SUPPORTING INFORMATION

Efficient and Selective \textit{N}-Methylation of Nitroarenes under Mild Reaction Conditions

Elena Pedrajas, Iván Sorribes*, Eva Guillamón, Kathrin Junge, Matthias Beller* and Rosa Llusar*
1. Catalyst characterization.

Figure SI1. 1H NMR spectrum of the complex [Mo$_3$Pt(PPh$_3$)$_4$Cl$_3$(dmen)$_3$](BF$_4$)$_3$ in CD$_2$Cl$_2$.

Figure SI2. 13C NMR spectrum of the complex [Mo$_3$Pt(PPh$_3$)$_4$Cl$_3$(dmen)$_3$](BF$_4$)$_3$ in CD$_2$Cl$_2$.

Figure SI3. ESI mass spectrum of the complex [Mo$_3$Pt(PPh$_3$)$_4$Cl$_3$(dmen)$_3$](BF$_4$)$_3$ in CH$_3$CN at 20 V.

Figure SI4. Cyclic Voltammogram recorded on a CH$_2$Cl$_2$ solution containing 3$^+$ (a) and 1$^+$ (b) at scan rate of 100mV/s (vs Ag/AgCl).

2. Conditions optimization for the N-methylation of p-nitrotoluene (1a).

Table SI1. Screening of silanes.

Table SI2. Influence of the solvent on the catalytic N-methylation of 1a.

3. ESI mass spectra from the reaction mixture during the N-methylation of 1a.

Figure SI5. ESI mass spectrum from the N-methylation reaction after 8 hours.

Figure SI6. ESI mass spectrum from the mixture of [Mo$_3$S$_4$Cl$_3$(dmen)$_3$](BF$_4$)$_3$ (1(BF$_4$)) (0.003 mmol) and Pt(PPh$_3$)$_4$ (2) (0.001 mmol) in THF after 10 minutes stirring at room temperature.

4. Reaction pathway investigation.

Scheme SI1. Proposed pathways for the direct N-methylation of nitroarenes with formic acid.

5. Characterization data of isolated products.

6. References

7. 1H NMR and 13C NMR spectra of isolated products.
1. Catalyst characterization

Figure S11. 1H NMR spectrum of the [Mo$_3$Pt(PPh$_3$)$_4$Cl$_3$(dmen)$_3$](BF$_4$)$_3$ complex in CD$_2$Cl$_2$.

Figure S12. 13C NMR spectrum of the [Mo$_3$Pt(PPh$_3$)$_4$Cl$_3$(dmen)$_3$](BF$_4$)$_3$ complex in CD$_2$Cl$_2$.

Efficient and selective N-methylation of nitroarenes under mild reaction conditions
Figure SI3. ESI mass spectrum of the $[\text{Mo}_3\text{Pt(PPh}_3)_3\text{Cl}_3\text{(dmen)}_3](\text{BF}_4)$ complex ($3(\text{BF}_4)$) in CH$_3$CN at 20 V.

Figure SI4. Cyclic Voltammogram recorded on a CH$_2$Cl$_2$ solution containing 3^+ (a) and 1^+ (b) at scan rate of 100 mV/s (vs Ag/AgCl).
2. Conditions optimization for the N-methylation of p-nitrotoluene (1a).

Table SI1. Screening of silanes.[a]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Silane</th>
<th>Conversion [%][b]</th>
<th>Yield 2a [%][b]</th>
<th>Yield 3a [%][b]</th>
<th>Yield 4a [%][b]</th>
<th>Yield 5a [%][b]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PhSiH$_3$</td>
<td>>99</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>97</td>
</tr>
<tr>
<td>2</td>
<td>Ph$_2$SiH$_2$</td>
<td>34</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>PhMe$_2$SiH</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Et$_3$SiH</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>PHMS</td>
<td>21</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>6</td>
</tr>
</tbody>
</table>

[a] Reaction conditions: 1a (0.1 mmol), HCO$_2$H (8.5 equiv.), Silane (10 equiv.), Catalyst (3 mol%), THF (2 mL), 18 h, 70$^\circ$C. [b] Determined by GC analysis using n-hexadecane as an internal standard.
Table SI2. Influence of the solvent on the catalytic N-methylation of 1a.[a]

![Chemical structure](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>Conversion [%][b]</th>
<th>Yield 2a [%][b]</th>
<th>Yield 3a [%][b]</th>
<th>Yield 4a [%][b]</th>
<th>Yield 5a [%][b]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1[c]</td>
<td>MeCN</td>
<td>50</td>
<td>10</td>
<td>1</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>MeOH</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3[c]</td>
<td>Toluene</td>
<td>99</td>
<td>41</td>
<td>5</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>THF</td>
<td>>99</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>97</td>
</tr>
</tbody>
</table>

[a] Reaction conditions: 1a (0.1 mmol), HCO₂H (8.5 equiv.), PhSiH₃ (10 equiv.), Catalyst (3 mol%), Solvent (2 mL), 18 h, 70°C. [b] Determined by GC analysis using hexadecane as an internal standard. [c] The urea intermediate 1,3-dimethyl-1,3-di-p-tolylurea is detected by GC-Mass.

3. ESI mass spectra from the reaction mixture during the N-methylation of 1a.

![ESI mass spectrum](image)

Figure SI5. ESI mass spectrum from the N-methylation reaction after 8 hours.
Efficient and selective N-methylation of nitroarenes under mild reaction conditions

Figure SI6. ESI mass spectrum from the mixture of [Mo$_3$S$_4$Cl$_3$(dmen)$_3$](BF$_4$)$_2$ (1(BF$_4$)) (0.003 mmol) and Pt(PPh$_3$)$_4$ (2) (0.001 mmol) in THF after 10 minutes stirring at room temperature.

4. Reaction pathway investigation.

Scheme SI1. Proposed pathways for the direct N-methylation of nitroarenes with formic acid in the presence of the heterobimetallic 3$^+$ catalyst.
5. Characterization data of isolated products.

N,N,4-trimethylaniline: 1H NMR (300 MHz, CD$_2$Cl$_2$) δ 7.03 (d, $J = 8.6$ Hz, 2H), 6.66 (d, $J = 8.6$ Hz, 2H), 2.88 (s, 6H), 2.23 (s, 3H); 13C NMR (75 MHz, CD$_2$Cl$_2$) δ 149.53, 130.00, 126.39, 113.56, 41.43, 20.48; MS (EI): m/z (rel. Int) 135.

3-Chloro-N,N-dimethylaniline: 1H NMR (300 MHz, CD$_2$Cl$_2$) δ 7.13 (t, $J = 8.1$ Hz, 1H), 6.70 – 6.56 (m, 3H), 2.94 (s, 6H); 13C NMR (75 MHz, CD$_2$Cl$_2$) δ 152.26, 135.31, 130.50, 116.33, 112.51, 111.04, 40.69; MS (EI): m/z (rel. Int) 155.

3-iodo-N,N-dimethylaniline: 1H NMR (300 MHz, CDCl$_3$) δ 7.06 – 7.02 (m, 2H), 6.96 – 6.91 (m, 1H), 6.69 – 6.65 (m, 1H), 2.93 (s, 6H); 13C NMR (75 MHz, CDCl$_3$) δ 151.68, 130.51, 125.33, 121.21, 111.70, 95.67, 40.45; MS (EI): m/z (rel. Int) 247.
Efficient and selective N-methylation of nitroarenes under mild reaction conditions

\[
\text{N,N-dimethyl-4-(methylthio)aniline: } ^1H \text{ NMR (300 MHz, CD}_2\text{Cl}_2 \delta 7.14 (d, } J = 9.0 \text{ Hz, 2H), } 6.58 (d, } J = 8.9 \text{ Hz, 2H), 2.81 (s, 6H), 2.29 (s, 3H); } ^{13}C \text{ NMR (75 MHz, CD}_2\text{Cl}_2 \delta 134.63, 131.47, 128.45, 113.83, 41.02, 19.24; MS (EI): } m/\zeta \text{ (rel. Int) 167.}
\]

\[
\text{N,N-dimethyl-3-vinylaniline: } ^1H \text{ NMR (300 MHz, CD}_2\text{Cl}_2 \delta 7.23 (t, } J = 7.6 \text{ Hz, 1H), } 6.88 - 6.77 (m, 2H), 6.77 - 6.65 (m, 2H), 5.78 (d, } J = 17.6 \text{ Hz, 1H), 5.25 (d, } J = 10.8 \text{ Hz, 1H), 3.00 (s, 6H); } ^{13}C \text{ NMR (75 MHz, CD}_2\text{Cl}_2 \delta 151.61, 138.84, 138.39, 129.65, 115.06, 113.46, 112.88, 111.08, 40.94; MS (EI): } m/\zeta \text{ (rel. Int) 147.}
\]

\[
\text{Methyl 4-(dimethylamino)benzoate: } ^1H \text{ NMR (400 MHz, CD}_2\text{Cl}_2 \delta 7.76 (d, } J = 9.1 \text{ Hz, 2H), } 6.56 (d, } J = 9.1 \text{ Hz, 2H), 3.72 (s, 3H), 2.92 (s, 6H); } ^{13}C \text{ NMR (101 MHz, CD}_2\text{Cl}_2 \delta 167.72, 153.99, 131.58, 117.44, 111.22, 51.79, 40.39; MS (EI): } m/\zeta \text{ (rel. Int) 179.}
\]
6-(dimethylamino)-2H-chromen-2-one: 1H NMR (300 MHz, CD$_2$Cl$_2$) δ 7.65 (d, $J = 9.5$ Hz, 1H), 7.20 (d, $J = 9.1$ Hz, 1H), 6.97 (dd, $J = 9.1$, 3.0 Hz, 1H), 6.70 (d, $J = 3.0$ Hz, 1H), 6.32 (d, $J = 9.5$ Hz, 1H), 2.96 (s, 6H); 13C NMR (101 MHz, CD$_2$Cl$_2$) δ 161.52, 148.05, 146.58, 144.03, 119.58, 117.42, 117.22, 116.97, 109.50, 41.01; MS (EI): m/χ (rel. Int) 189.

N,N-dimethyl-4-(pyridin-4-ylmethyl)aniline: 1H NMR (400 MHz, CD$_2$Cl$_2$) δ 8.41 – 8.36 (m, 2H), 7.08 – 7.02 (m, 4H), 6.73 – 6.66 (m, 2H), 3.85 (s, 2H), 2.92 (s, 6H); 13C NMR (101 MHz, CD$_2$Cl$_2$) δ 151.97, 149.95, 130.13, 128.27, 127.42, 124.59, 113.39, 41.02, 40.77; MS (EI): m/χ (rel. Int) 212.

6. References.

7. 1H NMR and 13C NMR spectra of isolated products.
Efficient and selective N-methylation of nitroarenes under mild reaction conditions.
Efficient and selective N-methylation of nitroarenes under mild reaction conditions
Efficient and selective N-methylation of nitroarenes under mild reaction conditions