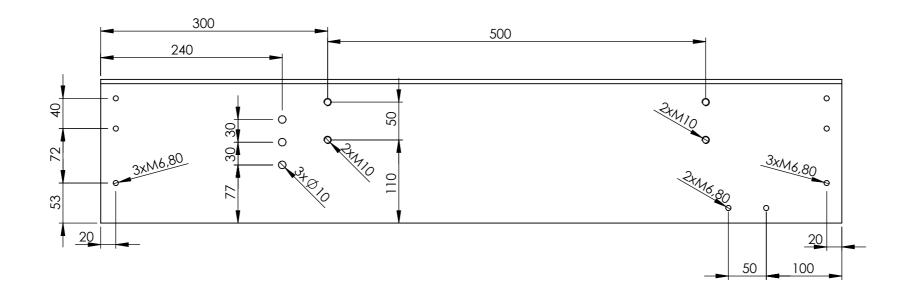

Chapa desplegada

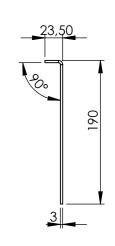
Escala 1:2

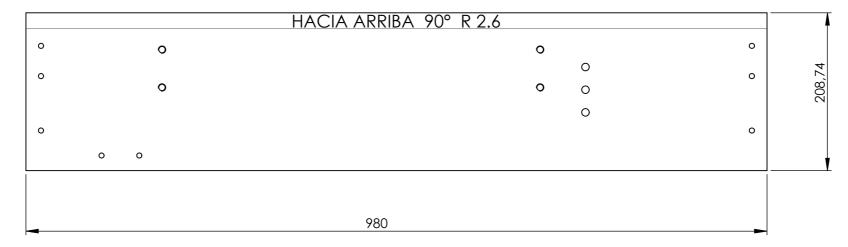




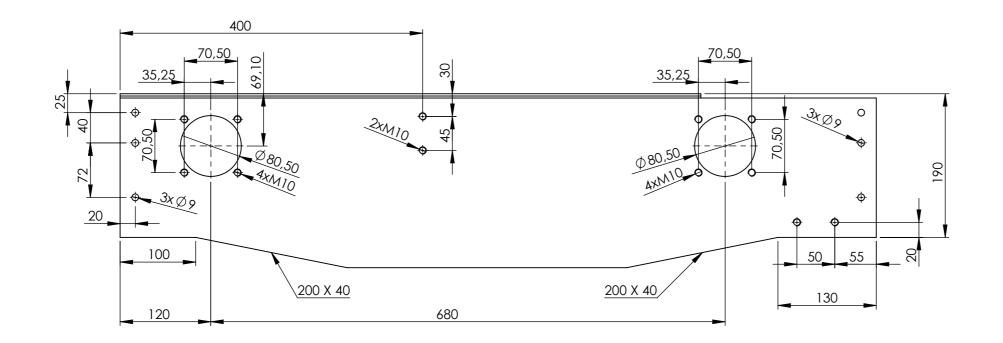
Observaciones:		Título: Chapa de revestimiento curva exterior		Material: AISI 304
Escala:	Un. dim. mm	Dibujado por: Andrea Usó	шш	Fecha: Abril 2018
1:5		Comprobado por: Javier Andrés de a Esperanza	UNIVERSITAT JAUMET	Plano nº: 18

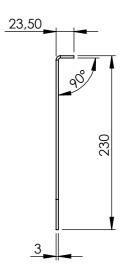


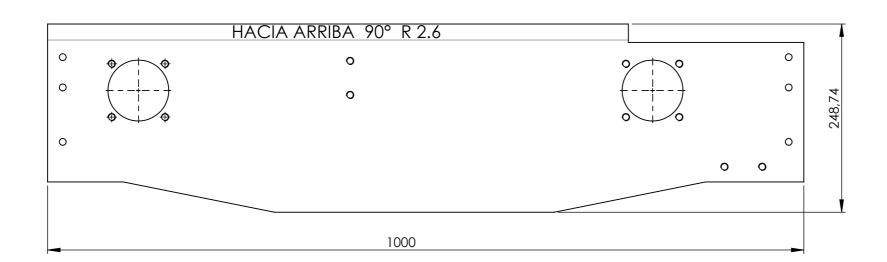

Escala 1:2



Observaciones:		Título: Chapa de revestimiento curva interior		Material: AISI 304	
Escala:	Un. dim. mm	Dibujado por: Andrea Usó		Fecha: Abril 2018	
1:5		Comprobado por: Javier Andrés de a Esperanza	UNIVERSITÄT JAUMET	Plano nº: 19	

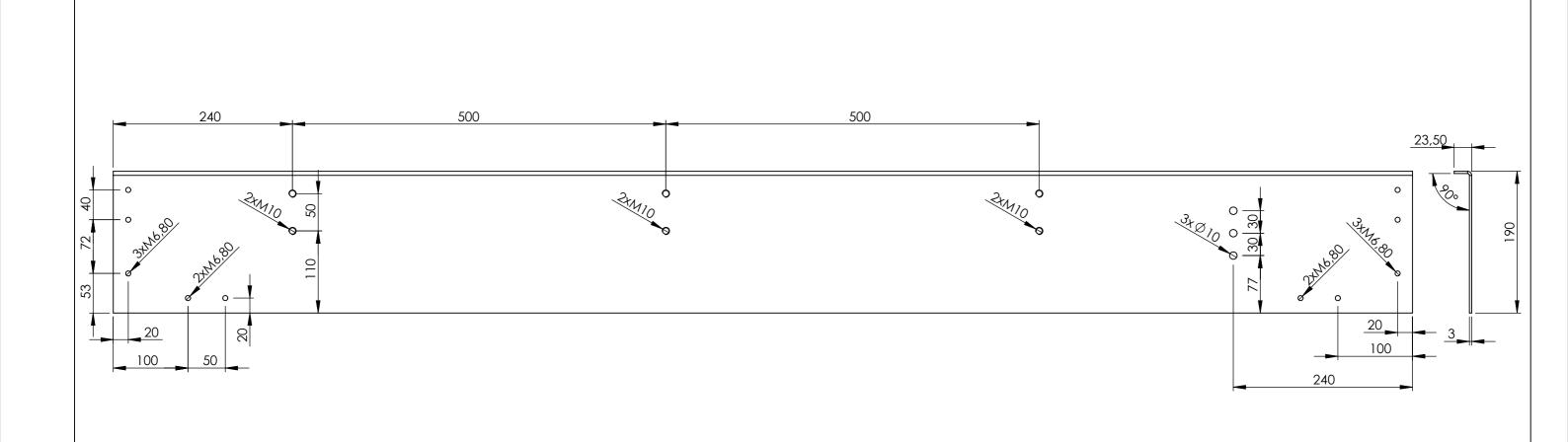


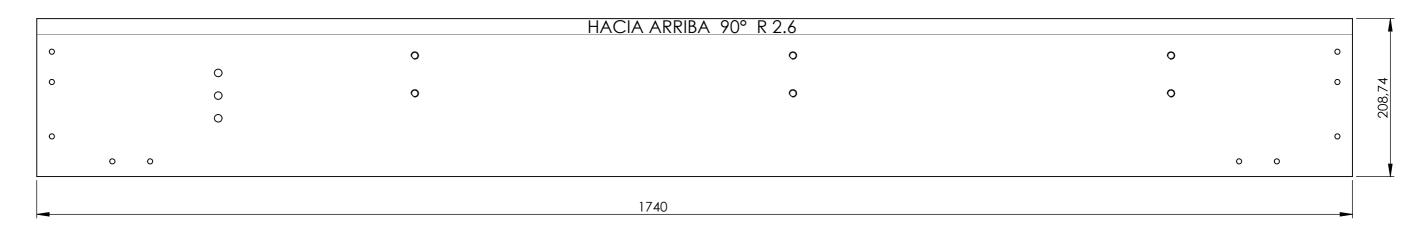




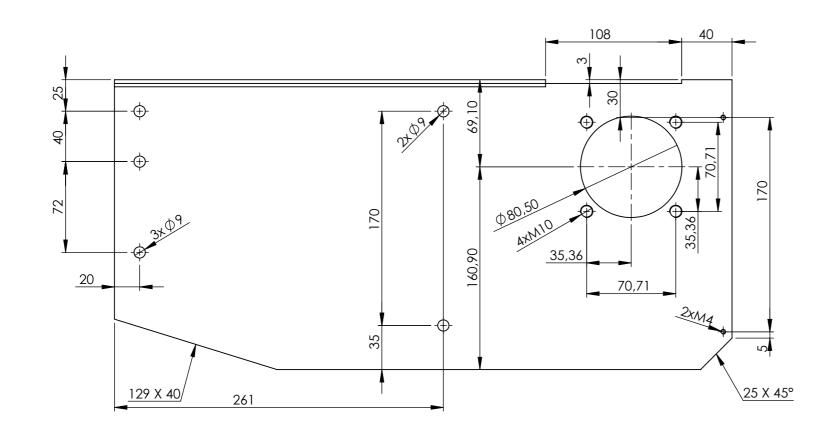
Chapa desplegada

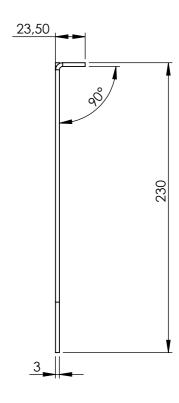
Observaciones:		Título:		Material:	
		Chapa de revestimiento 980		AISI 304	
Escala:	Un. dim. mm	Dibujado por: Andrea Usó	1111	Fecha: Abril 2018	
1:5		Comprobado por: Javier Andrés de a Esperanza	UNIVERSITAT JAUMET	Plano nº: 20	

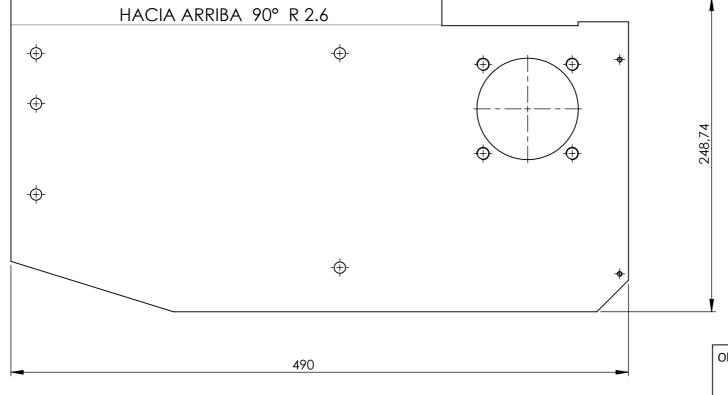




Chapa desplegada


Observaciones:		Título:		Material:	
		Chapa de revestimiento cabezal 1000		AISI 304	
Escala:	Un. dim. mm	Dibujado por: Andrea Usó		Fecha: Abril 2018	
1:5		Comprobado por: Javier Andrés de a Esperanza	UNIVERSITAT JAUMET	Plano nº: 22	




Chapa desplegada

Observaciones:		Título:		Material:
		Chapa de revestimiento 1740		AISI 304
Escala:	Un. dim. mm	Dibujado por: Andrea Usó	UNIVERSITAT JAUMET	Fecha: Abril 2018
1:5		Comprobado por: Javier Andrés de a Esperanza		Plano nº: 23

Chapa desplegada

Observaciones:

Título:

Chapa de revestimiento cabezal 490

AISI 304

Escala:

Un. dim. mm

Dibujado por: Andrea Usó

Comprobado por: Javier Andrés de a Esperanza

Plano nº: 24

III. PLIEGO DE CONDICIONES

1. Seguridad de la máquina

1.1 Normativa

Las condiciones de seguridad que debe cumplir la máquina están reguladas por una normativa de obligado cumplimiento referente a los requisitos mínimos que deben reunir para prevenir los riesgos a los que están expuestos los trabajadores que la utilizan.

- Directiva 2006/42/CE del parlamento europeo y del consejo. (Directiva actual que rige el sector de la maquinaria).
- UNE-EN 415-1:2000+A1: 2009 Seguridad de las máquinas de embalaje. Parte 1: Terminología y clasificación de las máquinas de embalaje y de los equipos asociados.
- UNE-EN 415-10: 2014 Seguridad de las máquinas de embalaje. Parte 10: Requisitos generales.

1.2 Funcionamiento de los equipos de trabajo

Todos los equipos de trabajo deben cumplir con lo exigido por el "Real Decreto 1215/1997. Disposiciones mínimas de seguridad y de salud". En su anexo II se encuentran las condiciones mínimas de seguridad en el uso de los equipos. Los usuarios deben verificar que se cumplen estas condiciones.

Dos de los aspectos esenciales para el correcto funcionamiento del equipo son:

- El mantenimiento
- La formación del trabajador

Para el primero se deben seguir los criterios marcados por la legislación de seguridad industrial como mínimos, ampliados por lo que indique el fabricante del equipo. Para el segundo, es imprescindible formar al trabajador antes de que use el equipo de forma autónoma mediante una formación teórica y práctica que informe de los riesgos derivados del uso del equipo y de cómo se debe operar para trabajar en condiciones de seguridad. Otros aspectos son:

- La máquina o equipo de trabajo solo debe utilizarse para su uso previsto. Se debe prohibir el uso no previsto en situaciones no previstas
- Las instrucciones de funcionamiento proporcionadas por el fabricante deben estar a disposición de los usuarios (aplicar criterios de localización y accesibilidad).
- Si una máquina o equipo de trabajo conlleva riesgos en su utilización, deberá ser utilizada solo por el personal autorizado y con la formación adecuada

- Si para emplear un equipo de trabajo, es necesario que el operador lleve equipos de protección individual (EPI's), hay que informarle de dicha necesidad y exigir su cumplimiento. Es derecho del trabajador ser advertido del riesgo y la necesidad de utilización de EPI's, los cuales deben ser facilitados por la Universidad, siendo obligación del operador el cumplir con su uso. En el equipo de trabajo es recomendable la fijación de pictogramas o carteles recordatorios de los riesgos a los que está expuesto el usuario.
- Si por las características de la máquina, es posible que se produzcan riesgos en su radio de acción mientras está en funcionamiento (zona peligrosa), y es necesario establecer una zona de seguridad a su alrededor, hay que delimitarla, instalar en su caso las barreras de protección adecuadas y señalizarla para informar a los trabajadores, del riesgo que conlleva el entrar en dicha zona mientras el equipo esté trabajando. Medidas similares se deben tomar cuando el equipo de trabajo se encuentre ubicado en una estancia y sea peligrosa la irrupción no prevista de cualquiera.
- Hay también que tener en cuenta los principios ergonómicos para los puestos de trabajo (adaptar el trabajo a la persona) y la posición del trabajador durante la utilización del equipo de trabajo. Informar y formar a los trabajadores adecuadamente de los riesgos posibles que conlleva la utilización de los aparatos que se han adquirido para el trabajo y sobre las medidas de protección.
- Hay que asegurarse durante la vida útil del equipo de trabajo, que se mantienen las condiciones de seguridad. En particular cada unidad deberá gestionar los mantenimientos preventivos indicados por el fabricante y realizar las revisiones legales oportunas. Si el fabricante no especificara éstas, al menos una vez al año hay que verificar el estado de seguridad del equipo de trabajo.

1.3 Identificación de la máquina

Cada máquina sujeta al R.D. 1644/2008 (o al 1435/92) debe llevar, de forma legible e indeleble en todos los aparatos o máquinas que se adquieran.

Este marcado implica el cumplimiento de las Directivas que, en esta materia, exige la Unión Europea.

El Marcado lleva impresas las letras "CE" diseñadas de una forma característica para que sean siempre de la misma manera. Si se coloca indebidamente este Marcado "CE" las autoridades de la Comunidad Autónoma, por denuncia de cualquier usuario, pueden pedir responsabilidades al fabricante o su representante en la Comunidad Europea, para que

restablezca la conformidad del producto y deje de infringir la legislación vigente y no se permita la comercialización y libre circulación.

Según el R.D. 1435/1992- Máquinas y componentes de seguridad. Marcado "CE", la placa identificativa de la máquina debe estar escrita en castellano con los datos:

- Nombre del fabricante o representante legal o el importador.
- Año de fabricación y/o suministro.
- Tipo y número de fabricación.
- Potencia en KW.
- Contraseña de homologación, si procede.

2. Materiales

2.1 El acero

En función de las características necesarias de cada componente, se asignan los aceros más apropiados para las piezas diseñadas y así obtener: fiabilidad, funcionamiento óptimo y durabilidad.

2.1.1 Normas de aplicación

Dada la gran variedad de aceros existentes y de fabricantes, ha surgido una gran cantidad de normativa y reglamentación que varía de un país a otro.

En España, la clasificación de los aceros está regulada por la norma UNE-EN 10020:2001, la cual sustituye a la anterior norma UNE-36010. Los aceros estructurales se regulan conforme las normas europeas EN 10025-2:2004 y EN 10025-4:2004.

No obstante, existen otras normas que regulan el acero, de gran uso internacional, como las americanas AISI (American Iron and Steel Institute) y ASTM (American SocietyforTesting and Materials), las normas alemanas DIN, o la ISO 3506.

Por ello, para no crear dudas sobre la selección del acero, se designará el acero acorde con la norma española-europea, mostrando su equivalencia a la norma americana AISI, de gran utilización en talleres e mecanizado.

2.1.2 Aceros utilizados

El acero inoxidable de uso general es F-3140 (UNE-EN), igual a AISI/SAE 304. Se emplea el acero inoxidable en las zonas de contacto con producto envasado para evitar que el posible óxido del acero común ocasione daños en el mismo producto. Por otra parte teniendo en

cuenta que las botellas contienen lejía en su interior, es importante hacer uso del acero inoxidable para que posibles derrames no dañen la estructura ni los componentes del transportador.

- Límite elástico 245 N/mm²
- Tensión de rotura 570 N/mm²
- Composición: C% 0,003 Máx. Mn% 2 Máx. Si% 1 Máx. Cr% 18-20 Ni% 8-11

El acero semiduro F-1140 (UNE 36011-30 013- [EN 10 083] o AISI/SAE 1045. Es un acero con gran contenido en carbono que le otorga una mayor dureza, mayor resistencia mecánica y un costo moderado.

Se emplea en elementos sometidos a flexión como el eje de tracción o el eje de reenvío. Al no transmitir potencia, están sometidos solamente a esfuerzos de flexión.

- Límite elástico 650 N/mm²
- Tensión de rotura 740 N/mm²
- Composición: C% 0,43-0,5 Mn% 0,6-0,9 P% 0,04 Máx. S% 0,05 Máx. Si% 0,2-0,4

2.1.3 Tratamientos

Para el AISI 304, siendo un acero inoxidable austenítico no puede ser endurecido por tratamientos térmicos pero sí por trabajo en frío. El acero es recocido para asegurar la máxima resistencia a la corrosión y restaurar la máxima ductilidad. Se realiza el recocido a una temperatura entre 1010 y 1120 ºC. Posteriormente, se templa con agua porque los carburos disueltos permanecen en disolución; no obstante, cuando las piezas son delgadas y el temple en agua produce distorsión, es necesario enfriar en aire forzado. De estos tratamientos se obtiene un acero inoxidable estabilizado.

El AISI 1045, es un acero de aplicación universal que frecuentemente se utiliza para elementos endurecido por inducción. Este acero puede ser utilizado en condiciones de suministro: laminado en caliente o con tratamiento térmico. Templado en aceite y revenido o templado en agua y revenido. Es un acero de baja templabilidad que puede ser endurecido totalmente en espesores delgados por temple en agua. Este acero, al ser deformado en frío presenta un incremento de la dureza y la resistencia mecánica.

2.2 Materiales polímeros

Los materiales polímeros utilizados se rigen con respecto a las especificaciones de la Norma UNE-EN ISO 25137-1: 2017, que es la versión oficial en español y que a su vez adopta la Norma Internacional ISO 25137-1:2009.

Se establece un sistema de designación de materiales para moldeo y la extrusión y se diferencian entre sí mediante un sistema de clasificación basado en niveles apropiados de las propiedades de designación.

La segunda parte de la Norma, ISO 25137-2: 2017, introduce la determinación de las propiedades de éstos materiales polímeros a partir de los métodos de ensayo generales especificados en la primera parte de esta Norma.

La poliamida y el Polietileno UHMW 1000 (DESLIDUR) utilizados en los componentes de transmisión y de guiado de la cadena, cumplen las especificaciones de las normas presentadas.

3. Procesos de fabricación

La empresa IPLA se ocupa del diseño y montaje de las instalaciones, no dispone de máquinas ni herramientas para la fabricación de piezas ni su mecanizado.

Para las piezas que no son comerciales y necesitan de su propio diseño personalizado, se encargan a proveedores habituales tanto de perfiles estructurales a como de procesos de conformado como el corte o el doblado.

En aquellos casos en los que la pieza a fabricar necesita de un proceso de fresado largo y complejo, se plantea la opción de fabricar la pieza mediante corte por láser.

4. Ergonomía

Como elemento de trabajo, el transportador ha sido diseñado desde el punto de vista de la ergonomía y la seguridad industrial, la facilidad de manejo y la facilidad de mantenimiento. Todo ello implica tener en consideración el diseño físico del espacio de trabajo, la carga física asociada al uso de la máquina y el diseño de la comunicación hombre – máquina.

4.1 Diseño del puesto de trabajo

La máquina diseñada no requiere una continua intervención por parte de los operarios; durante la intervención, el trabajo del operario se desarrollará de pie. Trabajará en un área alrededor de la máquina en la cual deberá accionar o controlar los envases a lo largo del transportador.

Aunque exista libertad de movimientos, los controles de dispondrán de manera que se minimice lo máximo posible las posturas inadecuadas de los operarios durante su manejo.

A la hora de definir la altura óptima de trabajo, se debe de tener en cuenta los diferentes tipos de trabajos a realizar sus ubicaciones en la máquina. Si existiera una pantalla táctil o de ordenador en el puesto de trabajo para el control de la producción, ésta deberá colocarse

a una altura de aproximadamente 1500mm, equivalente a la atura de visión del percentil 5 de los hombres entre 19 y 65 años, cubriendo así el percentil 50 de mujeres.

En cuanto a los accionamientos, la norma recomienda que la altura de trabajo se sitúe entre la altura de los codos y la de los hombros, ya que una altura demasiado elevada puede producir molestias en el cuello y hombros. Y si por el contrario la altura es demasiado baja, el tronco se inclinará excesivamente pudiendo producir dolores en la zona lumbar. Con ello, la altura óptima para la ubicación de los mismos s establecerá en 1258,5 mm, obtenida realizando la media aritmética entre la altura de los hombros del percentil 5 y la altura de los codos del percentil 95 de los hombres.

Por otro lado, en el caso de enganchón o caída de las botellas, éstas se transportan a una altura de 1100mm que si se tienen en cuenta la altura de su mismo envase, alcanzan una de 1500 mm. Altura ergonómicamente accesible para los operarios y más si sólo en necesario en ocasiones puntuales.

4.2 Carga física asociada a la máquina de trabajo.

La normativa UNE-EN 1005 "Seguridad de las máquinas: Comportamiento físico del ser humano" es la norma que actualmente se aplica a la carga física asociada al uso de las máquinas.

Por su aplicación en el proyecto, se destacan las partes "Límite de fuerza recomendado para la utilización de la máquina" UNE-EN 1005-3 y "Evaluación de posturas y movimientos de trabajo en relación a las máquinas" UNE-EN 1005-4.

Para cumplir con la norma UNE-EN 1005-3 basta con tener en cuenta que el esfuerzo a realizar por los operarios durante el manejo de los accionamientos deberá ser normal.

Los controles deben requerir suficiente resistencia al movimiento de manera que no se activen por un contacto ligero pero tampoco de forma que el trabajador deba realizar un esfuerzo excesivo para su activación. Por ello, en el caso de que el trabajador considere que la fuerza a realizar es elevada, deberá aplicarse el desarrollo del procedimiento recogido en dicha norma.

En la norma UNE-EN 1005-4 vienen recogidas las posturas aceptables para los distintos segmentos corporales: cuello, tronco, brazos, codo, muñeca y piernas.

Tronco

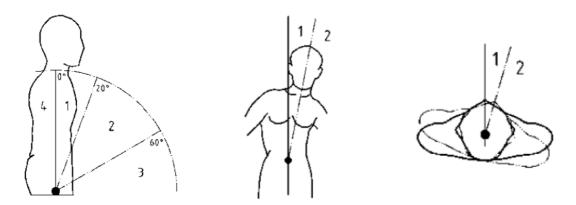


Fig. 86 Movimientos posturales del tronco

Considerando la disposición de los elementos del proceso y la comunicación hombre máquina, se puede operar con la máquina en una postura vertical y de frente teniendo un desplazamiento lateral libre a lo largo del transportador. Por lo tanto, el operario se encontrará en la postura aceptable (zona 1).

Brazos

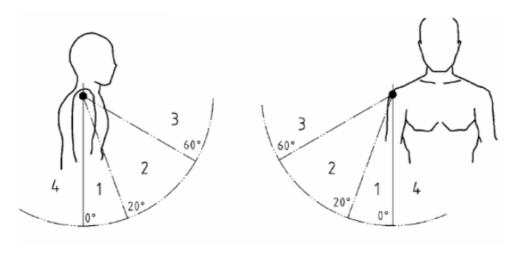


Fig. 87 Movimientos posturales de los brazos

Puesto que el transportador está dispuesto a una altura óptima de trabajo, el operario se encontrará en la zona 1 o a lo sumo en la zona 2, donde los movimientos de trabajo son totalmente aceptables y más si se efectúan con baja frecuencia.

Cabeza y cuello

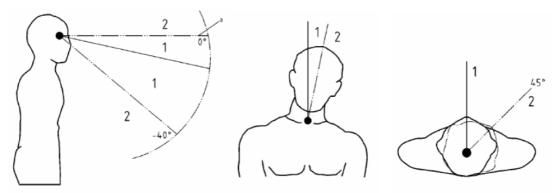


Fig. 88 Movimientos posturales para la cabeza y el cuello.

Al tener el operario un desplazamiento completamente libre a lo largo de toda la estructura del transportador, no se requerirá de giros inapropiados del cuello ya que el área de visibilidad es completamente libre. Por el mismo hecho, el control visual del producto podrá realizarse a 0º.

4.3 Otros aspectos

Otros aspectos ergonómicos a considerar son el ruido y las vibraciones generadas por la máquina, aunque su evaluación no será posible hasta la fabricación de la misma pues dependen de múltiples factores añadidos.

En general, este tipo de cadena de platillos no suele provocar vibraciones aunque siempre cabe la posibilidad de que el operario esté expuesto a ellas. El daño de las vibraciones varía en función de la frecuencia de exposición y pueden afectar a todo el cuerpo o únicamente al sistema mano-brazo.

El ruido no depende únicamente del transportador diseñado, sino que tienen una gran influencia las máquinas anexas y en general todo el proceso y toda la maquinaria presente. También depende de que la empresa disponga de pantallas acústicas para contribuir al máximo aislamiento y absorción del ruido.

También son importantes a considerar los aspectos externos desarrollados durante la utilización del transportador diseñado. Como son la iluminación, natural o artificial, y la temperatura del lugar de trabajo, pero éstas dependen de la empresa que haya adquirido la máquina. Siempre se recomienda y potencia la utilización de la luz natural debido a que causa menor fatiga visual que la iluminación artificial.

5. Posibles riegos en el uso del transportador

RIESGO	CAUSA	MEDIDAS PREVENTIVAS
Golpes contra objetos móviles	Presencia de partes salientes del transportador o espacio reducido entre máquinas anexas	 ✓ Mantener orden y limpieza en el puesto de trabajo ✓ Señalizar el transportador en las partes donde exista riesgo de golpes así como los pasillos ✓ Cumplir con las dimensiones mínimas entre máquinas
Golpes, cortes y contacto con elementos móviles	Los elementos móviles de la transmisión del transportados como la cadena de platillos y los piñones	 ✓ Asegurarse de que la máquina posee las protecciones o dispositivos de seguridad previstos para su diseño ✓ Tener a disposición de los trabajadores el manual de instrucciones de la máquina ✓ Facilitar a todos los trabajadores los EPI's adecuados. Guantes y gafas de seguridad. ✓ Instalar la iluminación suficiente en el puesto de trabajo conforme a las exigencias visuales de la tarea a realizar con la máquina
Accidentes, caída de objetos	Desplome de la estructura del transportado o caída de botellas de lejía	 ✓ No modificar los parámetros previstos del transportador con el fin de obtener prestaciones distintas a las establecidas por el fabricante ✓ Tener un procedimiento permitente para las situaciones de emergencia para disminuir las consecuencias
Atrapamientos, enganchones	Aberturas o mecanismos de la máquina	 ✓ Utilizar la máquina con los resguardos con los dispositivos de seguridad en perfecto estado y funcionamiento ✓ Proporcionar ropa de trabajo adecuada, evitar la ropa holgada y prohibir el uso de cadenas, relojes o cualquier complemento que pueda facilitar el atrapamiento.

6. Mantenimiento del transportador

Las tareas básicas de mantenimiento serán las siguientes:

- Inspecciones visuales: se realizarán de forma periódica por el operario encargado del manejo del transportador.
- Limpieza y lubricación básicas: se realizarán de forma periódica por el operario en todas las partes móviles del transportador.
- Mantenimiento preventivo: revisiones y reparaciones por el personal especializados para así garantizar su buen funcionamiento.
- Mantenimiento predictivo: basado en datos históricos construidos partir del estudio de parámetros de las piezas críticas; permitirá realizar la sustitución o reparación de la pieza en el momento idóneo, aprovechando al máximo la vida de la misma y mitigando posibles averías. Se deberá realizar por personal cualificado.
- Mantenimiento correctivo: Localización de puntos calientes del transportador para corregirlos o repararlos.

7. Mantenimiento de la cadena de transmisión

Como elemento principal de mantenimiento se destaca la cadena de transmisión, de vital importancia para cumplir con el objetivo, el transporte de las botellas de lejía.

Montaje

Antes de realizar el montaje de la cadena en la transmisión es necesario asegurarse de que los ejes de las ruedas están correctamente paralelos y que las ruedas de tracción y de reenvío estén alineadas, es decir, que se mantiene el conjunto dentro de un mismo plano.

Limpieza

Este aspecto es muy importante junto con la lubricación, la limpieza es necesaria pasar asegurar el buen funcionamiento de la cadena de platillos. Y por otro lado, si la cadena no ha sido bien limpiada la lubricación puede llegar a no tener apenas efecto.

La limpieza de la cadena siempre es un buen hábito pero lo es más en ciertos casos. Cuando la cadena vaya a estar parada por cierto periodo de tiempo, por ejemplo, cuando pare la línea de envasado. También es importante cuando se uso de un producto para la relubricación y todavía quedan restos de lubricante, es necesaria la limpieza porque muchas veces éstos no pueden ser mezclados.

Lubricación

Las condiciones de lubricación de una cadena es un aspecto determinante en la vida de la misma. Una cadena que ha trabajado en buenas condiciones de lubricación, presentará en la parte desgastada de los ejes una superficie lisa. Una superficie rayada y rugosa indicará que la cadena ha tenido una mala o escasa lubricación y por supuesto, tendrá una vida más corta.

Los aceites lubricantes tienen que ser lo suficientemente fluidos, para que lleguen hasta las partes en frotamiento, pero no en exceso, para impedir que la fuerza centrífuga a alta velocidad en la transmisión los disipe.

Es recomendable que la cadena esté totalmente limpia cuando se realice la lubricación y que se realice por trabajadores especializados.

Existen muchos tipos de lubricantes y formas de lubricación, incluso existe la lubricación automática. La determinación del tipo de lubricante depende de muchos parámetros pero el parámetro fundamental es, sin duda, la temperatura de trabajo de la cadena. Dato que no podremos conocer hasta que la máquina esté completamente montada y en funcionamiento.

Desgaste

El mayor desgaste que sufren las cadenas es el alargamiento, esté fenómeno se produce en las articulaciones, entre el pasado y el casquillo. Debido a su uso se produce una cierta holgura entre estas partes y provoca que la cadena se alargue.

Para evitarlo en la medida de lo posible, los pasadores pasan por un tratamiento térmico de endurecimiento.

V. PRESUPUESTO

ÍNDICE DEL PRESUPUESTO

1. Presupuesto de ejecución de material (PEM)

Capítulo 1: Chasis

Capítulo 2: Accesorios

Capítulo 3: Transmisión

Capítulo 4: Tornillería

Capítulo 5: Mano de obra

2. Presupuesto de ejecución por contrata (PEC)

1. Presupuesto de ejecución de material

Capítulo 1: Chasis

Descripción	Unidades	Precio unitario €	TOTAL €
Chapa revestimiento 1710	1	128,60 €	128,60 €
Chapa revestimiento 1710 simétrica	1	128,60 €	128,60€
Chapa revestimiento 1590	1	112,30 €	112,30€
Chapa revestimiento 1590 simétrica	1	112,30 €	112,30€
Chapa revestimiento cabezal 750	4	75,50€	302,00€
Chapa revestimiento cabezal 750 simétrica	4	75,50€	302,00€
Chapa revestimiento curva exterior	2	88,20€	176,40 €
Chapa revestimiento curva interior	1	79,20€	79,20€
Chapa revestimiento 980	1	86,00€	86,00€
Chapa revestimiento 980 simétrica	1	86,00€	86,00€
Chapa revestimiento 2000	2	140,80 €	281,60 €
Chapa revestimiento 2000 simétrica	2	140,80 €	281,60 €
Chapa revestimiento cabezal transferencia 1000	2	98,60€	197,20€
Chapa revestimiento cabezal transferencia 1000 simétrica	2	98,60€	197,20€
Chapa revestimiento 1740	1	131,40 €	131,40 €
Chapa revestimiento 1740 simétrica	1	131,40 €	131,40 €
Chapa revestimiento cabezal 490 extremo	2	58,90€	117,80 €
Chapa revestimiento cabezal 490 extremo simétrica	2	58,90€	117,80 €

·

Capítulo 2: Accesorios

Descripción	Código	Cantidad	Unidad	Precio €/ud	TOTAL €
Soporte barandilla	8162467	72	ud.	28,80€	2.073,60€
Distanciador soporte	8190810	72	ud.	8,75€	630,00€
Eje soporte barandilla	8220339	72	ud.	16,90€	1.216,80 €
Brida perfil cónico	8210169	144	ud.	18,50€	2.664,00€
Unión bridas	DIS_BRID	72	ud.	12,20€	878,40 €
Casquillo L	AE172.5	4	ud.	16,10€	64,40€
Casquillo S	AE39.5	12	ud.	10,20€	122,40€
Unión módulos	PUM_GEN	36	ud.	6,70€	241,20€
Tacos guía	TG_GEN	24	ud.	13,35€	320,40 €
Guiado curvo	4601980	8	ud.	50,50€	404,00€
Perfil guía	P30275	40,5	m	2,90€	117,45€
Patín reenvío	8025105	16	ud.	2,90€	46,40€
Perfil retorno	P20240	38	m	1,05€	39,90€
Soporte perfil retorno	8025601	66	ud.	2,20€	145,20€
Anclaje soporte perfil	1485540	132	ud.	8,50€	1.122,00€
Pieza ensamble	SBA_PE	15	ud.	8,90€	133,50€
Cabezal de apoyo	8330055	15	ud.	6,60€	99,00€
Barra altura	BA_INOX	15	ud.	14,50€	217,50€
Trípode	8310012	15	ud.	22,20€	333,00€
Pies regulables	8540441	45	ud.	15,30€	688,50€

TOTAL Capítulo 2: Accesorios 11.557,65 €

Capítulo 3: Transmisión

Descripción	Código	Cantidad	Unidad	Precio €/ud	Total €
Motorreductor	SK 1 SI 50 - IEC80 -80 S/4	1	ud.	198,90€	198,90€
Motorreductor	SK 1 SI 40 - IEC63 -63L/4	3	ud.	115,50€	346,50€
Cadena platillos	SSS881-O-450 TAB	47,2	m	35,50€	1.675,60€
Rodamiento	312125MTSS	16	ud.	51,20€	819,20€
Eje motor	D25EMS	2	ud.	68,90€	137,80 €
Eje motor transferencia	D25EML	2	ud.	85,50€	171,00 €
Eje reenvío	D25ERS	2	ud.	59,20€	118,40 €
Eje reenvío transferencia	D25ERL		ud.	45,50€	0,00€
Chaveta 102	CH102	4	ud.	12,50€	50,00€
Chaveta 110	CH110	4	ud.	16,10€	64,40 €
Rueda tracción	6321258	4	ud.	47,50€	190,00€
Rueda reenvío	6621536	4	ud.	42,25€	169,00€
Casquillo L	AE172.5	4	ud.	3,10€	12,40€
Casquillo S	AE39.5	12	ud.	2,20€	26,40€

TOTAL Capítulo 3: Transmisión	3.979,60€
-------------------------------	-----------

Capítulo 4: Tornillería

Descripción	Unidades	Precio unidad €	TOTAL €
CCUV381-HEXAGONAL sc M10X60	24	0,12€	2,88€
CCUV374-HEXAGONAL sc M10X40	34	0,10€	3,40€
CCUV336-HEXAGONAL sc M8X15	25	0,12€	3,00€
CCUV313-HEXAGONAL sc M6X25	8	0,08€	0,64€
CCUW024 - Botón M6X10	170	0,01€	0,85€
CCUV039 - Allen M8X015	125	0,06€	7,50€
CCUV029 - Allen M6X020	103	0,05€	5,15€
CCUV021 - Allen M5X020	15	0,03 €	0,45€
CCUV020 - Allen M5X015	10	0,05 €	0,50€
CCUA019 -Plana 10 Ancha	1	0,09 €	0,09€
CCUA017 -Plana 8 Ancha	180	0,05 €	8,64€
CCUA004-Plana 8 Normal	89	0,04 €	3,56€
CCU7093 - Hexagonal freno M10	56	0,23 €	12,88 €
CCU7092 - Hexagonal freno M08	2	0,05 €	0,10€
CCU7091 - Hexagonal freno M06	24	0,04 €	0,96€
CCUTOO5 - Hexagonal M8	14	0,05 €	0,71€
CCUWO24 - Botón M6x10	19	0,11 €	2,09€
CCUW205- Cuello cuadrado M8x20	76	0,12€	9,12 €

TOTAL Capítulo 4: Tornillería	62,52€
-------------------------------	--------

Capítulo 5: Mano de obra

Mano de obra directa				
Descripción	oción Horas montaje (h) Coste MO (€/h) Coste (€)			
Módulo 1	68	12,00€	816,00€	
Módulo 2	62	12,00€	744,00 €	
Módulo 3	66	12,00€	792,00€	
Módulo 4	59	12,00€	708,00€	

Mano de obra directa				
Descripción	Horas diseño (h)	Coste MOI (€/h)	Coste (€)	
Transmisión	40	22,00€	880,00€	
Chasis	35	22,00€	770,00€	
Accesorios	70	22,00€	1.540,00€	

TOTAL 3.190,00 €	TOTAL	3.190,00€
------------------	-------	-----------

TOTAL Capítulo 5: Mano de obra 6.250,00 €	TOTAL Capítulo 5: Mano de obra	6.250,00€
---	--------------------------------	-----------

TOTAL Capítulo 1: Chasis	2.969,40 €
TOTAL Capítulo 2: Accesorios	11.557,65 €
TOTAL Capítulo 3: Transmisión	3.979,60 €
TOTAL Capítulo 4: Tornillería	62,52 €
TOTAL Capítulo 5: Mano de obra	6.250,00€

2. Presupuesto de ejecución por contrata (PEC)

15% gastos generales	24.819,17 €	28.542,05 €
6% Beneficio industrial	28.542,05 €	30.254,57€
21% IVA	30.254,57 €	36.608,03€

TOTAL PEC	36.608,03 €
TOTAL PEC	30.006,03 €