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Abstract 

Mullite has achieved outstanding importance as a material for both traditional and 

advanced ceramics because of its favourable thermal and mechanical properties. 

Mullite displays various Al to Si ratios referring to the solid solution Al4+2xSi2−2xO10−x, 

with x ranging between about 0.2 and 0.9 (about 55 to 90 mol% Al2O3) [1]. In this work, 

the functionalization of the recycled glass fibers (obtained from the glycolysis process) 

with mullite crystals and its introduction into the precursor composition of the ceramic 

substrate was proposed. Mullite were first prepared by sol-gel method using colloidal 

silica and AlCl3·6H2O in water system. The gel mullite precursor was fired in the range 

1000-1300ºC soaking times 30–300 min. The resultant materials were studied by X-Ray 

diffraction (XRD) and scanning electron microscope (SEM-EDX). On the other hand, the 

glass fibers were functionalizing through the previous mullite synthesized. Several 

porcelain stoneware tile compositions were prepared using high alumina clay, low 

alumina clay, kaolin, Turkish feldspar (Na), feldspar (Na/Mg), feldespathic sand and 

glass fiber functionalize. The resultant materials were studied by X-Ray diffraction 

(XRD), scanning electron microscope (SEM-EDX) and compressive test. High mechanical 

resistance ceramic material (> 450 Kg/cm2) was obtained. 
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1. Introduction 

1.1 Mullite 

Mullite is a mineral that belongs to the family of nesosilicates, which are very 

rare in nature. The most important deposit is on the island of Mull, in the western part 

of Scotland, where it has been formed under conditions of pressure and temperature 

very similar to those that are necessary to obtain it artificially. In addition to the 

elements of its composition, usually carry as impurities: titanium, iron, sodium and 

potassium [1]. Mullite is used in the manufacture of ceramics, which crystallizes in the 

orthorhombic system in crystals that are elongated and improve the properties of 

ceramics[2]. One of the most common crystalline phases in ceramics having nominal 

composition 3Al2O3·2SiO2 (72 wt% Al2O3 and 28 wt% SiO2) [3-5]. 

The importance of the use of mullite in ceramics has great importance in recent 

years. It can be explained by: 

 

  It is the only stable crystalline phase, at normal pressure, in the binary 

Al2O3·SiO2 system.  This material shows excellent properties: high-temperature 

strength, creep resistance, low thermal expansion coefficient, good chemical 

and thermal stability, with retention of mechanical properties to elevated 

temperature and stability in oxidative atmospheres. [5-7].  

 

 The fact that the starting materials are available in big quantities on earth. 

Thereby kaolinite and other clay-based materials achieved high importance. 

 

  Its ability to form mixed crystals in a wide Al2O3/SiO2 range and to incorporate 

a large variety of foreign cations into the structure. 
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There are three types of polycrystalline ceramic mullite that can be differenciated: 

 

Monolithic mullite ceramics  

 

Monolithic mullite ceramics have widely been used for both traditional and 

advanced applications. Important materials such as porcelain, construction and 

engineering ceramics and other advanced ceramics such as an optically translucent 

ceramic for high temperature oven windows[8-9] 

 

Mullite coatings  

Many metals and ceramics are susceptible to degradation when exposed to 

oxidizing, reducing or to other harsh chemical environments at high temperature. A 

suitable way to overcome these problems is to protect such materials by surface 

coatings with compounds being stable under the required conditions[10-12]. 

 

Mullite matrix composites  

This group of materials includes composite materials with mullite matrices and 

mullite fibers. The main aim is the reduction of the inherent brittleness of the systems 

by improvement of their toughness. Important application fields of such composites 

are components and structures for gas turbine engines, high performance furniture, 

etc. [13-14]. 

 

1.1.1 Crystal chemistry of mullite 

The formula of mullite is expressed as Al 4+2x Si 2−2x O 10 -x, with x ranging between 

about 0.2 and 0.9. There are different types of mullite depending on their synthesis: 

 Sinter-mullite: Produced by thermal treatment of the starting materials via 

solid-state reactions. The phase that is obtained is the mullite 3/2 and   x =0.25 

(3Al2O3·2SiO2)[15-16].  
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 Fused-mullite: Produced by crystallizing of alumino silicate melt. They are 

usually rich in Al2O3 with a composition of 2/1 and x = 0.40 (2Al2O3·SiO2)[17].  

 

 Chemical-mullites: Produced by thermal treatments of precursors of high 

purity. The composition depends on the starting reagents and the treatment 

temperature. Extremely rich compounds have been identified in Al2O3 (>90 

wt.%Al2O3, x > 0.80) at synthesis temperatures  <1000◦C. 

As we have said before, mullite structure derived from sillimanite where the 

formula is Al2SiO5 with x = 0.00. The sillimanite has octahedral chains AlO6 connected 

to the edge run parallel to the crystallographic c axis.[18]. In sillimanite, these 

octahedral chains are crosslinked by double chains with alternating tetrahedra of AlO4 

and SiO4 (Figure 1). 

 

Figure 1. Crystal structure of sillimanite in projections down (a) the c-axis, and (b) the a-axis.[19] 

 

Mullite is derived from sillimanite by a substitution of Si cations in the 

tetrahedral holes: 

2Si4+ + O2- → 2Al3+ +                          = oxygen vacancy. 

In this reaction, oxygen atoms are removed from the structure leading to oxygen 

vacancies. And to a rearrangement and disordering of tetrahedral cations.  

Structure refinements indicate that the oxygen atoms bridging two polyhedra in the 

tetrahedral double chain in sillimanite are removed in mullite. (figure 2). 
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Figure 2. Crystal structure of mullite[20] and sillimanite 

On the other hand, figure 3 shows the crystallization of mullite from powder X-ray 

diffraction patterns [21]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. X-ray powder diffraction patterns showing the crystallization of mullite from amorphous 

precursors as a function of temperature[21] 

 

1.1.2. Al2O3-SiO2  system 

Mullite-based ceramics have been used as refractories. In 1924, Bowen and 

Grieg[22] were the first to publish a phase diagram to include mullite as a stable phase. 

The mullite phase (3Al2O3·2SiO2) was reported to melt incongruently at 1810°C. 
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In 1954, Shears and Archibald [23] reported the presence of a range of solid 

solution of 3Al2O3·2SiO2 (3:2 mullite) to 2Al2O3 ·SiO2 (2:1 mullite). In 1958, Toropov and 

Galakhov[24] modified the phase diagram by melting the mullite by heating in a 

vacuum where the mullite melted congruently at 1850°C .In 1962 Aramaki and Roy[25] 

prepared their samples from gels for subsolidus thermal treatments.  

Aksay and Pask [26] presented the incongruous melting of mullite at 1828°C. 

Davis and Pask [27] observed coherent mullite growth of sapphire in a temperature 

range between 1600 and 1800°C, indicating the interdiffusion of aluminum and silicon 

ions through mullite [26]. 

Risbud and Pask [28] modified the diagram to incorporate metastable phases 

regions. At 1890°C of temperature, an incongruent "metastable" melting point was 

determined. To explain the possibility of metastability, they suggested that there could 

be a barrier for alumina precipitation both in melt and  mullite, and that mullite could 

be superheated. Figure 4 shows this phase diagram showing the regions of 

metastability [29]. 

 

Figure 4. The system Al2O3−SiO2 showing metastable regions. The gaps shown with spinodal regions 
are considered the most probable thermodynamically[29]  
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In 1987, Klug et al. [30] observed an incongruent melting of mullite at 1890°C. 

This phase diagram is in the figure 5 [30]. Mullite 2: 1 seems to be only metastable at 

room temperature[30], and use at very high temperatures or the use of cycles can 

cause alumina precipitation. Finally, Pask [31] proposed that the differences on mullite 

could be due to the content or not of α-Al2O3 in the starting materials. Depending on 

the temperature and pressure, the compound will be sillimanite, kyanite or andalusite. 

 

 

Figure 5. Phase diagram for the alumina–silica system[30]  

 

1.2 Circular economy:  Industrial wastes in the ceramic industry 

The “Circular Economy” is related to sustainability and aims to ensure that the 

value of products, materials and resources (water, energy, etc.) is maintained in the 

economy as long as possible, together with the minimization of waste. The key concept 

is that it changes from linear to circular economy (see Figure 6)[32]. The circular 

economy proposes to model of society that optimizes the use of materials, energy and 

waste[33-35].  
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Figure 6. Schematic representation of the circular economy.[32]  

 

 

1.2.1 Recycling glass fibers 

Current recycling technologies for fiberglass composites are divided into mechanical, 

thermal and chemical methods. 

Mechanical recycling 

Mechanical recycling consists of minimizing the size of different composite 

waste in different recycling sizes through grinding processes [36]. The most commonly 

used technique in mechanical recycling is the hammer mill process.[37-38].  

Thermal processes 

-Pyrolysis is the most analyzed thermal process. It is carried out with or without 

oxygen and has recently been carried out in the presence of steam [39]. The matrix 

deterioration causes an oil, gases and solid products such as fibers, fillers and char[40]. 
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-The fluidized bed process consist in a layer of silica sand is used, for example, 

fluidized by hot air, whereby the conditions are oxidants. The presence of oxygen is 

necessary to reduce the formation of carbon, which must be removed [41]. 

-The microwave-assisted pyrolysis has as main characteristic that it is heated in 

its core, therefore, the thermal transfer is faster and saves energy. Lester [42] was the 

first to study this heating method to recycle materials. 

Chemical recycling 

Chemical recycling immerses glass fiber composite waste in a solvent suitable 

as water, acid and alcohol at a particular pressure and temperature to liberate the 

fibers. Kinstle [43] employed a hydrolysis between 220 and 275 ° C. 

2.  Objetives 

In this work, we propose the functionalization of the recycled glass fibers 

(obtained from the glycolysis process) with mullite crystals and its introduction into the 

precursor composition of the ceramic substrate to obtain high resistance material.  

From this general objective, the most detailed specific objectives are presented 

below: 

-Synthesis of the mullite crystals via sol-gel method. 

-Functionalize the glass fibers with the mullite crystals obtained. 

-Formulation and preparation a stoneware porcelain tile with the 

functionalization glass fibers in its composition in order to improve the mechanical 

properties of ceramic materials and therefore reduce the economic cost. 

3. Experimental 

3.1. Mullite sol-gel synthesis 

Mullite were prepared by sol-gel method using colloidal silica ((purity: 99.9%; 

Mw: 60.08 g / mol) and AlCl3·6H2O (purity: 99.5%; Mw: 241.43 / mol)) in water system. 

The silica was obtained from an industrial company, therefore, not having the data of 
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the silica, an X-ray fluorescence spectrometry was performed to obtain the purity 

(Table1). 

Table 1. Chemical analysis (FRX) of colloidal silica 

SiO2 SiO2 (wt%) CaO (wt%) TiO2 (wt%) 

 
SC118406-1 

99.9 0.08 0.02 

 

Precursor solution was obtained by dissolving 23.5 mmol of colloidal silica and 

42 mmol of aluminium in 50 mL of distilled water. The mullite precursor slurry 

gradually gelled in a beaker due to the condensation of the SiO2 catalyzed by NH3·H2O 

(Figure 7). The wet gel block was naturally dried at 100ºC to evaporate all liquid. 

The reaction of mullite formation from during the sintering of the precursors is: 

2 SiO2 + 6 AlCl3·6 H2O ----------> 3 Al2O3·2 SiO2 

 

 

Figure 7. Diagram of the sol-gel synthesis. 
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Then a crystallization treatment is carried out in a furnace (Nabertherm). 

The gel mullite precursor was fired in the range 1000-1300°C soaking times 30-300 

minutes with  a heat rate of 20°C/min. 

Table 2. Thermal treatment conditions 

Heating 
Temperature 

Time 

1000 °C 30 minutes 

1100 °C 30 minutes 

1200 °C 30 minutes 

1300 °C 30 minutes 

1300 °C 1 hour 

1300 °C 2 hours 

1300 °C 3 hours 

1300 °C 4 hours 

1300 °C 5 hours 

 

3.2 Functionalization of glass fibers 

Previosly, the glass fibers has been grinding using an Agata mortar and a ring 

mill (Figure 8)  to study the influence of fiber size. 

 

Figure 8. A) Agata mortar. B) Ring mill 

 

A certain amount of glass fibers were suspended in colloidal silica and 

aluminium solution. After a process of stirring for 30 min and ammonia solution 

addition, a white gel was formed (Figure 9). The resulting wet gel was drying in oven to 

B A 
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evaporate the solvent. Then the prepared composite was treated at 1300°C during 2 h 

in order to form mullite crystals. Finally, functionalized glass fibers were to prepare a 

porcelain stoneware tile composition. 

 

Figure 9. Diagram of the sol-gel synthesis with fiberglass. 

 

The porcelain stoneware tile compositions were prepared using high alumina 

clay, low alumina clay, kaolin, Turkish feldspar (Na), feldspar (Na/Mg), feldespathic 

sand and glass fiber functionalize. Each composition was micronized in a planetary 

alumina ball mill with water and 0.7 wt% of sodium silicate as deffloculant, obtaining a 

suspension density of 1.70 g/cm3 and sieved at under 100 μm after been dried. The 

compositions has been mixed using the mixer of the figure 10 A. 



18 
 

To simulate industrial pressing conditions, the compositions were homogenised 

and moistened with water to 6.5 wt% to be pressed in a uniaxial laboratory press 

(Nannetti) similar to figure 10 B, resulting in rectangular pieces with 2.16 g/cm3 of 

dried apparent density. After having been dried at 110 °C for 24 h, the pieces were 

fired at different temperatures in a fast kiln (Nannetti), following the firing cycle shown 

in figure 11. 

 

Figure 10. A) Mixer used to obtain homogeneous ceramic composition. B) Hydraulic press. 

 

Figure 11. Graph representing the industrial firing cycle used to obtain ceramic porcelain tiles 

 

3.3. Characterization techniques 

Colloidal silica composition has been studied by X-Ray Fluorescence (XRF), using 

a sequential spectrometer X-ray scattering wavelengths S4 Pioneer by Bruker with a Rh 

X-ray tube of 4 kW. The crystal structure of the materials was characterized by X-ray 

diffraction (XRD) using a D4 Endeavor, Bruker-AXS equipped with a Cu Kα radiation 

source. Data was collected by step-scanning from 10º to 80º with step size of 0.05º 2θ 

A B 
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and 1 s counting time per step. Scanning Electron. Microscopy (SEM) model JEOL 

7001F attached with an energy dispersive X-ray analysis (EDX) was employed to study 

the morphology and elemental composition of the samples. The flexural strength, 

evaluated by a HOYTOM plasticinometer with a load cell of 5000 N and a force 

threshold of 16N. The size of the particles was analyzed by Coulter counter(LS 230). 

 

4. RESULTS 

4.1. Mullite sol-gel synthesis 

The X-ray diffraction patterns of the samples after heating at temperatures of 

1000 to 1300°C are observed in Figure 12. The phase com positions of all samples were 

nearly similar, with a phase of mullite (3Al2O3 ·2SiO2; JCPDS- 15-0776), α-Al2O3 (JCPDS- 

46-1212) and SiO2 (JCPDS- 27-0605). 

In the case of patterns of the products after heat-treatment at 1000-1100ºC, no 

diffraction peaks were derived from crystalline phases but broad hallow characteristic 

of amorphous appeared. Most studies have suggested that the synthesis of the mullite 

by sol-gel method occurs at 1200-1300°C [44-45]. Above 1300°C, XRD patterns 

indicated that the products consisted of a mullite phase but with a very intense peak 

corresponding to corundum. 

Figure 13 shows XRD patterns of  the products after heat-treatment at 1300°C 

soaking times 30-300 minutes.  The phase com positions of all samples were nearly  

similar, only increase the cristobalite peak (24º 2 θ). The mullite phase in not the 

majority, but it is quite repeated. So, the best treatment is for 2 hours because the 

corundum phase does not appear with great intensity according to the literature[45]. 

 

 From these conditions, the different tests have been carried out to obtain the 

porcelain stoneware tiles. It was expected that it could be formed at a lower 

temperature since the porcelain stoneware is formed at a maximum temperature of 

1200°C. For this reason, we have chosen to perform the same procedure in two ways: 

One has been to perform the procedure with the heat treatment and glass fibers and 

then introduce it into the ceramic mixture. The other procedure consisted in not 
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performing the heat treatment that the glass fibers contain and adding it to the 

ceramic mixture, although with this procedure the mullite phase is not formed. 

 

  
 

Figure 12. XRD patterns of the products after heat-treatment at (a)1000 °C, (b)1100 °C, (c)1200 °C and 

(d)1300 °C 

 
 

 

Figure 13. XRD patterns of the products after heat-treatment at 1300ºC for (a)30 min, (b)1 hour,         

(c)2 hours, (d)3 hours, (e) 4 hours and (f) 5 hours 
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SEM images of the mullite synthesis after heat treatment at 1000,1100, 1200 

and 1300°C are shown in figure 14. The SEM images don’t revealed a microstructure 

with characteristic mullite crystals when the temperature will increase. Figure 15 

shows the SEM images of the mullite synthesis after heat treatment at 1300°C for 30 

minutes to 300 minutes. The analysis does not show with certainty what is the 

crystalline structure of the mullite phase nor the other phases that are present as the 

cristobalite or corundum as we can see in the DRX. 

 

 

 

Figure 14. SEM images of samples heated at different temperatures a) 1000°C b) 1100°C c) 1200°C d)1300°C 
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Figure 15. SEM images of samples heated at different times a) 1 hour b) 2 hour c)3 hours  d)4hours        

e) 5hours 

 

 

The results of EDX analysis are presented in tables 3 and 4. The total content of 

oxides that form the mullite are in the table. The global quantification gave the 

expected contents of Al2O3 and SiO2 equivalent to the proposed stoichiometric 

relation. In particular, the thermal treatments at 1200-1300°C during 2-3 hours present 

the best results. Although a problem may be that it does not have the correct zone, the 
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mullite and therefore, these values can be diverted because the area that has 

reference to the crystalline phase of the mullite is not known. 

Other studies have suggested that the good composition corresponding to the mullite 

phase is 70% of Al2O3 and 30% of SiO2[5,46]. 

 

 

Table 3 . Results of EDX analysis. 

Thermal treatment Al2O3 (Compd %) SiO2 (Compd %) 

1000ºC-30 minutes 69,34 18,78 

1100ºC-30 minutes 58,53 41,47 

1200ºC-30 minutes 63,52 36,48 

1300ºC-30 minutes 71,88 28,12 
 

Table 4. Results of EDX analysis. 

Thermal treatment 
Al2O3 (Compd %) SiO2 (Compd %) 

1300ºC-1 hour 65,81 34,19 

1300ºC-2 hours 67,46 32,54 

1300ºC-3 hours 56,81 43,19 

1300ºC-4 hours 71,57 28,43 

1300ºC-5 hours 68,65 31,35 

 
 
4.2 Functionalization of glass fibers  
 
 The effect of grinding on the glass fibers is shown in figure 16. Figure 16a 

shows that the fibers that are grinding by hand have the lengths between 50 and 100 

μm. Figure 16 b shows that the fibers that are grinding by hand have the lengths 

between 10 and 50 μm. Figure 16 c and d shows a similar length between 1 and 25 μm, 

therefore, it is not necessary to continue analyzing the glass fibers after 20 seconds of 

grinding. 
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 The different type of grinding gives us information on the length of the 

particles of the glass fibers to have a reference of how the size of these particles 

should be so that this process is reproducible in a safe way. 

 
 

 

Figure 16. SEM images of glass fibers grinding by a)Hand b)ring mill 5’’, c ring mill 10’’and d) ring mill 
20’’. 

 

Figure 17 shows the grinding glass fibers functionalized with mullite crystals. 

The fibers without heat treatment are in figure 17 a and c. These images show how a 

thicker and more compact structure is formed, although the heat treatment has not 

been carried out and, therefore, the crystalline phase of the mullite is not formed. The 

reason is because the porcelain stoneware treatment is carried out at 1200°C. 

Figure 17 b and d presents fibers with heat treatment. The figure 23 b also 

shows a more compact structure, in this case the mullite phase is formed. On the other 
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hand, in figure 17 d, we observe that the structures are smaller than in the rest, 

although the mullite phase is also found 

  

 

Figure 17. a) Functionalized glass fibers with mullite crystals and grinded at a) 5’’ without thermal 
treatment,  b) 5’’ with thermal treatment c) 10’’ without thermal treatment and d) 10’’ with thermal 

treatment  

 

Fiber particle size are observed in figure 18. It is observe how the % of volume 

glass fibers grinded by hand is between 10-100 microns. In contrast, the fibers grinded 

with the ring mill 5 seconds show more % volume in particles that have a size between 

6-30 and fibers grinded with ring mill 5 and 10 seconds show less % volume but small 

size of particles. 

 Table 5 indicates the parameters of how the particles are distributed. It is 

observed that for the sample grinded by hand, only 40% of the particles are below 25 

microns, while in the case of milling with ring mill it is observed that more than 85% of 

the particles are below of this value; being the samples milled at 10 and 20 seconds 

those that show a greater grinding. As the grinding at 10 and 20 seconds is very similar, 

it is decided not to continue with the grinding at 20 seconds. 
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The difference of grinding with ring mills at 5 seconds and at 10 is shown in that the 

percentage at 10 microns and at 1 micron is much higher at 10 seconds. 

 

Figure 18 . Particle diameter in differents modes 

 

Table 5 . Particle diameter in differents modes 

  <100 μm <90 μm <75 μm <50 μm <25 μm <10 μm <1 μm 

By hand 87.7% 85.2% 80.7% 67.9% 43.5% 2.73% 0% 

5 Seconds 99.97% 99.9% 99.4% 97.0% 84.1% 38.4% 6.58% 

10 Seconds 100% 100% 99.8% 96.8% 86.1% 55.3% 16.6% 

20 Seconds 100% 99.98% 99.7% 96.2% 85.5% 55.3% 17.6% 
 

Figure 19 shows the pieces calcined at the temperature of the porcelain 

stoneware that contain glass fibers that have been ground by hand .The pieces that 

refer to figure 19 a and c show points referring to glass fibers because hand grinding is 

not the most appropriate technique. 

The figure 20 shows mix pieces with and without thermal treatment but in this 

but in this case, glass fibers were grinding by the ring mill at 5 and 10 seconds. The 

pieces without thermal treatment have a more brown tone while those with the 

mullite phase have a more gray tone.  The difference in the type of grinding means 

that points referring to glass fibers are not detected. 
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Figure 19. Pieces calcined with A) Fiberglass without calcined, B) Alone.and  C) Mullite 

 

 

Figure 20. Pieces with grinding glass fibers with ring mill A) Without thermal treatment and 5’’,B) Without thermal 

treatment and 10’’ ,C) With thermal treatment and 5’’ and  D) With thermal treatment and 10’’ 

 

The results of the flexural strength of the different compositions studied are 

shown in tables 6 and 7, where it can be concluded that although the addition of 

recycled glass causes an increase in mechanical resistance in the different materials, 

this has not occurred.  

Table 6 shows the comparison of flexible strength of the reference pieces with 

the pieces milled by hand with treatment and without heat treatment. It is observed 
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how the mechanical resistance with glass fibers is lower than the reference pieces. The 

striking case is that the pieces that have been made with thermal treatment have less 

mechanical resistance than those that do not have the mullite phase formed. 

Table 7 shows the comparison of flexible strength of the pieces milled with the 

ring mill at 5 and 10 seconds with treatment and without heat treatment. In this case, 

the calcined pieces that contain the mullite phase have greater mechanical resistance 

than the pieces without thermal treatment, which is more normal for the objective 

sought. 

 
Table 6. Densities and mechanical strength in fibers crushed by hand. 

Name Dry density 

(g/cm3) 

Calcined 

density(g/cm3) 

Mechanical strength 

(Kg/cm2) 

Reference  1,94 2,38 469,3 
Raw glass fibers 1 2,00 2,23 448,1 
Raw glass fibers 2 1,99 2,21 397 
Raw glass fibers 3 2,00 2,24 421,5 

Calcined glass fibers 1 1,97 2,27 391,5 
Calcined glass fibers 2 1,95 2,26 330,1 
Calcined glass fibers 3 1,98 2,27 347,4 

 

Table 7. Densities and mechanical strength in fibers crushed by ring mill 5 and 10 seconds. 

Name Dry density 

(g/cm3) 

Calcined 

density(g/cm3) 

Mechanical strength 

(Kg/cm2) 

Raw glass fibers 1 (5´) 1,90 2,26 347,84 
Raw glass fibers 2 (5´) 1,92 2,26 374,37 
Raw glass fibers 3 (5´) 1,93 2,26 423,71 

Calcined glass fibers 1 (5´) 1,90 2,33 393,39 
Calcined glass fibers 2 (5´) 1,92 2,32 551,43 
Calcined glass fibers 3 (5´) 1,91 2,32 524,22 

Raw glass fibers 1 (10´) 1,92 2,27 362,86 
Raw glass fibers 2 (10´) 1,93 2,27 317,98 
Raw glass fibers 3 (10´) 1,92 2,28 310,86 

Calcined glass fibers 1 (10´) 1,92 2,30 415,34 
Calcined glass fibers 2 (10´) 1,92 2,35 421,89 
Calcined glass fibers 3 (10´) 1,91 2,33 402,59 
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5. Conclusion 

 The results obtained in XRD show us that the optimal thermal treatment for 

the formation of mullite is at 1300°C during 2 hours. From these conditions, the 

different tests have been carried out to obtain the porcelain stoneware tiles.  

In the SEM technique, no differences were observed in the different treatments. When 

analyzing the glass fibers that have been ground by hand or crushed with the ring mill, 

it is observed how the particles have a very large size when made by hand while as we 

increase the grinding time, the size decreases. 

 

 Different concentrations of the oxides that refer to mullite are observed. The 

optimum temperature would be around 1200-1300ºC since it has a composition close 

to 70% of Al2O3 and 30% of SiO2. As for the treatment time, the best option would be 

around 2-3 hours. As the porcelain stoneware treatment is carried out at 1200 ° C, the 

procedure without calcining has also been carried out to compare the results. 

 

 Regarding the main aim of the project, grinding the glass fibers with the ring 

mill for 5 seconds and its subsequent functionalization, the mechanical resistance of 

the porcelain tiles has been improved by 17%. Knowing the particle size allows the 

method to be reproducible. 
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