CONTRIBUTIONS TO THE BOHR TOPOLOGY BY W. W. COMFORT

SALVADOR HERNANDEZ, DIETER REMUS, AND F. JAVIER TRIGOS-ARRIETA

ABSTRACT. The important role that W. W. Comfort played in the study of the Bohr topology is de-
scribed.

1. INTRODUCTION

William Wistar Comfort II died on November 28, 2016 in Middletown, Connecticut, at age 83,
following a brief illness. The three co-authors of the present article were lucky to be among his many
friends, students and colleagues. This article is not intended to be a complete account of Wis’ many
contributions to mathematics. We will just touch upon a branch of mathematics that was very dear to
him, the Bohr topology. For biographical accounts, the interested reader can access the interview of Wis
by N. Hindman [56], or Wis’ obituary [8, 9]. One of us, Remus, wrote an article on Wis’ contributions to
topological groups [74].

The loss of Wis has been very difficult to bear for us. Not only we, not only his family, not only
mathematics, but the world has lost a man whose integrity, gallantry, and humility should set an example
for what a decent human being should be.

2. PRELIMINARIES

Let G be a topological group. Then there exists a compact group bG and a continuous homomor-
phism b : G — bG with the following property: if f : G — K is a continuous homomorphism from G
into a compact group K, there exists a continuous homomorphism f : bG — K such that f = fob. bG
is called the Bohr compactification of G, and b the corresponding Bohr homomorphism. A topological
group G is said to be a mazimally almost periodic (MAP) group if the Bohr homomorphism b : G — bG
is injective. This means: Whenever g € G and g # 0 € G, there exists a continuous homomorphism ¢ of
G into a compact group, say K, such that ¢(g) # 0 € K,. The very important torus group T is defined
as in [54] (§1), but sometimes we identify it with the group ([0,1),+ mod 1). An Abelian topological
group is MAP if and only if whenever g € G and g # 0 € G, there exists a continuous homomorphism
¢ : G — T such that ¢(g) # 0 € T. For more details on the Bohr compactification see [55]. It is a
consequence of the Gel'fand-Raikov Theorem that locally compact Abelian groups (LCAGs) are MAP.
A topological group G is said to be precompact if given any open subset U of G, there is a finite subset
F of G such that G = UF. A Hausdorff precompact topological group is called totally bounded. It is a
theorem of A. Weil that if a group is totally bounded, there exists a compact group G in which G lives
densely. We refer to G as the Weil completion of G and it is unique up to a topological isomorphism
([92] and [93]). If G is an Abelian topological group, we set G* := b[G], and when G is discrete, we use
the special symbol G instead of GT. Notice then that the topology of G¥ is the finest totally bounded
group topology that any abstract group G accepts. For an Abelian MAP G, we will denote by G the set
of continuous homomorphisms ¢ : G — T, which we will refer to also as the characters of G. G becomes
a topological group by defining (¢1¢2)(g) := ¢1(g)¢2(g) € T whenever g € G and equipping it with the
compact-open topology. It is a direct implication from the Comfort-Ross Theorem [25] (see §3 below),
that the topology of G is the weakest topology that makes the elements of G continuous. When G is
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locally compact, G is also locally compact. It is a theorem of I. Glicksberg [47], that for G locally com-
pact and Abelian, G and G have exactly the same compact subspaces. We call this result Glicksberg’s
theorem. Several alternate proofs and generalizations of Glicksberg’s theorem have been given (see [31],
[38], [41], [42], [57], [64], [65](Chapters 41 and 42), and [75]).

Historical developments concerning almost periodic functions and Bohr compactifications are de-
scribed in [1], [61] (pp. 222-235) and [66] (3C, pp. 45-51). For undefined terms in this article, we refer
the reader to the monographs [11], [36], and [54].

3. THE BEGINNINGS. COMFORT AND Ross 1964 [25], COMFORT AND SAKS 1973 [26], COMFORT
1984 [11], CoMFORT 1985 [10], COMFORT AND ROBERTSON 1987 [24]

Let PK(G), resp. B(G), denote the lattice of all precompact (not necessarily Hausdorfl) group
topologies, resp. the set of all totally bounded group topologies on a group G. Wis and K. A. Ross were
the first who considered B(G). In 1964 they described it for Abelian groups.

Theorem 3.1. [25] Let G be an Abelian group, and let G* be the group of all homomorphisms of G into
the torus T. For each T € B(G) let ¢(7) be the group of all continuous characters of (G, 7). Then v is a
bijection between B(G) and the set of the point-separating subgroups of G*.

By using Theorem 3.1 the second author proved in [77] that for every Abelian group G the lattice
PK(G) is isomorphic to the lattice of all subgroups of G*.

Let G be a group, and let 7¢& be the discrete topology on G. LA(bG,brd) stands for the lattice of
all closed normal subgroups of (bG,brd), the Bohr compactification of (G,7¢), and e is the identity of
bG. Then Theorem 3.1 was generalized by the second author in [77] (3.7) (see also [71], Lemma 2), as
follows.

Theorem 3.2. For every group G there exists a function ® : PK(G) — LAbG,brd) which is an anti-
isomorphism of lattices. If (G, Tcd;) is maximally almost periodic, then ® maps the totally bounded group
topologies on those closed normal subgroups N of (bG,brd), satisfying b|G] N N = {e}.

In [37], a different extension of Theorem 3.1 to non-Abelian groups was given by M. V. Ferrer and
the first author.

J. O. Kiltinen [58] proved in 1974 that every infinite Abelian group G admits exactly 22‘G|—many
Hausdorff group topologies. Later on K.-P. Podewski [67] reproved this result independently by different
methods. For non-Abelian groups without a nondiscrete Hausdorff group topology see [16], pp. 89-91.
By using Theorem 3.1, the result of Kiltinen was independently improved in 1982 by S. Berhanu, Wis
and J. D. Reid [6], and the second author [77] and [72].

Theorem 3.3. Every infinite Abelian group G admits exactly 22! -many totally bounded group topologies.

Recently I. K. Babenko and S. A. Bogatyi [3] have reproved Theorem 3.3. Their main tool is also
Theorem 3.1. Surprisingly, they did not mention the much earlier work of Berhanu et al. and of the
second author.

For an extension of Theorem 3.3 to non-Abelian groups see [71], [73], [78] and [21], where Theo-
rem 3.2 is used as a main tool. In [20], the Peter-Weyl theorem and unitary representations are applied.
The number of pseudocompact group topologies on compact Abelian groups is studied in [19] and in [12],
with the help of Theorem 3.1. For arbitrary compact groups see [22], Sections 5.2 and 8.2.

Wis, H. Szambien and the second author used in [23] Bohr compactifications of topological rings
and a modification of Theorem 3.2 (see [23], Theorem 2.6) to study the number of pseudocompact ring
topologies on compact rings. Let a be a cardinal considered as a (limit) ordinal. Then cf(a) is the
least cardinal 8 such that there is a function f : 8 — « which is cofinal (unbounded) in «. If X is a
topological space, w(X) denotes its weight (cf. [36] (1.1)). Among other things, the following holds.

Theorem 3.4. ([23], Theorem 3.6) Let (R, T) be a compact ring for which a := w(R, T) satisfies cf(a) >
w. Assume w(R/J(R)) = «, where J(R) is the Jacobson radical of the ring R. Then there are exactly
92! -many pseudocompact ring topologies on R which are finer than 7. In particular this holds if R is a
semisimple Ting.



Berhanu et al. [6] started the investigation of the poset B(G) for Abelian groups G by computing
cardinal invariants of B(G) like width, height and depth. For more on the subject see [74], Section 1.

In 2016 Wis and the second author stated several problems in [22]. Concerning the number of
pseudocompact group topologies the following is still open.

Problem 3.5. (a)([22], Problem 5.2.7(b)). Let (K, T) be a nonmetrizable compact connected group. Are
there 22! -many pseudocompact group topologies on G which are finer than 7%

(b)([22], Problem 8.2.11(b)). Let (K,T) be a nonmetrizable profinite group. Are there 22‘G‘-many pseu-
docompact group topologies on G which are finer than 7% (A compact group is profinite if and only if it
is totally disconnected.)

Wis and V. Saks [26] noted that the compact group topology of the real special orthogonal group
SO(3,R) is the finest totally bounded group topology on this group. It was Lew Robertson who pointed
out to both authors that this follows from a result of B. L. van der Waerden [88]. This led Wis [10] to
the following

Definition 3.6. A compact group is called a van der Waerden group (vdW-group) if every homomor-
phism to a compact group is continuous.

It can be easily seen (cf. [26], pp. 39-40) that a compact group G is a vdW-group if and only
if its topology is the finest totally bounded group topology on G. By van der Waerden’s result every
compact connected semisimple Lie group is a vdW-group. (In the special case of SO(3,R) Wis and L. C.
Robertson [24] gave a transparent, nearly elementary proof). For more about vdW-groups see [50], [64],
[74], and [94].

A compact group G is called tall if for every positive integer n the set of pairwise nonequivalent
continuous irreducible unitary representations of G whose dimensions do not exceed n is finite. It follows
from [64] that every vdW-group is tall and hence metrizable. There are profinite tall groups which are
not vdW-groups (see [50], Example 7.2). Wis and the second author made the following conjecture many
years ago. In 2014 it was stated in print for the first time in the paper [80] of A. I. Shtern.

Conjecture 3.7. A compact connected group is a vdW-group if and only if it is tall.

It is well-known that the conjecture holds for compact Lie groups. In the last telephone conversation
with the second author, shortly before his death, Wis said that Conjecture 3.7 was one of his favorite
problems during the last ten years. It is still unsolved.

In [23] van der Waerden rings are defined in the class of compact rings in an obvious way. Among
other things, a structure theorem for semisimple vdW-rings was given (see [23], Theorem 4.13). Recently
M. Ursul and the second author [76] have made significant progresses concerning the structure of vdW-
rings .

Probably, the first results obtained by Wis about Bohr topologies on Abelian groups were with
Saks in [26]: (1) Subgroups of G# are all closed, (2) if infinite, G* is never pseudocompact, and (3) a
product of groups GZ# has its finest totally bounded group topology if and only if it is a finite product.
Property (1) was eventually generalized to the fact that closed subgroups of a LCAG G remain closed
as subspaces of G [85]. It was Lew Robertson who made the authors of [85] aware of Glicksberg’s
result [47], which led Wis to show that only the finite sets were the pseudocompact or countably compact
subspaces of any G* [27]. This fact was eventually generalized in [84] to the fact that no pseudocompact
subspaces are created for a LCAG to the passage to its Bohr topology.

Wis’ contribution to the Handbook of General Topology [11], published in 1984, outlines the
importance that he gave to the Bohr topology. Section 4 can be considered an introduction to the Bohr
topology for a beginning student with basic knowledge in general topology and group theory, as it yields
most of the tools necessary for its study. The Bohr topology is specifically defined in 4.26 and G+ for a
LCAG G is given in 4.27 (with G* = ([G]).

4. THE STUDY OF THE MAXIMAL TOTALLY BOUNDED GROUP TOPOLOGY ON ABELIAN GROUPS [27]

The late E. van Douwen sent in the mid-eighties two letters to Wis [90] and a preprint of [89], in
which he stated a few unpublished results and asks some questions. During the Fall semester of 1987,
Wis gave a course at Wesleyan University on topological groups which the third author attended as a



student. Wis presented these results and questions to the class, and they became the project for the
doctoral thesis [87] and eventually for the articles [27], [85] and [84]. Van Douwen, for example, shows in
[89] that G* is zero-dimensional. This result was independently re-discovered by Lew Robertson and the
third author, and was published in [27]. Since D. B. Shakhmatov had shown that, for totally bounded
groups, zero-dimensionality and strong zero-dimensionality coincide [79], it follows that G# is strongly
zero-dimensional, the answer to an original question raised by van Douwen in one of his letters to Wis
(see [51] for further information about dimension and the Bohr topology). The Bohr topology has also
been applied to prove the existence of Abelian groups with non-normal precompact topologies (see the
article [86] of the third author), answering related questions of A. A. Markoff [63] and van Douwen [89].

5. THE BOHR COMPACTIFICATION OF A LCA GROUP MODULO A METRIZABLE SUBGROUP [28]

If N is a closed subgroup of bG, the authors of [28] say thay N preserves compactness if a subspace
A of G satisfies that @[b[A]] is compact in bG/N if and only if A(b~[G* N N]) is compact in G, where
¢ : bG — bG /N denotes the natural quotient map. When the closed metrizable subgroups of bG preserve
compactness, we say that G strongly respects compactness. In [28] it is shown that LCAGs strongly respect
compactness. This result generalizes Glicksberg’s theorem [47] by taking N := {0y} above. In the same
article, the authors show that the result can fail if N is not metrizable, even if N N GT = {0q+}; but
they also show that the result may still hold for non-metrizable closed subgroups N of G.

The case G discrete turned out to be more difficult than expected and a misleading and most likely
incorrect proof was printed in [28]. The first author and Jorge Galindo noticed the mistake and informed
the authors of [28] about it. Eventually, a sound proof of the case G discrete was found and subsequently
published as a correction in [29].

The paper [28] then discusses the interplay between k-topologies and the Bohr topology. Recall
that a k-space X is one in which every set U satisfying that U N K is an open subset of every compact
subspace K of X is itself open in X. If Y is a space, there exists a k-space X and a continuous bijection
f: X — Y such that K compact in Y = f~![K] compact in X, and one shows that, up to a
homeomorphism such X is unique. We then write kY = X. W. F. LaMartin [?] (2.1) showed that k(R%)
is not a topological group whenever a > Ny, hence the k-ification of a topological group need not be a
topological group. Glicksberg’s theorem [47] implies then that if G is a LCAG, then G = kG*. The main
result of [28] yields a totally bounded group H with G := kH being a locally compact Abelian group,
yet H # G*. The characterization of those totally bounded groups H such that G := kH is a locally
compact Abelian group, and H = G, was posed as Question 4.3, studied by J. Galindo in [43], and
recently solved by the first and last authors in the paper [53].

The rest of [28] consists of constructing examples of LCAGs G and closed, non-metrizable subgroups

N of bG preserving compactness. Paramount for this is lemma 3.11, a very interesting result in itself:
Assume that G is a discrete Abelian group, N N a closed subgroup of bG with N NG = {0}, and A the
Haar measure of G. Let A(bG N) := {X € G - X[N] = {0}}, i.e., (bG N) is the annihilator of N in
bG. Suppose that either {Xie:x € A(bG N)} is not A-measurable in G, or AMxje:x € A(bG N)}) > 0.
Denote by ¢ : G — bG/N the natural map. If G is countable or ¢[H] is closed in bG /N, whenever H is a
subgroup of G, then N preserves compactness. So, here it is a connection between preserving compactness
and the Haar measure of the character group, that has been exploited by several mathematicians. In
another direction, the class of groups that strongly preserve compactness has been considered by different
authors for Abelian and non-Abelian groups. We refer to [39], [45] and the references therein.

The article [28] concludes with a number of questions, some of them already answered but others
still open. We already mentioned the solution to Question 4.3, and in the contribution [53] the first and
last authors show that there is a MAP group G not strongly respecting compactness, yet having all closed

metrizable subgroups N of bG with N NG = {0}, preserving compactness, answering hence Question
4.1 of [28].

6. REALCOMPACTNESS OF THE BOHR TOPOLOGY [14]

In the article [89], van Douwen asked whether G# is realcompact when |G| is not Ulam-measurable,
as he knew that G* containes a closed discrete C-embedded subspace of cardinality |G|, hence if G# is
realcompact, then |G| cannot be Ulam-measurable. In [14] the authors prove that G# is realcompact if



and only if |G| is not Ulam-measurable. First they give an alternative proof of the sufficiency. Necessity
is achieved as follows: If G is a LCAG, denote by GYC the Gs-closure of GT, i.e., p € bG belongs to GYC if
and only if every Gs-set in bG containing p hits GT. If we consider bG C ’]I‘G then p € bG belongs to Gb¢
if and only if p is continuous on every countable subset of G. Since one always has |G | < 2lG1 notice then
that if |G| is not Ulam-measurable, then |G| cannot be Ulam-measurable either. It is then immediate
from a result of Varopoulos [91] that every element of bG which is continuous on every countable subset
of G is in fact continuous on G so the above gives GY¢ = G#. Thus G7, being Gs -closed in the
(real)compact space bG, is itself realcompact.

The article [14] gives as well a characterization for LOCAGs G when G is realcompact. For example,
this is equivalent to G being realcompact, to G* being topologically complete, and to |G/H| not being
Ulam-measurable, whenever H is a o-compact open subgroup of G. Another characterization achieved in
[14] is when for a LCAG G, G is hereditarily realcompact. It follows that this happens precisely when
the points of GT are Gs-s, or equivalently, when G is metrizable and |G| < ¢. The authors show as well
that for every LCAG G, every closed subgroup H of G is C-embedded in G; indeed when G is discrete,
then every continuous function f : HT — S with S completely metrizable extends continuously to some

f:Gt — S.
The article finishes with several questions, many of them still unanswered.

7. THE MAXIMAL TOTALLY BOUNDED GROUP TOPOLOGY: HOMEOMORPHISMS AND RETRACTS [15]

A remarkable feature of the Bohr topology is that, except for the standing Abelian hypothesis,
basically all results around concerning #-groups make no use whatever of specific algebraic properties
and the arguments turn strictly on combinatorics related to the cardinality of the groups in question.
This fact probably led van Douwen [89] to pose the following question:

Question 7.1. If the groups G1 and G2 have the same cardinality, must the spaces Gfﬁ and G? be
homeomorphic?

In a preliminary response in the positive direction, the third author noticed [87] (6.33 and 6.36)
that if G contains a subgroup H of index n € N such that G# and H# are homeomorphic, then G#
is homeomorphic to G# x Z,,, where Z, stands for the discrete cyclic group of order n, thus showing
that non-isomorphic groups of arbitrary infinite cardinal do exist with homeomorphic #-spaces. Using
the fact that every nondiscrete countable infinite homogeneous space is homeomorphic to each of its
nonempty clopen subsets, J. E. Hart and K. Kunen [49], generalized the third author’s result, showing
for every infinite group G that G# and G# x D are homeomorphic for every finite or countably infinite
discrete space D. Nevertheless, K. Kunen [59], and independently D. Dikranjan and S. Watson [34],
have given examples of torsion groups with the same cardinality yielding nonhomeomorphic #-spaces.
Thus Question 7.1 is solved in the negative. Much remains unknown, however, even among groups
of countable cardinality (see [30] and the references therein). For instance, the arguments of [59] and
[34] leave (for example) the following questions untouched: Which if any of the spaces Z#, (Z x Z)#
(div(Z))*, (div(Z)]Z7)*, ((div(Z))Z) x Z)*, (@, Z)*, (D, {0,1})# are homeomorphic? (div(H) stands
for the divisible hull of an Abelian group H.) It seems appropriate, accordingly, to replace Question 7.1
with the following (imperfectly posed) open-ended question.

Question 7.2. How do algebraic properties of the groups G affect the homeomorphism classes of the
spaces G# 2

In relation to the question above for the specific groups Z# and (Z x Z)#, in [5] §4, Wis pointed
out that Z and Z x Z do admit many pairwise homeomorphic non-discrete topologies. It is known [25]
(see Theorem 3.1 above) for each infinite subgroup A in G* that w(G,74) = |A| and that the elements
of A are exactly the T4-continuous homomorphisms from G to T, so distinct subgroups of G* induce
distinct group topologies on G. When |G| = w and A is countable, the space (G,74) is a countably
infinite metrizable space without isolated points, hence according to a familiar theorem of Sierpiriski [81],
homeomorphic to Q in its usual topology. Thus Z and Z x Z admit ¢-many distinct metrizable topological
group topologies (of the form 74), each homeomorphic to Q. However, this observation does not apply
to the Bohr topology, since when |G| = w the space G# has weight equal to c.



When given groups G and H, Kunen [59] writes G ~ H in case there are subgroups G of G, and
H, of H, each of finite index, such that G; and H; are isomorphic. He remarked that if G ~ H then
G# and H# are homeomorphic, and he asked if the converse holds. It is proven in [15] that the spaces
(div(Z))* and ((div(Z)/Z) x Z)# are homeomorphic, simultaneously contributing to Question 7.2 above
and showing that the answer to Kunen’s question is “not always”.

If H has finite index in G, then H# is clopen in G¥, hence it is a retract of G#. This phenomenon
led van Douwen [89] to pose also the following question.

Question 7.3. Is every subgroup H of a group G* a retract of G# ?

Article [15] also contributes towards Question 7.3 by identifying large classes of groups which are
retracts wherever they are embedded. In this approach the following definition is essential.

Definition 7.4. Let H be a closed subgroup of a (not necessarily Abelian) topological group G, and let
7w : G — G/H be the natural map.
(a) A continuous cross section for G /H is a continuous map I' : G/H — G such that woI' =id|q/;
(b) if G/H has a continuous cross section, then H is a ccs-subgroup of G.

It is proved that if H is a ccs-subgroup of a topological group G, then G is homeomorphic to
(G/H) x H and H is a retract of G. Furthermore H¥ is a ccs-subgroup of every enveloping #-group if
and only if H# is a ccs-subgroup of (div(H))*. Since every finitely generated group is a ccs-subgroup of
every enveloping #-group, it is obtained that (div(Z)/Z)* x Z# is homeomorphic to (div(Z))# and Z#*
is a retract of (div(Z))#. A topological group H is an absolute ccs-group(#) if H is a ccs-subgroup in
every group of the form G# containing H as a (necessarily closed) subgroup. Finally, using techniques
and arguments drawn from Kunen [59], an example of a group which is not an absolute ccs-group(#) is
given. Nevertheless, Question 7.3 is still open.

8. CHARACTER GROUPS OF DENSE SUBGROUPS [17]

If Hi is a dense subgroup of a topological group G, then because of the unlform continuity of the
elements of H these can be extended uniquely to elements in G i.€., as groups, H and G are isomorphic.
But as topological groups there is no reason for them to be topologlcally isomorphic. Surely, a compact
subspace of H is still compact in G, but blngletonb in G \ H are, for example, compact subspaces of G
not in H. Hence, the restriction map to H, ry : : G — H is continuous but does not have to be open.
However, when G is metrizable, r|y is indeed open and therefore, a topological isomorphism, as proven
by L. Aussenhofer [2] and M. J. Chasco [7], independently. In her doctoral thesis [70], S. U. Raczkowski
called a dense subgroup H of G' determining if 7y is a topological isomorphism, and G' determined if all
its dense subgroups were determining. Under this nomenclature, all metrizable groups are determined.
In the article [17], and drawing from [70], it is pointed out that if G is a non-compact, metrizable LCAG,
then with the aid of Glicksberg’s Theorem [47], GT is determined, hence yielding many non-metrizable,
non-compact determined groups. In fact, if G is locally bounded (i.e., its Weil completion is locally
compact), then G is determined if and only if GT is determined. On the other hand, if G is a LCAG,
then G non-compact implies that G* does not determine bG. It is also shown in [17] that if G is a
compact group with w(G) > ¢, then G is not determined, and under CH, that a compact group is
determined if and only if it is metrizable. Eventually, S. Macario along with the first and third authors
[52] removed the CH requirement. Further progress on this question has been accomplished by several
authors. D. Dikranjan and D. Shakhmatov proved in [32] that for every infinite compact Abelian group
G we have that w(G) = min {|D] : D is a subgroup of G that determines G}. Finally, M. V. Ferrer, the
first author and V. Uspenskij [40] extended the main result of Wis et al [17] and the first author et al
[52] to not necessarily Abelian compact groups. That is, a compact group G is determined if and only if
it is metrizable.

9. MAXIMUM NUMBER OF TOTALLY BOUNDED GROUP TOPOLOGIES ON ABELIAN GROUPS, WITH AND
WITHOUT CONVERGENT SEQUENCES [1§]

Not long after the invention of the Stone-Cech compactification SX of the Tychonoff space X, it
was noted that S(w) contains no nontrivial convergent sequences. Hence, B. Efimov [35] posed in 1969 a
question which in ZFC remains unsolved today: Does every compact Hausdorff space contain either a copy



of B(w) or a nontrivial convergent sequence? The paper [18] is concerned with topological groups within
this contex: Given a class C of topological groups, does every group in C contain a nontrivial convergent
sequence? (a) Every infinite compact group K contains topologically a copy of the generalized Cantor
space {0, 1}“’(K ), hence having a convergent non-trivial sequence, a result to which Sapirovskii, Gerlits
and Efimov have contributed; (b) Assuming GCH, V. I. Malykhin and L. B. Shapiro [62] have shown
that every totally bounded group G with w(G) < w(G)* contains a nontrivial convergent sequence; (c) S.
U. Raczkowski [69] and [70], and others [4], [95], [96] have shown that for every suitably fast-growing
sequence (x,) in Z there is a totally bounded group topology on Z with respect to which x, — 0. On
the other hand, (d) recall that by Glicksberg’s theorem [47], when a LCAG G is given its associated
Bohr topology, no new compact sets are created; in particular, as shown earlier by H. Leptin [60], the
Bohr topology induced on a discrete Abelian group has no infinite compact subsets, in particular no
nontrivial convergent sequences; (e) there are infinite pseudocompact topological groups containing no
nontrivial convergent sequences [82]; see also [44] and [46] and the literature cited there for results in the
same vein. (e) Perhaps the most celebrated unsolved related question is whether or not there exists in
ZFC a countably compact topological group with no nontrivial convergent sequences. Many examples are
known in augmented axiom systems. For the interested reader, the introduction of [18] gives additional
information on the subject.

It has been known for quite sometime, that every infinite Abelian group contains a subgroup of
infinite countable index. Hence, if compact, it contains a non-Haar-measurable subgroup [54] (16.13
(c)). It has been noticed by K. R. Stromberg [83] that R contains a nonmeasurable subgroup of index c.
The authors of [18] show then that every infinite compactly generated Abelian group K has a family of
2/Kl_many dense, nonmeasurable subgroups of index |K|. From this it follows that every infinite Abelian
group G admits a family of 22|G‘—many totally bounded group topologies 7 with no nontrivial convergent
sequences. By very different methods it is shown that such G has the same number of totally bounded
group topologies 7 in each of which some nontrivial sequence (fixed, and chosen in advance) does converge.
In the obvious sense, these results are clearly optimal. An elementary cardinality argument shows that
the various topological groups (G,7) may be chosen to be pairwise nonhomeomorphic as topological
spaces.

10. MINIMALLY ALMOST PERIODIC GROUPS AND THE SMALL SUBGROUP GENERATING PROPERTY [13]

A topological group G is called minimally almost periodic if the Bohr compactification of G is the
trivial group. For more details see [48], Chapter 2 and [13], Section 2. Wis became very interested in this
class of groups since at least the 1990s (see [21], Section 4). In 2009 Frank Gould [48] finished a Ph.D.
thesis under the supervision of Wis. It concerns certain classes of minimally almost periodic groups.
Gould introduced the following definition which was motivated by the paper [68] of I. Prodanov.

Definition 10.1. ([48], Definition 3.1.1) A topological group G has the small subgroup generating property
or “SSGP” if it is Hausdorff and if every neighbourhood of the identity contains the union | J #H of a family
H of subgroups of G such that | JH generates a dense subgroup of G.

It is easy to see that a topological group with SSGP is minimally almost periodic ([48], Theorem
3.1.2). The joint paper [13] of Wis and F. Gould derives from [48] and extends selected portions of that
paper. In particular, they introduced the classes SSGP(n) for 0 < n < w as follows.

Definition 10.2. ([13], Definition 3.3) Let G = (G, 7) be a Hausdorff topological group. Then
(a) G € SSGP(0) if G is the trivial group,
(b) G € SSGP(n + 1) for n > 0 if for every neighbourhood U of the identity there is a family H of
subgroups of G such that
(1) UH CU,
(2) H := (UH) is normal in G, and
(3) G/H € SSGP(n).

Clearly, the classes SSGP and SSGP(1) are the same. Furthermore, by [13] every group from
SSGP(n) is contained in SSGP(n 4 1) and is minimally almost periodic. Let (G,7) be a Hausdorff
topological group. We say that 7 is a SSGP(n) topology if (G,7) € SSGP(n). The following theorem



shows that there are minimally almost periodic groups which do not belong to any class SSGP(n) for
n > 0.

Theorem 10.3. ([13], Theorem 3.13) A nontrivial Abelian group G which is the direct sum of a finitely
generated group and a finitely cogenerated group does not admit a SSGP(n) topology for any n < w.

In [13] Theorem 3.18 many Abelian groups are presented which admit a SSGP topology. By [13]
Corollary 3.28 an Abelian Hausdorff topological group of bounded order is minimally almost periodic if
and only if it belongs to the class SSGP. It is shown that the class SSGP(n) is stable under products,
direct sums and quotients. The paper [13] contains very interesting results about the aforementioned
classes. It is a pleasure to read the paper!

The study of topological groups belonging to SSGP(n) has been continued by D. Dikranjan and D.
Shakhmatov [33], where considerable progress has been made by answering some of the questions posed
in [13].
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