
Optimized Fundamental Signal Processing
Operations for Energy Minimization on
Heterogeneous Mobile Devices

Jose A. Belloch, José M. Bad́ıa, Francisco D. Igual, Alberto Gonzalez, and Enrique S. Quintana-Ort́ı

Abstract

Numerous signal processing applications are emerging on both mobile and high-performance
computing systems. These applications are subject to responsiveness constraints for
user interactivity and, at the same time, must be optimized for energy efficiency. The
increasingly heterogeneous power-versus-performance profile of modern hardware in-
troduces new opportunities for energy savings as well as challenges. In this line, recent
Systems-On-Chip (SoC) composed of low-power multicore processors, combined with
a small graphics accelerator (or GPU), yield a notable increment of the computational
capacity while partially retaining the appealing low power consumption of embedded
systems. This paper analyzes the potential of these new hardware systems to accel-
erate applications that involve a large number of floating-point arithmetic operations
mainly in the form of convolutions. To assess the performance, a headphone-based
spatial audio application for mobile devices based on a Samsung Exynos 5422 SoC
has been developed. We discuss different implementations and analyze the trade-offs
between performance and energy efficiency for different scenarios and configurations.
Our experimental results reveal that we can extend the battery lifetime of a device
featuring such an architecture by a 238% by properly configuring and leveraging the
computational resources.

Keywords: Audio systems, signal synthesis, parallel architectures, parallel processing,
heterogeneous (hybrid) systems, performance and energy efficiency.

1 Introduction

Low-power (embedded) processors play an important role for a myriad of sig-
nal processing applications, such as communications [1–3], video coding [4–6],
image processing [7], visual detection [8], speech recognition [9], and audio pro-
cessing [10], among others. In the era of smart phones and tablets, these energy-
efficient architectures have increased significantly their computational capacity
and are nowadays utilized in a large volume of multimedia (video and audio
processing).

1

1 Introduction 2

The Exynos 5422 system-on-chip (SoC) is an implementation of the ARM
big.LITTLE architecture [11] present in multiple mobile devices and develop-
ment boards, such as the Samsung Galaxy S5 (SM-G900H) and the ODROID
boards XU3/XU3-Lite/XU4, respectively. This SoC combines a quad-core ARM
Cortex-A15 cluster with a quad-core ARM Cortex-A7, and each core integrates
a 128-bit NEON SIMD (single-instruction, multiple-data) engine. In addition,
the Exynos 5422 includes a Mali-T628 MP6 GPU with six shader cores.

This work analyzes the potential of these new hardware systems to accelerate
signal processing applications that involve a moderate number of convolutions.
Specifically, we focus on a spatial audio system based on headphones that re-
quires multiple convolutions for synthesizing a virtual sound source [12]. The
target application, for example, allows the listener to virtually change the po-
sitions of the sound sources (guitar, drums, voice, etc.) of a song that is
reproduced throughout the headphones of a mobile device [13,14]. This effect is
achieved by processing the sound samples through a collection of special filters
that shape the sound with spatial information (convolution). In the frequency
domain, these filters are known as Head-Related Transfer Functions (HRTFs),
where the response of a HRTF describes how a sound wave is affected by certain
properties of the individual’s body (e.g. pinna, head, shoulders, neck and torso)
before the sound reaches the listener’s eardrum [15]. The cost of the compu-
tational problem that underlies a headphone-based application grows linearly
with the number of independent sound sources that have to be handled (i.e.,
reproduced and moved) in real time.

A range of low-power ARM processors have been previously leveraged in
audio and video signal processing scenarios [16]. For example, some image
processing algorithms are accelerated on this type of architectures in [17], and
an image processing application is optimized using NEON intrinsics in [18].
ARM-based platforms have also been used to accelerate the Audio Video coding
Standard (AVS) in [19–21], and various types of filters have been implemented
for audio filtering using NEON extensions in [22]. On the other hand, different
audio filter structures have been accelerated with NEON intrinsic functions
in [23].

However, NEON intrinsics functions have not been leveraged yet to compute
convolutions in the frequency domain on ARM processors, which requires the
application of Fourier transforms as well as complex arithmetic. An initial study
of the HSA algorithm, using a single ARM Cortex-A15 core only, was previously
presented by the authors in [24].

In this paper we introduce an efficient code for a headphone-based spatial
audio application (HSA) for the Exynos 5422 SoC that presents high versatil-
ity, since our implementation can be run on the ARM Cortex-A15, the ARM
Cortex-A7, or the Mali-T628 MP6 GPU. The HSA could be executed on either
the ARM Cortex-A7 or the Mali-T628 MP6 GPU in case of running the HSA
application simultaneously with another application. This could be the case,
for example, of an image-based application such as a video game, which could
require access to the ARM Cortex-A15 for compute-intensive tasks. Given the
growing importance of mobile appliances, and the direct relation between en-

1 Introduction 3

ergy consumption and battery lifetime in these devices, in this work we discuss
different implementations and analyze the trade-offs between performance and
energy efficiency for different distributions of the computational load on the
Exynos 5422 SoC and regulating the frequency of its components.

The analysis in our work gains in relevance because we target a low-cost
platform that is currently present in multiple mobile devices. Thus, we expect
that our results partially carry over to other platforms that are designed for
the same purpose. Furthermore, HSA comprises all fundamental operations of
a signal processing application and, indeed, HSA is a trending application that
could be embedded into more complex applications based on virtual reality or
video-games [25]. Hence, running this application efficiently, from the points of
view of performance and energy consumption, in common mobile devices is an
interesting contribution to analyze the growing possibilities of mobile devices.

The main specific contributions of this paper can be summarized as follows:

• Explore the versatility of low-power platforms to deal efficiently with
compute-intensive applications.

• Implement several efficient and portable algorithms to solve a massive
data-parallel audio processing method on a range of heterogeneous plat-
forms that integrate multiple CPUs and/or GPUs.

• Exploit and combine the heterogeneous parallel components of a low-
power platform including its multicore CPU and GPU by means of stan-
dard programming tools such as OpenMP and OpenCL, and also leverag-
ing the specific SIMD capabilities of the ARMv7 architecture.

• Exploit the capability of the architecture to regulate the frequency of
some of its components or even disable them in order to reduce the power
consumption.

• Analyze different configurations in terms of algorithm, platform compo-
nents, and frequencies to optimize the application in different scenarios.
These scenarios include the reduction of the total time, the optimization
of the number of audio sources processed per Watt, or the increase of the
battery lifetime.

The rest of the paper is structured as follows: In Section 2 we introduce
the HSA application. Next, in Section 3, we present several features of the
Exynos 5422, including the SIMD capabilities of the NEON vector floating-
point units for programming ARM Cortex CPUs, and the OpenCL interface for
programming its GPU. Sections 4 and 5 explain in detail the implementations
on the ARM Cortex and the GPU, respectively. These two sections illustrate
performance in terms of maximum number of sound sources that can be rendered
in real time; provide a detailed analysis of the power dissipation; and analyze the
energy efficiency of different hardware configurations. Furthermore, the results
in Section 5 offer a guide to select the configuration depending on the purpose of
the application. For example, the goal may be minimizing energy consumption

2 Spatial audio on Headphones 4

(to extend battery lifetime) while meeting a certain quality-of-service in terms
of number of moving sound sources. Finally, Section 6 presents some concluding
remarks.

2 Spatial audio on Headphones

A variety of spatial effects can be achieved by convolving natural monophonic
sounds that are recorded in an anechoic environment with a pair of filters that
add spatial information to the audio wave from specific positions in the space.
For this purpose, in headphone-based systems, one head-related impulse response
(HRIR) filter per ear specifies each virtual position in the time domain. There
are multiple public samples of HRIRs for the time domain as well as Head-
Related Transfer Functions (HRTF) for the frequency domain. In our case,
we leverage the HRIR measures from [26]. This HRIR database has azimuth
and elevation resolutions, denoted by ∆θ and ∆φ respectively, representing
the minimum separation in degrees between two positions of the database in
azimuth and elevation. For our HRIR database, the resolution for both metrics
is 15◦, and the distance of the sound source to the center of the head is fixed
to r=1.95 m. Moreover all HRIR filters are “windowed” to a length of 512
coefficients. The HRTF filters are obtained off-line, in our case, via the Fourier
transform of the respective HRIR data. Although our algorithm operates in the
frequency domain, for simplicity we adhere to the time domain in the following
description.

Let us employ xBi to denote an input-data buffer B consisting of L audio
samples, from a sound source xi, with i ∈ [0,M − 1] and M representing the
number of sources. In addition, assume that the HRIRs corresponding to posi-
tion (θ, φ) in the time domain are given by hr(θ, φ) and hl(θ, φ), for the right
and left ear, respectively. The output-data buffer, for both the right and left
ears, yB, is then given in the time domain by

yB =

M−1∑
i=0

yBi(θi, φi) =

M−1∑
i=0

(h(θi, φi) ∗ xBi), (1)

where ∗ stands for the convolution operator.
In practice, the number of filters in the database is limited, constraining the

virtual positions that can be rendered in real time. Consider, for example, a
position (θS , φS) that is not in the database, surrounded by four positions in the
database, say {(θ1, φ1), (θ1, φ2), (θ2, φ1), (θ2, φ2)}. To tackle this scenario, our
solution employs four filters to synthesize this position via linear interpolation,
yielding

yBi(θS , φS) = xBi ∗
(
wD · wB · h(θ1, φ1)

+ wD · wA · h(θ2, φ1)
+ wC · wB · h(θ1, φ2)
+ wC · wA · h(θ2, φ2)

)
,

(2)

3 Exploring the Exynos 5422 5

Fig. 1: Relations between the interpolation weights and the distances on the
data base plane. The star represents the position (φS , θS) to be synthe-
sized in the elevation and azimuth planes.

where {wA, wB , wC , wD} represent the interpolation weight; see Figure 1. How-
ever this enhancement comes at the cost of a notable increase in the computa-
tional complexity.

A second challenge occurs when the sound source is moving, which in practice
requires the careful application of a sequence of new (HRIR) filters in a fade-
in fade-out strategy. In particular, if the commutation between HRIRs is not
properly implemented, this may result in undesirable audio artifacts [27]. To
deal with this, one additional filtering is necessary for the virtualization of source
movement, which is carried out by smoothly varying the virtual positions of the
source over time. Concretely, assume the sound source xi moves from position
A: (θSA, φSA) to position B: (θSB , φSB). We then implement the fading as a
gradual increase in the sound filtered by position B while the sound filtered
by position A attenuates in the same proportion. To this end, the current
output-data buffer yBi

is computed for both positions, and the result of both
computations is then multiplied element-wise by two fading vectors, say f and
g. This kind of multiplication is also know as a Hadamard product. Finally,
the output-data buffer yBi

is obtained by adding the results from the previous
multiplications element-wise:

yBi(θS , φS) = ((yBi
(θSB , φSB)⊗ f)

⊕ ((yBi
(θSA, φSA)⊗ g),

(3)

where ⊗ and ⊕ represent the element-wise multiplication and addition opera-
tors, respectively.

3 Exploring the Exynos 5422

The Exynos 5422 SoC contains a quad-core ARM Cortex-A15 cluster, a quad-
core ARM Cortex-A7, and a Mali-T628 MP6 GPU, integrated with the mem-
ory system hierarchy illustrated in Figure 2. The next subsections review the

3 Exploring the Exynos 5422 6

Exynos 5422 Application Processor

Cortex-A15 Quad (2 GHz) Cortex-A7 Quad (1.4 GHz)

Cortex-A15
32KB/32KB I/D - Cache

NEONv2 + VFPv4

Cortex-A15
32KB/32KB I/D - Cache

NEONv2 + VFPv4

Cortex-A15
32KB/32KB I/D - Cache

NEONv2 + VFPv4

Cortex-A15
32KB/32KB I/D - Cache

NEONv2 + VFPv4

2 MB L2 - Cache

Cortex-A7
32KB/32KB I/D - Cache

NEONv2 + VFPv4

Cortex-A7
32KB/32KB I/D - Cache

NEONv2 + VFPv4

Cortex-A7
32KB/32KB I/D - Cache

NEONv2 + VFPv4

Cortex-A7
32KB/32KB I/D - Cache

NEONv2 + VFPv4

2 MB L2 - Cache

DRAM
LPDDR 3.933 MHz

32bit 2-port
14.9 Gbytes/s BW

2 Gbyte

GPU Mali T628 MP6 (600 MHz)

Shader core
16KB + 16KB L1 cache

Shader core
16KB + 16KB L1 cache

Shader core
16KB + 16KB L1 cache

Shader core
16KB + 16KB L1 cache

Shader core
16KB + 16KB L1 cache

Shader core
16KB + 16KB L1 cache

Core group Core group

32 KB L2 - Cache 32 KB L2 - Cache

CPU

Fig. 2: Diagram of the processor Exynos 5422 included in the Odroid XU3 ex-
perimental platform.

SIMD capabilities of the NEON floating-point units ARM Cortex CPUs, and
the OpenCL standard for programming its GPU.

One of the most interesting features of this platform is the possibility of
adjusting its energy consumption by reducing the frequency of the CPU cores
or the GPU, or even by disabling some of these components. In our experi-
ments, we measured the power dissipation of the Exynos 5422 using the pmlib

framework [28] to collect the instantaneous power readings from the internal
energy-monitoring sensors [29]. The ODROID XU3 board contains four real
time current sensors that can be sampled to obtain the power consumption of
four separate power domains: Cortex-A15 cores, Cortex-A7 cores, DRAM and
Mali GPU. In the experiments performed with the Cortex-A7 cores, we disabled
the Cortex-A15 cores to avoid the effect of their non-negligible power dissipation
even when they are not being used. We could have obtained very similar results
simply by not adding the effect of the Cortex-A15 power domain, but our goal
is to measure the total power consumption of the platform and to exploit the
possibility of disabling some of its components.

3.1 The NEON SIMD engine

The ARMv7 architecture implements the SIMD technology by means of the
NEON vector floating-point unit. This component supports a variety of SIMD
floating-point instructions to simultaneously apply the same operation on a col-
lection of packed elements of the same type and size, including arithmetic and
logical operations and data movements. In order to support this functional-
ity, the ARMv7 architecture comprises 32 64-bits SIMD registers, (also viewed
as 16 128-bits registers,) which can be leveraged to operate with two 64-bit
floating-point numbers, four 32-bit floating-point/integer numbers, or eight 16-
bit integers. Each item stored in an SIMD register is usually referred to as
a lane. The ARMv7 ISA includes SIMD instructions for arithmetic and logi-

4 Implementation and Tuning of the HSA Algorithm on the EXYNOS 5422 7

cal operations (addition, multiplication, fused multiply-add, multiply-subtract,
subtraction, comparison, etc.) and data movements (e.g., load/store lanes from
memory/SIMD register into an SIMD register/memory).

The SIMD technology is realized in the ARMv7 architecture as part of the
NEON vector floating-point unit. The vector register set in the NEON en-
gine and the general-purpose register set in the ARM core are independent.
Moreover, the ARMv7 SIMD operations can be cast in terms of a few intrinsic
functions that are directly translated by the compiler into NEON instructions,
offering a simpler programming interface.

The ARMv7 NEON intrinsics implement all the functionality of the NEON
instruction set, including the definition of vector data types [30] to place data
into vector registers. These types take the form “type”“size”x“number of lanes” t,
with the following list of relevant examples int8x8_t, int8x16_t, int16x4_t,
int32x4_t, int64x2_t, float32_t, float32x2_t, and float32x4_t.

3.2 OpenCL

OpenCL (Open Computing Language) [31] is an open royalty-free standard for
general-purpose parallel programming across CPUs, GPUs and other processors.
It is supported by a wide range or different architectures, easing the development
of portable parallel software for heterogeneous platforms.

OpenCL defines a hierarchy of models to represent the platform, memory,
execution and programming of the architecture as well as to provide an abstract
view of the hardware that allows the development of portable software. At the
same time, programmers can access multiple features of the platform at runtime
to adapt the code to specific architectures and improve its performance.

An OpenCL platform comprises a set of possibly heterogeneous computing
devices (GPUs, CPUs, etc.). Each device consists of different compute units
(CU) containing multiple processing elements (PE). The compute units usually
correspond to the cores of the CPU or GPU, though the notion of core is delicate
to define across the multiple types of devices supported by OpenCL.

In the OpenCL programming model, data-parallelism is exploited by divid-
ing the computation into multiple work-items that can run the same code in
parallel on different processing elements over different data. The code executed
by each work-item is included in kernels that are submitted by the host to the
devices.

4 Implementation and Tuning of the HSA Algorithm on the
EXYNOS 5422

In our implementation, the convolution operations in the HSA algorithm are
carried out using the overlap-save technique with a 50% overlap in the frequency
domain [32, 33]. This means that we are processing the L audio samples that
are in the current input-data buffer together with the L audio samples from
the previous input-data buffer. Each convolution in the time domain turns

4 Implementation and Tuning of the HSA Algorithm on the EXYNOS 5422 8

into an element-wise multiplication of two vectors, of size 2L, with complex
entries. Thus, the operations that are executed by the HSA algorithm, in order
to reproduce M sound sources, can be summarized in the following stages:

1. M Fast Fourier Transforms (FFTs) of size 2L.
2. 16M element-wise vector sums (4M for left ear and position A, 4M for left

ear and position B, 4M for right ear and position A, and 4M for right ear
and position B), and 4M element-wise vector multiplications. All vectors
are composed of complex entries with a size 2L; see (2).

3. Four inverse FFTs of size 2L.
4. Four element-wise multiplications of two real vectors of size L; see (3).
5. Two element-wise additions of two real vectors of size 2L.
6. These two real vectors contain the audio samples that are reproduced by

the right and the left headphone, respectively.

Note also that only the input-data buffers xBi
must be transformed to the

frequency domain in a real-time scenario, since the HRTF filters are obtained
after the FFT of HRIR in off-line mode.

Stages 1 and 3 require the computation of FFTs, which are performed in
our code via the implementation available in the FFTW library for ARM archi-
tectures [34], and the OpenCL library implementation of discrete Fast Fourier
Transforms clFFT [35] for GPUs. For the library [34], we use the half-complex
format that returns a vector of the non-redundant half of the complex output
for a one dimension real-input DFT of size 2L, stored as a sequence of 2L real
numbers (floating-point elements) in the format (r for real component and
i for imaginary component of a complex number):

r0, r1, r2, ..., r2L/2, i(2L+1)/2−1, ..., i2, i1

In contrast to these sophisticated codes, stages 2, 4 and 5 consist of element-
wise operations that can be implemented as plain loops, to be optimized by the
target compiler.

The following subsections describe the implementation plus optimization on
each type of computational resource available in the Exynos 5422 SoC: ARMv7
processors and ARM Mali GPU.

4.1 Implementation on ARMv7 processors

In order to reveal the critical path and/or computational bottlenecks of the
algorithm, we first implemented a sequential code for the operations described
in the previous section, using different number of sound sources (M). This
initial analysis revealed that 90% or more of the execution time corresponds to
stage 2 (the element-wise sums and multiplications), that we next target in our
optimization effort.

In order to exploit data-parallelism, we use the SIMD registers and the
data type float32x4 t provided by the NEON intrinsics. Figure 3 shows the
operations that are carried out using two input vectors, H and A, in order

4 Implementation and Tuning of the HSA Algorithm on the EXYNOS 5422 9

C0 = H0 A0 0
C2 = H2 A2 - H3 A3

C4 = H4 A4 - H5 A5

C6 = H6 A6 - H7 A73

C8 = H8 A8 - H9 A94
C10 = H10 A10 - H11 A11

C12 = H12 A12 - H13 A13

C14 = H14 A14 - H15 A15

C16 = H16 A16 - H17 A17

...

C(2L) = H(2L) A(2L)

C(2L-2) = H(2L-2) A(2L-2) - H(2L-1) A(2L-2) L-1

L

L + 3

L + 4

2L - 1 C3 = H2 A3 + H3 A2

C(2L-1) = H(2L-2) A(2L-1) - H(2L-1) A(2L-2)

C(2L-3) = H(2L-4) A(2L-4) - H(2L-3) A(2L-3)

C(2L-5) = H(2L-6) A(2L-6) - H(2L-5) A(2L-5)

C(2L-7) = H(2L-8) A(2L-8) + H(2L-7) A(2L-7)

C(2L-9) = H(2L-10) A(2L-10) + H(2L-9) A(2L-9)

C(2L-11) = H(2L-12) A(2L-12) + H(2L-11) A(2L-11)

C(2L-13) = H(2L-14) A(2L-14) + H(2L-13) A(2L-13)

C(2L-15) = H(2L-16) A(2L-16) + H(2L-15) A(2L-15)

Element-wise
operations

Vector
Component

H1 = vld1q_f32(h[0,1,2,3]);
A1 = vld1q_f32(a[0,1,2,3]);

H2 = vld1q_f32(h[2L-4,2L-3,2L-2,2L-1]);
H2 = vcombine_f32(vget_high_f32(H2), vget_low_f32(H2));
H2 = vsetq_lane_f32(vgetq_lane_f32(H2,0), H2, 2);
H2 = vsetq_lane_f32(0, H2, 0);
A2 = vld1q_f32(a[2L-4,2L-3,2L-2 2L-1]);
A2 = vcombine_f32(vget_high_f32(A2), vget_low_f32(A2));
A2 = vsetq_lane_f32(vgetq_lane_f32(A2,0), A2, 2);

H1 = vld1q_f32(h[4,5,6,7]);
A1 = vld1q_f32(a[4,5,6,7]);

H2 = vld1q_f32(h[2L-7,2L-6,2L-5,2L-4]);
A2 = vld1q_f32(a[2L-7,2L-6,2L-5,2L-4]);
A2 = vrev64q_f32(A2);
A2 = vcombine_f32(vget_high_f32(A2), vget_low_f32(A2));
H2 = vrev64q_f32(H2);
H2 = vcombine_f32(vget_high_f32(H2), vget_low_f32(H2));

H1 = vld1q_f32(h[L-3,L-2,L-1,L]);
A1 = vld1q_f32(a[L,L+1,L+2,L+3]);
H1 = vrev64q_f32(H1);
H1 = vcombine_f32(vget_high_f32(H1), vget_low_f32(H1));

H2 = vld1q_f32(h[L,L+1,L+2,L+3]);
A2 = vld1q_f32(a[L-3,L-2,L-1,L]);
H2 = vsetq_lane_f32(0, H2, 0);
A2 = vrev64q_f32(A2);
A2 = vcombine_f32(vget_high_f32(A2), vget_low_f32(A2));
A2 = vsetq_lane_f32(0, A2, 0);

...

H1 = vld1q_f32(h[L-7,L-6,L-5,L-4]);
A1 = vld1q_f32(a[L+4,L+5,L+6,L+7]);
H1 = vrev64q_f32(H1);
H1 = vcombine_f32(vget_high_f32(H1), vget_low_f32(H1));

H2 = vld1q_f32(h[L+4,L+5,L+6,L+7]);
A2 = vld1q_f32(a[L-7,L-6,L-5,L-4]);
A2 = vrev64q_f32(A2);
A2 = vcombine_f32(vget_high_f32(A2), vget_low_f32(A2));

......

NEON
Intrinsics

......

......

Fig. 3: Operations that must be carried out between two vectors, H and A, in
order to compute vector C in the half-complex format.

to compute vector C in the half-complex format (all vectors have a size of
2L). The first column of this figure indicates the vector components and the
second column shows the computations. The subscripts of the resulting vector
C correspond to the half-complex format and that the elements of H and A
are stored in the same way. Except for the computation of two vector elements
of C, all others are composed of a sum of two addends which come from a
multiplication of two different elements of vectors H and A.

By properly exploiting the SIMD registers, we can compute four components
of vector C at a time. Loading the components of vectors H and A in both
addends requires the use of the NEON shuffle instructions. The third column
in Figure 3 shows the NEON instructions that store four values of A and H in
the SIMD registers, in order to be element-wise multiplied. The grey line and
the black dashed-line rectangles link the elements of each addend with their
corresponding load and element-arranging NEON instructions.

Because of the layout of the half-complex format, we split the computation
of all vector components into four blocks as shown in Figure 3. It is important
to note that blocks 1 and 3 compute only four elements at a time, while blocks

4 Implementation and Tuning of the HSA Algorithm on the EXYNOS 5422 10

2 and 4 compute L− 4 elements in steps of four elements.
As depicted in stage 2 at the beginning of this section, prior to the element-

wise multiplication between vectors A and H, it is necessary to carry out 16
element-wise vector sums with their corresponding interpolation weights, ac-
cording to (2). To this end, we execute the following NEON instructions:

// For the first weighting.

Ht = vmulq_n_f32(Hi, w);

// For weighting and accumulation

Ht = vmlaq_n_f32 (Ht, Hi, w);

where Hi represents a SIMD register that contains four elements of any of the
HRTF filters of (2) which are weighted and accumulated in the SIMD register
Ht.

Once the SIMD registers contain the proper values, we use the following
NEON intrinsics: vmulq f32 to multiply two vector registers composed of four
floats element-wise; vmlsq f32 to multiply and subtract the result into a third
SIMD register (vector components from 0 to L−1, see Figure 3); and vmlaq f32

to multiply and accumulate the result into a third SIMD register (vector com-
ponents from L to 2L− 1, see Figure 3).

4.2 Multi-threaded parallelization

After the data reorganization to accelerate the execution with NEON intrinsics,
the operations for stage 2 are structured as follows:

// Execution each 4 samples

{1} for(l = 0; l < 2*L; l = l + 4)

// For each sound source

{2} for(m = 0; m < M; m = m + 1)

//For position A and B

{3} for(n = 0; m < 2; n = n + 1)

//For Left and Right Ears.

{4} for(z = 0; z < 2; z = z + 1)

//For the four filters.

{5} for(j = 0; j < 4; j = j + 1)

// Element-wise vector sums

// and multiplications

Here loop {1} is unrolled in 4 blocks (see Figure 3); and loops {3} and {4}
are also unrolled since stage 3 requires four vectors of size 2L as input: two
vectors (Right and Left ears) for each position (Position A and B).

In order to exploit the hardware concurrency of the quad-core clusters, we
leverage OpenMP to parallelize the second and the fourth block of loop {1}
above, setting the following two lines before it:

omp_set_num_threads(nth);

#pragma omp parallel for

private (m,n,z,j)

4 Implementation and Tuning of the HSA Algorithm on the EXYNOS 5422 11

Here nth specifies the number of threads. We have tested different scheduling
strategies provided by OpenMP obtaining the best results with the default static
scheduling. In addition, the invocations to the FFTs in the FFTW library are
computed in parallel by initializing the library with the following commands:

fftwf_init_threads();

fftwf_plan_with_nthreads(nth);

4.3 Implementation on the ARM Mali GPU

The Mali-T628-MP6 GPU includes 6 identical shader cores and, when pro-
grammed with OpenCL, it exposes two heterogeneous devices, one consisting of
four compute units (shader cores) and the other featuring the remaining two.
We have implemented two different parallel versions of the HSA algorithm using
this GPU. The first approach leverages only the device composed of four com-
pute units and the second approach exploits both of them. Figure 4 summarizes
the tasks that carry out all of the work-items for each launched kernels.

4.3.1 First Approach

In order to carry out all stages of the HSA algorithm, we implemented four
different OpenCL kernels. Algorithm 1 summarizes the main steps carried out
and the input and output data of each kernel using one device. Note that we
make use of the clFFT library to carry out the corresponding the FFT (forward
transformation) and the inverse FFT (backward transformation). Steps 3-8 of
Algorithm 1 are carried out in the GPU. We next describe in more detail the
kernels that we have implemented and used in Algorithm 1.

Algorithm 1 GPU-based implementation using one device

1: function HSA(x, H, M , wA, wB , wC , wD, f , g)
2: Transfer CPU → GPU: x, wA, wB , wC , wD

3: X ← clFFT(x, ‘’forward”)
4: RH = kBuildFilters(H, wA, wB , wC , wD, L)
5: Y = kMult(X,RH, L)
6: RY = kRed(Y, M , L)
7: y = clFFT(RY, ‘’backward”);
8: fy = kFade(y, f , g, L)
9: Transfer CPU ← GPU: fy

10: return fy
11: end function

• kBuildFilters. This kernel weights and combines four selected filters in
H (the four filters h in (2) in the frequency domain) per channel into one.
Each filter corresponds to one of the four positions shown in Figure 1.

4 Implementation and Tuning of the HSA Algorithm on the EXYNOS 5422 12

M

wD

wA

wB

M

KBuildFilters that launches 4LM work-items

KMult that launches 4LM work-items

M M

X

RHL RHR

M MYR
YL

After applying FFTB, KFade launches 4L work-items

yy
RL

+

+ y
L

f g

fy
L

+

+ y
R

f g

fy
R

H (,)
1 2L

H (,)
2 2L

H (,)
1 1L

H (,)
2 1L

Position A Position B

2L

H (,)
1 2R

H (,)
2 2R

H (,)
1 1R

H (,)
2 1R

Position A Position B

work-item 0 work-item 1 work-item 2 work-item 3

KRed that launches 4L work-items

+
+

wB

wD

wC

wAwC

2L 2L 2L

2L 2L 2L 2L

2L

2L 2L 2L 2L

2L 2L 2L 2L

Fig. 4: Tasks that carry out all of the work-items in each one of the launched
kernels.

To this end we use a 2D workspace of M × 4L work-items. Each work-
item weights and combines four complex elements per channel into one.
Algorithm 2 shows the main steps of this kernel.

• kMult. This kernel also uses a 2D workspace of M × 4L work-items.
Each work-item performs 2 products, one per channel, between a complex
value of X (Fourier transform of all xBi in (2)) and a complex value of
RH. The output is composed of 4M complex vectors of size 2L denoted
as Y. Algorithm 3 shows the main steps of this kernel.

We have implemented and compared several versions of our kernels using
different computational granularities and access patterns to the data. For
example, for kernel kMult we could have performed each complex product
corresponding to one of the channels in parallel. We have tested several
combinations of the products grouping sources, channels and positions on

4 Implementation and Tuning of the HSA Algorithm on the EXYNOS 5422 13

Algorithm 2 Combination of the HRTF filters

1: function kBuildFilters(H, wA, wB , wC , wD, L)
2: oh = offset in RHL and RHR

3: // wA, wB , wC , wD depend on source and position
4: for f ← 1 to 4 do // for each filter
5: Compute wf from wA, wB , wC , wD

6: oa = offset in H
7: RHL[oh] += wf ∗H[oa]
8: RHR[oh] += wf ∗H[oa]
9: end for

10: return RH
11: end function

Algorithm 3 Application of the filters

1: function kMult(X, RH, L)
2: ox = offset in X
3: o = offset in HL, HR, YL and YR

4: YL[o] = RHL[o] ∗X[ox]
5: YR[o] = RHR[o] ∗X[ox]
6: return Y
7: end function

each work-item. The best results were obtained with the version of the
kernel shown in Algorithm 3. It is also important to implement a coalesced
access to the memory so that the work-items on each work-group access
adjacent elements in memory. We have also tested different work-group
sizes with the best results for all kernels obtained using the maximum size
allowed by the ODROID platform, that is, 256 work-items per work-group.
For the 2D workspaces the best results where obtained with work-groups
of size 1× 256

• kRed. This kernel reduces the 4M vectors Y to 4 vectors y (right and left,
and each one, twice for the movement virtualization). To this end, we use
a 1D workspace and launch 4L work-items. Each work-item reduces 2M
complex elements (a single element per source of the right and left channels
of one of the positions A and B), to two elements, one per channel: see
Fig. (4). Algorithm 4 shows the main steps of this kernel.

We have also implemented a version of the kernel that deals with only
one of the channels obtaining similar performances. We could have also
parallelized the computations of each reduction, but then we would have
needed to coordinate the execution of several work-items and combine
their results to get each element of y.

• kFade. This kernel multiplies element-wise the four y vectors with the
fading vectors f and g, and next reduces them in order to obtain the two

4 Implementation and Tuning of the HSA Algorithm on the EXYNOS 5422 14

Algorithm 4 Reduction of the filtered samples

1: function kRed(Y, M , L)
2: o = offset in YL, YR, yL and yR

3: for s ← 1 to M do // for each source
4: yL[o] += YL[o]
5: yR[o] += YR[o]
6: o += 4L
7: end for
8: return y
9: end function

output vectors fy (left fyL and right fyR). To this end, we launch 4L
work-items. Each work-item multiplies and reduces four real elements to
two, one per channel. Algorithm 5 shows the main steps of this kernel.

Algorithm 5 Fading of both source positions

1: function kFade(y, f , g, L)
2: o = offset in yL, yR, f and g
3: fyL[oy] = yL[oy] * f [of] + yL[oy + 2L] * g[of]
4: fyR[oy] = yR[oy] * f [of] + yR[oy + 2L] * g[of]
5: return fy
6: end function

The vectors xBi
and the weight factors {wA, wB , wC , wD} of each sound

source are transferred from CPU to GPU each time we receive a buffer of sam-
ples. However, Matrix H, which contains the filters of the HRTF, together with
the vectors f and g, are transferred to the GPU before the application starts to
process the audio samples (off-line).

4.3.2 Second Approach

We can add another level of parallelism to Algorithm 1 by distributing the com-
putation across the two devices of the GPU. We can launch in parallel the same
or different kernels to distinct OpenCL devices by associating a command-queue
to each device, either sharing a context or having one context per queue. In
our case, we have created one context per device, because the clFFT library
only works with that configuration, and because if we spawn several threads,
the OpenCL host binding is not guaranteed to be thread-safe. We can com-
bine OpenCL with OpenMP, and execute one thread per device in the host.
Each OpenMP thread can then be run in parallel and dispatch the kernels to a
different device using the corresponding command-queue.

We have implemented two versions of the algorithm that use two devices
in parallel to perform the audio processing: 2devmono and 2devdual. In both
versions we start by scattering the input-vectors xBi

, corresponding to different

5 Experimental evaluation 15

sources, to the two devices. Then each thread employs the proper routine from
the clFFT library to perform in parallel the FFT of its sources in one of the
devices.

Next, for Algorithm 2devmono, we transfer the results of one device to the
other using the host. From that point on, each device can process in parallel one
of the channels: left and right. To that end, we have implemented a version of
kernels kBuildFilter, kMult, kRed and kFade, where each work-item performs
the computations with only one channel.

One of the problems of Algorithm 2devmono is the communication cost. If
we distribute half of the sources to each device, we have to transfer ML complex
elements from each device to the host and then from the host to the other device.
An additional problem of this version of the algorithm is that once the FFT is
performed, we associate the same computational load to each device. Therefore,
we cannot balance the load when dealing with heterogeneous devices such as
those comprised by the Mali GPU.

Algorithm 2devdual tackles both problems. After performing the initial
FFT in parallel, each device can use kernels kBuildFilters, kMult and kRed

to obtain a partial version of buffer y. This buffer reflects the effect of filtering
only the sources stored on each device. In order to combine both partial results
in parallel, each device transfers to the other the elements corresponding to
one of the channels yL or yR. Then both devices run in parallel an additional
kernel kAdd to add the elements of both partial buffers. From this point on,
both devices perform steps 7–9 of Algorithm 1 in parallel, but working only with
one of the channels. That is, device 0 computes fyL while device 1 computes
fyR. Note that this version of the algorithm reduces the communication cost
as we only have to transfer 2L elements between the devices. Moreover, except
for the last steps of the algorithm, we can balance the computational workload
in heterogeneous devices by appropriately distributing a different number of
sources to each of them.

Using the same configuration with two contexts and one queue associated
to each device we can exploit the asynchronous call mechanism provided by
OpenCL. That is, we can launch each kernel to a different device without block-
ing the host thread that enqueues it. We have implemented a version of the
algorithm, 2devasyn, that uses the same parallelization strategy that algorithm
2devdual, but exploiting this calling mechanism to dispatch each kernel to both
devices.

5 Experimental evaluation

Our experiments evaluate the computational performance, energy consumption
and energy efficiency of the HSA codes on the Exynos 5422 SoC, taking as a
reference the time offered by an audio card from a mobile device. This specific
audio application provides one frame with L = 1, 024 samples per channel every
tB = 23.22 ms (for a sample frequency fs = 44.1 KHz). Assuming that our
spatial audio application has to synthesize M sound sources, we define tP as the

5 Experimental evaluation 16

processing time, since the M input-data buffers are available till both output-
data buffers (for the right and left ear) are totally processed. Thus, the spatial
audio application will operate in real time provided tP < tB.

Since we target the HSA application, we adopt as a performance metric the
maximum number of sound sources that can be rendered in real time in order
to exhaust the processing on the Exynos 5422.

We are not only interested in maximizing the number of sound sources that
can be rendered in real time, but also in reducing the energy consumption of
the system. Therefore, we will analyze the energy consumed by the different
configurations in order to maximize the sources-per-Watt that can be rendered
in real time. In order to reduce the energy required by the algorithms, we will
investigate the effect of changing the operating frequency of both the CPU cores
and the GPU.

5.1 Performance and energy using the ARMv7 cores

In this section we evaluate the implementation that exploits the ARM cores
of the Exynos 5442. Figure 5 shows the execution time obtained using both
types of ARM cores, Cortex-A7 and Cortex-A15, for one and four cores. We
can observe that the processing cost tP increases linearly with the number of
sources, with the addition of more cores allowing to manage a significantly higher
number of sound sources. These experiments were carried out by setting both
the Cortex-A7 and Cortex-A15 to their maximum clock frequencies: 1.4 GHz
and 2.0 GHz respectively. The line corresponding to one Cortex-A15 core shows
that it is possible to handle up to 177 sources in real time, while using four
cores, this quantity increases to 361 sound sources. Figure 5 also illustrates
that the Cortex-A15 cores are much faster than their Cortex-A7 counterparts.
For example, using one Cortex-A7 core, we can only process 47 sound sources
in real time, that is, 3.7 times less sources that with one Cortex-A15 core.

Regarding the energy efficiency of the algorithms, the first row of plots in
Figure 6 shows the energy consumed to process the maximum number of sound
sources that can be handled for each configuration in real time. We can observe
there the variation of the consumption when we increase the frequency of the
processors and the number of cores for both types of cores. An aspect worth
mentioning in these results is that the Cortex-A7 cores consume significantly
less energy than the Cortex-A15 cores, and that the gap between both types
of cores increases with the frequency. It is also interesting to point out that,
for both types of cores, the energy consumption increases very slowly with the
number of cores.

Nevertheless, as we can appreciate in Figure 5, the maximum number of
sources that can be processed in real time greatly varies for different configura-
tions. Therefore, in order to offer a fair comparison of the energy consumption,
the second row of plots in Figure 6 shows the maximum number of sources-per-
Watt for each case. Using this metric, we can observe that the Cortex-A15 cores
are only slightly more efficient than the Cortex-A7 cores. However, in the first
case we obtain the highest efficiency with three cores at a frequency between

5 Experimental evaluation 17

 0

 5

 10

 15

 20

 25

 30

 50 100 150 200 250 300 350 400

P
ro

c
e

s
s
in

g
 t

im
e

 (
m

s
)

Number of sound sources

Processing time with different type and number of cores

A7(1c)
A7(4c)

A15(1c)
A15(4c)

RT(44.1KHz)

Fig. 5: Processing time using one and four ARM Cortex-A15 and Cortex-A7
cores. The black horizontal line marks the threshold that indicates that
the application runs in real time (tB = 23.22 ms).

600 MHz and 1.0 GHz, while in the second case the best results are obtained
using four cores at their highest frequencies.

5.2 Performance and energy using the Mali-T628 GPU

We next compare the performance of Algorithm 1 in the configurations shown
in Table 1, which correspond to the different versions described in Section 4.

Tab. 1: Configurations for running Algorithm 1 in the Mali-T628 GPU.
Name of the Number of Number of GPU CPU
configuration devices cores cores

1dev0 1 4 1
1dev1 1 2 1

2devmono 2 4 + 2 2
2devdual 2 4 + 2 2
2devasyn 2 4 + 2 1

Figure 7 shows the execution time of the different configurations as we in-
crease the number of sound sources to render. As expected, the performance
is lower when we use the GPU device with two computational units (1dev1).
Furthermore, as the number of sound sources increases, the gap between the
processing times tP of both devices increases significantly (1dev0 vs. 1dev1).

The best results are obtained with the 2devdual version of the algorithm,
which is only improved by the 1dev0 when handling a few sources (< 15).
Contrarily, even using the two devices, the 2devmono version is slightly worse

5 Experimental evaluation 18

200

400

600

800

1000

1200

1400

1 2 3 4

C
P

U
 f
re

q
u
e
n
c
y
 (

M
H

z
)

Number of cores

Energy consumed (mWs) in real time using A7 cores

4.64 4.88 4.88 4.88

4.64 4.88 5.11 5.11

4.88 5.57 5.80 6.04

5.80 6.73 7.20 7.66

7.43 8.13 8.82 9.06

8.59 9.75 10.22 10.68

9.98 11.15 11.38 11.84

 0

 10

 20

 30

 40

 50

 60

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4

C
P

U
 f
re

q
u
e
n
c
y
 (

M
H

z
)

Number of cores

Energy consumed (mWs) in real time using A15 cores

6.97 7.43 7.66 7.89

9.06 9.52 9.52 9.75

10.45 11.15 11.61 12.07

12.31 13.24 13.93 14.40

16.02 17.18 17.88 18.34

19.04 20.90 22.06 22.76

22.76 24.85 26.24 28.10

29.02 31.81 33.67 34.83

36.92 39.94 41.80 41.56

49.23 53.17 56.66 58.05

 0

 10

 20

 30

 40

 50

 60

200

400

600

800

1000

1200

1400

1 2 3 4

C
P

U
 f
re

q
u
e
n
cy

 (
M

H
z)

Number of cores

Maximum sources-per-Watt in real time using A7 cores

 40 72 101 114

 76 164 206 273

107 204 272 282

134 202 263 319

129 203 274 311

125 197 238 292

109 188 245 329

 0

 50

 100

 150

 200

 250

 300

 350

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4

C
P

U
 f
re

q
u
e
n
c
y
 (

M
H

z
)

Number of cores

Maximu sources-per-Watt in real time using A15 cores

 64 111 137 131

107 176 257 192

143 233 326 234

164 248 337 293

157 237 313 279

155 223 274 246

145 226 251 250

129 174 208 208

107 144 180 190

 84 115 142 144

 0

 50

 100

 150

 200

 250

 300

 350

Fig. 6: Energy consumption and efficiency of the HSA codes on the Exynos
5422 system-on-chip (SoC). The plots in the left- and right-hand side
columns correspond to the results on the ARM Cortex-A7 and Cortex-
A15 respectively. The first row of plots contains the energy consumed
to process the maximum number of sound sources in real time. The
second row illustrates the sources-per-Watt (energy efficiency) that the
algorithm can handle in real time.

than the version using only the device with four compute units. This is due to
the communication cost and load unbalance of the algorithm already commented
in Section 4. The good results offered by the 2devdual version demonstrate that
it reduces the effect of both problems. We have applied a balancing technique
that maps the computations corresponding to 2/3 of the sources to the device
with four compute units and the remaining 1/3 to the device with two compute
units in order to provide a similar computational load to each of the 6 compute
units. Finally, the results obtained with the 2devasync version demonstrate
that using one CPU host thread and the asynchronous call mechanism provided
by OpenCL is less effective to deal with the two devices in parallel that using
two OpenMP threads, especially when we have to process less than 70 sources.
Two OpenMP threads can leverage two of the CPU cores in parallel to transfer
the data and launch the kernels to each GPU device, whereas one thread uses
only one CPU core to prepare and launch sequentially the kernels to each device.
Even if the launch call returns immediately after the command is enqueued, and
likely before the kernel has even started execution, this version is less efficient

5 Experimental evaluation 19

 0

 5

 10

 15

 20

 25

 30

 1 50 100 150 200 250 300 350 400 450

T
im

e
 (

m
s
.)

Number of sound sources

Processing time with different parallel algorithms

1dev0
1dev1

2devmono
2devdual
2devasyn
Real time

Fig. 7: Execution time of the parallel algorithms increasing the number of
sources. The horizontal line marks the threshold between a real-time
application and an off-line technology.

than the one combining OpenCL and OpenMP. Therefore, in the rest of the
experimental analysis, we will always use the results obtained with the 2devdual
version of the algorithm.

In the GPU-based implementation of Algorithm 1, most of the computa-
tions are performed in the Mali-T628. However, it is important to evaluate the
influence of the type of CPU core that is used to transfer data to the GPU
and dispatch the different kernels. Figure 8 shows the highest number of sound
sources that the configuration 2devdual can handle in real time for each of the
seven work frequencies of the Mali-T628 GPU, using either the Cortex-A7 and
Cortex-A15 cores as host CPU and with three different frequencies on each type
of core. Our experiments show that the number of sources that are processed
clearly increases when we use the faster Cortex-A15 cores as the host CPU. This
is mainly due to differences in the communication time, which depends on the
type of CPU core that is in charge of transferring the data. Our profiling of
the execution shows that the running time of the kernels on the device does not
depend on the CPU core. However, the time the kernels spend enqueued as well
as the time they wait between the moment they are submitted to the device to
the moment the execution actually commences, clearly differs depending on the
type of cores: Cortex-A7 or Cortex-A15.

The maximum number of sources slowly increases with the frequency of the
GPU for both kinds of host cores and all the CPU frequencies. Besides, there
is a large gap in the number of sources that can be processed when we increase
the CPU frequency from 400 to 800 MHz. However, this difference is narrower
when we raise the frequency from 800 MHz to 1.4 GHz.

In order to analyze the energy consumption of the 2devdual configuration,
we measured the power dissipation of the platform for different combinations

5 Experimental evaluation 20

 0

 50

 100

 150

 200

 250

 300

 350

 400

 177 266 350 420 480 543 600

N
u

m
b

e
r

o
f

s
o

u
rc

e
s

GPU frequency (MHz)

Maximum number of sound ources in real time

A7(400)
A7(800)

A7(1400)
A15(400)
A15(800)

A15(1400)

Fig. 8: Maximum number of sound sources that can be processed in real time
varying the frequency of the Mali-T628 GPU. The different lines cor-
respond to the results using as host CPU both types of ARM cores
(Cortex-A7 and Cortex-A15) at different frequencies.

of CPU and GPU frequencies. The first row of plots in Figure 9 shows the
results obtained using the two devices of the GPU and either a Cortex-A7 core
or a Cortex-A15 core. The energy consumption increases at a very similar pace
using both kinds of cores, with the Cortex-A15 presenting the highest energy
consumption.

The second row of plots in Figure 9 shows the sources-per-Watt that can
be processed in the same cases. We observe that the program cannot process
even a single sound source in real time when we use the lowest CPU frequency
for both kinds of CPU regardless of the GPU frequency. The best results are
obtained in an area defined by the combination of GPU frequencies in the range
350 to 480 MHz with CPU frequencies in between 600 MHz and 1.4 GHz, both
for the ARM Cortex-A7 and Cortex-A15. Additionally, for most combinations
of GPU frequencies with CPU frequencies, the configurations that involve the
Cortex-A7 overcome their counterparts with the Cortex-A15 in terms of energy
consumption. As shown in Figure 8, using the Cortex-A7 cores, we can process
less sound sources in real time, but as they dissipate less power, they can handle
more sources-per-Watt.

5.3 Best configuration

There are different criteria to determine which is the configuration that obtains
the best performance in the Exynos 5422 SoC. This depends on the target of the
application. For example, the goal may be to maximize the number of sources
in real time, without taking into account the energy consumed. Alternatively
one can aim to minimize the energy consumption to process the audio frames

5 Experimental evaluation 21

177

266

350

420

480

543

600

200 400 600 800 1000 1200 1400

G
P

U
 f
re

q
u
e
n
c
y
 (

M
H

z
)

CPU frequency (MHz)

Energy consumed (mWs) in real time using A7 cores as host

3.48 11.38 12.54 14.40 14.86 15.79 16.25

4.18 13.93 16.72 20.90 23.68 25.77 25.77

3.95 14.86 15.79 19.27 22.76 24.61 25.08

4.18 16.02 17.41 22.29 25.31 27.63 28.56

4.41 16.72 19.97 25.31 29.26 31.35 32.51

4.88 17.41 22.76 28.79 33.67 35.76 36.92

5.34 18.81 23.45 30.88 35.06 37.15 39.71

 0

 10

 20

 30

 40

 50

 60

 70

177

266

350

420

480

543

600

200 400 600 800 1000 1200 1400 1600 1800 2000

G
P

U
 f
re

q
u
e
n
c
y
 (

M
H

z
)

CPU frequency (MHz)

Energy consumed (mWs) in real time using A15 cores as host

6.73 13.93 16.95 19.50 22.06 24.38 26.70 29.95 32.97 41.10

7.43 20.20 26.01 30.42 33.90 37.15 39.94 42.96 46.21 55.03

7.20 19.74 26.01 30.42 34.37 36.92 39.94 43.42 46.90 55.03

7.43 21.83 30.19 35.76 39.94 42.72 45.74 48.99 52.48 61.30

7.66 24.61 34.37 41.10 45.28 48.53 51.55 54.80 57.59 67.80

8.13 27.86 40.17 47.37 52.01 56.19 59.68 62.46 66.87 76.86

8.13 29.49 42.72 50.39 55.26 59.91 63.16 65.48 69.89 78.95

 0

 10

 20

 30

 40

 50

 60

 70

177

266

350

420

480

543

600

200 400 600 800 1000 1200 1400

G
P

U
 f
re

q
u
e
n
c
y
 (

M
H

z
)

CPU frequency (MHz)

Maximum sources-per-Watt in real time using one A7 core as host

 0 111 148 165 181 186 184

 0 117 145 154 159 155 160

 0 125 185 194 197 196 199

 0 116 182 193 195 194 197

 0 111 169 183 177 183 184

 0 100 155 167 167 171 172

 0 97 156 162 167 170 166

 0

 50

 100

 150

 200

177

266

350

420

480

543

600

200 400 600 800 1000 1200 1400 1600 1800 2000

G
P

U
 f
re

q
u
e
n
c
y
 (

M
H

z
)

CPU frequency (MHz)

Maximum sources-per-Watt in real time using one A15 core as host

 0 130 154 155 148 140 130 118 112 93

 0 125 142 141 136 131 124 114 116 99

 0 155 177 181 171 168 160 149 140 125

 0 156 180 174 173 171 165 156 148 127

 0 156 170 170 168 162 158 152 147 126

 0 142 156 159 154 151 147 144 136 120

 0 143 151 156 156 148 145 143 136 121

 0

 50

 100

 150

 200

Fig. 9: Energy consumption and efficiency of the configuration 1dev0 combining
different CPU frequencies with the GPU frequencies. The plots in the
left- and right-hand side columns correspond to the results using Cortex-
A7 and Cortex-A15 as host CPU core, respectively. The first row of plots
contains the energy consumed to process the maximum number of sound
sources in real time. The second row illustrates the sources-per-Watt
(energy efficiency) that can be handled in real time.

corresponding to a fixed number of sound sources in a real-time scenario.
Figure 10 analyzes several configurations that maximize the number of sources

that can be rendered in real time. To this end, in the case of the configurations
implemented on the CPU cores, we use all Cortex-A7 cores and three or four
Cortex-A15 cores depending on the CPU frequency. The combination of the
GPU, running at the highest frequency, together with two Cortex-A15 achieves
the highest performance except with the lowest CPU frequency. The maximum
number of sound sources is achieved with this configuration with the highest
CPU frequency: 412 sound sources rendered in real time.

Focusing on energy efficiency, we leverage the sources-per-Watt metric to
analyze the effect of CPU frequency scaling. Figure 11 shows that the highest
efficiency is obtained by a configuration with three Cortex-A15 cores at a fre-
quency of 800 MHz. With this configuration, we can handle 201 sound sources
in real time consuming 13.85 mWs.

We also analyze the performance of the proposed configurations by fixing
the amount of sound sources, and then optimize the energy efficiency. Figure 12

5 Experimental evaluation 22

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 200 400 600 800 1000 1200 1400 1600 1800 2000

N
u

m
b

e
r

o
f

s
o

u
rc

e
s

CPU frequency (MHz)

Maximum number of sound sources in real time

A15(3,4c)
Mali(600MHz)+A15

A7(4c)
Mali(600MHz)+A7

Fig. 10: Maximum number of sound sources than can be rendered in real time
varying the CPU frequencies for the Cortex-A7 and Cortex-A15, with
the Mali-T628 GPU running at its highest frequency (600 MHz).

shows the processing time of different configurations to render 20 sound sources.
The results are shown varying the CPU frequencies of both Cortex-A15 and
Cortex-A7 and using the number of cores and GPU frequency that achieves the
lowest execution times. All algorithms compute 20 sound sources in real time
at all CPU frequencies, except the configurations composed of the GPU and
either the Cortex-A7 or the Cortex-A15 cores at their lowest frequency (200
MHz). The fastest configuration at all CPU frequencies is the one using three
Cortex-A15 cores. The best case is obtained with the CPU frequency set to
2 GHz and three Cortex-A15 cores, which is able to render 20 sound sources in
0.90 milliseconds.

If our goal is to invest the minimum energy to render 20 sound sources,
Figure 13 shows that the best results by far are always obtained with the con-
figurations that employ both types of CPU cores. Using CPU frequencies be-
tween 400 MHz and 1.8 GHz, when available, both configurations consume less
than 2.0 mWs to process a single frame for each of the 20 sound sources in real
time. The time spent to process the frames depends on the configuration and
is reported in Figure 12. Therefore, if we want to combine fast sound render-
ing with low energy consumption we should use the CPU algorithm with three
Cortex-A15 cores.

To put these results into perspective, the Samsung Galaxy S5 G900H cell
phone includes our target processor Exynos 5422. This mobile device uses a
Lithium-Ion battery with a capacity of 2.8 Ah and a voltage of 3.85V. There-
fore, this battery provides a maximum of 10.78 Wh. Let us assume that we are
devoting the battery only to sustain the execution of our application rendering
20 sound sources in real time. That is, let us assume that we are processing
one frame for each of the 20 sources every 23.22 ms, despite for almost all con-

6 conclusions 23

 0

 50

 100

 150

 200

 250

 300

 350

 200 400 600 800 1000 1200 1400 1600 1800 2000

N
u

m
b

e
r

o
f

s
o

u
rc

e
s

CPU frequency (MHz)

Sources-per-watt handled in real time

A15(3,4c)
Mali(600)+A15

A7(4c)
Mali(600)+A7

Fig. 11: Number of sound sources-per-Watt that can be processed in real time
varying the CPU frequencies. The different lines correspond to the
results obtained using different combinations of the CPU cores and the
Mali-T628 GPU.

figurations, a much shorter time is required to complete the processing. In the
most efficient configuration, using the four cores of the Cortex-A7 at 1.0 GHz,
we can run our application for around 191 hours, as in this case we are con-
suming 1.31 mWs every 23.22 ms. In the best GPU configuration, that is,
using the Mali-T628 at 177 MHz and two Cortex-A7 at 1.0 GHz, the applica-
tion can be run for around 56 hours. In contrast, in the worst case of the four
selected configurations, the GPU together with two Cortex-A15 at 2 GHz can
barely run the application for around 24 hours before exhausting the battery.
Figure 13 exposes the importance of exploring all computational resources in-
tegrated in the Exynos 5422 SoC. If we take as reference an straightforward
OpenMP implementation that runs using all four A15 cores in parallel at their
highest frequency, the battery will be exhausted after 80 hours. Therefore, our
most efficient configuration can extend the autonomy of the device executing
the HSA application with respect to that reference configuration by a 238%.

6 conclusions

In this paper, we have explored the capabilities of the Exynos 5422 architecture
to tackle a spatial audio application (involving multiple convolutions). We have
proposed efficient implementations that extract concurrency to feed the CPU
processors via NEON instructions and OpenMP. Moreover, we have optimized
this spatial audio application in the GPU Mali-T628 that is embedded in the
Exynos 5422 processor, using OpenCL to leverage the heterogeneous devices.

We have evaluated the computational performance in terms of maximum
number of sound sources that can be rendered in real time, as well as energy ef-

6 conclusions 24

 0

 5

 10

 15

 20

 25

 30

 35

 40

 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
 (

m
s
)

CPU frequency (MHz)

Processing time with 20 sound sources

A15(3c)
Mali(600MHz)+A15

Real time
A7(4c)

Mali(600MHz)+A7

Fig. 12: Processing time in milliseconds for rendering 20 sound sources. The
different lines correspond to the results obtained using different combi-
nations of the CPU frequencies and a GPU frequency of 600 MHz. The
horizontal line marks the threshold between a real time application and
an off-line application.

ficiency in terms of maximum sources-per-Watt. Our experiments indicate that
the optimal configuration depends on the purpose of the application. Specif-
ically, if the purpose is to maximize the number of sound sources rendered
in real time, independently of the energy consumption, we should rely on the
OpenCL implementation that operates both GPU devices at their highest fre-
quency (600 MHz) and two Cortex-A15 cores also operating at their highest
frequency (2 GHz). In contrast, for energy efficiency, the maximum sound
sources-per-Watt is obtained using three Cortex-A15 cores at 800 MHz. In case
the application has to be executed on the GPU (because CPU is busy with
other tasks), we should set the Mali GPU frequency to 350 MHz and employ
two Cortex-A7 at their highest frequency.

Finally, we must highlight the dependency that exists between the battery
lifetime and the use of different computational resources. For example, in case
of reproducing 20 sound sources, the best option, both in terms of real-time
processing and energy consumption, is to use the configuration that exploits
the 3 Cortex-A15 cores at 1.8 or 2 GHz.

This work points out the necessity of properly analyzing the different alterna-
tives for implementing an application in this type of low-power SoC processors.
Exploiting in an optimal way the capabilities of the platform we can extend the
autonomy to execute a HSA application by a 238%.

6 conclusions 25

 0

 2

 4

 6

 8

 10

 12

 200 400 600 800 1000 1200 1400 1600 1800 2000

E
n

e
rg

y
 (

m
J
)

CPU frequency (MHz)

Energy consumed to process 20 sound sources

A15(3c)
Mali(best)+A15

A7(4c)
Mali(177)+A7

Fig. 13: Energy consumed for rendering one frame of 20 sound sources varying
the CPU frequency. The different lines correspond to the results ob-
tained using the best configurations of the algorithms using the Cortex
cores and Mali-T628 GPU.

Acknowledgments

We would like to thank the reviewers of this paper for their very insightful com-
ments that helped us to greatly improve it. This work has been partially funded
by Spanish Ministerio de Economı́a y Competitividad projects: TIN2014-53495-
R and TEC2015-67387-C4-1-R, the University project UJI-B2016-20, together
with the project PROMETEOII/2014/003. Dr. Jose A. Belloch is supported by
GVA postdoctoral contract APOSTD/2016/069.

References

[1] V. K. Parikh, P. T. Balsara, and O. E. Eliezer, “All digital-quadrature-
modulator based wideband wireless transmitters,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 56, no. 11, pp. 2487–2497, Nov
2009.

[2] A. K. Mustafa, S. Ahmed, and M. Faulkner, “Bandwidth limitation for the
constant envelope components of an OFDM signal in a LINC architecture,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60,
no. 9, pp. 2502–2510, Sept 2013.

[3] Z. Liu, K. Dickson, and J. V. McCanny, “Application-specific instruction
set processor for SoC implementation of modern signal processing algo-
rithms,” IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 52, no. 4, pp. 755–765, April 2005.

6 conclusions 26

[4] J. Ramanujam, J. Hong, M. Kandemir, A. Narayan, and A. Agarwal, “Es-
timating and reducing the memory requirements of signal processing codes
for embedded systems,” IEEE Transactions on Signal Processing, vol. 54,
no. 1, pp. 286–294, Jan 2006.

[5] O. Chen, M. Hsia, and C. Chen, “Low-complexity inverse transforms of
video codecs in an embedded programmable platform,” IEEE Transactions
on Multimedia, vol. 13, no. 5, pp. 905–921, Oct 2011.

[6] J. Chen and K. Liu, “Low-power architectures for compressed domain video
coding co-processor,” IEEE Transactions on Multimedia, vol. 2, no. 2, pp.
111–128, Jun 2000.

[7] Y. Andreopoulos, D. Jiang, and A. Demosthenous, “Prediction-based incre-
mental refinement for binomially-factorized discrete wavelet transforms,”
IEEE Transactions on Signal Processing, vol. 58, no. 8, pp. 4441–4447,
Aug 2010.

[8] S. Ren, N. Deligiannis, Y. Andreopoulos, M. A. Islam, and M. van der
Schaar, “Dynamic scheduling for energy minimization in delay-sensitive
stream mining,” IEEE Transactions on Signal Processing, vol. 62, no. 20,
pp. 5439–5448, Oct 2014.

[9] Y. Keller, R. R. Coifman, S. Lafon, and S. W. Zucker, “Audio-visual group
recognition using diffusion maps,” IEEE Transactions on Signal Processing,
vol. 58, no. 1, pp. 403–413, Jan 2010.

[10] S. D. Larbi and M. Jaidane-Saidane, “Audio watermarking: a way to sta-
tionnarize audio signals,” IEEE Transactions on Signal Processing, vol. 53,
no. 2, pp. 816–823, Feb 2005.

[11] “ARM NEON,” https://developer.arm.com/technologies/neon, (accessed
2017 October 3).

[12] J. A. Belloch, M. Ferrer, A. Gonzalez, F. Martinez-Zaldivar, and A. M.
Vidal, “Headphone-based virtual spatialization of sound with a GPU ac-
celerator,” J. Audio Eng. Soc, vol. 61, no. 7/8, pp. 546–561, Jul 2013.

[13] D. N. Zotkin, R. Duraiswami, and L. S. Davis, “Rendering localized spa-
tial audio in a virtual auditory space,” IEEE Transactions on Multimedia,
vol. 6, no. 4, pp. 553–564, Aug 2004.

[14] V. Algazi and R. Duda, “Headphone-based spatial sound,” IEEE Signal
Processing Magazine, vol. 28, no. 1, pp. 33–42, Jan 2011.

[15] J. Blauert, Spatial Hearing - Revised Edition: The Psychophysics of Human
Sound Localization. The MIT Press, 1996.

6 conclusions 27

[16] Z. Foo, D. Devescery, M. H. Ghaed, I. Lee, A. Madhavan, Y. S. Park,
A. S. Rao, Z. Renner, N. E. Roberts, A. D. Schulman, V. S. Vinay,
M. Wieckowski, D. Yoon, C. Schmidt, T. Schmid, P. Dutta, P. M. Chen,
and D. Blaauw, “A low-cost audio computer for information dissemina-
tion among illiterate people groups,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 60, no. 8, pp. 2039–2050, Aug 2013.

[17] G. Mitra, B. Johnston, A. Rendell, E. McCreath, and J. Zhou, “Use of
SIMD Vector Operations to Accelerate Application Code Performance on
Low-Powered ARM and Intel Platforms,” in Proc. IEEE 27th International
Parallel and Distributed Processing Symposium Workshops PhD Forum
(IPDPSW), Boston, USA, May 2013, pp. 1107–1116.

[18] E. Welch, D. Patru, E. Saber, and K. Bengtson, “A study of the use of
SIMD instructions for two image processing algorithms,” in Proc. Western
New York Image Processing Workshop (WNYIPW), New York, USA, Nov
2012, pp. 21–24.

[19] R. Wang, J. Wan, W. Wang, Z. Wang, S. Dong, and W. Gao, “High defi-
nition IEEE AVS decoder on ARM NEON platform,” in Proc. 20th IEEE
International Conference on Image Processing (ICIP), Melbourne, Aus-
tralia, Sept 2013, pp. 1524–1527.

[20] Z. Ma, H. Hu, and Y. Wang, “On complexity modeling of H.264/AVC
video decoding and its application for energy efficient decoding,” IEEE
Transactions on Multimedia, vol. 13, no. 6, pp. 1240–1255, Dec 2011.

[21] N. Mastronarde, K. Kanoun, D. Atienza, P. Frossard, and M. van der
Schaar, “Markov decision process based energy-efficient on-line scheduling
for slice-parallel video decoders on multicore systems,” IEEE Transactions
on Multimedia, vol. 15, no. 2, pp. 268–278, Feb 2013.

[22] S. Holgersson, “Optimising IIR filters using ARM NEON,” Master’s thesis,
University of Denmark, 2012.

[23] J. A. Belloch, F. J. Alventosa, P. Alonso, E. S. Quintana-Ort́ı, and A. M.
Vidal, “Accelerating multi-channel filtering of audio signal on ARM pro-
cessors,” Journal of Supercomputing, vol. 73, no. 1, pp. 203–214, Mar 2017.

[24] J. A. Belloch, A. Gonzalez, F. D. Igual, R. Mayo, and E. S. Quintana-
Ort́ı, “Vectorization of binaural sound virtualization on the ARM cortex-
A15 architecture,” in Proc. 23rd European Signal Processing conference,
(EUSIPCO), Nize, France, Sep 2015, pp. 1601–1605.

[25] D. R. Begault, 3-D sound for virtual reality and multimedia. San Diego,
CA, USA: Academic Press Professional, Inc., 1994.

[26] “Listen HRTF database,” online at: http://recherche.ircam.fr/equipes/salles/listen/index.html.
(accessed 2017 Oct 3)

6 conclusions 28

[27] A. Kudo, H. Hokari, and S. Shimada, “A study on switching of the transfer
functions focusing on sound quality,” Acoustical Science and Technology,
vol. 26, no. 3, pp. 267–278, 2005.

[28] S. Barrachina, M. Barreda, S. Catalán, M. S. Dolz, G. Fabregat, R. Mayo,
and E. S. Quintana-Ort́ı, “An integrated framework for power-performance
analysis of parallel scientific workloads,” in Proc. 3rd International Confer-
ence on Smart Grids, Green Communications and IT Energy-aware Tech-
nologies (ENERGY) (2013), Lisbon, Portugal, Mar 2013, pp. 114–119.

[29] R. Gensh, A. Aalsaud, A. Rafief, F. Xia, A. Iliasov, A. Romanovsky, and
A. Yakovlev, “Experiments with the Odroid-XU3 board,” Newcastle Uni-
versity, Computing Science, Newcastle upon Tyne, Tech. Rep. CS-TR-1471,
May 2015.

[30] “ARMv7 NEON data types,” https://gcc.gnu.org/onlinedocs/gcc-
4.6.1/gcc/ARM-NEON-Intrinsics.html, (accessed 2017 Oct 3).

[31] M. Scarpino, OpenCL in Action: How to Accelerate Graphics and Compu-
tation. Manning, 2012.

[32] E. C. Lfeachor and B. W. Jervis, Digital signal processing: a practical
approach, Prentice Hall, 2002.

[33] A. V. Oppenheim, A. S. Willsky, and S. Hamid, “Signals and systems,”
ser. Processing series. Prentice Hall, 1997.

[34] “Fast Fourier Transform West,” http://www.fftw.org, (accessed 2017 Oct
3).

[35] “OpenCL fast fourier transforms,” http://clmathlibraries.github.io/clFFT,
(accessed 2017 Oct 3).

