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We consider the numerical integration of the Schrödinger equation with a time-dependent Hamiltonian
given as the sum of the kinetic energy and a time-dependent potential. Commutator-free (CF) propa-
gators are exponential propagators that have shown to be highly efficient for general time-dependent
Hamiltonians. We propose new CF propagators that are tailored for Hamiltonians of the said structure,
showing a considerably improved performance. We obtain new fourth- and sixth-order CF propagators
as well as a novel sixth-order propagator that incorporates a double commutator that only depends
on coordinates, so this term can be considered as cost-free. The algorithms require the computation
of the action of exponentials on a vector similar to the well-known exponential midpoint propagator,
and this is carried out using the Lanczos method. We illustrate the performance of the new methods
on several numerical examples. Published by AIP Publishing. https://doi.org/10.1063/1.5036838

I. INTRODUCTION

We study the numerical integration of the time-dependent
Schrödinger equation (SE) in units such that the Planck
constant ~ = 1,

i
∂

∂t
ψ(x, t) = Ĥ(t)ψ(x, t), ψ(x, t0) = ψ0(x), (1)

where the Hamiltonian is given by

Ĥ(t) = T̂ + V̂ (x, t) = −
∆

2µ
+ V̂ (x, t), (2)

where x ∈ Rd , µ is the reduced mass, ∆ is the Lapla-
cian operator, and V̂ (x, t) is an explicitly time-dependent
potential.

Although postponed spatial discretization has been pro-
posed,1,2 the first step is usually discretizing Eq. (1) taking
N grid points. For this sake, various techniques can be used
(see Ref. 3 and references therein). Thus, one obtains a linear
ordinary differential equation

i
d
dt

u(t) = H(t) u(t), u(t0) = u0 ∈ CN , (3)

where H(t) = T + V (t) is an N × N Hermitian matrix.
As in the existing literature, we assume the problem to

be either periodic in space x or to be considered as one
due to solution u(t) and its time-derivatives vanishing at the
boundaries.

Thereafter, the time integration interval [t0, tf ] is divided
in a number of sufficiently small time steps of length τ,
and stepwise approximations uk to the solution values u(tk)

a)Electronic mail: bader@uji.es
b)Electronic mail: serblaza@imm.upv.es
c)Electronic mail: nikop1@upvnet.upv.es

are evaluated at the temporal grid points tk = t0 + τk
(k = 1, 2, . . .).

Many algorithms for solving Eq. (3) exist indeed in the
literature: split-operator methods,4 Runge–Kutta (RK)5 and
symplectic partitioned Runge–Kutta methods,6 a combination
of a 4th-order Magnus method with the Lanczos algorithm,7

and the so-called (t, t ′) method.8 In Refs. 7 and 9, a detailed
analysis of these schemes was carried out.

There are two highly efficient families of propagators
that have been adapted6,10–12 to the explicitly time-dependent
case (3). Both make use of the fact that V is diagonal in
the coordinate space and fast Fourier transform (FFT) algo-
rithmsF can be used to diagonalize the kinetic energy operator
T = F−1TDF.

In the first family, the solution is approximated by the
unitary split operator algorithms, i.e., by compositions of the
form

e−iτ(T+V ) ≈ e−ibmτVm e−iamτT · · · ce−ib1τV1 e−ia1τT , (4)

where V j = V (tk + cjτ) and {ai, bi, ci} are appropriately
chosen real coefficients.13–17 In this case, m FFT calls (and
their inverses, IFFT) per step are required. This class of
methods shows high performance when ‖T ‖, ‖V ‖, ‖[T, V ]‖
= ‖TV − V T ‖ are relatively small or their action results have
small norms, otherwise high errors can occur.

On the other hand, if H(t) and its action H(t)u(t)
satisfy similar norm conditions as above, splitting
u(t) = q(t) + ip(t) into real and imaginary parts can be used.
Equation (3) becomes

d
dt

(
q
p

)
=

[(
0 H(t)
0 0

)
+

(
0 0
−H(t) 0

)] (
q
p

)
, (5)

that is similar to a set of N coupled harmonic oscilla-
tors. Therefore, splitting methods tailored for that type of
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problems can be employed.6,7,11,12,18 The algorithm requires
2m real-to-complex direct and inverse FFTs at a similar cost
as m complex-to-complex FFTs and is superior to the Cheby-
shev approximation for short and long time integrations.11 This
class of methods is valid for any real Hamiltonian (not nec-
essarily separable into kinetic and potential parts). These are
symplectic methods that are conjugate to unitary ones. They
are easy to apply and have low computational cost but are
conditionally stable: if ‖H ‖ grows, one should reduce the time
step for stability reasons.

In the present work, we consider commutator-free (CF)
methods that address problems in which the above-mentioned
techniques are not appropriate. Existing CF methods were,
however, created for general Hamiltonians and do not take
into account the specific structure (2).

The goal of this work is to construct fourth- and sixth-
order geometric numerical integrators, which preserve most
qualitative properties of the solution,13,19,20 by composition of
maps Pm that approximate

uk+1 = e−iτHuk ≈ Pm(−iτH) uk , (6)

where Pm is an approximation in the m-dimensional Krylov–
Lanczos subspace.3,21,22

In essence, the three new methods utilize the 6th-order
Gauss–Legendre (GL) quadrature nodes (but other quadrature
rules can be used10,30),

c1 =
1
2
−

√
15

10
, c2 =

1
2

, c3 =
1
2

+

√
15

10
, (7)

to calculate linear combinations V̄i =
∑3

j=1 ai,jVj, with
V j = V (tn + cjτ) with ai ,j specific to each method:

• the 4th-order method

Υ
[4]
2 = e−iτV̄4 e−i τ2 (T+V̄3) e−i τ2 (T+V̄2) e−iτV̄1 , (8)

• the 6th-order method that incorporates into8 one term,
Ṽ , containing derivatives of the potential

Υ
[6]
2 = e−iτ(V̄4+τ2Ṽ ) e−i τ2 (T+V̄3) e−i τ2 (T+V̄2) e−iτ(V̄1+τ2Ṽ ),

(9)
• the 6th-order one, with no derivatives of V,

Υ
[6]
3 = e−iτV̄5 e−iτ(a2T+V̄4)e−iτ(a3T+V̄3)e−iτ(a2T+V̄2)e−iτV̄1 .

(10)

Since the first and last exponentials in the schemes (8)–(10)
are diagonal matrices whose computational cost can be
neglected,23 these methods require, in practice, the calcula-
tion of 2, 2, and 3 operator exponentials, respectively, which
is done by the Krylov polynomial approximation (6).

The resulting schemes are 5/3 to 3 times more cost effi-
cient than the existing CF methods, thanks to the simplified
algebraic structure of the Hamiltonian written as the sum of
a kinetic energy and a time-dependent potential and the low
cost of exponentiating the latter.

In Sec. II, we describe the general methodology applied
to obtaining commutator-free methods and existing specimens

of this class and their limitations. In Sec. III, we perform
manipulations that lead to explicit forms of new methods. The
article concludes with numerical examples.

II. METHODOLOGY
A. Commutator-free Magnus integrators

For a sufficiently small time step, the solution of (3)
can be expressed as the exponential of the Magnus expan-
sion24,25 Ω(t). Computing the action of the pth-order trunca-
tion, exp Ω[p], on a vector can be resource-consuming due to
the commutators involved in Ω[p].

To circumvent these overheads, one can approximate
exponentials by a product of simpler matrices that do not con-
tain commutators, e.g., a r-exponential method of order p takes
the form

CF[p]
r =

r∏
j=1

e−iτH̃j = eΩ(τ) + O(τp+1), (11)

where

H̃j =

m∑
l=1

aj,lH(tk + clτ) = ajT +
m∑

l=1

aj,lV (tk + clτ)

with aj =
∑m

l=1 aj,l. There exist highly efficient methods in
the literature up to order eight.26–29 However, those methods
are not optimized for problems in which the Hamiltonian is of
form (2).

B. Algebra and optimisation

In this work, we use the 6th-order GL quadra-
ture with nodes (7). Then, three linear combinations of
H(tk + cjτ) =: T + V j,

α1 = −iτ(T + V2) = O(τ),

α2 = −iτ

√
15
3

(V3 − V1) = O(τ2),

α3 = −iτ
10
3

(V3 − 2V2 + V1) = O(τ3),

(12)

suffice25,30,31 to build methods up to order 6.
Since α2, α3 are diagonal, and [α2, α3] = 0, a 6th-

order approximationΩ[6] of the Magnus expansionΩ is given
by

Ω
[6] = α1+

1
12
α3−

1
12

[12]+
1

360
[113]−

1
240

[212]+
1

720
[1112],

(13)
where [ij. . .kl] represents the nested commutator [αi, [αj, [. . .,
[αk , αl]. . .]]]. Condition [α2, α3] = 0 makes that the coeffi-
cients need to satisfy a reduced number of order conditions to
reach high orders.

Moreover, the operator [212] is also represented by a
diagonal matrix whose elements are spatial derivatives of
V̂ (x, t). This term can be combined with α2 and α3 to
improve performance. Consequently, some aj can be zeroed
and the computational cost (in terms of FFT calls) of corre-
sponding exponentials in (11) can be neglected, as shown in
Sec. III.
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III. INTEGRATORS FOR THE SCHRÖDINGER
EQUATION
A. Fourth-order methods

An m-exponential method of order four that makes use of
α1, α2, α3 given in (12) must satisfy

Υ
[4]
m =

m∏
i=1

exp
(
xi,1α1 + xi,2α2 + xi,3α3

)
= exp

(
α1 +

1
12
α3 −

1
12

[12]

)
+ O(τ5).

Time symmetry is preserved26 in a CF method when

xm−i+1,j = (−1)j+1xi,j, i = 1, 2, . . . .

We take m = 3, x1,1 = 0, and the result is the symmetric
composition

Υ
[4]
3 = exp

(
−x1,2α2 + x1,3α3

)
exp

(
x2,1α1 + x2,3α3

)
× exp

(
x1,2α2 + x1,3α3

)
,

where the first and the last exponents are diagonal, and their
computational cost is similar to a scheme with only one expo-
nential, like the midpoint exponential method. This composi-
tion has 4 parameters to solve the order equations to assure
4th order. Therefore, one free parameter remains for optimiza-
tion. The scheme that satisfies the condition for [113] has the
solution32

x1,2 = −
1

12
, x1,3 =

1
60

, x2,1 = 1, x2,3 =
1

20
.

New 4th-order schemes with additional free parameters
are given by composition

Υ
[4]
2 = exp

(
−x1,2α2 + x1,3α3

)
exp

(
x2,1α1 − x2,2α2 + x2,3α3

)
× exp

(
x2,1α1 + x2,2α2 + x2,3α3

)
exp

(
x1,2α2 + x1,3α3

)
.

(14)

With two free parameters to satisfy the order conditions
associated with [113] and [1112], we get the unique
solution

x1,2 = −x1,3 = −
1

60
, x2,1 =

1
2

, x2,2 = −
2
15

, x2,3 =
1

40
.

Using (12), we can transform coefficients xi ,j to ai ,j as
follows:

ai,j =

3∑
k=1

xi,kGk,j

with

G =
*...
,

0 1 0

−
√

15
3 0

√
15
3

10
3 − 20

3
10
3

+///
-

, (15)

and the method in terms of linear combinations of T and V j

becomes

Υ
[4]
2 = e−iτV̄4 e−i τ2 (T+V̄3) e−i τ2 (T+V̄2) e−iτV̄1 , (16)

where

V̄1 = a1,1V1 + a1,2V2 + a1,3V3,

V̄2 = a2,1V1 + a2,2V2 + a2,3V3,

V̄3 = a2,3V1 + a2,2V2 + a2,1V3,

V̄4 = a1,3V1 + a1,2V2 + a1,1V3,

(17)

and the coefficients are

a1,1 =
10 +

√
15

180
, a1,2 = −

1
9

, a1,3 =
10 −

√
15

180
,

a2,1 =
15 + 8

√
15

90
, a2,2 =

2
3

, a2,3 =
15 − 8

√
15

90
.

All but one (i.e., [212]) order conditions at τ5 are sat-
isfied in this symmetric method. The scheme can be written
as

Υ
[4]
2 = exp

(
Ω

[6] − z[212] + O(τ7)
)
, z =

1
21 600

,

that results in a highly optimized fourth-order method.

B. Sixth-order methods

Let us examine the operators

α̂1 = −iτ
(
T̂ + V̂2(x)

)
, α̂2 = −iτ

√
15
3

(
V̂3(x) − V̂1(x)

)
.

The action of commutator [α̂2, [α̂1, α̂2]] can be expressed
through spatial derivatives V̂ ′(x, tk + cjτ) ≡ V̂ ′j ,

[2̂12]ψ(x, t) = iτ3 5
3µ

(
V̂ ′3 − V̂ ′1

)2
ψ(x, t),

and the corresponding matrix representation [212] is also diag-
onal in coordinate space. If spatial derivatives are relatively
simple to evaluate, [212] can be used in (14) without signifi-
cantly increasing its cost, similar to the high order force gra-
dient algorithms in Refs. 33–35, yielding a 6th-order method
given by

Υ
[6]
2 = exp

(
−x1,2α2 + x1,3α3 + y[α2, α1, α2]

)
× exp

(
x2,1α1 − x2,2α2 + x2,3α3

)
× exp

(
x2,1α1 + x2,2α2 + x2,3α3

)
× exp

(
x1,2α2 + x1,3α3 + y[α2, α1, α2]

)
. (18)

It is solved by the same xi ,j as in (14), and

y =
z
2
=

1
43 200

.

The coefficients of this method coincide with the scheme32

built for the numerical integration of Hill’s equation.
With (12) and (17), (18) transforms to

Υ
[6]
2 = e−iτ(V̄4+τ2Ṽ ) e−i τ2 (T+V̄3) e−i τ2 (T+V̄2)e−iτ(V̄1+τ2Ṽ ), (19)

and thanks to the diagonal form of V (t),

Ṽ = −
5y
3µ

(
V ′(tk + c3τ) − V ′(tk + c1τ)

)2.

Moreover, if V (t) consists of a constant part V (c) and
a time-dependent one, V (t ), the modified potential Ṽ only
requires spatial derivatives of V (t ). In particular, for an external
field problem V (t ) = f (t)V ( f ), one has
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Ṽuk = −
1
µ

1
25 920

( f3 − f1)2V ′2( f )uk ,

with fj = f (tk + cjτ) that is easily computed for predefined
external interaction functions.

Nonetheless, in some cases V ′(t) or an appropriate
approximation can be difficult to obtain; hence, we consider
schemes that have more exponentials but retain a relatively
low computational cost.

Although 6th-order CF methods with four exponen-
tials and no derivatives have been obtained,28 those schemes
showed poor performance. Additional exponentials have to be
incorporated into the scheme to improve its performance.26,28

We insert an exponential in the middle, and the composi-
tion contains 2 free parameters. To reduce computational
cost, we use one parameter to eliminate contributions from
α1 in the outermost exponentials, x1,1 = 0. We note that
minimizing

∑
i ,j ��xi ,j �� or

∑
i ,j ��xi ,j ��2 leads to virtually identi-

cal performance; hence, we have opted for simplicity. There
is one free parameter among x1,3, x2,3, and x3,3 that mul-
tiplies α3, and they appear only in two of the order con-
ditions. Thus, we set x1,3 = 0 to simplify the exponential
further,

Υ
[6]
3 = exp

(
−x1,2α2

)
× exp

(
x2,1α1 − x2,2α2 + x2,3α3

)
× exp

(
x3,1α1 + x3,3α3

)
exp

(
x2,1α1 + x2,2α2 + x2,3α3

)
× exp

(
x1,2α2

)
(20)

=e−iτV̄5 e−iτ(a2T+V̄4)e−iτ(a3T+V̄3)e−iτ(a2T+V̄2)e−iτV̄1 , (21)

where

V̄1 = a1,1V1 + a1,2V2 + a1,3V3,

V̄2 = a2,1V1 + a2,2V2 + a2,3V3,

V̄3 = a3,1V1 + a3,2V2 + a3,3V3,

V̄4 = a2,3V1 + a2,2V2 + a2,1V3,

V̄5 = a1,3V1 + a1,2V2 + a1,1V3,

(22)

and we choose the only real valued solution that gives

a1,1 = 0.019 940 962 650 936 107 45,

a1,2 = 0,

a1,3 = −a1,1,

a2,1 = 0.488 252 491 022 822 195 7,

a2,2 = −0.004 613 683 017 563 062 1,

a2,3 = 0.083 401 910 860 218 294 0;

a3,1 = −0.293 876 624 105 262 711 91,

a3,2 = 0.453 671 810 479 570 568 7,

a3,3 = a3,1,

a2 =

3∑
i=1

a2,i = 0.567 040 718 865 477 427 57,

a3 =

3∑
i=1

a3,i = 1 − 2a2

= −0.134 081 437 730 954 855 15.

(23)

The analysis of this family of methods carried out in
Ref. 36 shows that there exist no 6th-order commutator-
free methods with all coefficients xi ,1 = ai greater than
zero.

IV. NUMERICAL ILLUSTRATIONS

In this section, we illustrate the methods’ behavior
and performance on academic one-dimensional examples.

First, let us describe the general setup used for numerical
experiments in this paper. We define the wave function ψ(x,
t) on a sufficiently large spatial domain [x0, xN ) to ensure
that its value and its derivatives vanish. This allows us to
impose periodic boundary conditions ψ(x0, t) = ψ(xN , t) and
hence the use of FFTs. We divide the interval into N bins of
length ∆x = (xN − x0)/N ; hence, xk = x0 + k∆x, k = 0, . . .,
N − 1. The discrete vector u(t) ∈ CN from (3) has components
uk = (∆x)1/2ψ(xk , t), and its norm 

u(t)

2 does not depend
on t.

Under these assumptions, we consider the one-
dimensional Schrödinger equation (~ = 1),

i
∂

∂t
ψ(x, t) =

(
−

1
2µ

∂2

∂x2
+ V (x) + f (t)x

)
ψ(x, t),

ψ(x, 0) = ψ0(x).

(24)

The time-dependent part f (t) = A cos(ωt) corresponds to an
external laser field.

To check accuracy, we calculate the reference solution at
the final time u(tf ) using a sufficiently small time step. Then,
we compute the solution with each method for various numbers
of time steps and measure the 2-norm of the errors at the final
time. The cost of a scheme is counted in units of complex-to-
complex FFT–IFFT pairs required for calculating exponentials
in each step.

In all the examples, exponentials are approximated by
the Lanczos method according to the procedure described in
Appendix A.

Finally, we plot the errors for each time step ver-
sus the corresponding cost in the double logarithmic
scale.

In our experiments, we compare with the commutator-free
methods obtained in Ref. 28: the 4th-order method with 3 expo-
nentials (CF4:3Opt in the source notation, CF[4]

3Opt here) and

the 6th-order scheme with five exponentials (CF6:5 =: CF[6]
5 ).

The 6th-order scheme with six exponentials (CF6:6) showed
worst performance in our numerical experiments and it has
not been considered. Although in Ref. 28 the authors present
other optimized 6th-order methods that use the nodes of the
8th-order GL quadrature rule, our schemes can also use higher-
order quadrature rules (as shown in Appendix B), and for
this reason, we limit ourselves to the comparison of prop-
agators that are similarly based on the three-point GL rule.
Thus, each exponential is written in terms of the linear com-
binations of H i = H(tk + ciτ) with ci, i = 1, 2, 3 given
in (7),
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CF[6]
5 =

5∏
i=1

e−iτ(ai,1H1+ai,2H2+ai,3H3),

a1,1 = 0.203 952 578 716 323, a1,2 = −0.059 581 898 090 478, a1,3 = 0.015 629 319 374 155,

a2,1 = 0.133 906 069 544 898, a2,2 = 0.314 511 533 222 506, a2,3 = −0.060 893 550 742 092,

a3,1 = −0.014 816 639 115 506, a3,2 = −0.065 414 825 819 611, a3,3 = −0.014 816 639 115 506,

ai,j = a6−i,4−j, i = 4, 5, j = 1, 2, 3.

(25)

We also consider the Magnus-based exponential methods
where a second-order method is given by the first term in the
expansion

Υ
[2] = exp

(
−i

∫ tk+τ

tk

H(t)dt

)
(26)

that provides a second-order approximation to the solution.
Then, it is sufficient to approximate the integral by the midpoint
quadrature rule of order two,

Υ
[2]
1 = e−iτ(T+V (tk+τ/2)) ≈ Pm

(
−iτ

(
T + V τ

2

))
. (27)

However, as it is the case for all the new methods presented in
this work, the schemes can be used using higher-order quadra-
ture rules. For example, we can approximate the integral using
the 6th-order GL rule (7) as for all methods tested in this work,
so the use of the following averaged one-exponential method
is considered:

Υ
[2]
1,3 = eα1+ 1

12α3 = e−iτ(T+ 1
18 (5V1+8V2+5V3)) (28)

with V i = V (tk + ciτ). It is worth noting that if the integral
approximation contains the dominant error of the method,Υ[2]

1,3
should provide more accurate result without increasing the
computational cost.

We also consider the 4th-order enhanced one-exponential
Magnus

Υ
[4]
1 = eΩ

[4]
= eα1+ 1

12α3−
1

12 [α1,α2], (29)

where the evaluation of Ω[4]u requires two FFT–IFFT trans-
forms.

The salient point is that the new Υ[4]
2 and Υ[6]

2 are
minor modifications of two consecutive steps of (28) and,
in most cases, their overall cost is similar because the
higher-order methods can be used with a time step twice
larger.

The Walker–Preston model is a simple model that repre-
sents adequately many typical applications and may serve as
an indicative benchmark.

We take the Morse potential V (x) = D
(
1 − e−αx)2 for

x ∈ [−0.8, 4.32), subdivided into N = 64 and N = 128. The
parameters chosen are as follows: µ = 1745 a.u., D = 0.2251
a.u., and α = 1.1741 a.u.. The amplitude is A = A0 = 0.011 025
a.u. and the frequency is ω = ω0 = 0.017 87. This corresponds
to a standard example of the diatomic HF molecule in a strong
laser field.37

The numerical experiments are repeated with reduced
intensity and frequency A = A0/2 and ω = ω0/2, leaving time
steps the same.

As an initial condition, we take the ground state of the
Morse potential

φ(x) = σ exp

(
−

(
γ −

1
2

)
αx

)
exp

(
−γe−αx) ,

with γ = 2D/w0, w0 = α
√

2D/µ, and σ is a normalizing
constant. We integrate on [0, 10 tp] with tp = 2π/ω.

Figure 1 shows the efficiency plots (the two-norm error
versus the number of FFT calls in the logarithmic scale) of

FIG. 1. Efficiency plots of the methods described below for the Walker–
Preston model, N = 64. SchemesΥ[4]

1 , RK[6]
7 , RKGL[6]

3 are reference methods,
and they are only plotted in the top figure due to their inferior performance.
(a) ω = ω0, A = A0 (b) ω = ω0/2, A = A0/2.
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the 4th- and 6th-order methods for the Walker–Preston model
with N = 64 for the following methods:

• CF[4]
3Opt , CF[6]

5 : the 3- and 5-exponential CF methods of
order four and six from Ref. 28.

• the enhanced lower-order Magnus methods: midpoint
Υ

[2]
1,3 (28); the 4th-order Υ[4]

1 (29).

• the new methods:Υ[4]
2 given by (16) and (17);Υ[6]

2 given

by (19); Υ[6]
3 given by (20)–(23).

• the classical 6th-order methods: an explicit 7-stage
RK[6]

7 method and the implicit symplectic RKGL[6]
3

method.

The same experiments are repeated for N = 128, and the results
are shown in Fig. 2.

From Fig. 1 (top), it is evident that the classical RK
methods have inferior performance (moreover, the explicit RK
requires small time steps for stability) and are omitted from

FIG. 2. Efficiency plots for the Walker–Preston model, N = 128. Υ[4]
1 , RK[6]

7 ,

RKGL[6]
3 are omitted for clarity. (a) ω = ω0, A = A0 (b) ω = ω0/2,

A = A0/2.

the other plots. We observe that both new 6th-order methods
perform best when high accuracy is desired. The 4th-order
Υ

[4]
2 demonstrates comparable performance when large time

steps are used and do not require the evaluation of the spatial
derivative of the potential. We observe that the new methods
are better than the exponential midpoint for all accuracies of
practical interest and have similar complexity for their imple-
mentation; so, any user of the exponential midpoint method
should consider one of the new methods for solving this class
of problems.

V. CONCLUSION

We have constructed methods for the time-dependent
Hamiltonian H(t) that can be presented as the sum of the kinetic
energy T̂ and an explicitly time-dependent potential V̂ (t). The
obtained methods belong to the class of so-called commutator-
free (quasi-Magnus) integrators and heavily rely on the prop-
erties of the problem, hence their reduced computational
cost.

On widely used benchmark problems, we have shown
appropriateness of using the new methods to solve (1). All
new schemes have shown better performance than the non-
customized methods of the same family. Summarizing, Υ[6]

2 is

the method of choice when spatial derivatives of V̂ (x, t) are
available, and Υ[6]

3 can be used otherwise. The 4th-order Υ[4]
2

is appropriate for use with larger time steps when high accu-
racy is not required. In addition, these methods have shown to
be superior to the exponential midpoint for all desired accura-
cies of practical interest and have similar complexity for their
implementation.

Future work may concern constructing of methods of
higher order that employ other quadrature rules and can com-
pete with 8th-order CF methods28 or the recent methods with
simplified commutators considered in Ref. 38. Moreover, it
seems possible to apply the same technique to tailoring meth-
ods for other problems with the special structure which may
allow additional optimization.
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APPENDIX A: KRYLOV APPROXIMATION
WITH LANCZOS METHOD

If H is Hermitian and u is a unit vector, then e−iτHuk can be
approximated in the m-dimensional Krylov subspace,21 whose
column basis Vm = {v1, v2, . . . , vm} B

{
uk , Huk , . . . , Hm−1uk

}

is constructed by the Lanczos algorithm.3 Exponentia-
tion of the full operator is reduced to the exponenti-
ation of a tridiagonal symmetric matrix Tm of smaller



244109-7 Bader, Blanes, and Kopylov J. Chem. Phys. 148, 244109 (2018)

dimension
e−iτHuk ≈ Vme−iτTm e1, (A1)

where e1 is the first column of the identity matrix.
The Lanczos algorithm builds an orthogonal basis and fills

elements of Tm,3

v0 = 0, v1 = uk , β1 = 0;
for i = 1, . . . , m

y = τHvi − βivi−1

αi = 〈vi |y〉
y = y − αivi

βi+1 = ‖y‖
vi+1 = y/βi+1

endfor
αi = (Tm)i,i, βi+1 = (Tm)i+1,i, i = 1, . . . , m − 1.

The procedure requires m matrix–vector products, storing m
resulting vectors, and at the end discarding vm+1 and βm+1 to
produce square matrices.

The error can be cheaply estimated by

err = βm+1

(
2
3

���e
T
me−iτTm/2e1

��� +
1
6

���e
T
me−iτTm e1

���

)
,

where e1, em are the first and last columns of the m×m identity
matrix.

Thus, in this work, the procedure is the following: given
a tolerance tol, apply the Lanczos algorithm to build the
sequence of vectors

{
uk , Huk , H2uk , . . .

}
and fill Tm until err

< tol or m = 10 is reached to ensure a sufficiently small error
for a 6th-order method. Having obtained Vm and Tm, then (A1)
is computed.

APPENDIX B: SCHEMES WITH NODES
OF AN ARBITRARY QUADRATURE RULE

The methods proposed in this work can be used with any
other quadrature rule of order r ≥ 6, say {b̃i, c̃i}

k
i=1, where b̃i

are the weights and c̃i are the nodes. Similarly as in Ref. 10,
and as explicitly shown in Ref. 30, there is a simple rule to
apply: to replace α1, α2, α3 in (12) by

*.
,

α1

α2

α3

+/
-
= G Q−1Q̃

*...
,

H̃1
...

H̃k

+///
-

with H̃i = H(t + c̃iτ), i = 1, . . . , k, G given by (15) and

Qi,j = bj

(
cj −

1
2

) i−1

, Q̃i,l = b̃l

(
c̃k −

1
2

) i−1

,

where i, j = 1, 2, 3, l = 1, . . ., k, with (b1, b2, b3) = 1
18 (5, 8, 5)

being the weights of the 6th-order GL quadrature rule with
nodes ci given in (7).

Obviously, the element [212] to be used in the scheme
Υ

[6]
2 remains diagonal but now in terms the spatial derivatives

of the potential evaluated at the new quadrature nodes.
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