
Dynamic Reconfiguration of
Non-iterative Scientific Applications: A
Case Study with HPG-aligner

Journal Title
XX(X):1–11
c©The Author(s) 2016

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

Sergio Iserte1, Héctor Martínez1, Sergio Barrachina1, Maribel Castillo1, Rafael Mayo1 and
Antonio J. Peña2

Abstract
Several studies have proved the benefits of job malleability, i.e., the capacity of an application to adapt its parallelism to
a dynamically changing number of allocated processors. The most remarkable advantages of executing malleable jobs
as part of a high performance computer workload are the throughput increase and the more efficient utilization of the
underlying resources.
Malleability has been mostly applied to iterative applications where all the processes execute the same operations
over different sets of data and with a balanced per process load. Unfortunately, not all scientific applications adhere to
this process-level malleable job structure. There are scientific applications which are either non-iterative or present an
irregular per process load distribution. Unlike many other reconfiguration tools, the Dynamic Management of Resources
Application Programming Interface (DMR API) provides the necessary flexibility to make malleable these out-of-target
applications.
In this paper we study the particular case of using the DMR API to generate a malleable version of HPG-aligner, a
distributed-memory non-iterative genomic sequencer featuring an irregular communication pattern among processes.
Through this first conversion of an out-of-target application to a malleable job, we both illustrate how the DMR API may
be used to convert this type of applications into malleable, and test the benefits of this conversion in production clusters.
Our experimental results reveal an important reduction of the malleable HPG-aligner jobs completion time compared
to the original HPG-aligner version. Furthermore, HPG-aligner malleable workloads achieve a greater throughput than
their fixed counterparts.

Keywords
High-throughput Computing, Dynamic Resource Management, Adaptive Workload, MPI Malleability, Bioinformatics
Productivity

Introduction
The expense in High-performance Computing (HPC)
infrastructures is rapidly growing as more and more users
are requiring its services, and the applications requirements
are becoming more and more demanding. HPC systems are
being used by a large number of users which execute a wide
variety of complex applications. Whereas the users would
like their applications to finish as soon as possible, HPC
system administrators and managers are mostly concerned
about the throughput of their premises, i.e., the number of
jobs that are completed per unit of time.

Generally, a user of an HPC system asks for a given
number of processes to be used for executing his/her
application, and this request is stored in a pending jobs
queue. The order in which the pending jobs will be executed
is determined by a queue manager that will try to maximize
the resources usage while keeping under an acceptable
threshold the waiting time of the retained jobs. In this
scenario, and depending on the users’ requests and the
system resources, both the resource usage and the waiting
time may well be suboptimal.

On the other hand, the number of processes of a
malleable job is dynamically determined by the system,
not by the user, and may be subsequently modified during

its execution Feitelson (1996). Therefore, by including
malleable jobs in an HPC system workload, an adaptive
workload, which can be tailored to the job queue status and
the resource occupation level, is obtained. In this scenario,
a fair balance between global throughput and individual
performance can be more easily attained.

To tailor the resources assigned to an application to
the available resources, dynamic reconfiguration tools are
used. These tools are composed at least of the next two
components: i) a resource management system (RMS); and
ii) a parallel runtime. While the former controls which
resources are available at a given time, the latter performs
the job resizes required to accommodate the malleable job to
the variations on the system load.

Current malleability frameworks are aimed to regular
applications that either have a clearly defined iterative
scheme or do not consider data transfers among processes

1Universitat Jaume I (UJI), Castelló de la Plana, Spain
2Barcelona Supercomputing Center (BSC)

Corresponding author:
Sergio Iserte, Department of Computer Science and Engineering,
Universitat Jaume I, 12071, Castelló de la Plana, Spain.
Email: siserte@uji.es

Prepared using sagej.cls [Version: 2016/06/24 v1.10]

2 Journal Title XX(X)

(resorting to the disk for storing and loading the current
state when a reconfiguration is performed). In fact, all the
malleability efforts made so far have ignored out-of-target
applications, i.e., non-iterative applications or applications
with an irregular communication model (such as the
producer-consumer) that requires data transfer management.

The main goal of this work is to demonstrate that by
leveraging the DMR API Iserte et al. (2017), out-of-target
applications can be considered for malleability. Unlike other
malleability frameworks, the DMR API provides the coding
flexibility and programming easiness that are required to
reconfigure most of the current target and out-of-target
applications.

To illustrate this capability, we have ported the out-
of-target biological application HPG-aligner Medina et al.
(2016). HPG-aligner is an MPI-based fast RNA sequencer
that can be executed on large-scale clusters. HPG-aligner is
used to obtain the RNA of an individual by aligning a large
number of small fragments of his/her RNA to a reference
genome. Our interest in porting this application is to increase
the number of RNA fragments that can be sequenced per
unit-of-time: i.e., to improve the productivity of a system
when being used to map RNA sequences.

Since HPG-aligner is the first non-iterative application
with a producer-consumer data communication model that
has been converted into malleable and introduced in
an adaptive workload, with this study we redefine the
boundaries of malleability. Furthermore, the experimental
results unveil an important reduction in the job completion
time (queue waiting time plus execution time) —by
minimizing the jobs waiting time—, and present a
considerable increase in the throughput when processing
adaptive workloads composed exclusively of HPG-aligner
instances.

Related work
Next we present the most relevant efforts in providing
frameworks to develop malleable applications, and the
applications they have been evaluated on.

ReSHAPE, a framework for dynamic resizing and
scheduling of homogeneous applications in a parallel
environment, was presented in Sudarsan and Ribbens (2007).
It uses performance data collected at runtime to support
reconfiguring actions, and increases the number of processes
of an application when there are available processors in the
system and the iteration time has improved due to a previous
increase or when the number of processes has never been
expanded before. It has been evaluated on:

• Three kernels and one pseudo-application from the
NAS Parallel Benchmarks∗: Integer Sort (IS), Con-
jugate Gradient (CG), Fourier Transform (FT), and
Lower-Upper Gauss-Seidel solver (LU) (see Sudarsan
and Ribbens (2009).)

• LAMMPS†, a molecular dynamics simulator. This
is the most complex HPC application that has
been turned into malleable so far. The malleability
capabilities were added exploiting the LAMMPS
support for file-based checkpoint and restart (C/R)
(see Sudarsan et al. (2009).)

• A synthetic workload (see Sudarsan and Ribbens
(2016).)

Flex-MPI, an MPI extension for supporting dynamic
load balancing on heterogeneous non-dedicated systems, is
described in Martín et al. (2013). It uses a computational
prediction model to evaluate multiple potential reconfigura-
tion scenarios and choose the one which is predicted to best
satisfy a performance objective. It was evaluated on three
iterative single program multiple data (SPMD) applications:
Jacobi, CG, and EpiGraph‡. In Martín et al. (2015), a
more comprehensive evaluation of its performance on these
applications was conducted using a synthetic workload.

The DMR API, dynamic management of resources for
OmpSs jobs using Slurm, was presented in Iserte et al.
(2016). The DMR API reconfiguration policy considers
queued jobs and available resources in order to perform
a purely throughput-aware scheduling. It was evaluated
on the Conjugate Gradient (CG), Jacobi, and the N-body
problem Iserte et al. (2017).

In Comprés et al. (2016) the malleability framework
Elastic MPI was presented. In this work, Slurm § and
MPICH ¶ are extended with new functionalities in order to
deal with jobs reconfiguration. Slurm has been extended to
manage the creation and deletion of MPI processes while
handling the resource allocation; whereas new functions
were added to MPICH. When these functions are used,
the application is initially defined as malleable and its
processes will periodically check whether Slurm has initiated
a reconfiguration. Although this framework is evaluated on
a master-worker application, the application handles the
transfers of its sparse grid via MPI IO, without using
point-to-point communications and only broadcasting a few
variables.

An extension of the Torque/Maui batch system with
efficient adaptive scheduling for malleable and evolving
applications, was introduced in Prabhakaran et al. (2015).
Regarding the reconfiguration criteria, the authors resort to
a dependency-based expand/shrink algorithm that considers
the minimum job requirements and the resources of the
later expanded job. It was evaluated modifying the ESP
benchmark Wong et al. (2000) to contain various percentages
of rigid, malleable, and evolving jobs. For the malleable
part, one synthetic application was replaced by LeanMD‖,
a molecular dynamics mini-application which implements a
simplified version of the force calculations of NAMD∗∗.

In conclusion, it should be emphasized that none of the
aforementioned frameworks, although providing different
reconfiguration approaches, have ever been applied over non-
iterative applications with irregular communications patterns
with complex data structures.

This paper presents the first irregular malleable HPC
application with a producer-consumer architecture that

∗http://www.nas.nasa.gov/Software/NPB
†http://lammps.sandia.gov
‡http://epigraph.mpi-inf.mpg.de/WebGRAPH
§http://slurm.schedmd.com
¶http://www.mpich.org
‖http://charm.cs.illinois.edu/research/leanmd
∗∗http://www.ks.uiuc.edu/Research/namd

Prepared using sagej.cls

http://www.nas.nasa.gov/Software/NPB
http://lammps.sandia.gov
http://epigraph.mpi-inf.mpg.de/WebGRAPH
http://slurm.schedmd.com
http://www.mpich.org
http://charm.cs.illinois.edu/research/leanmd
http://www.ks.uiuc.edu/Research/namd

Iserte, Martínez, Barrachina, Castillo, Mayo and Peña 3

check_status

action

Runtime RMS

Reconfiguration
policy

Job scheduling

Resource
management

App

Figure 1. Communication scheme of the DMR API
reconfiguration.

require data redistribution among processes. With this study,
we prove that the DMR API can be leveraged to a
wider range of applications, easing the path towards the
deployment of full adaptive workloads in HPC facilities.

Background
In this section we present the DMR API malleability
framework and the scientific application targeted in this
work.

Overview of the DMR API
A dynamic reconfiguration system relies on two main
components: an RMS and a parallel runtime. In particular,
the DMR API, depends on the OmpSs†† runtime (called
Nanos++) and Slurm Yoo et al. (2003) workload manager.
As shown in Figure 1, the parallel runtime supports the
execution of the application and allows it to inform the RMS
that it can be resized by issuing a check status request. On
the other hand, the RMS is aware of the resource utilization
and the queue of pending jobs. When the RMS receives
a check status request, it inspects the global status of the
system, decides whether any rescaling action should be done,
and informs of this decision to the parallel runtime. If a
rescale action is due, the RMS, the parallel runtime, and
the application will collaborate to continue the application
execution with a different number of processes.

A general schema of a malleable job using the DMR API
is depicted in Listing 1. Once the data has been initialized
(line 2), the main loop is entered (line 7). At the beginning of
each main loop iteration, the application calls the DMR API
dmr_check_status() function (line 8) to inform the resource
manager that a resizing can be performed. If no action is
returned, the execution will continue normally (line 13).
Else, if the RMS responds with a resizing action, either
expand or shrink, a handler of a new communicator and
the number of processes created in that communicator
(handlerNProcs) will be returned. Using this information,
the application will set the data dependencies and the
communication pattern in order to redistribute the data
among the new processes (line 10).

Overview of HPG-aligner
HPG-aligner is a bioinformatics application for fast and
accurate mapping of RNA sequences on a cluster of
computers Martínez et al. (2013). It employs several MPI
processes, which exploit node level parallelism through
POSIX threads. One of these MPI multi threaded processes
is configured as a writer, and the others as workers (see

1 void main(void) {

2 init(data);

3 compute(data, 0);

4 }

5

6 void compute(data, step) {

7 for (t = step; t < TIMESTEPS; t++) {

8 action = dmr_check_status(&handlerNProcs,

↪→ &handler);

9 if (action) {

10 #pragma omp task inout(data) onto(handler

↪→ , myRank)

11 compute(data, t);

12 } else {

13 /* Computation */

14 }

15 }

16 }

Listing 1: General schema of a malleable application
using the DMR API.

reads

output

Worker
#0

Writer

Worker
#1

Worker
#2

Worker
#3

Figure 2. HPG-aligner original version workflow.

Figure 2). Each worker operates over a particular part
of the input file, composed by short RNA fragments
(reads) produced by a Next Generation Sequencing (NGS)
sequencer. At the beginning of the execution, each worker
calculates the indexes of its part of the input file. Then, each
worker performs its computation over its self-assigned reads,
and sends the alignments it obtains to the writer. Meanwhile,
the writer saves the reported alignments to disk.

HPG-aligner malleable version
In this section we describe how the DMR API has
been employed to convert HPG-aligner into a malleable
application.

Adapting the HPG-aligner workflow
The original implementation of HPG-aligner performs a
static distribution among all the processes of the whole
dataset (i.e., all the RNA reads obtained from an NGS
sequencer). This strategy is not desirable for a malleable
application, since it would complicate both the redistribution
of the yet-to-be-done work among the new processes, and

††http://pm.bsc.es/ompss

Prepared using sagej.cls

http://pm.bsc.es/ompss

4 Journal Title XX(X)

reads

output

Worker
#0

Writer

Worker
#1

Worker
#2

Worker
#3

Manager

Malleability point

W
hi

le
 th

er
e

 a
re

 c
hu

nk
s

to
 p

ro
ce

ss

n
ch

un
ks

Figure 3. HPG-aligner malleable version workflow.

the determination of the synchronization point that all the
processes must reach to evaluate whether a reconfiguration
should be performed. Thus, we have redesigned the HPG-
aligner workflow in order to split the input workload into a
user-defined number of chunks, which will be dynamically
assigned to the worker processes.

To allow HPG-aligner to dynamically distribute the
dataset, a new process is created, the manager, which is in
charge of the distribution of the input dataset chunks among
the worker processes. In this new workflow, in Figure 3,
when a worker has finished its previously assigned work,
it asks the manager for more work. Then, the manager
computes the index of the next dataset chunk to be processed,
and assigns it to that worker.

Moreover, the HPG-aligner workflow has been also
modified in order to allow the processes to periodically
reach a malleability point, i.e., a synchronization point
where the RMS can be asked if a reconfiguration should
take place. This may be attained by instructing all the
HPG-aligner processes to reach the malleability point
after a given number, n, of chunks have been processed.
Figure 3 illustrates this iterative schema: all the HPG-
aligner processes cooperate to compute n chunks of reads,
and then all of them reach the malleability point, where
a reconfiguration could be triggered. These two steps,
processing and reaching the malleability point, are repeated
until all the chunks have been processed.

To implement this iterative schema and synchronize all
the processes at a malleability point, the next strategy
and communication schema have been employed. After
dispatching n chunks, the manager stops distributing work.
Instead, whenever a worker asks for more work, the manager
signals to proceed to the malleability point. The worker, for
its part, after receiving this signal, propagates it to the writer.
This communication schema, see Figure 4, ensures that all
processes will eventually reach the malleability point after n
chunks are processed.

The algorithms used to implement the described strategy
and communication schema are depicted next using an MPI
pseudo-code. In this pseudo-code, the first argument of the
MPI send calls is the data to be transferred, and the second,
its destination. Likewise, the first argument of the MPI

Worker
#0

Worker
#1

Manager Writer

ready

index/sync data/sync

data/sync

ready

index/sync

Figure 4. Communication schema of the processes in the
HPG-aligner malleable version.

receive calls is a buffer for the data to be received, and
the second argument, the senders from whom that data is
received.

Algorithm 1 shows the pseudo-code corresponding to a
manager iteration. While there are chunks to be processed
(line 1), the manager waits for a work petition from any
worker (line 2), and in answer to each of these, it provides
the index of the next chunk to be processed (line 3). When
all the chunks of the current iteration have been assigned, a
special signal (a−1) is sent to all the workers (lines 4 to 6) in
order to synchronize them at the malleability point (line 7).

Algorithm 1 Pseudo-code of a manager iteration

1: while chunks do
2: MPI_Recv(&worker_id, MPI_ANY_SOURCE)
3: MPI_Send(index, worker_id)
4: for each worker do
5: MPI_Irecv(&worker_id, worker)
6: MPI_Isend(-1, worker)
7: /* Malleability point */

Algorithm 2 describes the pseudo-code of a worker
iteration. First, the worker informs the manager that it is
ready to process more work (line 2). Then, it waits until the
manager sends back the index of the next chunk of reads
assigned to it (line 3). If a −1 index is received (lines 4
to 6), it will propagate this signal to the writer and proceed
to the malleability point (line 9). Otherwise, it will process
the assigned chunk and send its results to the writer.

Algorithm 2 Pseudo-code of a worker iteration

1: while 1 do
2: MPI_Send(worker, manager)
3: MPI_Recv(&index, manager)
4: if index == -1 then
5: MPI_Send(-1, writer)
6: break
7: compute(index, &data)
8: MPI_Send(data, writer)
9: /* Malleability point */

Finally, Algorithm 3 describes the pseudo-code of the
writer iteration. The writer listens for data from any worker
(line 2). If a −1 is received, a counter is increased, and when
the value of this counter reaches the number of workers,
it will proceed to the malleability point (lines 3 to 6).
Otherwise, if an actual result is received, it will write it to
disk (line 8).

Prepared using sagej.cls

Iserte, Martínez, Barrachina, Castillo, Mayo and Peña 5

Algorithm 3 Pseudo-code of the writer iteration

1: while 1 do
2: MPI_Recv(&data, MPI_ANY_SOURCE)
3: if data == −1 then
4: cnt = cnt+ 1
5: if cnt == n_workers then
6: break
7: else
8: write_to_disk(data)
9: /* Malleability point */

HPG-aligner data redistribution patterns
On the previous section, a malleable workflow was proposed
for HPG-aligner so that it could periodically reach a
malleability point to ask the RMS whether it should be
reconfigured or not before continuing processing the input
data. In this section, we will discuss how the data of the
HPG-aligner processes could be redistributed in the event of
a reconfiguration.

HPG-aligner reconfigurations consider two data structures
in their data redistributions. To begin with, all the HPG-
aligner processes share some identical information (common
data). Furthermore, HPG-aligner workers, during their
execution, keep the mapping information to the reference
genome (worker data). This data structure is used by the
HPG-aligner workers to improve their performance and their
mapping quality. It is worth notice that although the workers
do not require their particular worker data to be initially
populated, HPG-aligner uses the aggregated data from all the
workers in a later stage in order to be able to correctly align
those reads that could not be previously aligned.

Common data and worker data, hereafter referred as
cData and wData respectively) must be distributed from
the current processes to the new processes. For this reason,
we have defined two different patterns depending on the
reconfiguration type. If the reconfiguration is an expansion,
i.e., the application will be executed on more processes after
the reconfiguration, the next strategy is followed:

• Each initial wi worker sends both its cData and wData
to the new w′i worker.

• The initial manager sends its cData to half of the
remaining new processes (which will become new
workers).

• The initial writer sends its cData to the rest of the
remaining new processes (two of which will become
the new manager and the new writer).

Figure 5 illustrates this redistribution pattern when
expanding from 4 to 6 processes. The initial workers send
its cData and wData to their peer MPI ranks in the new
communicator (wide arrows in the figure). At the same
time, the initial manager and writer send their cData to the
remaining newly spawned processes (narrow arrows in the
figure).

Each initial worker preserves its wData by sending it
to another worker in the new communicator. Since, after
a reconfiguration, the number of workers changes, not all
the new workers will receive wData. We proceed in this

Worker
#0

Worker
#1

Manager Writer

Worker
#0

Worker
#1

Manager WriterWorker
#2

Worker
#3

Figure 5. Data redistribution when expanding from 4 to 6
processes.

Iteration 1
Iteration 2
Iteration 3
Iteration 4

W1 W9W8W7W5W3W2 W4 W6W0

Nodes

Figure 6. HPG-aligner parallel merge of the worker data
structures.

manner as we have experimentally determined that there
was no appreciable differences in HPG-aligner performance
or accuracy if some new workers did not have previous
wData. In fact, distributing the same wData to more than
one new process incurred a performance penalty because of
the communication overhead.

When the action is a shrinking, the application will be
executed on fewer processes after the reconfiguration. In this
case, the already populated wData of those workers that
will be removed should be preserved (as this information
is paramount to a later stage of HPG-aligner). HPG-aligner
implements an efficient parallel merge Medina et al. (2016),
which uses a minimum spanning tree pattern to merge all the
wData into the first worker (see Figure 6). Therefore, over
the different options that could be employed to preserve and
distribute this information, we have chosen to first call HPG-
aligner parallel merge, and then follow the next strategy:

• The first worker, w0, will send its cData and wData to
the new first worker, w′0. (The aggregated wData will
be preserved on this worker.)

• The remaining workers will send their cData to
the remaining new processes (the last two of them
becoming the new manager and the new writer).

Figure 7 illustrates the redistribution pattern when
shrinking from 6 to 4 processes. The first worker sends its
cData and wData to the MPI rank 0 in the new communicator
(wide arrow in the figure), and the remaining processes send
their cData to their peer MPI ranks (narrow arrows in the
figure).

HPG-aligner malleable version outline using the
DMR API
Once the HPG-aligner modified workflow has been
presented and the data redistribution patterns have been
defined, we outline the HPG-aligner malleable main loop,
which proceeds as follows (see Listing 2). When a process
finishes its part of processing the first n chunks (line 5),
it will reach the malleability point and call the DMR API

Prepared using sagej.cls

6 Journal Title XX(X)

Worker
#0

Worker
#1

Manager Writer

Worker
#0

Worker
#1

Manager WriterWorker
#2

Worker
#3

Figure 7. Data redistribution when shrinking from 6 to 4
processes.

dmr_check_status() function. If no resize action is planned,
the current processes will proceed with the next n chunks.
Else, if an expanding or shrinking action is scheduled,
the corresponding data redistribution pattern, described in
the previous section, is applied. Since the actual data
redistribution is performed by the DMR API runtime, all that
is required is to indicate in the source code which data has to
be be distributed and to whom using the DMR API OmpSs-
like #pragma directive. After the data redistribution, the new
processes will proceed with the next n chunks.

Notice that the dmr_check_status() function allows
defining some malleability conditions that the RMS will
consider. These are: i) the minimum number of processes
(MIN), ii) the maximum number of processes (MAX), and
iii) the preferred number of processes (PREF) that should
be assigned to this application. If a resize is due, the
function will return: the action, the new number of processes
(in handlerNProcs) and the new MPI communicator (in
handler).

The #pragma omp task directives, as previously stated,
are used to indicate which data has to be redistributed and
to whom. For example, the directive:
#pragma omp task in(cData) onto(handler, myRank)

indicates that the cData data structure has to be conveyed
from the current process to the new myRank MPI process in
the handler communicator.

Validation of the proposed HPG-aligner
malleable version
To compare the original and the malleable versions of HPG-
aligner outputs, we have executed both versions 10 times
with the next parameters and collected their execution times
and results.

The input to both versions consisted of a dataset with
20 million RNA reads of 100 nucleotides (generated with
BEERS Grant et al. (2011)), and the reference genome
GRCh37.p73 human genome‡‡.

For the malleable version, we configured the number of
chunks to be equal to the number of initial workers in order
to mimic a static dataset distribution and to prevent any
reconfiguration.

The execution times were virtually the same for both
versions, with close-to-negligible time differences of 0.28%,
which were due to the malleability code overhead.

Since the HPG-aligner output depends on the order in
which the reads are processed Martinez et al. (2015), it is
not possible to obtain the same results on different parallel
executions. However, we can consider that the obtained

results are comparable if they present a similar accuracy.
Moreover, the accuracy deviation of the results obtained by
the malleable version with respect to the ones of the original
version was a negligible ±0.2%, we can conclude that both
outputs are comparable.

Experimental results
In this section we describe the setup for the experiments, the
results obtained with a current production-size dataset, and,
the results achieved when a larger dataset is employed.

Experimental setup
The experiments were performed using the Marenostrum IV
supercomputer at the Barcelona Supercomputing Center
(BSC). Each cluster node integrates 2 Intel Xeon Plat-
inum 8160 sockets (24 cores at 2.10GHz each) for a total of
48 cores with 96GiB of RAM. The nodes are interconnected
through a 100Gb/s Intel Omni-Path network.

Of the 50 nodes of a standard queue in Marenostrum IV,
1 node was used to run the Slurm manager daemon and the
other 49 nodes were used to run the jobs.

The following software versions were used: MPICH 3.2,
OmpSs 15.06, and Slurm 15.08.

Workloads setup We have generated fixed and malleable
workloads of 100, 250, 500, 1,000, and 2,000 jobs, where
all the jobs in a fixed workload are not malleable; and all the
jobs in a malleable workload are malleable.

The workloads were generated using the statistical model
proposed in Feitelson (1996). This model characterizes fixed
jobs based on observations from 6 logs of actual cluster
workloads. It includes the distribution of job sizes in terms
of number of processors, the correlation of runtime with
parallelism, and repeated runs of the same job. For our
experiments, we have customized the following parameters
of this model: i) the number of jobs to be launched; and ii) the
jobs inter-arrival time, modeled using a Poisson distribution
with factor 10, in order to prevent receiving bursts of jobs
while preserving a realistic job arrival pattern.

Jobs setup Each job in a workload will execute an instance
of HPG-aligner with a simulated dataset of RNA reads, and
the human genome, used in the previous section, as the
reference genome.

As for the malleable jobs, the number of chunks have been
set to be 4 times the maximum number of workers. Also, the
number of chunks to be processed in each iteration has been
selected to be variable and equal to the number of workers
available at that moment.

Experiments with a production-size dataset
The input dataset used in these experiments is a production-
size one consisting of 40 million RNA reads of 100
nucleotides, 8 GiB in total. It was generated using
BEERS Grant et al. (2011).

Since the malleable version of HPG-aligner has to inform
the RMS of its minimum, maximum, and preferred number
of processes, we have first experimentally determined these

‡‡http://www.ensembl.org/index.html

Prepared using sagej.cls

http://www.ensembl.org/index.html

Iserte, Martínez, Barrachina, Castillo, Mayo and Peña 7

1 void hpga_malleable(void *cData, void *wData, int chunkIndex) {

2 for (ind = chunkIndex; ind < TOTAL_CHUNKS; ind += N) {

3

4 /* Computation */

5 do_my_part();

6

7 /* Malleability point */

8 action = dmr_check_status(MIN, MAX, PREF, &handlerNProcs, &handler);

9 if (action == EXPAND) {

10 if (am_i_a_worker()) {

11 #pragma omp task in(cData) in(wData) onto(handler, myRank)

12 hpga_malleable(cData, wData, ind);

13 } else { //Manager or Writer process

14 for (dst = firstDst(); dst < getDsts(); dst++) {

15 #pragma omp task in(cData) onto(handler, dst)

16 hpga_malleable(cData, NULL, ind);

17 }

18 }

19 } else if (action == SHRINK) {

20 merge_in_rank0(wData);

21 if (myRank == 0) {

22 #pragma omp task in(cData) in(wData) onto(handler, myRank)

23 hpga_malleable(cData, wData, ind);

24 } else if (myRank < handlerNProcs) {

25 #pragma omp task in(cData) onto(handler, myRank)

26 hpga_malleable(cData, NULL, ind);

27 }

28 }

29 }

30 }

Listing 2: HPG-aligner malleable version outline using the DMR API.

for the already described experimental setup. For this
purpose, we have launched the HPG-aligner malleable
version with different numbers of processes and obtained
their execution times, which are shown on Table 1. In
order to evaluate the fitness of each configuration, we use
a heuristic metric, referred as gain slope, which, unless there
is a relevant gain between one configuration and the next
one, decreases rapidly as the number of required nodes is
increased. The gain slope, which is reported in the fourth
column of Table 1, is computed as:

ti−1 − ti
t0

,

where ti is the execution time of row i of the table. Using
this metric, the minimum, preferred and maximum number
of processes are determined as follows:

• The minimum number of processes is selected as the
first number of processes for which the gain slope is
greater than 75%. In this configuration, since there
is no such case, the strictly minimum number of
processes has been chosen: 3 processes (a manager,
a worker, and a writer).

• The preferred number of processes, i.e., the number
of processes for which a fair trade-off between
performance and the resources allocated is attained,
is selected as the last number of processes for which

Table 1. Execution time and gain difference of the HPG-aligner
malleable version when executed with an input dataset of 40
million reads of 100 nucleotides for different numbers of MPI
multithreaded processes.

Processes # Cores Execution Time Gain

3 144 238 s —
6 288 68 s 71.43%

12 576 40 s 11.76%
24 1152 44 s -1.68%
48 2304 60 s -6.72%

the gain slope is greater than 25%. In this case:
6 processes.

• Finally, the maximum number of processes is selected
as the last number of processes where the gain slope is
positive. In this case: 12 processes.

Regarding the job submission, jobs of the fixed workload
have been submitted according to the next two premises:
users want to have their results as fast as possible, and
they can not know in advance how the cluster workload
will evolve. Therefore, the fixed jobs have been submitted
with 12 MPI multithreaded processes each, because with
this configuration they should finish faster than if submitted
with any other number of processes (as shown in Table 1).
It should be noted that although on this experimental setup

Prepared using sagej.cls

8 Journal Title XX(X)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

100 250 500 1000 2000

A
v

er
a

g
e

re
so

u
rc

e
u

ti
li

za
ti

o
n

Jobs in the workload

Fixed Malleable

Figure 8. Average resource utilization on different fixed and
malleable workloads with an increasing number of jobs.

using 6 processes will lead to better completion times
(similar to the achieved by their malleable counterparts), in
a production environment, where the other running jobs will
exhibit completely different characteristics, this could be not
the case.

Jobs of the malleable workload have been submitted
using a Slurm range submission of 3–12 MPI multithreaded
processes, and a preferred number of processes of 6. This
way, the resource manager will decide the number of nodes
that will be initially assigned to the job, favoring the upper
limit whenever possible. In practice, when a malleable
job is being processed, although it could be started with
12 processes, it will usually be shrunk to 6 processes (the
preferred number of processes) as long as there are other jobs
waiting in the queue.

These differences on how the resources are (dynamically)
allocated pose an impact on the cluster average resource
utilization, as can be seen in Figure 8, where the malleable
workloads present a lower average resource utilization than
that of their fixed counterparts. As stated previously, the jobs
of a workload are submitted at different times to the queue,
simulating a real scenario. Besides, nothing prevents the
malleable workload to make use of all the resources available
at a given moment. Therefore, the lower average resource
utilization on the malleable workloads indicates that these
workloads achieve a better job completion throughput than
their fixed counterparts.

If the job execution time is to be compared, since the jobs
on the malleable workloads can be executed with 6 or even
3 processes, the average execution time of these should be
lower than that of their fixed counterparts. This can be seen
in Figure 9, where the slowdown in the average execution
time of the malleable jobs reaches 60%.

But, when a job is submitted to a cluster, not only its
execution time is taken into account; the time elapsed from
the submission to the execution (waiting time) has to be
also considered. Jobs are expected to be initiated earlier on
a malleable workload because currently running jobs may
release part of their resources in favor of the pending jobs.
As expected, Figure 10 shows that the average waiting time
in a malleable workload can be up to 77% lower than that in
a fixed workload.

Considering everything, the balance is positive for the
malleability workloads, since the average job completion
time (i.e. the average job waiting plus execution time) can

0.00x

0.20x

0.40x

0.60x

0.80x

1.00x

0

20

40

60

80

100 250 500 1000 2000

S
p

ee
d

u
p

A
v

er
a

g
e

ex
ec

u
ti

o
n

 t
im

e
p

er
 j

o
b

 (
s)

Jobs in the workload

Fixed Malleable Job execution time speedup

Figure 9. Average job execution time on different fixed and
malleable workloads with an increasing number of jobs.

0x

20x

40x

60x

80x

0

500

1000

1500

2000

100 250 500 1000 2000

S
p

ee
d

u
p

A
v

er
a

g
e

w
a

it
in

g
 t

im
e

p
er

 j
o

b
 (

s)

Jobs in the workload

Fixed Malleable Job waiting time speedup

Figure 10. Average job waiting time on different fixed and
malleable workloads with an increasing number of jobs.

0x

5x

10x

15x

20x

25x

0

500

1000

1500

2000

100 250 500 1000 2000

S
p

ee
d

u
p

A
v

er
a

g
e

co
m

p
le

ti
o

n
 t

im
e

p
er

 j
o

b
 (

s)

Jobs in the workload

Fixed Malleable Job completion time speedup

Figure 11. Average job completion time (waiting plus execution
time) on different fixed and malleable workloads with an
increasing number of jobs.

be up to 20 times faster than that for its equivalent fixed
workload, as can be seen in Figure 11.

Figure 12 shows the completion time (the elapsed time
between the first job was submitted and the last job is ended)
of the different fixed and malleable workloads. Although
execution time is increased, the workload completion time
is mainly affected by the jobs waiting time (as it is
shown in Figure 11. The workload completion time of
the malleable version is up to 16% faster than their fixed
counterparts. This result is especially significant from a
cluster administrator/manager point of view, as it shows how
the throughput of the system is increased when malleable
workloads are used.

Prepared using sagej.cls

Iserte, Martínez, Barrachina, Castillo, Mayo and Peña 9

1.00x

1.05x

1.10x

1.15x

1.20x

1.25x

0

5000

10000

15000

20000

25000

100 250 500 1000 2000

S
p

ee
d

u
p

W
o

rk
lo

a
d

 c
o

m
p

le
ti

o
n

 t
im

e
(s

)

Jobs in the workload

Fixed Malleable Workload completion speedup

Figure 12. Completion time of different fixed and malleable
workloads with an increasing number of jobs.

0

10

20

30

40

A
llo

ca
te

d
no

de
s

0

200

400

600

800

1000

0 3000 6000 9000 12000
Execution time (s)

C
om

pl
et

ed
 jo

bs Fixed
Malleable

Figure 13. Time evolution of the allocated nodes (top chart),
the concurrent jobs being executed (blue and red lines on top
chart), and the completed jobs (bottom chart) on the 1,000 jobs
fixed and malleable workloads.

Figure 13 details the time evolution of: i) the allocated
nodes (top chart), ii) the concurrent jobs being executed
(red and blue lines on top chart), and iii) the completed
jobs (bottom chart) of the 1,000-job fixed and malleable
workloads.

The flat shape in the top chart of Figure 13 depicts how the
nodes have been allocated during the execution of the fixed
workload. It reveals that almost all the resources are allocated
all the time. Conversely, the malleable workload presents a
saw-tooth pattern that finishes earlier: more resources are
generally available, which allows a greater flexibility on the
scheduling of new jobs.

The red and blue lines on the top chart of Figure 13
represent the concurrent running jobs on the fixed and
malleable workloads, respectively. On the one hand, it can
be seen, as was expected, that for the current experimental
setup, the fixed workload is almost always running 4 12-
node jobs at the same time. On the other hand, the malleable
workload presents a greater variability, where the most seen
configuration is 8 3-node jobs.

Finally, the bottom chart of Figure 13 represents the
time evolution of the completed jobs on the fixed and
malleable workloads. The evolution of both are overlapped
until second 1,000, where more jobs per second begin to
be completed on the malleable version. This behavior is
consistent with the observed differences on the average job
completion time of both workloads types with different
number of jobs (see Figure 11 again): the differences were

●●●●●●●●●●●●●●●

●
●●●●●●
●●
●●●●●●●

●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●

●

●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●
●

●●●
●●●●●●●●●●

●

●
●●
●●
●●●●●●●●●●●●

●

●●●●●●●
●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●

●
●●●●●●
●●●●●●●●
●●●●●●●●●●●●●

●
●●●●●●●●●●●●
●●●●●

●

●●●●●●
●●●●●●●
●●●●●●●●●●
●●●●●
●●●●●
●

●●●●●●●●
●●●●
●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●
●●●●
●
●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●
●●●●●●
●

●●●●●
●●●●●●●●●
●
●●●●●
●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●
●●●●●●●●●
●●●●
●●●●●
●●●●●●●●●●●●●●

●●●●

●
●●●●●●●●●
●●●●●●●●
●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●

●
●●●●●●●
●●
●●●
●●●●
●●●●●●●●
●●●
●●●
●●●●●●●●
●●●●●●●●●
●●
●
●●●●●●●
●●●●●●●●●●●●●

●
●●●●●●
●●●●●
●●●●●
●●●●●●●●
●●●●●
●●●●●●●●
●●●●●

●

●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●

●
●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●
●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●

●

●●●●
●●●●●●●
●●

●

●●●
●
●●●●●●●
●●●●●●●●●●
●●●●●●
●●●●●●●
●●●●
●●●●●
●●●
●●●
●
●●●●●●●●●●●●●●●●●●●●

●
●●●●●
●
●

●●●
●●

●●●●●●●●●
●●

●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●●●

●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●
●●●

●●
●
●●

●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0
50

0
10

00
15

00
20

00

0 250 500 750 1000
Job Id.

C
om

pl
et

io
n

tim
e

(s
)

● ●Fixed Malleable

Figure 14. Completion time of each job of the 1,000 jobs on
the fixed and malleable workloads. The greater the job id, the
later the job was queued.

Table 2. Average job reconfiguration time of the 1,000-job
workload.

Stage Average Time

Scheduling 0.015 s
Resize 4.372 s

Total 4.387 s

minimum for the 100 job workloads and became greater
and greater as the number of jobs in the workloads were
increased. Furthermore, due to its higher throughput, the
malleable workload ends before the fixed workload.

The results presented so far can be summarized in a
remarkable improvement of the individual job completion
time when a malleable workload is processed. Figure 14
illustrates this fact, showing how all the malleable jobs are
completed in almost a constant time, while the completion
time of the fixed jobs becomes more variable: the later they
are queued, the larger completion time they experience.

As for the reconfiguration time cost, it is due to the
execution of the next two stages: scheduling and resizing.
The scheduling time depends on the number of jobs in
the queue, and should be negligible when compared to the
resizing stage or the tasks being executed. The resizing
time is the sum of the times of the next operations:
spawn of processes, data redistribution, and termination
of processes. Of these operations, the most costly one is
data redistribution, which is determined by the amount of
data to be transferred and the bandwidth of the underlying
network. While data redistribution is usually in the order of
seconds, the other two operations usually are in the order
of milliseconds. Table 2 displays the average reconfiguration
time in the 1,000-job workload. For this purpose, we
have calculated the average time of each stage during the
execution of the 1,000-job malleable workload. The results
confirm that the reconfiguration time is mainly dominated by
the resize stage, being the scheduling stage almost negligible.

Experiments with a larger dataset
The input dataset used in these experiments is larger than
the currently usual production sizes. We have considered
this larger size as it could become the usual production

Prepared using sagej.cls

10 Journal Title XX(X)

Table 3. Execution time and gain difference of HPG-aligner
malleable version when executed with an input dataset of 80
million reads of 400 nucleotides for different numbers of MPI
multithreaded processes.

Processes # Cores Execution Time Gain

3 144 1382 s —
6 288 345 s 75.04%

12 576 155 s 13.75%
24 1152 152 s 0.22%
48 2304 171 s -1.37%

0 4000 8000 12000 16000

Fixed

Malleable

Fixed

Malleable

Fixed

Malleable

1
0
0

2
5
0

5
0
0

Time (s)

W
o

rk
o

ad

Avg. job waiting time Avg. job execution time

Figure 15. Average job completion time (waiting plus execution
time) on different fixed and malleable workloads with an
increasing number of jobs.

size in a few years. It consists of 80 million RNA reads of
400 nucleotides, 61 GiB in total (the production-size dataset
described in the previous section was 8 GiB). This dataset
was generated using BEERS Grant et al. (2011).

Again, since the malleable version of HPG-aligner has to
inform the RMS of its minimum, maximum, and preferred
number of jobs, we have first experimentally determined
these for this particular experimental setup. In order to do
this, we have launched the HPG-aligner malleable version
with different number of processes and obtained their
execution times, which are shown on Table 3, alongside
with their gain slope. Using the gain slope metric, the
minimum, preferred, and maximum number of processes are
determined as detailed on the previous section, as:

• Minimum number of processes: 6.

• Preferred number of processes: 6.

• Maximum number of processes: 24.

Our experiments reveal again that the malleable workloads
outperform their fixed counterparts. Figure 15 shows the
average job completion time as the sum of the average
waiting and execution times on different fixed and malleable
workloads. The waiting time (blue part of the bars) is the
predominant addend in all the cases, while the execution
time (orange part of the bars) is far smaller in the malleable
cases and almost imperceptible in the fixed workloads. In this
figure it can also be seen that the average job completion time
for the malleable workloads is around half of that of their
fixed counterparts. In the interest of clarity, we have only
shown the workloads up to 500 jobs, which let us appreciate
the difference between both averaged times.

0

0.5

1

1.5

2

2.5

1 0 0 2 5 0 5 0 0 1 0 0 0 2 0 0 0

S
p

ee
d

u
p

Jobs in the workload

Waiting Execution Completion

Figure 16. Speedups of the job completion time, of the job
execution time, and of the job waiting time on malleable
workloads with an increasing number of jobs over their fixed
counterparts.

The speedups of the job completion time, of the job
execution time, and of the job waiting time on malleable
workloads with an increasing number of jobs over their fixed
counterparts are shown in Figure 16. The speedups of the
job execution time are under 1, which indicates that jobs in
the malleable workloads are running slower than jobs in the
fixed cases. As already discussed, this is due to the malleable
jobs being usually shrunk in order to accommodate more
running jobs. Nevertheless, the job waiting time speedup
widely compensates the slower execution time, leading to a
job completion time speedup around 2 in all the workloads.

Conclusions
Adapting a regular application to accommodate malleability
can be a hard task, since the applications are usually
developed without ever considering the possibility of being
asked to reconfigurate its processes. Nevertheless, in this
work we have shown that the DMR API can be used
to ease this task, and we expect to have started to pave
the road towards the dynamic job reconfiguration and the
standardization of adaptive workloads through the inclusion
of malleable jobs on them.

In particular, we have presented a malleable version
of HPG-aligner using the DMR API. This is the first
case, to our knowledge, where a non-iterative producer-
consumer application with irregular communication patterns
of complex data structures has been turned into malleable.
This work, together with the different malleable applications
presented in Iserte et al. (2017), proves that the DMR API
can handle a wide variety of applications, including those
with an irregular design.

As for the experimental results, we have shown that
by adding malleability to HPG-aligner, the throughput of
malleable workloads can be doubled. At the same time, as
the waiting time is greatly reduced, the jobs in a malleable
workload are completed faster and in an almost constant
time. These results confirm how useful the adoption of this
strategy may be in a production system.

Acknowledgements

The authors would like to thank the anonymous reviewers for their
valuable, insightful comments that improve the quality of this paper.

Prepared using sagej.cls

Iserte, Martínez, Barrachina, Castillo, Mayo and Peña 11

This work was supported by the Project TIN2014-53495-R and
TIN2015-65316-P from MINECO and FEDER. Antonio J. Peña
was cofinanced by MINECO under Juan de la Cierva fellowship
IJCI-2015-23266.

References

Comprés I, Mo-Hellenbrand A, Gerndt M and Bungartz HJ (2016)
Infrastructure and API Extensions for Elastic Execution of
MPI Applications. In: Proceedings of the 23rd European MPI
Users’ Group Meeting on - EuroMPI 2016. ACM Press. ISBN
9781450342346, pp. 82–97. DOI:10.1145/2966884.2966917.

Feitelson DG (1996) Packing schemes for gang scheduling. In:
Lecture Notes in Computer Science book series (LNCS, volume
1162). Springer, Berlin, Heidelberg, pp. 89–110.

Grant GR, Farkas MH, Pizarro AD, Lahens NF, Schug J, Brunk
BP, Stoeckert CJ, Hogenesch JB and Pierce EA (2011)
Comparative Analysis of RNA-Seq Alignment Algorithms and
the RNA-Seq Unified Mapper (RUM). Bioinformatics 27(18):
2518–2528.

Iserte S, Mayo R, Quintana-Ortí ES, Beltran V and Peña AJ (2017)
Efficient Scalable Computing through Flexible Applications
and Adaptive Workloads. In: 10th International Workshop on
Parallel Programming Models and Systems Software for High-
End Computing (P2S2). Bristol.

Iserte S, Peña AJ, Mayo R, Quintana-Ortí ES and Beltran V (2016)
Dynamic Management of Resource Allocation for OmpSs
Jobs. In: 1st PhD Symposium on Sustainable Ultrascale
Computing Systems (NESUS PhD). Timisoara, Romania. ISBN
978-84-608-6309-0, pp. 55–58.

Martín G, Marinescu MC, Singh DE and Carretero J (2013) FLEX-
MPI: an MPI extension for supporting dynamic load balancing
on heterogeneous non-dedicated systems. In: Euro-Par Parallel
Processing. ISBN 978-3-642-40046-9, pp. 138–149.

Martín G, Singh DE, Marinescu MC and Carretero J (2015)
Enhancing the Performance of Malleable MPI Applications by
Using Performance-aware Dynamic Reconfiguration. Parallel
Computing 46: 60–77.

Martinez H, Barrachina S, Castillo M, Tarraga J, Medina I, Dopazo
J and Quintana-Orti ES (2015) Scalable RNA Sequencing
on Clusters of Multicore Processors. In: 2015 IEEE

Trustcom/BigDataSE/ISPA. IEEE. ISBN 978-1-4673-7952-6,
pp. 190–195. DOI:10.1109/Trustcom.2015.631.

Martínez H, Tárraga J, Medina I, Barrachina S, Castillo M, Dopazo
J and Quintana-Ortí ES (2013) A Dynamic Pipeline for RNA
Sequencing on Multicore Processors. In: Proceedings of the
20th European MPI Users’ Group Meeting on - EuroMPI
’13. New York, New York, USA: ACM Press. ISBN
9781450319034, p. 235. DOI:10.1145/2488551.2488581.

Medina I, Tárraga J, Martínez H, Barrachina S, Castillo MI,
Paschall J, Salavert-Torres J, Blanquer-Espert I, Hernández-
García V, Quintana-Ortí ES and Dopazo J (2016) Highly
Sensitive and Ultrafast Read Mapping for RNA-seq Analysis.
DNA Research 23(2): 93–100.

Prabhakaran S, Neumann M, Rinke S, Wolf F, Gupta A and Kale
LV (2015) A batch system with efficient adaptive scheduling
for malleable and evolving applications. In: 2015 IEEE
International Parallel and Distributed Processing Symposium.
ISBN 978-1-4799-8649-1, pp. 429–438. DOI:10.1109/IPDPS.
2015.34.

Sudarsan R and Ribbens C (2009) Scheduling Resizable Parallel
Applications. In: International Symposium on Parallel &
Distributed Processing. IEEE.

Sudarsan R and Ribbens CJ (2007) ReSHAPE: A Framework
for Dynamic Resizing and Scheduling of Homogeneous
Applications in a Parallel Environment. In: International
Conference on Parallel Processing.

Sudarsan R and Ribbens CJ (2016) Combining Performance
and Priority for Scheduling Resizable Parallel Applications.
Journal of Parallel and Distributed Computing 87: 55–66.

Sudarsan R, Ribbens CJ and Farkas D (2009) Dynamic Resizing
of Parallel Scientific Simulations: A Case Study Using
LAMMPS. In: International Conference on Computational
Science (ICCS). pp. 175–184.

Wong AT, Oliker L, Kramer WT, Kaltz TL and Bailey DH (2000)
Esp: A system utilization benchmark. In: Supercomputing,
ACM/IEEE 2000 Conference. IEEE, pp. 1–12.

Yoo AB, Jette MA and Grondona M (2003) SLURM: Simple
Linux Utility for Resource Management. In: 9th International
Workshop on Job Scheduling Strategies for Parallel Processing
(JSSPP). ISBN 978-3-540-39727-4, pp. 44–60.

Prepared using sagej.cls

	Introduction
	Related work
	Background
	Overview of the DMR API
	Overview of HPG-aligner

	HPG-aligner malleable version
	Adapting the HPG-aligner workflow
	HPG-aligner data redistribution patterns
	HPG-aligner malleable version outline using the DMR API
	Validation of the proposed HPG-aligner malleable version

	Experimental results
	Experimental setup
	Workloads setup
	Jobs setup

	Experiments with a production-size dataset
	Experiments with a larger dataset

	Conclusions

