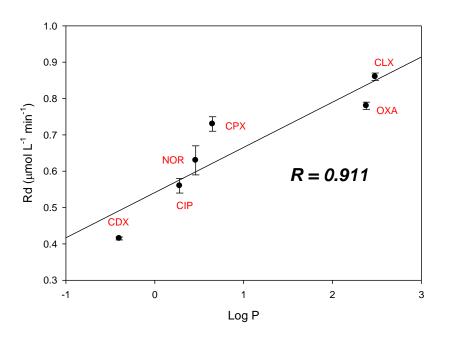

Α



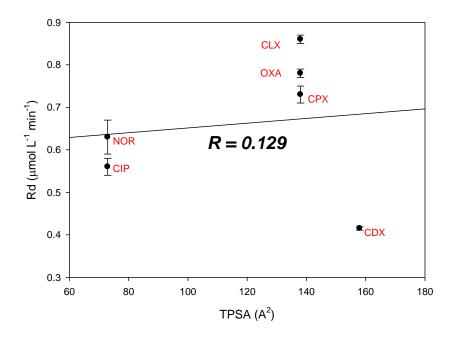
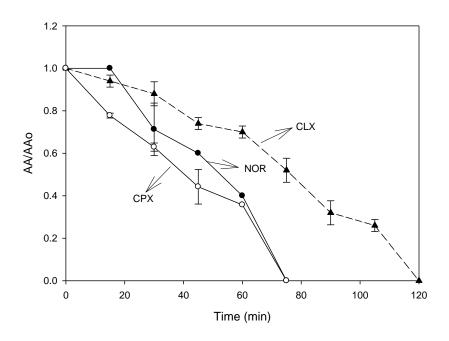
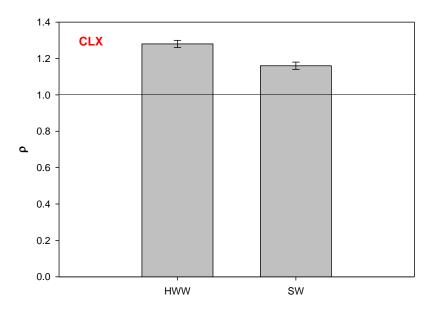


Figure 1. (A). Degradation rates (Rd) for sonochemical treatment of the antibiotics **(B).** Rates of hydrogen peroxide accumulation (Ra) during the degradation process. BK: blank (i.e., distilled water without antibiotics). Conditions: Power density: 88 W L⁻¹, f: 375 kHz, V: 300 mL, [Antibiotics]: 40 μM, pH_{initial}: 6.5.



В



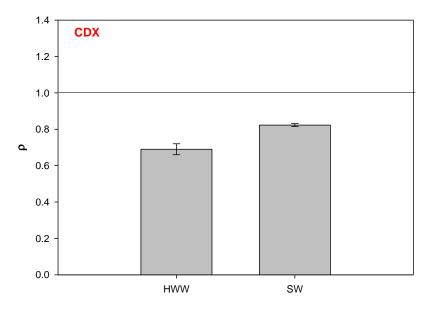

Figure 2. Correlation of physico-chemical properties and degradation rate of the considered antibiotics. (**A**) Rd vs. Solubility in water (Sw). (**B**) Rd vs. Octanol-water partition coefficient (Log P). (**C**) Rd vs. Topological polar surface area (TPSA). The values antibiotics properties were taken from [22].

Figure 3. Antimicrobial activity (AA) evolution during the sonochemical treatment of CLX, NOR and CPX. Indicator microorganism: *S. aureus*. Ultrasonic conditions as indicated in Fig. 1.

В

Figure 4. Treatment of representative antibiotics by ultrasound in distilled water (DW), hospital wastewater (HWW) and seawater (SW). (A) CLX antibiotic. (B) CDX antibiotic. Ultrasonic conditions as indicated in **Fig. 1**.

Table captions

Table 1. Inhibition degree of sonochemical degradation (IDS) by addition of 2-propanol.

Representative			
antibiotics	IDS (%)*		
Norfloxacin (NOR)	100		
Cephalexin (CPX)	80		
Cloxacillin (CLX)	55		
*In presence of IPA (40 mM)			

Table 2. Estimation of antibiotics hydrophobicity using the constitutional approach (Lemke method [26]).

Structure (Hydrophilic moieties are signalized with dashed lines)	Hydrophilic Contribution		Hydropho	bic co	ntribution	
CIP	Fragment	Amount	contribution	Fragment	amount	Contribution
	Amine	3	-3.00	Phenyl	1	+2.00
F OH	Ketone	1	-0.55	Aliphatic carbon	9	+4.50
N N N N N N N N N N N N N N N N N N N	Carboxylic Acid	1	-0.70	Fluor	1	+0.14
	Addition of contributions	-4.25		Addition of contributions	+6.64	
		Total h	ydrophobicity =	+6.64 -4.25 = 2.3	9	
	Amine	3	-3.00	Phenyl	1	+2.00
NOR	Ketone	1	-0.55	Aliphatic carbon	8	+4.00
	Carboxylic Acid	1	-0.70	Fluor	1	+0.14

F OR	Addition of contributions	-4.	25	Addition of contributions	+6	5.14
OH,		Total h	ydrophobicity :	= +6.14 -4.25 = 1.89)	
OXA	Amine	1	-1.00	Phenyl	1	+2.00
NA NA	Ether	1	-1.00	Aliphatic carbon	10	+5.00
H ₃ C NH	Carboxylic Acid	1	-0.70	Thioether	1	+0.00
CH ₃	Amide	2	-1.40			
(HO)	Addition of contributions	-4	.10	Addition of contributions	+7	7.00
Total hydrophobicity = +7.00 -4.10 = -2.90					0	
OL V	Amine	1	-1.00	Phenyl	1	+2.00
CLX	Ether	1	-1.00	Aliphatic Carbon	10	+5.00

CI	Carboxylic Acid	1	-0.70	Thioether	1	+0.00	
	Amide	2	-1.40	Chloro	1	+ 0.50	
H ₃ C NH S CH ₃ CH ₃	Addition of contributions	-4	I. 1.10	Addition of contributions	+	7.50	
HO		Total h	ydrophobicity	= +7.50 -4.10 = 3.40			
CPX	Amine	1	-1.00	Phenyl	1	+2.00	
	Carboxylic Acid	1	-0.70	Aliphatic carbon	7	+3.50	
NH ₂	Amide	2	-1.40	Thioether	1	+0.00	
NH, S							
CH ₃	Addition of contributions	-3	-3.10 Addition of contributions		+	+5.50	
	l l						
HO		Total h	ydrophobicity	= +5.50 -3.10 = 2.40	1		

(NH ₂)	
HO CH ₃	
НО	

Addition of contributions	-4.10		Addition of contributions	+5.50	
Hydroxyl	1	-1.00			
Amide	2	-1.40	Thioether	1	+0.00
Carboxylic Acid	1	-0.70	Aliphatic carbon	7	+3.50

Total hydrophobicity = +5.50 - 4.10 = 1.40

Table 3. Identified primary degradation products from sonochemical treatment of representative antibiotics.

Parent	Tourstonnestion and deat	Oh ami'a al mama	Calculated
antibiotic	Transformation product	Chemical name	ΔLog P*
	DP1	(S)-2-((R)-carboxy(3-(2-chlorophenyl)-5-methylisoxazole-4-carboxamido)methyl)-5,5-dimethyl-4,5-dihydrothiazole-4-carboxylic acid (<i>E</i>)	-3.92
CLX	DP2	(S)-2-((R)-carboxy(3-(2-chlorophenyl)-5-methylisoxazole-4-carboxamido)methyl)-5,5-dimethyl-4,5-dihydrothiazole-4-carboxylic acid (Z)	-3.92
	DP3	3-(2-chlorophenyl)-5- methylisoxazole-4- carboxamide	-0.97
NOR	DP4	1-ethyl-6-fluoro-7-(piperazin-1-yl)quinolin-4(1 <i>H</i>)-one	+0.18
CPX	DP5	2-	-1.47

H0 \ 0	[{[amino(phenyl)acetyl]amino}	
N OH	(carboxy)methyl]-5-methyl-6 <i>H</i> -	
S O HN O	1,3-thiazine-4-carboxylic acid	
H ₂ N		

*ΔLog P = Log P of transformation product – Log P of parent antibiotic. The Log P values

were calculated using the molinspiration online software [31].