
UNIVERSITAT JAUME I

DEPARTAMENT D’ENGINYERIA I CIENCIA DELS

COMPUTADORS

European Master In Advanced Robotics

(EMARO)

From 3D Point Cloud to Grasping by Using Deep

Learning Techniques in Underwater Domain

Candidate: Supervisor:

Aleks Attanasio Prof. Pedro J. Sanz

Co-Supervisors:

Prof. Enrico Simetti

Dott. Toni Peñalver

15th September 2017

Abstract

This work is based on the detection of a couple of points for optimal and robust grasping

in an underwater domain. The objective is to provide a base for the development of a

routine able to autonomously gather information from the surrounding environment in

order to provide a robust grasp for underwater intervention robot such as the G500. For

this purpose a neural network and a point cloud processing are considered: the former is

meant to be able to classify shapes out of a segmented point cloud, the latter have the

purpose to reconstruct those shapes out of the classified pat of the point cloud scene. The

neural network has been described in its details and the routine explained step by step.

Eventually results obtained on real scenes are provided.

Acknowledgements

I would like to thanks Professor Sanz that gave me the opportunity to work for this

project.

A special thanks goes to my collegues from EmaroLab in Genoa Riccardo, Andrea, Alessio

and Massimiliano that helped me along the project development.

I would like to thank also all those people that supported me in the last year: Aidan,

Daniel, Silvio, Davide, Ilaria, Laura and Maddalena.

A particular acknowledgement goes to the lab technician Jésus without whom my work

would not have been so interesting and challenging.

Finally the greatest thanks goes to my parents that gave me the possibility to undertake

this journey always being present and available to listent to my concerns and my happiest

moments.

ii

Contents

Acknowledgements ii

1 Introduction 1

1.1 Robotic grasp . 2
1.2 Applications . 2
1.3 Problem Statement . 3
1.4 State of the Art . 4

1.4.1 Machine Learning and Deep Learning 4
1.4.2 Point Cloud Processing . 5

1.5 Underwater Intervention Robotics . 6
1.5.1 Reconfigurable Autonomous Underwater Vehicle for Intervention

mission (RAUVI) (2009 - 2011) . 6
1.5.2 Triton and Grasper (2012 - 2015) 7
1.5.3 UWSim (2012) . 8

1.6 Objectives . 9

2 Deep Learning for Classification 12

2.1 Basic Concepts . 12
2.1.1 The Sigmoid Neuron . 12
2.1.2 Structure of a Neural Network . 13
2.1.3 Di↵erent Kind of Layers . 15
2.1.4 Dataset Structure . 16

2.2 Classifying Shapes with a Deep Network 17
2.2.1 Dataset . 17
2.2.2 Neural Network Structure . 19
2.2.3 Learning Phase . 27

2.2.3.1 Softmax over Cross Entropy 27
2.2.3.2 Adam Optimizer . 29

2.2.4 Results . 30

3 Point Cloud Processing 33

3.1 Definition and Characteristics of a Point Cloud 33
3.2 PCL Processing Routine . 35

3.2.1 Acquisition and Merging of Point Clouds 36

iii

Contents iv

3.2.2 Di↵erence of Normal Segmentation 40
3.2.3 Region Growing Segmentation for Objects Subparts 46
3.2.4 Voxel Representation . 47
3.2.5 Reconstruction . 50

3.2.5.1 Cube Reconstruction . 51
3.2.5.2 Cylinder Reconstruction 52
3.2.5.3 Cone Reconstruction . 54
3.2.5.4 Sphere Reconstruction . 57
3.2.5.5 Recovery from Failures . 58

4 Results 59

4.1 Scenes and Objects . 59
4.2 Classification and 3D Reconstruction . 61

4.2.0.1 Results: amphora 0 . 62
4.2.0.2 Results: broken amphora 63
4.2.0.3 Results: box 0 . 65
4.2.0.4 Results: black box . 65
4.2.0.5 Results: Spheres . 66

4.3 Failure Modes . 66
4.3.1 Bad classification . 67
4.3.2 Bad Reconstruction . 68

5 Conclusions 70

5.1 Future Development . 71
Di↵erent neural network structure 71
Dataset . 72
Reconstruction and voxel resolution 72

Chapter 1

Introduction

In a scenario where robots are demanded to work for and with humans, one of the most

challenging required task for these machines is the ability of grasping objects. Although

performing such a task looks simple and immediate for a human being, many are the

problems that arise in reproducing this behavior on a machine. In Robotics, a grasp is

defined as a configuration of an arm, and its relative gripper, with respect to an object

that guarantees a solid and robust grab. The aforementioned configuration may depend

on the kind of gripper and arm that we consider. Grippers may di↵ers in shape, dimension

and number of fingers yet usually a grasping pose is defined by at least two points called

grasping points. Any additional point used to define a pose is considered redundant and

contributes to increase the grasp robustness. The learning process of the grasping function

starts early in a human life: since the first day of its life a human being acquires more

and more information regarding the possible grasp of objects allowing him to figure out

how to grasp even those items that are new to his personal experience. We can consider

the action of grasping as divided in three steps:

• Visual perception: thanks to our visual system we can detect the presence of an

object in our view and determine the position in space with respect to us.

• Approaching: once the object is detected and localized our body has to move in a

proper way to get closer to it

• Grasping: once we are in the proximity of the object, our arm has to reach it

assuming a proper configuration such that the object would be perfectly grasped.

Once that the main task has been divided in this way, we can approach the problem of

reproducing grasping capabilities on robots.

1

Chapter 1. Introduction 2

1.1 Robotic grasp

Nowadays, one of the most challenging task for a robot is to detect a possible grasp of

an object in a way robust enough to allow the robot to move without dropping the item.

Many are the solutions to this problem that have been proposed till now and almost all

of them find their inspiration in a great functional system which is nature. Bio-mechanic

world behind nature has always been inspiring for Robotics and, also in this case, it is

possible to transpose the example of a human grasping to a robotic environment. In other

terms we can see the grasping task as the following steps:

• Visual perception: through a vision system it is possible to detect the presence of

the object of interest in the scene. This vision system is supposed to be able also

to localize the object retrieving information about the distance of it from the robot.

For this purpose, usually, stereo vision systems, RGB-D cameras and laser scanner

are the most commonly used devices.

• Approaching: even in this case, as well as in the human one, the robot must be able

to reach the proximity of the object. This operation could be performed thanks

to modern control techniques that allows manipulator to reach a given position in

space aligning the gripper frame to the one attached to the object.

• Grasping: di↵erently from the human case, robots have to know a priori which is the

grasping pose to perform a grasp. This is one of the trickiest part of the grasping

action since even for us is di�cult to explain what leads us to choose a certain pose

rather than another one. In this point of the grasping process the characterization

of the grasp is crucial. It is in fact necessary for the robot to know the geometry of

the gripper and the position of the object. In [1] are reported di↵erent way to detect

a grasping pose and as many methods to have, for example, a two-finger gripper

performing a robust grasp.

Being able to reproduce these actions on a robot would open new possibilities to the

application of Robotics in all kind of contexts.

1.2 Applications

More and more frequently, robots are used in critical situation such as natural disasters or

dangerous accidents. In case of a nuclear incident, for example, getting close to the plant

core would result lethal for a human being due to radiation. For this reason, in this kind

Chapter 1. Introduction 3

of critical situations, teleoperated robots are used to substitute human operators. Even

in this case the whole success of the operation depends on the ability of human operators

while controlling robots in the accident place. Being able to perform a task such as

grasping would help operators to complete actions by automatizing part of the required

tasks making the whole task more a↵ordable. Without considering critical situation as

complicated as this one, possible application are in many fields such as surgery. The recent

Da Vinci Surgical System [2] is an example. This robot allows the surgeons to operate

patients through small incisions and reducing invasiveness of operations thanks to small

teleoperated arms. Even in this case the whole success of the operation is in the hand

of the surgeon and its ability with the instruments but, introducing automated grasping

behaviors would make operations easier for the human.

1.3 Problem Statement

In the last years more and more e↵orts have been focused on how to automatize the

grasping process. As mentioned above, many are the applications of such process and,

in our specific case, we will investigate the possibility of automatizing the task for sea

operations. Recently, Robotics found place for its applications also in a arduous environ-

ment such as the sea, where abilities like retrieval of objects from the sea floor may be

needed. For this purpose, University of Girona has designed a robot, the G500 (Figure

1.1), for sea rescue operations [3]. The robot moves in the underwater domain thanks to

five motors and it is equipped with a robotic arm on which is mounted a laser scanner able

to gather information about the surrounding environment in the form of a point cloud.

Both the manipulation and perception systems have been developed in collaboration with

the Universitat aume I.

G500 is able to autonomously navigate to reach a given position, however, by now, the

manipulation maneuvers are performed manually and could require several time to be

accomplished depending also on the condition of the sea. Most of the time the aim

of these operations is to retrieve an object of interest that is lying on the sea floor.

Simple examples of objects that could be considered of interest for these operation are

archaeological evidences or, in case of water landing, the black box of a plane. The

operation starts with the scanning of the sea floor looking for possible items of interest.

This operation may require days to be accomplished. Once that the object has been

located, the robot is controlled to reach the object and grasp it through maneuvers that

could be more or less di�cult depending on sea conditions. What it is required now is

a method that could provide the detection of an optimal grasp of an unknown object

starting from its point cloud representation.

Chapter 1. Introduction 4

Figure 1.1: G500 underwater robot (photo from Universitat de Girona).

1.4 State of the Art

Detecting an optimal grasp for an object could prove to be hard depending on the situation

and the condition that we consider. This leads to several approaches will be analyzed and

discussed to better understand the project choices that are going to be presented later.

First some basic concepts of Machine Learning and Deep Learning are provided and then

some insight will be given about point cloud processing.

1.4.1 Machine Learning and Deep Learning

One of the latest, most powerful and promising branch in Robotics of recent years is

Machine Learning and it provides a new approach to implement complex functions on

robots and computational systems. In particular neural networks and Deep Learning [4]

are being more and more used in robotics to solve every kind of task, from feature detection

in image [5] to optimal grasp detection in point clouds [6]. Deep Learning, as explained

in [7], is a representation learning method with multiple levels of representation. It works

thanks to simple non linear modules that retrieve each information regarding a di↵erent

level of abstraction guaranteeing a great success in learning every kind of function, even

the most complex ones.

branch?

Chapter 1. Introduction 5

In the past years many were the fields in which deep learning found useful applications,

especially in computer vision and image processing. Only recently has been applied to

new technologies like point clouds that can be seen, in practice, as a 3D image. In [8]

is proposed a method that exploits both RGB information and depth map of unknown

objects to determine an optimal grasping pose for them. Here, information regarding the

depth of the object is enriched by an RGB image that, having higher resolution then

the depth map, allows the computer to detect more features on the target. In favor of

increasing precision of the neural network, in this case the objects are presented as in

a neutral scene with a white background. In [6, 9] is presented a method that exploits

knowledge of complete known objects and analyzing the normals of it can detect a couple

of grasping points. Even in this case, for sake of simplicity, the model are presented to

the neural network as complete and not as partial as in a normal acquisition of a point

cloud. The aim of this project is to use a partial point cloud, representing only one or

more views of the object without having knowledge about the complete model of it. In

fact, in a real scenario it would be impossible to obtain the complete representation of an

unknown object to proceed as in [6, 9]. In addition to this there is to consider that on the

sea floor the visibility may be compromised; therefore information such as RGB images

are no longer helpful.

As far as this project is concerned, in order to implement machine learning, a Python open

source library called TensorFlow [10] has been exploited. In particular this project will

take advantage of the recently added functions to create three-dimensional convolutional

layers to manage data in the form of a 3D matrix. Later, in 2, this aspect of the project will

be analyzed more deeply, explaining better which is the structure of the neural network

and which are the function providing a correct functioning of it.

1.4.2 Point Cloud Processing

As introduced before another powerful instrument recently more and more used are point

clouds. Being distributions of points in a three dimensional space, point clouds can easily

represent an object. The way they are acquired may vary; the most common used devices

usually are RGB-D cameras (such as Microsoft Kinect or Asus Xtion) that can gather

both information as RGB images and depth map. Usually, it is very typical to see both

the depth map and the RGB images overlapped in the same frame. This is possible since

depth maps can be seen as a gray scale image where the brightness of a single point is

instead describing the distance of it from the camera. On the other hand, the resolution

of point clouds is usually lower than the one from images and for this reason sometimes

it could prove to be very tricky to detect certain kind of features.

Chapter 1. Introduction 6

Thanks to new open source instruments such as PCL (Point Cloud Library) [11] nowadays

it is possible to process point clouds with ease. Many are the application but one of the

main usage is in the field of grasping detection. In [12] is presented a method to create the

minimum volume bounding boxes of a point cloud in order to create a model composed

of boxes that would results easier to grasp. Even in this case the requirement needed to

perform such task is the complete knowledge of the whole point cloud. Another interesting

result has been obtained in [13] where geometry has been exploited to detect grasping pose

starting from the point cloud of the object and merging it with mechanical and geometrical

characteristics of the manipulator. In our case, PCL will be used mainly to process point

clouds for segmenting and reconstructing models easier to handle from the user’s side.

1.5 Underwater Intervention Robotics

In the past years, starting from 2009, as already mentioned in the previous sections,

many were the works regarding manipulation of objects in underwater environment. In

particular in Universitat Jaume I, at IRS Lab, a lot of e↵orts have been put in research

regarding underwater robotics.

1.5.1 Reconfigurable Autonomous Underwater Vehicle for In-

tervention mission (RAUVI) (2009 - 2011)

The main goal of the RAUVI [14] project is to provide and improve the necessary technolo-

gies for autonomously performing an intervention mission in underwater environments.

The approach can be summarized in two di↵erent steps:

1. survey

2. intervention

To start, the I-AUV explores the region of interest, taking visual and acoustic data,

synchronized with robot navigation. Then, the robot surfaces, and the information is

downloaded to the base station, where a computer provides a reconstruction of the ex-

plored region. By means of a specific human-robot interface, an operator identifies the

items of interest and describes the task to be performed. Subsequently, the I-AUV robot

navigates again to the region of interest, identifies the target object and performs the

intervention task.

Chapter 1. Introduction 7

Therefore, the RAUVI project aims to design and develop an Underwater Autonomous

Robot, able to perceive the environment by means of acoustic and optic sensors, and

equipped with a robotic arm in order to autonomously perform simple intervention tasks.

Briefly, the main goals to achieve are the design and development of:

• A reconfigurable I-AUV for exploration and intervention tasks.

• A new hydraulic manipulator and its gripper.

• The control architecture and planning algorithms for manipulation.

• Visual methods for target description and recognition.

Finally, several milestones are proposed, as experimental validation, in order to gradually

take the I-AUV to realistic scenarios. Initially, a real prototype will be evaluated in water

tank conditions, before the final evaluation in open sea conditions.

1.5.2 Triton and Grasper (2012 - 2015)

TRITON [15] project is an on going research project which has as main purpose the devel-

opment of an Autonomous Underwater Vehicle (AUV) capable of autonomous underwater

interventions. The scenarios chosen for the development and experimental validation of

the project are: search and recovery, permanent observatories. In Figure 1.2 is shown

how these two scenarios a↵ects the actions required to the robot to act properly in a

underwater environment: on the left it is represented how the robot scans the sea floor

and, once detected the object of interest approaches it in order to grasp and recover it; on

the right are shown the steps necessary to move closer to an accident location in order to

intervene on the problem. In the former scenario the aim of the robot is to scan the sea

floor looking for a typical black box of a plane, while, in the latter, the aim is to perform

all those maintenance operation characteristics of permanent marine stations that, most

of the times, require pipe and valve maintenance.

Thanks to the aforementioned RAUVI it was possible to have significant improvements

in underwater operation allowing research to work on three di↵erent sub-projects:

1. Cooperative Robotics, led by subproject “COMAROB” [16] at the UdG.

2. Multisensorial Perception, led by subproject “VISUAL2” at the UIB.

Chapter 1. Introduction 8

Figure 1.2: Permanent Observatories scenarios.

3. Autonomous Manipulation, led by subproject “GRASPER” [17] at the UJI.

For our particular interest, the GRASPER project proved to be interesting and helpful.

This sub-project focuses on developing a necessary manipulation skill in order to guaran-

tee a robust grasp for objects retrieving information about the surrounding environment

through a laser scanner. Once that it is possible, via point cloud analysis to define a

grasping pose that could guarantee a robust grasp of the object in the scene.

1.5.3 UWSim (2012)

In order to achieve the best results from a real situation, a simulator for underwater

environments has been provided. UWSim (UnderWater Simulator) [18, 19] is a software

working on ROS able to simulate the behavior of a underwater robot in order to optimize

its action in a real scenario. Thanks to this simulation software it is possible to simulate

natural e↵ect such as currents, viscous friction of water and physical e↵ects such as the

Chapter 1. Introduction 9

Figure 1.3: Screen-shot of UWSim

inertia of the robot while moving. In Figure 1.3 it is possible to see a capture of the

software while the Girona500 robot is floating in a reproduction of the University of

Girona pool where lots of tests took place.

1.6 Objectives

The aim of this project is to implement neural networks and Deep Learning to detect the

optimal grasping points of an unknown object knowing only its point cloud representa-

tion. The main idea is to use PCL and neural networks together in order to obtain a

reconstruction of the object as composed of basic geometrical shapes like cubes, cones,

spheres and cylinders. Defining an optimal grasp may require the evaluation of few pa-

rameter such as the curvature of the object or the distance within the line connecting the

grasping points and the center of mass [20, 21]. All these parameters are useful to define

a grasping characterization of an object in order to also state what is to be considered to

guarantee a grasp to be the optimal one.

As stated before, neural networks able to classify data basing on their features already

exist, but few are the systems able to detect the grasping point starting only from a

point cloud representation of an object that is not known. The project merges techniques

from both point cloud processing and machine learning with the aim of creating a robust

system able to perform the following logical steps:

• Train a neural network to classify basic shapes (cubes, cylinders, spheres and cones)

underwater images?

Chapter 1. Introduction 10

• Obtain and segment the point cloud to isolate the object from the background and

to divide it into parts

• Use the neural network to classify every single part of the object to reconstruct a

geometrical model

• Define the grasping points on the geometrical model

In Figure 1.4 is reported a sample of what the desired result should look like: the point

cloud has been divided in parts and for each part has been detected a corresponding shape

in order to obtain a complete three dimensional model of the object. Once obtained the

Figure 1.4: Example of desired result on an amphora point cloud.

model, defining the grasping points for each shape, it is possible, taking into account also

the center of mass of the object, to define a couple of graping points to guarantee a robust

grip.

In order to simplify the classification and the processing, objects are analyzed in an

environment without cluttering. This means that in every scene there will be one or more

objects properly separated among them. This decision has been taken in order not to

mix di↵erent objects within them having then separated entities in a scene. In this way

once the objects are separated from the background it is possible to analyze them without

needing a routine able to detect overlapping of shapes.

In the following chapters will be analyzed the algorithms and concepts exploited during the

developing of the project: in Chapter 2 is presented a structure for a neural network able

has this been accomplished?

Chapter 1. Introduction 11

to classify basic shapes into four classes (cubes, cylinders, cones and spheres), in Chapter

3 is reported the routine used to process the point clouds to segment and separate them

from the background and to divide them into their subparts, in Chapter 4 the results

obtained in the tests are shown and, finally, in Chapter 5 are discussed the conclusions

regarding the project.

Chapter 2

Deep Learning for Classification

As aforementioned in Section 1.6 to face the problem of detecting optimal grasping points

the first step is to train a neural network in order to have a classifier for basic shapes

like cylinders, cubes, spheres and cones. In our particular case we will exploit the process

called Deep Learning that finds its roots in neural networks, an approach to computational

problems that could lead a computer to learn from examples in a supervised or in an

unsupervised way. Neural networks are inspired, as lots of concepts in robotics, to a

natural and biologic system: human brain. This latter is composed of a thick network of

neurons that communicate between them thanks to synaptic links. What happens during

learning is that lots of these links are activated and, each time they receive a stimulus, a

proper response is provided and improved step by step. Artificial neural networks work

similarly, with the di↵erence that the fundamental parts of which it is composed are not

biological neurons but sigmoid neurons: a non-linear module as said before. In the next

sections will be presented some basic concepts about neural networks and Deep Learning

in order to have later a better confidence with the proposed solution.

2.1 Basic Concepts

2.1.1 The Sigmoid Neuron

Neural networks, as stated before, work thanks to non-linear modules that takes the name

of sigmoid neurons which could have one or more inputs and outputs. Each incoming value

will be multiplied by a weight w

j

and the result will be compared to a threshold value

called bias b that defines which will be the outputs of the neuron. Values such as weights

and biases are defined for each neuron and may lead the neuron to ”fire” or not, in other

12

Chapter 2. Deep Learning for Classification 13

words if the neuron will have an output or not. Considering z ⌘
P

j

w

j

x

j

� b, the sigmoid

function is defined as:

�(z) ⌘ 1

1 + e

�z

(2.1)

It is possible to deduce the shape of this function simply thinking about its extremes:

when z is large the output � will be 1 , on the contrary, for small values of z we obtain a

0 output. The representation of the sigmoid transfer function is provided in Figure 2.1.

Figure 2.1: Sigmoid Neuron Transfer Function

This function’s smoothness suggest that small changes in biases and weights causes small

variations in the output, making linear the output with respect to variation of weights

�w

j

and biases �b. Exploiting calculus what comes out is that the output variation can

be represented as:

�output =
X

j

@output

@w

j

�w

j

+
@output

@b

�b (2.2)

This property of the sigmoid function will be very useful during the learning phase since

it can help to get closer to the desired result basing on the values of the cost function that

will be explained in the next section.

2.1.2 Structure of a Neural Network

Now that the working principle of the units that compose the neural networks is defined,

it is possible to talk about how the structure of a network is designed. As aforementioned

the structure is composed of a high number of neurons that can provide a more complex

behavior. In Figure 2.2 it is shown how generally neurons are divided into layers in a

feedforward network:

Chapter 2. Deep Learning for Classification 14

• Input layer: composed of neurons receiving raw data

• Hidden layers: composed of neurons receiving data from other neurons

• Output layer: the last layer outputting the final result

Figure 2.2: Classic neural network structure.

The number of hidden layers represents the complexity of the network: if it has one or

two hidden layers, usually, it is said to be shallow ; otherwise if it has more than three

layers it is said to be deep. Concepts about depth and complexity of networks lead to the

aforementioned definition of Deep Learning, the process directly related to deep networks.

As said before the neurons provide a non linear function but how this behavior is linked to

a possible learning has not been defined yet. Usually neural networks are used to gather

high level information out of data such as images that may be of interest for a specific

task. This characteristic data are obtained by a proper tuning of the inner parameters

of neurons: weights and biases. As human learning, neural networks provide a better

solution at each step improving the response at every iteration. To quantify how much

the neural network is learning and how much it is getting closer to the desired solution a

cost function is provided and it proves to be useful to determine if the network is achieving

its goal or not: the higher the value of the function, the further we are from an optimal

solution. Commonly, the cost function is defined as the Mean Square Error :

C(w, b) ⌘ 1

2n

X

x

ky(x)� ak2 (2.3)

Chapter 2. Deep Learning for Classification 15

where w and b are all the weights and biases of the network, n is the number of learning

inputs, a is the output of the network when x is the input and y is the reference output.

Values of x and a are given in a dataset used during the learning phase containing the

learning input. Cost function C(w,B), as it is possible to notice, is always positive and

the closer we get to C(w, b) ⇡ 0 the better is our solution. Since reaching the exact

zero of this function is almost impossible, it would be enough satisfying at least reaching

the proximity of a local minimum in the cost function. In order to get closer to this

stationary point some algorithms are provided: one of the most commonly used is the

stochastic descent. Classic gradient descent works thanks to evaluation of gradients of

cost function at each learning step and then calculating the next step where the gradient

results negative. The number of steps is called epochs and the dimension of the single

step learning rate. Classic gradient descent have the drawback of computational cost since

it takes as learning inputs all the elements of the dataset. From this point of view, its

stochastic form results lighter because it takes a smaller random part of the dataset and

then it generalize the result. Once the local minimum or in its nearness is reached, a

satisfactory neural network model could be described by the weights and biases in that

point.

Tuning parameters like number of epochs and learning rate could result crucial for a

satisfactory behavior: a high number of epochs with a low learning rate could lead to

the possibility of never reaching the proximity of a minimum, on the other hand, a high

learning rate could cause overfitting. This last is a anomalous behavior that could appear

in training a network and it may be caused by several factors such as a too high number

of parameters describing the model of the network, an inappropriate dimension of the

dataset or a too long training phase. Since overfitting is a collateral e↵ect, some easy

operation are available to avoid it such as cross-validation in which a part of the dataset

is used to make the network fit correctly the data. This concept will be better explained

in Section 2.1.4

2.1.3 Di↵erent Kind of Layers

Designing a neural network find its main di�culty in finding a fitting solution to the

particular problem. As said before the structure of neural networks may vary from problem

to problem: di↵erent structures provide di↵erent solutions to the same issue. The nature

of the layers, as already stated in Section 2.1.2, may be di↵erent, especially regarding the

hidden layers. In this region of the network usually the most of the calculations happen

and di↵erent layers provide di↵erent function to process data.

Chapter 2. Deep Learning for Classification 16

One of the most used and versatile layer is the convolutional one. This kind of layer result

to be perfect for processing data in the form of a matrix such as images or, most recently,

point clouds. The main working principle behind the convolutional layer find it’s roots in

image processing and in particular in local processing. The main feature that makes so

powerful convolutional layers is the analysis by window: the whole image is scanned point

by point and for every point its neighborhood is considered. The number of neighbors to

be analyzed depends on the size of the window that is chosen by the network designer.

By analyzing the image, or more generally the matrix, every single layer is able to retrieve

information on a di↵erent level of abstraction depending also on the number of filters

that the user wants to detect inside that patch. Thanks to these filters the convolutional

layer is able to detect features and store them into a feature map which is going to be

processed eventually by another kind of layer: the pooling layer that simply reduces the

sizes of the map. This operation leads to have a smaller and more concentrate map where

local groups of feature, usually highly correlated between them, are going to be collected

and interpreted as motifs for further analysis in subsequent layers.

Since the only limit in this kind of structure is the memory required to store all the data,

potentially speaking there is no constraints on the size of the networks. This leads to

have even more deep networks that can provide, reporting what said before, even more

complex function. A great example is reported in [22] where a deep network (almost 25

layers) has been designed to recognize di↵erent objects from images acquired by a camera.

2.1.4 Dataset Structure

In order to provide a satisfying response neural networks need many di↵erent examples

that are usually called dataset and its structure may vary depending on the kind of

learning that we want to provide: supervised learning requires labeled data, unsupervised

learning don’t need labels to work. Data then can come in two forms:

• labeled: to each data is related its own target (for example in images classification

problem every example has it’s own class label)

• non-labeled: data have no target but a pre-training network is provided to extract

feature and define classes by itself.

As aforementioned datasets are supposed to be as big as possible to avoid overfitting. For

this reason, usually, the dataset is divided in three parts:

Chapter 2. Deep Learning for Classification 17

1. Training Set: used to find values of weights and biases to fit the data. Usually it

is composed of the 70% of the dataset

2. Validation Set: used to validate parameters from the first stage and to avoid

overfitting. Usually the validation set is the 20% of the dataset

3. Test Set: used once the model has been trained to asses the e↵ectiveness of the

training. Usually it takes the 10% of the whole dataset.

Also in this case, as it was for the parameters defining the network, the dataset can be

split arbitrarily by the user in the percentages he feels more confident with.

One of the hardest part in working with neural network is finding a proper dataset, big

enough and containing enough information to allow the network to generalize. Usually

it is possible to find online these datasets that have been already used by others but if

no one of the present datasets contain the information needed, it may be necessary to

build up a personal dataset for further analysis. Depending on the kind of information,

creating a dataset could be tricky and this aspect of neural networks will be presented

later in Section 2.2.1 where is going to be shown how a dataset for shape recognition could

be built.

2.2 Classifying Shapes with a Deep Network

As mentioned before in Section 1.6, the aim of this project is to define geometrical models

of an object starting from its point cloud. In this Section the approach to classification

problem with Deep Learning will be presented showing the structure of both the dataset

and the network used. At the end, results of training will be presented.

2.2.1 Dataset

Since the objective of this network is to classify object, what we will need is basically

a labeled dataset of point clouds representing shapes in space. Seeing that objects in

point clouds are partially represented because some parts of them could be concealed to

the camera, the dataset needs to be as much similar as possible to the real case. For

this purpose, a C++ script generates shapes seen by a random point of view resulting,

therefore, partially complete. Since the neural network will be trained via supervised

learning, the dataset need to be labeled. A very classic way to classify objects is using

a one-hot vector having as size the number of classes where a label is defined by a one

Chapter 2. Deep Learning for Classification 18

value along the vector. In our case the number of classes is four since the aim is to classify

objects within the four types of shapes (cube, cone, cylinder, sphere). Thus every single

shape in the dataset is labeled with a vector representing its classification. In Figure 2.3

is shown how the shapes are generated and labeled.

Figure 2.3: Generation and labeling of dataset.

Once generated the shapes, due to memory issues that could lead to excessive compu-

tational e↵ort, it is required to reduce the size of point clouds representing them using

voxels, a volumetric unit of measure similar to pixel for images. This transform divides the

space of point clouds into a three dimensional matrix and, for every element of it, a check

is performed: if inside the element subspace is present at least a point or a group of points,

than that space will be labeled with a one, if not its label will be a zero. This method

provides a good shrinking in size of clouds without distorting them and, depending on

the size of the matrix that we use to divide the space, we can have voxels representation

with more or less details. Obviously applying this kind of compression causes a loss in

resolution of the cloud but, since the shapes used are very basic this creates no losses of

generality in the results. In Figure 2.4 is reported an image from [23] of a scene with the

overlapped matrix used to create the voxel representation of it. In this case the scene has

Chapter 2. Deep Learning for Classification 19

lots of detail and the matrix dimension used will only make possible to basically recognize

the human shapes without any further analysis on the context.

Figure 2.4: Voxel representation of a scene.

The voxelization process has to be applied also to clouds that we’re going to input into

the neural network. This operation is slightly di↵erent from the generation of the dataset

and it will be analyzed more precisely later in Section 3.2.4.

2.2.2 Neural Network Structure

In order to create the classifier neural network we exploited Tensorflow [10], a Python

open source library developed by Google including all the required function to create and

customize a neural network. In this section will be presented the structure of the network

Chapter 2. Deep Learning for Classification 20

describing every single layer composing it. Creating a good neural network could be tricky

since there is no clue on how to create it and which is the optimal solution. This is due

to the fact that, by now, it’s still not clear what theoretically happens within a neuron.

For this reason, a good structure to solve a problem could prove not to be fit for other

issues, even if the problem is similar. For this reason, before obtaining the structure that

we will call from now on optimal, few trials are required. What is going to be shown in

this Section is the structure of the optimal network that makes it able to classify objects

with high reliability.

In Figure 2.5 is reported the structure of the network as a graph obtained through Ten-

sorboard, an interactive platform with GUI to display results of trainings.

Starting from the bottom it is possible to explore, layer by layer, the topology of the

network. At the beginning placeholders containing the weights and biases are created

and initialized with random values that will be updated during the first iteration. Once

created placeholders and imported data from the dataset, the structure of the network is

composed of:

1. conv1 class : Convolutional layer with Pooling layer

2. conv2 class : Convolutional layer with Pooling layer

3. conv3 class : Convolutional layer

4. dense1 class : Densely Connected layer

5. lineal1 class : Densely Connected layer

Tensorflow works thanks to tensors used as representation of layers output and o↵ers many

di↵erent functions to customize the structure of the network by changing parameters of

every single layer.

Regarding convolutional layers the first choice is to chose which kind of convolution is

needed. In our case, since data comes in form of a 3-D matrix, the 3-D convolutional

layer proves to be the most appropriate for our structure. Actually with this kind of layer

it is possible to scroll the matrix in every dimension granting the possibility to detect the

most of features. For sake of clarity, in Figure 2.6 is shown how a kernel moves within

the space of the matrix, in this case the kernel is represented in red and the total matrix

in black.

Chapter 2. Deep Learning for Classification 21

Figure 2.5: Graph of the network used.

Chapter 2. Deep Learning for Classification 22

Figure 2.6: Representation of a kernel moving.

Once a convolutional layer is defined there are few parameters to tune:

• Activation function

• Size of kernel

• Number of filters

• Padding

• Stride

The activation function determines if the neuron will fire or not as a result of the incoming

input. Usually the rectifier, that looks like a ramp, is the most common function used

as activation and is called ReLU (Rectifier Linear Unit) in is application. In order to be

more precise, the definition of the ReLU function is:

f(x) =

8
<

:
0 for x < 0

x for x � 0
(2.4)

where x has to be considered as the input of the neuron. In Figure 2.7 is shown the

rectifier function.

Chapter 2. Deep Learning for Classification 23

Figure 2.7: Rectifier function (ReLU).

This is not the only function available as activation function but there are many such as

the Idenity that will be used later.

The size of kernel and the number of filters define how big is he scrolling square and

how many filters to use for each moving patch. These subregion of the space will contain

features that, once detected, are used to create a map containing all of them. Feature

maps are shrunk later by the pooling layer in order to make similar and close feature more

related within each other.

On the other hand, the value of Padding can be ”same” or ”valid”: the former will add

no values to the edges of the output tensor, the latter will add a proper number to make

fit the kernel size to data.

Finally, the Stride value means the step to use to apply the matrix of the kernel. To

make it clearer in Figures 2.8, 2.9, 2.10 are reported three examples of striding in a two-

dimensional space to make it simpler to visualize. In Figure 2.8 is shown a case in which

there is no overlapping of the patches with a Stride dimension of [2, 2] (red crosses, one

every 2 steps in each dimension) and a kernel size of [2, 2] (blue windows). Decreasing the

number of stride at [1, 1] (one cross every step in each dimension), keeping the same size

of kernel, the result obtained is shown in Figure 2.9 where overlapping of kernels is clear.

Another case is in Figure 2.10 where the stride dimension is [4, 4] (one cross every 4 steps

in each dimension) and the kernel size is the same: here we have no overlapping of region

Chapter 2. Deep Learning for Classification 24

Figure 2.8: Stride = [2, 2].
Figure 2.9: Stride = [1, 1].

Figure 2.10: Stride = [4, 4]

but there are few regions that are not covered by the patches. Usually the most common

case is the first one in Figure 2.8 where all the matrix is covered without overlapping that

results to be a waste of time and computational cost. The reason why it is possible to

overlap patches is because, in few cases, could be required to analyze more deeply the

features contained in the dataset. In that case, a small Stride dimension will increase

the training time but would have more precision in those cases where features are a lot

and all close within each other. On the contrary the case shown in Figure 2.10 performs

better training in those situation where features are sparse. In fact, being not needed to

find lots of features, to improve performance it is possible to choose not to analyze all

the matrix. In addition, in this case, in order to make it visually more clear,the Stride

and patch dimensions have been chosen in order to have them in the shape of squares;

however it is possible to arbitrarily select the dimension to fit di↵erent data with proper

dimensions.

Chapter 2. Deep Learning for Classification 25

Once defined these parameters it is possible to discuss about the structure of layers in all

their details. In Table 2.1 is reported, layer by layer, the characteristics of the network.

Since some values have no sense applied to a certain kind of layer, a ”—” is written in

these case. In order not to encumber the table, the input layer and the output layer has

been left apart. In Section 2.2.3 will be described better the output layer and its function.

Table 2.1: Structure of the neural network used

Layer Activation Kernel Size Number of Neurons Padding Stride
Convolutional ReLU [5, 5, 5] 10 Same [1, 1, 1]

Pooling — [3, 3, 3] — Same [3, 3, 3]
Convolutional ReLU [5, 5, 5] 30 Same [1, 1, 1]

Pooling — [2, 2, 2] — Same [2, 2, 2]
Convolutional ReLU [3, 3, 3] 40 Same [1, 1, 1]

Densely Connected ReLU — 180 — —
Densely Connected ReLU — 4 — —

As it is possible to observe from Table 2.1 the structure of the network presents three

convolutional layers, two pooling layers and two densely connected layers. Pooling layers

have a di↵erent function from convolutional ones: mainly pooling layers scroll the feature

maps extracted by the convolutional layer but, instead of looking for features, they eval-

uate the maximum of the elements in the kernel and shrink the whole patch to a single

element having as value the maximum found before. This process is called maximum

pooling and allows the features in the map to be closer within each other whether they

prove to be related. The structure of the network will be now analyzed layer by layer

considering every single parameter.

As aforementioned, most of these layers has as activation function the rectifier introduced

before (see Equation 2.4). However, the output layer, not reported in the table, has a

di↵erent function that gives also the name to the kind of layer: Softmax Layer that will

be shown in details in Section 2.2.3.

Regarding the size of the kernels there is nothing much to say but that the second pooling

layer changes dimension from [3, 3, 3], of the first pooling layer, to [2, 2, 2] in the second

one, in order to have an even pooling. In fact as shown in Figure 2.11 the size of input

changes after the first pooling from 30 ⇥ 30 ⇥ 30 to 10 ⇥ 10 ⇥ 10 since the pooling size

is [3, 3, 3]. For this reason, in order not to have odd divisions the second pooling layer

provides a [2, 2, 2] kernel thus obtaining a 5⇥ 5⇥ 5 output.

Further analysis of the structure lead to the number of neurons for each layer. Convolu-

tional layers, as mentioned in Section 2.1.3, are able to retrieve information by analyzing

maps of feature in the matrix. In our specific case an ascending number of neurons has

Selected after experimentation?
Inspired by other works?

Chapter 2. Deep Learning for Classification 26

Figure 2.11: Network structure with highlight on dimension of data.

been set for the convolutional networks in order to achieve a su�cient level of abstraction

to generalize characteristics and features of the four classes of shapes that are represented

with a confidence value by four neurons in the last densely connected layer.

Continuing the analysis of the table it’s possible to observe that all the padding variables

has been set to same, therefore no values are added to the boundaries of the matrix. This

choice has been taken because the shapes that are going to be considered will never be

that big to occupy the whole matrix. For this reason, it’s rare to find a case in which

some features are on matrix’s boundaries thus the border e↵ect will not a↵ect the results.

Finally, strides values simply state that there is overlapping of the kernels in the con-

volutional layers but not in the pooling ones. This is a common decision in designing

neural networks regarding pooling layers, in fact, while it is required convolutional layers

to scan the whole image (or matrix) looking for every possible feature, this requirement

is not desired on pooling layers that are expected to concentrate the feature map without

neither distorting nor confusing it.

Now that the structure of the network is well defined the next step is to define the details

of the learning phase, in other words the settings with which the network will perform

learning. In Section 2.2.3 is reported how the network was set to learn and which where

the last parameters to be tuned to complete the learning of the four classes to implement

a classifier.

Chapter 2. Deep Learning for Classification 27

2.2.3 Learning Phase

In the previous section has been largely described the topology of the network. In this

section will be presented the functions used to make actually the train happen.

As previously said, machine learning exploits the power of gradients and other mathe-

matical operators to explore a cost function looking for its minimum. This leads to the

decision about which kind of cost function to use and which kind of optimizer to use in

order to find it’s minimum. In our case, since the objective is to classify shapes, the Cross

Entropy combined with a Softmax layer proved to be e↵ective for classification. For this

reason we are going to be explain in detail these concepts in the next section.

2.2.3.1 Softmax over Cross Entropy

In Section 2.1.2 has been reported the importance of the cost function related to the

actual learning of a neural network. Reporting what stated before, usually the cost

function is defined as in Equation 2.3. However, it is possible to define di↵erent cost

functions depending on the kind of network that we are using. Choosing the most suitable

cost function may be decisive in defining the performance of the network, in fact it can

determine the speed with which the network will reach the desired results.

In our case of study, in order to improve the speed in learning, has been introduced Cross

Entropy as cost function defined as:

C = � 1

n

X

x

[yln(a)� (1� y)ln(1� a)] (2.5)

where n is the number of training items, the sum is over x training inputs, y is the desired

output and a is the actual neural network output. In order to being able to define this

function as a cost one it is necessary that it satisfies at least two requirements:

1. It has to be always defined positive (C > 0 8x)

2. It has to be C ⇡ 0 for y ⇡ a

In other words: the cost function can’t be negative and its value gets closer to 0 whenever

the output of the network is getting similar to the desired one. In this case both the

requirements are satisfied, in fact, since both the logarithms terms are all in the range

between 0 and 1 and the other terms in the sum are negative, having a minus at the

beginning of the sum, C can’t have negative values. In addition to this, considering that

Chapter 2. Deep Learning for Classification 28

in our case, for classification, the values of output stays in the interval within 0 and 1, it

is possible to see how considering values such as y = 0 and a ⇡ 0, or y = 1 and a ⇡ 1,

the cost function tends to the zero. Having satisfied the requirements to define Equation

2.5 as a cost function, it will be shown now which are the advantages that Cross Entropy

provides in place of the simple Quadratic Error cost function. Actually the previous seen

Quadratic Cost may result slow during learning, especially in the unfortunate case in

which the initial error is big. In that case, being the weights and biases updating basing

on the partial derivative of the cost C with respect to weights and biases, @C/@w and

@C/@b, it may occur the case in which, for the first epochs, the cost function slightly

decreases remaining more or less around the same value. Only once that the cost function

reaches a cli↵, the partial derivatives of C start to have significant values to reduce as

much as possible the cost function.

On the other hand, Cross Entropy provides a solution to this problem that could be

noticed only once analyzed the partial derivatives of it with respect to the weights and

the biases. In fact considering the partial derivative @C/@w with a = �(z):

@C

@w

= � 1

n

X

x

✓
y

�(z)
� (1� y)

1� �(z)

◆
�

0(z)x
j

= � 1

n

X

x

�

0(z)x
j

�(z)(1� �(z)
(�(z)� y)

(2.6)

Now given that �0(z) = �(z)(1� �(z)) the previous equation becomes:

@C

@w

=
1

n

X

x

x

j

(�(z)� y) (2.7)

where is clear that the greater the error the faster the function will tend to zero. This

advantage is also given to the fact that @C/@w does not depend on �

0(z) that being

small would slow down the function in reaching the zero. A similar operation could be

performed on @C/@b obtaining:

@C

@b

=
1

n

X

x

(�(z)� y) (2.8)

where again it is possible to see the �

0(z) disappearing and allowing the function cost

to be fast in tending to zero. Thanks to these properties, properly sought-after, the

Cross Entropy prove to be a versatile and optimal solution for learning especially for

classification cases.

Chapter 2. Deep Learning for Classification 29

Another fundamental concept of which the project takes advantage is the Softmax func-

tion, usually implemented in the so called Softmax layer. In general this kind of layer

is placed as output layer of a neural network and used to implement classification. It

is in fact able to to shrink a K-dimensional vector z of real values to a K-dim ensional

vector �(z) of real values in the range [0, 1] which added returns the value 1. The Softmax

function has been defined as

�(z)
j

=
e

zj

P
K

k=1 e
zk

forj = 1, . . . , K. (2.9)

Thanks to this it is possible to interpret the values of �(z) as confidence values related

to the considered class. In our case, since the classes are basically four the �(z) vector

will have four output values indicating the confidence with each class. In other words

the results of the Softmax layer is a distribution of probability, the probability that the

current instance is belonging to a class rather than another one.

Combining Cross Entropy and Softmax is one of the most common and e↵ective way to

build a classifier having as input an instance of an object to classify and as output its

values related to the probability of the object to belong to each class. For example, in

our case of study, it is expected a cube to have a classification output vector having a 1

on the confidence value related to the cube class. However, since usually reaching a 0 in

the cost function is quite impossible, we will never obtain a confidence value of 1, yet we

will have hopefully a peak value on the corresponding class.

2.2.3.2 Adam Optimizer

As previously introduced in Section 2.1.2 during the training of a network is necessary to

provide a function able to understand which is the direction of the next step along the

loss function in order to find its minimum. Antecedently has been introduced the most

used optimization algorithm based on the evaluation of loss function gradient intuitively

called Gradient Descent. Even in its stochastic form, this algorithm does not guarantee

the best performance on training and sometimes it may require more time. For this reason

more optimizers have been provided to guarantee the best performance in optimization.

The algorithm used in this project is called Adam Optimizer [24] that stands for adap-

tive moment estimation. It’s advantage consists in being able to evaluate an adaptive

learning rate for each weight instead of Gradient Descent Algorithm that keeps that value

fixed. In addition to this Adam algorithm could be considered a mixture of two di↵erent

optimization algorithm:

Chapter 2. Deep Learning for Classification 30

• Adaptive Gradient Algorithm (AdaGrad) [25]: used mainly in computer vision

provides per-parameter learning rates updating them making this algorithm versatile

with problem presenting sparse gradients.

• Root Mean Square Propagation (RMSProp): provides learning rates adapted

on the basis of averages of recent magnitudes of the gradients for the weights.

Basically Adam takes the advantages of both not only considering the mean as in RM-

SProp, but also it takes into account the variance. Recently Adam proved to be very

e↵ective applied to Deep Learning problems such as classification. In [24] it has been

tested on the MNIST [26] classification problem and on CIFAR-10. Due to its versatility

and e↵ectiveness, Adam optimizer has been chosen as optimizer for this project.

2.2.4 Results

In this section will be presented the results obtained taking advantage of the previous

neural network structure and parameters set. The reported results are the best that have

been obtained during the test and are relative to the previous described neural network.

The dataset used has been generated thanks to a C++ script introduced in Section 2.2.1.

This latter is able to generate a dataset given the proportion of the amount of shapes so

that it is possible to create dataset with more, or less, number of a specific shape. In

addition it is possible to chose the amount of shapes contained in the training and in

the validation set. The shapes are created as point cloud and then converted into their

respective voxel representation. Finally every single shape, now converted into a three

dimensional matrix, is saved as a text file reporting every single element of the matrix.

In our case the dataset is composed of:

• 3000 shapes for the training set

• 800 shapes for the validation set

• 300 shapes for the test set

with the following proportion: every 8 cubes are generated

• 8 cylinders

• 4 cones

Chapter 2. Deep Learning for Classification 31

• 6 spheres

since, empirically, it’s possible to observe that cylinders and cubes occur more frequently

than cones and spheres.

After few tunings of parameters, the neural network has run for 16 hours and around 600

epochs improving the precision from 20% to around 85%. This means that for each batch

of the dataset composed of 150 elements the 85% were correctly classified. In Figure 2.12

and 2.13 are represented respectively the graph of the loss function and of the output

precision.

Figure 2.12: Loss function.

Figure 2.13: Accuracy of the network.

The curves have been obtained thanks to TensorBoard, a tool implemented in TensorFlow

that provides a graphic interface to better show what actually is happening inside the

network. The graphs have been smoothed to better appreciate the dynamics of them. In

Figure 2.12 is shown how the cost function decreases in time and tends to zero. On the

other hand Figure 2.13 shows how the accuracy of the network has an ascending trend

Chapter 2. Deep Learning for Classification 32

that reveals how the network is learning e↵ectively how to classify objects. In fact in this

case, to evaluate accuracy, has been chosen the percentage of correct prediction out of the

total ones.

Later, in Chapter 4 will be reported the results of the network fed with the output of the

point cloud processing that will be now presented in Chapter 3.

Chapter 3

Point Cloud Processing

In previous sections it has been presented a neural network able to recognize basic shapes

out of their point cloud and voxels representation. As introduced in Chapter 1 the next

step after shape classification is a point cloud processing routine able to reconstruct the

object using the classified basic shapes. The reconstruction problem has been assessed

taking advantage of few features retrievable from a partial point cloud such as curvature

values, center of mass and orientation. In the following section will be presented an

approach to perform such reconstruction in order to have a simpler object representation

on which easily detect the optimal grasping points.

3.1 Definition and Characteristics of a Point Cloud

Before starting to describe the routine outlines is fundamental few concepts to be clear

in order to fully understand the steps of reconstruction. First of all is necessary to define

what a point cloud is: a point cloud is a 3D representation of a scene composed of points

defined with their coordinates along the x, y and z axis in space. The result of this is a

scene such as the one in Figure 3.1 where it’s possible too see what could be the sea floor

with an amphora and a small stone.

The point cloud representation of a single view of a scene is also assumable as a gray

scale image where, instead of considering the intensity of light for a single point (pixel),

we consider the depth value related to that point in the scene. Having clear the basic

structure of a point cloud it is now allowed to introduce the first concepts related to the

processing of this kind of data structure. For the purposes of this project the operators

that will be used are mainly local operators. In other words, the point cloud processing

33

Chapter 3. Point Cloud Processing 34

Figure 3.1: Point cloud of a scene with an amphora and a stone.

will be always performed along the whole scene and not considering point by point. These

kind of local operators allow us to evaluate features such as the curvature of the cloud and

di↵erence of normals (DoN) that will be explained in details in Section 3.2.2. In Figure

3.2 is shown a point cloud where the values of curvature are represented by color: the

more the color gets closer to the blue, the higher is the curvature value relative to that

point. In this case the point cloud represents the head of the typical bunny sample used

for PCL testing.

Figure 3.2: Curvature values along a point cloud.

In the following sections will be explained more precisely every step that involves point

cloud processing in order to obtain a couple of points on it for an optimal grasp.

Chapter 3. Point Cloud Processing 35

3.2 PCL Processing Routine

In this section will be shown step by step the routine represented in Figure 3.3 as a

flowchart that allows the program to detect the grasping points starting from the point

cloud obtained, as mentioned in Chapter 1, via laser scanner. In blue are reported the

data input and output of the routine functions, in orange are the functions related to

point cloud processing and, finally, in green are reported all the processes performed by

the neural networks.

Figure 3.3: Routine flowchart for optimal grasping point detection.

Chapter 3. Point Cloud Processing 36

3.2.1 Acquisition and Merging of Point Clouds

As previously stated in Section 3.1, the routine starts with the captures of point clouds

that are basically gathered by the laser scanner mounted on the G500 arm shown in Figure

3.4 while grasping a box from the pool floor.

Figure 3.4: G500 with the UJI arm grasping a box from the pool floor.

All the used point clouds have been acquired in an environment simulating the sea floor:

a pool where the floor is covered with sand, or with a picture of a generic sea floor, and

where the robot is floating. Before, the point clouds were said to be similar to a gray scale

image where the intensity of light is, in a way, related to the points depth in the scene.

In our specific case the situation is slightly di↵erent: the point clouds that will be analyzed

are not retrieved by a single capture of a scene but, instead, they are created by overlapping

more views (from 4 to 7) one over the other in order to have a more complete knowledge

of the scene and in particular to have more information related to objects of interest.

Generally, overlapping point clouds requires the above point clouds to have the same

camera frame in order to have the same orientation for the points in the cloud. However,

the G500 laser scanner is equipped with a routine able to set the origin frame at the base

Chapter 3. Point Cloud Processing 37

Figure 3.5: Real scene of an amphora and its point cloud.

Figure 3.6: Real scene of a airplane black box and its point cloud.

Figure 3.7: Real scene of a broken amphora and its point cloud.

Chapter 3. Point Cloud Processing 38

of the arm, in this way the views acquired by the scanner have all the same origin frame

so that overlapping them requires only to overlap all the points. In Figure 3.8 is shown a

single capture of a scene representing a skull laying on the sea floor while, in Figure 3.9,

is shown an example of reading and merging performed on the same scene.

Figure 3.8: Single capture of a skull on the sea floor.

Figure 3.9: Merged capture of more point of views of the same scene.

Since the scene that we are using are simply overlapping, the resulting point cloud may

present many points making very tedious the processing. For this reason a sub-sampling

filter is provided in order to make more e�cient the calculation in the next steps of the

routine. In Figure 3.10 is represented the original merged scene of an amphora on the

Chapter 3. Point Cloud Processing 39

bottom of the sea floor, while, in Figure 3.11 is shown the same scene passed through a

sub-sampling filter.

Figure 3.10: Merged scene of an amphora on the sea floor without subsampling.

Figure 3.11: Subsampling of the previous scene.

It is possible to observe, in Figure 3.11 how the density of points lowers reducing the

overall thickness of the cloud. Once obtained a complete and sub-sampled point cloud

merging all the di↵erent views obtained via scanner, the next phase plans to separate the

objects in the scene from the background.

The following section will explain which algorithm has been chosen to face this particular

problem and the results obtained from a point cloud.

Chapter 3. Point Cloud Processing 40

3.2.2 Di↵erence of Normal Segmentation

In this section will be presented the algorithm used to separate the object from the

background that in our case is the sea floor. In order to perform this task, the Di↵erence

of Normals segmentation has been chosen for his robustness, also in those point clouds

where a little bit of noise is present on the surfaces. The idea behind the algorithm is

simple yet very e↵ective and can provide good results in a relatively small amount of

time. The main concept, as the name suggests, find its basis in the usage of di↵erence of

normals of points in the cloud to segment it in a reliable way.

In Algorithm 1 is shown the basic functioning of the segmentation routine using Di↵erence

of Normals (DoN) [27].

Algorithm 1 Di↵erence of Normals Segmentation

1: procedure Evaluate DoN for segmentation

2: define r

l

, r

s

with r

l

> r

s

3: for each point in pointcloud do
4: evaluate n̂(p, r

l

) and n̂(p, r
s

)
5: evaluate �n̂(p, r

l

, r

s

)

6: for each �n̂ in vector field do
7: filter the field to obtain clusters

8: use Euclidean Cluster Extraction to segment clouds

9: procedure Separate objects from background

10: compare all the normals of clusters
11: if normals having the same orientation > 80% then
12: label the cluster as background

The above steps have been implemented thanks to PCL (Point Cloud Libraries) and its

functions that will be named, when used, along the explanation of the single steps. The

first step is to define two radius values in order to evaluate the normal to a point taking

advantage of those points contained in the defined range. The values of radius have to be

such that one is major that the other, in our case we name r

l

the bigger one and r

s

the

smaller one. Once defined the two values the next step is to consider every single point in

the cloud and estimate the normal value using first r
l

and then r

s

. The normal estimation

has been performed thanks to the class NormalEstimationOMP from PCL. This class has

di↵erent methods that allows to set di↵erent parameters in order to compute the normal

to a point having as input:

• the complete point cloud

• a radius size

Chapter 3. Point Cloud Processing 41

• a search method

• a view point

The complete point cloud is needed to have all the local information regarding the single

points and their relation with their neighbors within the radius set. The search method

is need to define a way to look for points inside the point cloud in an ordered way. In

our case the search method chosen is the Kd-Tree that consists basically in dividing the

space into subspaces easier to access thanks to a binary tree. Finally, setting the view

point is useful to evaluate the normals having all the same orientation that is, usually,

external to the hollow point cloud. Once these parameter are set it is possible to evaluate

the normals to the point cloud. In the following figures are shown the original point cloud

with the normals estimated using di↵erent scenes, one with the amphora (Figure 3.12)

and one with the skull (Figure 3.13).

Figure 3.12: Normals evaluated on an amphora.

Figure 3.13: Normals evaluated on a skull.

Chapter 3. Point Cloud Processing 42

Now that the normals to a point p are estimated considering two di↵erent radii r
l

and r

s

,

is necessary to evaluate the Di↵erence of Normals operator defined as:

n̂(p, r
l

, r

s

) =
n̂(p, r

l

)� n̂(p, r
s

)

2
(3.1)

The output value of this function is normalized vector having components in the range

(0, 1) and their norm will always be 1. In order to make clearer what is the purpose of

this operator in Figure 3.14 is represented the DoN of a point obtained from the normal

evaluation and di↵erence of the normals estimated using r

l

and r

s

.

Figure 3.14: DoN of a point considering di↵erent radius values.

The next step is to filter all the di↵erences of normals to separate them in clusters using

a filter to discriminate the values of DoN along the whole vector field. In our case, a

magnitude filter, implemented thanks to ConditionalRemoval and ConditionOr classes,

has been applied to obtain a point cloud composed of those DoN vectors having high

response with the previously given parameters. Once the point cloud is filtered, the final

step is to extract the clusters out of the cloud with the EuclideanClusterExtraction class.

As the name suggests this class exploits Euclidean Cluster Extraction algorithm [28].

The idea behind this algorithm is to analyze the point cloud as an organized set of point

ordered thanks to the octree structure [29] that basically provides a search tree where

every node has eight children. This particular structure make possible to easily search for

object clusters, for example, on a plane surface like the one that is on the background of

the point clouds and that is supposed to be the sea floor. After reordering the cloud with

this criteria the algorithm takes place as shown in Algorithm 2.

The first step is to generate an organized Kd-Tree representation of the cloud P in order

to make easier the search of clusters in it. Then two point sets are defined: C, the

set of clusters, and Q, composed of all the points to check in the cloud. Subsequently

all the points of the clouds are checked and added to the currently analyzed queue Q

where all the points contained are checked to be within a sphere of radius r that must

be less than a distance threshold d

th

. Once found a point p

k

i

that has not been already

processed, it will be added to the point set Q. Once checked all the points in P the

Chapter 3. Point Cloud Processing 43

Algorithm 2 Euclidean Cluster Extraction

1: create a Kd-Tree representation of point cloud P

2: C empty list of clusters
3: Q set of point to check
4: for each point p

i

in P do
5: add p

i

to the current queue Q
6: for every p

i

2 Q do
7: search for the set P i

k

of points neighbors of p
i

in a sphere with radius r < d

th

8: for every p

k

i

2 P

k

i

do
9: check if the point has been already processed

10: if p

k

i

has not been processed then
11: add p

k

i

to Q

12: add Q to the cluster list C

queue is added to the cluster list C. From the implementation point of view, again, as for

NormalEstimationOMP, there are few parameters to be set also for the Euclidean Cluster

Extraction that are:

• input DoN cloud

• search method

• minimum and maximum cluster size

• cluster tolerance radius

As before the input cloud is necessary to retrieve all the possible local information regard-

ing points in the scene. However, di↵erently from the previous case, the point cloud is

representing the DoN vector field and not the simple scene. This means that we have to

imagine the cloud no more as a scene composed of points where the depth is defined but,

rather, as a cloud where every points has a value representing the DoN of that point.

The next parameter to be set is the search method and, again, the Kd-Tree was elected

as the most fitting one. In addition to this is required to set a minimum and maximum

size in order to discard those clusters that are not relevant for being too small or too big.

Finally it is necessary to set a radius tolerance for the cluster to be segmented from the

scene. Since objects may vary in shape and dimension the above radius is not optimized

for every single item. However since we can rely on more than a view of a single scene,

the information that may be lost during segmentation can be recovered by overlapping

di↵erent views.

Chapter 3. Point Cloud Processing 44

Once that the aforementioned parameters are set the segmentation can be performed.

In the following figures are shown some of the results obtained using the segmentation

routine just explained. In Figure 3.15 and 3.16 are shown two objects, an amphora and a

skull, segmented and separated from the background. On the other hand, in Figure 3.17.

Figure 3.15: Amphora segmented from the background.

Figure 3.16: Skull segmented from the background.

planar background only?

Chapter 3. Point Cloud Processing 45

Figure 3.17: Background of the scene.

The last step to segment the scene consists in discriminating the background from the

objects of interest in an autonomous way. In order to achieve this result the normals

of every single cluster are compared within them. Since it is expected the background

to be extracted from the scene as a cluster as a plane surface the normals of it should

be all oriented in the same direction. For this reason a check on the normals to every

cluster is performed and, if the number of normals having the same direction within a

given tolerance range are more than a threshold, it will be classified as a the background,

otherwise it will be labeled as object. In our specific case, the percentage of aligned

normals for a cluster to be identified as a background has been set to 80% to avoid object

with plane surfaces (such as boxes) to be classified as background. In addition, in case

the sea floor would result to be not perfectly plane due to small rocks or sand dunes, this

algorithm would ensure more robustness. In Figure 3.18 are shown the normals to the

background plane: it is possible to notice how they are all aligned accordingly to what

stated before.

Once obtained the objects discriminated from the background, since the the items of

interest may be too di�cult to be classified, a second segmentation, based on the curvature

values, is performed along the cloud. In the following section will be explained how,

starting from the point cloud of the object separated from the background, it will be

segmented to classify its single parts to reconstruct the 3D model.

Chapter 3. Point Cloud Processing 46

Figure 3.18: Normals relative to the background of the scene.

3.2.3 Region Growing Segmentation for Objects Subparts

In this section it will be presented the approach to segment the point clouds of objects

into their cluster representing their subparts. The aim of this procedure is to divide

the point clouds losing as less information as possible obtaining at the end every single

part separated from the others. In Figure 3.19 is shown the point cloud of the previous

Figure 3.19: Normals relative to the background of the scene.

analyzed amphora and its segmentation in subparts with di↵erent colors. In this case

Chapter 3. Point Cloud Processing 47

the parts composing the amphora are basically three: the body (pink), the neck and

handle (light blue), and the neck base (green). To achieve this results a Region Growing

Segmentation algorithm has been implemented. Its functioning is related to the values

of curvature of the point clouds and for this reason it proves to be very e↵ective for our

purposes. Basing on this, since usually a variation of curvature in an object is related to

a link of two or more di↵erent parts, it is possible to obtain the point cloud of the single

parts of the entire object. Algorithm 3 starts evaluating every points curvature value and

Algorithm 3 Region Growing Segmentation

1: evaluate all points curvature value
2: point with minimum curvature is set as a seed
3: for every seed point p

i

do
4: find p

i

neighbors
5: if the neighbor has a curvature within a threshold then
6: add it to the region
7: if neighbor curvature is lower than a threshold then
8: add them to the seeds
9: remove seed used from the list

10: if seeds list is empty then
11: region has been completed

12: restart from the beginning

sorting the cloud points basing on that. The next step consists in finding the lowest value

of curvature and its related point that means also to find the point in the flattest region

of the cloud. Starting from that point than the neighbors are analyzed and if the normal

of the neighbor is within a threshold with the normal of the seed then that point will be

added to the current region. Once that this step is performed the next one consists in

checking again the value of the curvature and if it is below a curvature threshold those

points will be add as seeds. Once that the neighbors are all analyzed the previous seed

is deleted and the routine will start again with the update list of the seeds. The routine

stops when the seeds list results to be empty.

Now that the object is segmented in its subparts the next procedure to apply to the clusters

has to convert them into a format that the neural network presented in Chapter 2 is ready

to interpret. The next section will discuss this particular part that is the conversion from

point cloud to a voxel representation.

3.2.4 Voxel Representation

Obtained the clusters point clouds, the next step is to convert these clouds into voxel

representations. Voxels are basically values representing volume in a three dimensional

Chapter 3. Point Cloud Processing 48

space such as the pixels are values representing intensity of light in a two dimensional

space like an image. Since point clouds usually have lots of points, it would be too much

costly from the computational point of view to analyze every one of them. For this reason

the best way to reduce its size is to represent the point cloud as a 3D matrix that will

basically represent the presence, or absence, of points in a given region. In the following

section it will be presented a routine able to convert a point cloud from the typical clouds

format (.pcd) to an organized text file (.txt) containing the values of the voxelized cloud.

In our case to obtain a voxel representation of the point cloud are required few steps

reported in Algorithm 4.

Algorithm 4 Point Cloud to Voxel Conversion

1: import the cluster cloud P

2: initialize a 3D matrix M having side dimension s

3: magnify the cloud by a factor mag

4: evaluate the center of mass of the cloud
5: move the cloud in the x, y, z positive space
6: for every point in P do
7: write a 1 in in the M[P.x,P.y,P.z] element

8: print all the elements in order on a .txt file

The first two steps basically prepare the environment for the conversion importing the

cloud and initializing the 3D matrix that is going to be used to store the cloud values.

The choice of dimension has no constraints, although it has to be big enough to contain

the whole clouds. In our case the matrix has been chosen to be a square matrix with side

s = 30. In this way the clouds resulted to be defined enough to extract salient features

from them without weighting too much on the e�ciency of the evaluation for the network.

The next step magnifies the clouds in order to lose as less detail as possible during the

voxelization process. This will a↵ect also the dimension of the voxel yet without distorting

the resulting representation. In this case the magnification factor may lead points to be

out of boundaries with respect to the voxel matrix. In our routine the magnification factor

has been set in order to magnify eight times the dimension of the clouds since clouds and

clusters appeared very small in space.

Once obtained a big enough cloud, it is required the clouds to be in the positive (x, y, z)

space in order to simplify the indexing of the cloud within the 3D matrix. For this reason

the center of mass is evaluated and, estimating the distance between it and the origin

of the axis it is possible to move it in the interested region of space. In Figure 3.20 is

shown the original point cloud (black) and the moved one (red). In this case the cluster

considered is the body of the amphora previously seen segmented in Figure 3.19. It is

Chapter 3. Point Cloud Processing 49

Figure 3.20: Original cluster (black) and moved cluster (red).

possible to observe in this case the position of the red cluster with respect to the origin

frame. Thanks to this translation it is possible now to convert the point cloud into its voxel

simply indexing the points of the cloud into the 3D matrix exploiting the coordinates value

of them. In this way the elements relatives to subspaces in which are contained points

will be filled with ones, otherwise, if no points are found, the corresponding element of

the matrix will contain zero values. In Figure 2.4 is shown the final result of the voxel

conversion taking as input the same cluster seen in Figure 3.20.

Figure 3.21: Voxel representing the body of an amphora.

Once obtained the voxel of the cloud it will be saved in a text file in order to be read,

in a second time, by the input layer of the network to classify the shape. Classification

will provide a confidence value that will be checked and, whether the value will result less

Chapter 3. Point Cloud Processing 50

than a threshold that has been empirically set to 0.7, the segmentation will be performed

again but with di↵erent parameters that will allow segmentation to be more sensitive to

curvature variation. In this way it is possible to create smaller cluster easier to classify.

In order to do this parameters relative to 3, such as curvature threshold and number of

neighbors to check, are reduced at every iteration by 20% in order to retrieve information

regarding smaller features that will correspond to smaller parts of the object. In this way

it’s possible to classify more precisely the object in all its parts. However, it may occur

the case in which even segmenting in smaller parts the object it proves to be impossible

to properly classify a shape. In Figure 3.22 is represented a case of these where, looking

for smaller parts of the skull didn’t help the classification process.

Figure 3.22: Region growing segmentation on skull point cloud.

As it is possible to see, it results to be impossible to the network to classify these clusters

that are hard to define even to a human eye. In cases like these a failure recovery occurs

that will be explained in detail in Section 3.2.5.5.

The next and final step performed by our point cloud processing is the 3D model recon-

struction, once that the network . In the following section will be explained in detail how

reconstruction works and how it will provide results in order to detect a pair of grasping

point.

3.2.5 Reconstruction

In the previous chapter has been faced the problem regarding building an e↵ective neural

network to classify shapes retrieved as output out of a point cloud processing routine. The

last step is to provide a process able to reconstruct the shapes that have been detected

Chapter 3. Point Cloud Processing 51

by the network and overlap them to the point cloud. In this section will be reported in

detail how this routine will work and how its output will result useful to our purposes

of detecting a couple of grasping point able to ensure a robust enough grasp. Basically

here will be presented how the routine is able to reconstruct the full shape out of the

information retrieved by the partial point cloud. For every class of shape will be presented

a di↵erent approach to the reconstruction. Although every single shape has its proper

way to be reconstructed, all the shapes are retrieving information about dimension and

orientation thanks to bounding boxes created in order to be the smallest boxes containing

the clusters according with the direction of the moment of inertia estimated through the

MomentOfInertiaEstimation class. This class o↵ers di↵erent functions able to evaluate

the topology of the cluster and, after finding the center of mass, compute the directions

of the moment of inertia that will be used later to define the grasping point over the

3D model. In the following sections, routines used to reconstruct shapes out of their

classification are going to be explained in detail.

3.2.5.1 Cube Reconstruction

The cube reconstruction proves to be the easiest to perform since it is possible to simply

address the problem with the search of the smallest bounding box containing the point

cloud. Thanks to the aforementioned MomentOfInertiaEstimation class and its functions

it is possible to extract descriptors to determine which are the points that define the

corners of the bounding box. To determine these points the covariance matrix of the

point cloud is calculated and its eigen values and vectors are evaluated. It is possible

to consider the resultant eigen vectors as normalized and always form the right-handed

coordinate system (major eigen vector represents x axis and the minor vector represents

z axis). The iteration process takes place on the next steps where every time the major

eigen vector is rotated always with the same order and around the other eigen vectors.

Thanks to this the invariance to rotation of the point cloud is provided. In this way it is

possible to find out the corners of the bounding box and the corresponding aligned frame

referred to the center of mass. In Figure 3.23 is it possible to see the result of this routine

applied to an amphora. In this case the amphora has not been classified as a cube but it

has been chosen to simply show the results of a possible reconstruction. It is possible to

see how the bounding box surrounds e↵ectively the point cloud of the object.

In red and green it is possible to see the aforementioned aligned frame. To determine

grasping points in the case of a cube or a box it is needed to find the intersection between

the axis of the frame and the plane of the box. Since the z axis would result perpendicular

to the floor, its intersection points with the bounding box have been discarded. In fact,

Chapter 3. Point Cloud Processing 52

Figure 3.23: Bounding box surrounding an amphora.

since the object will lay on the floor, one of the gasping points on the z axis will be

on the bottom of the object, one the contact point between it and the sea floor, where

it is impossible to guarantee a strong grasp without scratching the floor with the risk

of damaging the gripper. In this case the grasping points are found and shown in the

figure in pairs: one in yellow and one in red. In addition the yellow points doesn’t fit

the requirements of a robust grasp because the point cloud analyzed is not representing

neither a cube nor something similar to a box. In the case of a box correctly classified,

thanks to the symmetry of the shape both the pairs would guarantee a tough grasp for

the object.

3.2.5.2 Cylinder Reconstruction

In the previous section has been present the routine able to bound with a box a point

cloud and basically to reconstruct the shape of a box or of a cube. In this section will be

shown the basic geometrical concepts behind the the reconstruction of a cylinder.

In this case the reconstruction needs basically two values:

• radius of the cylinder base

• length of the cylinder

Chapter 3. Point Cloud Processing 53

that are the inputs for theModelCoe�cients, necessary to build up the shape. It is possible

to obtain these parameters thanks to the same bounding box shown in the previous routine

and the coordinates center of mass. Using the length of the bounding box it is possible,

in fact, to define the length of the cylinder and, evaluating the distance of teh center of

mass from the line that defines the length it is possible to determine the radius of the

base. In Figure 3.24 is shown in an easier way which are the dimensions to consider to

reconstruct the cylinder. Finally the pair of grasping points are found in a similar way to

Figure 3.24: Measures relative to cylinder for reconstruction

the box previously seen. In this case the graping points are evaluated as the intersection

between the oriented frame in the center of mass and the cylinder.

Figure 3.25: Cylinder inside the bounding box.

Chapter 3. Point Cloud Processing 54

Cylinders are a particular case, in fact, it is possible to assume the grasping of a cylinder

as the grasping of a box. In fact, the pair of points needed to perform the grip could

be found as the intersection of the bounding box around the cylinder since the couple of

grasping points will surely lay on the lines generated by the intersection between the box

and the cylinder (Figure 3.26).

Figure 3.26: Intersection lines between a cylinder and a bounding box.

Depending on the center of mass of the complete object, the grasping points must be

chosen as the pair of points laying on the intersection lines shown in Figure 3.26 that

results to be collinear with the center of mass.

3.2.5.3 Cone Reconstruction

What has been shown in the previous sections are the processes needed to reconstruct

both a cylinder and a box out of the descriptors given by the point cloud. In this section

will be presented a more tricky reconstruction routine: the process to reconstruct a cone.

The cone reconstruction proves to be one of the trickiest one along the four shapes. In

fact due to its symmetry properties the cone is the most di�cult to orient with respect

to the original point cloud. As in the previous case few measures are required to evaluate

the size of the cone and to define the ModelCoe�cients. These parameters are basically:

• angle width

• origin point

Chapter 3. Point Cloud Processing 55

The cone is generated starting from the tip and, given the width of the angle, the rest of

the shape follows. Regarding the origin point, again, it is evaluated, as in the cylinder, as

the central point of the face of the bounding box. The width angle is evaluated thanks to

few simple geometry calculations. In Figure 3.27 is shown the cone with it’s parameters.

Figure 3.27: Parameters of the cone.

To find the value of the angle width the calculation is simple:

↵ = arcsin

⇣
a

b

⌘
(3.2)

where a is the simple distance between the center of mass and the bounding box and b is

the distance between the origin and a point on the other side of the box. Having these

two values it is possible to evaluate ↵ and draw the cone respecting the size of the point

cloud. A point that could lead to some ambiguities is how to orient the cone. In this case

a check is performed and, if the center of mass is closer to the origin of the cone than to

its base, the origin point is switched and so the orientation. In fact, the center of mass of

a cone is supposed to be closed to the base than to the tip of the cone. Therefore, thanks

to this property of the cone is it possible t determine the global orientation of the shape.

In Figure 3.28 is shown the final results of the cone reconstruction with the cone bounded

by the original box. In the cone case is not trivial to detect a set of points for a robust

grasping without taking into account the friction of the gripper over the cone surface. In

addition to this, considering that we are working in an underwater environment, object

may result slippery making more unstable thus complicated the grasping of a cone-shaped

Chapter 3. Point Cloud Processing 56

Figure 3.28: Reconstructed cone within the bounding box.

object. In this case the best solution would be to set the gasping point on the intersection

points between the cone base and the bounding box. To make it clearer in Figure are

highlighted these points. In green is highlighted a pair of grasping points and in yellow

Figure 3.29: Grasping points detected on cone base.

another possible one.

Chapter 3. Point Cloud Processing 57

3.2.5.4 Sphere Reconstruction

Previously three out of the four possible shapes have been shown and the routine to

reconstruct them has been explained in detail. The reconstruction process to show is the

one regarding the sphere.

The reconstruction of a sphere is simple since all the necessary for its parametrization is

already given from the beginning. Actually what is needed to define a sphere is basically:

• sphere center

• sphere radius

In this case the center of mass of the partial cloud could be used as center of the sphere

and, on the other hand, the distance between the center of mass and a face of the bounding

box could be assumed to be the radius. Having these parameters it is possible to define

an instance of ModelCoe�cients to reconstruct the sphere. What we will obtain thanks

to this routine is shown in Figure 3.30. In this case the pair of grasping points is easy to

Figure 3.30: Sphere contained into the bounding box.

detect since every pair of points coming from the intersection between a diameter and the

sphere is a valid one.

Chapter 3. Point Cloud Processing 58

3.2.5.5 Recovery from Failures

Previously, in Section 3.2.4, it has been stated that, if the network is not able to classify in

reliable way the shape taken as input, the segmentation must be performed with reduced

values in order to extract smaller cluster to classify. This operation could lead to an

infinite loop where the segmentation keeps on extracting smaller clusters out of the cloud

until segmentation results contain so few points that it is impossible to classify them. For

this reason this iteration is performed no more than three times. If, after three iteration,

it results to be still impossible to classify with a confidence value high enough a recovery

mode occurs.

Basically this mode consists in defining the easiest grasping points to detect along the

point cloud. In other words, ignoring all the classification, the cloud is surrounded by a

bounding box like the one shown in Section 3.2.5.1 and its grasping points are evaluated

as the intersection between the vectors of the moment of inertia and the latter box. In

this case the results obtained are similar to the one represented in Figure 3.23 where the

two pairs of grasping points are shown. This recovery not always proves to be e↵ective or

safe not depending on the actual shape of the object but only on its dimension. However

there are many case that will be presented later in Chapter 4 where this solution is not

leading to a far result from the desired one.

Now that the algorithms behind point cloud processing have been described and their

details have been explained the last step is to test them on real data coming from the

laser scanner of the G500. In the next section the results of the neural networks and the

ones coming from the point cloud processing are shown and discussed.

Chapter 4

Results

In previous section have been presented the fundamental instruments for this project to

work: in Chapter 2 a neural network used to classify shapes out of a point cloud scene

has been presented while, in Chapter 3 a point cloud processing routine have explained

in detail. In this Chapter will be presented the results obtained using as input real scene

gathered via laser scanner mounted on the G500 arm for grasping. Few of these scene

have been partially seen in the previous sections as examples.

In order to increase performance the neural network have been implemented in Windows

to exploit the power of the GPU at its maximum while the point cloud processing have

been performed on Ubuntu due to it’s ease in dealing with external libraries such as PCL.

For this reason the automatic process have been simulated simply using the output of the

network as input of the reconstruction routine manually. Making automatic the whole

process requires the whole routines aforementioned to be all on the same operative systems

like Ubuntu that supports better both the libraries from TensorFlow and PCL. On the

other hand, Windows proves to be trickier in managing PCL libraries for point cloud

processing. This makes Ubuntu the platform that better fits the needs of this project.

4.1 Scenes and Objects

In this section will be shown the point clouds with which we are going to work to test the

neural network and the point cloud processing for both classification and reconstruction.

Some of the objects have been already shown in previous sections as examples to explain

point cloud processing. All the scene, as aforementioned are taken through laser scanning

a real scene as shown in Section 3.2.1. The following images show the point cloud of the

59

Chapter 4. Results and Conclusions 60

Figure 4.1: amphora 0. Figure 4.2: amphora 1

Figure 4.3: black box. Figure 4.4: box 0

Figure 4.5: broken amphora. Figure 4.6: skull.

Chapter 4. Results and Conclusions 61

Figure 4.7: stone 0, stone 1, stone 2.

object analyzed already segmented from the background. Names reported in captions are

the file names of the original clouds used for the tests.

Except for the stones point cloud, all of these point clouds are converted to voxels and fed

into the network for classification. As far as the stones point cloud is concerned, in that

case the scene has been shown with three stones all together just for sake of simplicity.

In fact, from the practical point of view the neural network has been fed with the single

stones in the scene. As it is possible to notice the object that we are considering are the

typical ones that, as we stated before in Chapter 1, we may be interested to retrieve from

the sea floor.

In the next section will be shown the results obtained through classification trying to

classify the object just reported in the current section.

4.2 Classification and 3D Reconstruction

In this section will be presented the results of classification performed through the neural

network described in Chapter 2. In Table 4.1 are shown the results of the performed

classifications. The table is structured in an easy and intuitive way: in every line is

reported the name of the cloud used for testing and the relative confidence values obtained.

Chapter 4. Results and Conclusions 62

Table 4.1: Results of confidence values

Confidence Values
Cloud Cube Cylinder Cone Sphere

amphora 0 0.9976 0.0008 0.0008 0.0008
amphora 0 body 0.0058 0.9825 0.0058 0.0058
amphora 0 neck 0.0005e-08 0.0005e-08 1 0.0005e-08
amphora 1 0.0001e-1 0.0001e-1 0.9997 0.0001e-1
amphora 1 body 0.9870 0.0081 0.0023 0.0023
broken amphora 0.0005e-01 0.9998 0.0005e-01 0.0005e-01
skull 0.25 0.25 0.25 0.25
black box 0.9569 0.0143 0.0143 0.0143
box 0 0.9993 0.0002 0.0002 0.0002
stone 0 0.0004e-02 0.0004e-02 0.9999 0.0004e-02
stone 1 0.0001 0.0002 0.9996 0.0001
stone 2 2.4854e-11 2.4854e-11 1 2.4854e-11
sphere 0 0.2801e-17 0.2801-17 0.2801e-17 1
sphere 1 0.3435e-13 0.3435e-13 0.3435e-13 1

4.2.0.1 Results: amphora 0

The first result obtained is a high value on the confidence value of amphora 0 referred to

the cube. In this case the confidence values results to be high enough to classify it as a

cube. The results after reconstruction then will result to be like the one showed in Figure

4.8.

Figure 4.8: Reconstruction of a cube over amphora 0.

shape is very different from a cube

Chapter 4. Results and Conclusions 63

In this case the grasping points detected are four: two couple of them. Since the amphora

is not perfectly classifiable as a cube, two of these points (the ones coming out from the

intersection of the red line with the two bounding box faces) would not prove to be very

robust to guarantee a robust grasp. Although the neural network classified with very

few margin of error the cloud, we decided to segment manually the cloud to see if, in

that way, it is possible to create a more precise 3D model. The results are shown in the

line of amphora 0 body and amphora 0 neck. In fact these two point clouds are the ones

related to the segmented cloud and in particular to the neck and the body of the amphora

previously seen. In this case the network classified as a cylinder the body of the amphora

and as a cone its neck. Following this classification, 3D reconstruction of the latter clouds

produces results reported in Figure 4.9 and Figure 4.10.

Figure 4.9: Reconstruction of a cylinder over amphora 0 body.

As it is possible to notice in this case the classification worked better probably because

of the isolation of the two parts. Even reconstruction worked fine giving an idea of what

the 3D model should look like after the correct classification. In this case, knowing that

the center of mass of the amphora is located inside the cylinder the point of grasping will

be found on it guaranteeing a robust grasp for the amphora.

4.2.0.2 Results: broken amphora

Another similar result has been obtained with the cloud named broken amphora. In this

case the obtained result shows how it was possible from the beginning to classify the

shape of the cloud as a cylinder. In this case the reconstruction proved to be correct but

Chapter 4. Results and Conclusions 64

Figure 4.10: Reconstruction of a cone over amphora 0 neck.

showing a small error on the orientation of the cloud probably due to the hole present on

a side of the amphora that slightly modified the orientation and the center of mass. In

Figure 4.11 is shown the reconstruction performed on the cloud.

Figure 4.11: Reconstruction of a cone over broken amphora.

Also in this case, like the previously analyzed amphora, although there is a small di↵erence

in the model and the point cloud orientation, the point of grasping will be found looking

for two points aligned with the center of mass and lying on the cylinder surface.

Chapter 4. Results and Conclusions 65

4.2.0.3 Results: box 0

Regarding the point cloud of a box (box 0) it is possible to see from Table 4.1 that it

has been correctly classified as a cube with a high value of confidence. In this case the

reconstruction worked correctly showing the model of the box overlapped to its point

cloud. In Figure 4.12 is shown the results of the reconstruction where it is possible to

appreciate the precision of it in this simple case.

Figure 4.12: Reconstruction of a cube over box 0.

In this particular case the grasping point will be easily spotted looking for them as afore-

mentioned in Section 3.2.5.

4.2.0.4 Results: black box

Another cloud similar o the simple box has been tested. In this particular cloud it is

present a black box of a plane. For some reasons related to the topology of the cloud the

segmentation didn’t remove the whole box but kept instead part of the floor. This luckily

didn’t a↵ect the classification that proved to be e↵ective enough to detect the shape of a

cube. However the reconstruction of the cube didn’t end in a successful way due to the

aforementioned partially failed segmentation. In Figure 4.13 is shown the results of the

reconstruction. 5As it was possible to imagine the bounding box for reconstruction was

not able to be set in a correct way. This leaded to a wrong bounding of the point cloud

that lead to a wrong reconstruction of the shape in the scene.

Chapter 4. Results and Conclusions 66

4.2.0.5 Results: Spheres

Since no spherical shapes have been found in the given laser scanned scenes, in order

to test if the neural network is able to classify spheres, a couple of manually generated

spheres has been tested. In this case since the shapes are generated directly voxelized

there are no point cloud to show. The input spheres have been generated manually to

avoid to use spheres that where already present in the training set. Using these new

shapes we tried to see if the network was able to recognize them. The results on the Table

shows a successful behavior for this case showing how the confidence values peak on the

element of the vector related to the sphere.

4.3 Failure Modes

In the previous section have been presented results relative to the classification and re-

construction of the network. Few of those results proved to be wrong due to a bad

classification or to a bad reconstruction of the cloud. In this section are going to be pre-

sented the wrong behaviors encountered along the tests and why these problems occur in

any given situation.

Figure 4.13: Reconstruction of a cube over black box.

Chapter 4. Results and Conclusions 67

4.3.1 Bad classification

As it is possible to see from Table 4.1 there are few cases in which the classification is not

having the expected result. A case of this was already reported before in Section 4.2.0.1

where at the first iteration the amphora was classified as a cube. Probably this result

came out from a bad voxelization of the cloud where the upper part of the amphora, the

one including the neck, was probably cut o↵ by the low resolution of the conversion. For

this reason the information about a feature that should help to discriminate the shapes

has been misinterpreted leading to a bad classification.

Another case of bad classification and thus bad reconstruction occurred with the clouds

containing few stones. The stones were classified singularly and not in group as shown

in the scene in Figure 4.7. In this case the expected shape may be to a human eye a

small cylinder with a large base and a very small length. However the features contained

in the clouds analyzed led the neural network to classify them as a cone. This may be

addressed to the fact that the stones have a small curvature on the borders and this

probably was interpreted by the network as the typical feature of a cone. In the stones

cases the reconstruction failed due to the bad classification and the result obtained is

shown in Figure 4.14 where it is clear that the cone is not overlapped correctly to the

stone.

Figure 4.14: Failed reconstruction on amphora.

A particular case occurred with the cloud of the skull. As it is possible to see from the

Table 4.1 the neural network wasn’t able to test correctly classify the skull generating de

facto a vector of class values equally distributed ([0.250.250.250.25]). In this case a the

Chapter 4. Results and Conclusions 68

object has been segmented again following the routine described in Section 3.2. However

the obtained result from this segmentation didn’t improve the final classification scores.

In Figure 4.15 it is possible see the results of the further segmentation performed on the

skull.

Figure 4.15: Region growing segmentation on skull.

From this result it is clear that the most of information coming from the segmentation

have been lost due to the particular curvature values of the cloud. The skull case, finally

proved to be the most di�cult to manage due to its particular topology.

4.3.2 Bad Reconstruction

Another bad classification occurred with the cloud named amphora 1 showing an amphora

bigger than the previously analyzed. In this case the cloud was input entirely to the

neural network and the first result was its classification as a cone. Watching the point

cloud actually the cone is the most similar shape that a human eye can find. Although the

classification succeeded in its part, the reconstruction failed due to the particular shape

that the amphora has. In Figure 4.16 is shown how the amphora has been reconstructed

in a wrong way.

In this case the amphora had a center of mass that proved to be closer to the wrong side

of the bounding box, this lead to a bad reconstruction behavior where the orientation

error is easy to notice.

Chapter 4. Results and Conclusions 69

Figure 4.16: Failed reconstruction on amphora.

Chapter 5

Conclusions

The project realization allowed me to face the fundamental problems in designing a neural

network and in point cloud processing. In particular, I became aware of all those problems

regarding the choices that defines the structure of a network for a specific purpose such as

the classification could be. To this aim the knowledge acquired along the master, and in

particular in the last year, about artificial intelligence and machine learning proved to be

fundamental for the development of the project. In fact the previous work reported in [30]

o↵ered me the basis to approach the neural network problem in a organized way to better

asses the learning phase. Moreover the TensorFlow libraries o↵ered me the occasion to

face in a more focused way the Python language that proved to be particular e�cient for

our specific purposes. On the other hand working with PCL made my knowledge deeper

in either point cloud processing and in the supported C++ language.

Although the approach to the problem is innovative and may seem e↵ective, the obtained

results at the end didn’t satisfy completely the initial expectations. Probably the best

suggestion for future works could be to put more e↵orts on the neural network in order

to guarantee a robust and e↵ective classification in order to have a solid base for the 3D

reconstruction routine to work on.

In summary this project presented a new approach to a recent problem that nowadays

proves to be still a critical point for robotics: detecting optimal grasping points of unknown

object. A neural network able to classify shapes within four classes has been presented

and proved to be e↵ective on real data in situation where the shapes in the cloud are

well defined. In fact the neural network failed few times in classifying those shapes that

are confusing or that are di�cult to classify even to an human operator. In addition the

neural network proved to be very precise either for the good classification or the bad.

This is due to the fact that during training the cost function tended to get so low that

70

Chapter 5. Conclusions 71

the output of it has always a high peak on one of the four class values leaving no margin

of doubt in the classification. This would be a nice feature of the network if it proved

to be e↵ective in all case. However this has to be seen as an obstacle in classification

since, having no lower values than the peaks, it is not possible to apply the point cloud

processing routine liable to detect further feature in order to better classify the shapes of

objects.

On the other hand, regarding point cloud processing, many algorithms used for segmen-

tation and reconstruction have been presented and they proved to be e↵ective in almost

all the cases that have been taken into account or the tests. Only a case proved to be a

failure (shown in Figure 4.16) due to the particular shape of the cloud.

In conclusion a theoretical approach to detect optimal grasping points has been presented

and a first practical algorithm has been provided. This approach involved the use of

either machine learning and point cloud processing concepts taking advantage of the most

recent instruments like PCL and TensorFlow. In particular with the latter one it has

been decided to try to use a new feature that have been already mentioned before: the 3D

convlutional layers which allowed us to manage with data structure such as point cloud.

In the next section some suggestion for further analysis will be provided for a future

development of the project.

5.1 Future Development

After our conclusions we wanted to point out some possible future development for further

improvements of this project. For this reason in this section will be briefly show some

possible concepts that may help to increase the e↵ectiveness of the process.

Di↵erent neural network structure In this project has been tested a neural network

easy to set up made mainly of convolutional, pooling and densely connected layer. As

aforementioned, the convolutional layers used were new in the TensorFlow libraries and

were providing a good analysis regarding data having a 3D structure such as point clouds.

However it is possible to set infinite di↵erent structure for the networks. A possible

solution in this case would be to set three di↵erent networks working with 2D convolutional

network analyzing the dimension of the clouds like a sequence of images. In this case

it would be possible to accelerate the learning process and to detect further features

contained into clouds.

has this been completed?

Chapter 5. Conclusions 72

Dataset In our work the dataset used, described in Section 2.1.4, was generated by

a C++ routine exploiting PCL to create all the di↵erent shapes used. A suggestion for

further works on this project could be to try to work with di↵erent dataset. During

development, more datasets have been used and few of them proved to be unsuccessful

especially those ones containing too many elements. In those cases the training led the

network to be overtrained being unable to classify anything, looking for features too

precise to appear in a real scene. For this reason a good idea for the future would be to

use a rich dataset without using too many figures in order to find a good trade of between

overtraining and overfitting due to lack of data.

Reconstruction and voxel resolution As far as reconstruction is concerned a good

idea for the future would be to use a Random Sample Consensus (RANSAC) to bet-

ter reconstruct shapes basing on more feature of the point cloud and not only on their

occupation in space.

Another suggestion regarding point cloud processing could be to try di↵erent shapes for

voxel conversion of the clouds. In fact, as aforementioned in Section 4.3, there is reason to

believe that more of the classification errors are due to the voxel conversion that, in our

case, led to a distortion of the cloud making impossible to classify correctly the shapes

coming from the scene.

Bibliography

[1] Jeannette Bohg, Antonio Morales, Tamim Asfour, and Danica Kragic. Data-driven

grasp synthesis-A survey. IEEE Transactions on Robotics, 30(2):289–309, 2014. ISSN

15523098. doi: 10.1109/TRO.2013.2289018.

[2] Russell H. Taylor, Arianna Menciassi, Gabor Fichtinger, Paolo Fiorini, and Paolo

Dario. Medical Robotics and Computer-Integrated Surgery, pages 1657–1684. Springer

International Publishing, Cham, 2016. ISBN 978-3-319-32552-1. doi: 10.1007/

978-3-319-32552-1 63. URL https://doi.org/10.1007/978-3-319-32552-1_63.

[3] Pedro J. Sanz, Pere Ridao, Gabriel Oliver, Giuseppe Casalino, Carlos Insaurralde,

Carlos Silvestre, Claudio Melchiorri, and Alessio Turetta. Trident: Recent im-

provements about autonomous underwater intervention missions. IFAC Proceed-

ings Volumes, 45(5):355 – 360, 2012. ISSN 1474-6670. doi: http://dx.doi.org/10.

3182/20120410-3-PT-4028.00059. URL http://www.sciencedirect.com/science/

article/pii/S1474667016306280. 3rd IFAC Workshop on Navigation, Guidance

and Control of Underwater Vehicles.

[4] Jürgen Schmidhuber. Deep Learning in neural networks: An overview. Neural Net-

works, 61:85–117, 2015. ISSN 18792782. doi: 10.1016/j.neunet.2014.09.003. URL

http://dx.doi.org/10.1016/j.neunet.2014.09.003.

[5] Edward Rosten and Tom Drummond. Machine Learning for High-Speed Corner

Detection, pages 430–443. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006. ISBN

978-3-540-33833-8. doi: 10.1007/11744023 34. URL https://doi.org/10.1007/

11744023_34.

[6] A. A. Moosavian H. Mesgari, F. C. Samavati, H. E. S. Jazeh. A Neural Network

Approach for Optimal Grasp Planning. In 2011 IEEE International Conference on

Control, Instrumentation and Automation (ICCIA), volume 8, pages 859–864, 2011.

ISBN 9781467316903.

[7] LeCun Y., Bengio Y., and Hinton G. Deep learning. Nature, 521(7553):436–444,

2015. ISSN 0028-0836. doi: 10.1038/nature14539.

73

https://doi.org/10.1007/978-3-319-32552-1_63
http://www.sciencedirect.com/science/article/pii/S1474667016306280
http://www.sciencedirect.com/science/article/pii/S1474667016306280
http://dx.doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1007/11744023_34
https://doi.org/10.1007/11744023_34

Chapter 5. Conclusions 74

[8] I. Lenz, H. Lee, and A. Saxena. Deep learning for detecting robotic grasps. The

International Journal of Robotics Research, 34(4-5):705–724, 2015. ISSN 0278-3649.

doi: 10.1177/0278364914549607. URL http://ijr.sagepub.com/content/34/4-5/

705.short.

[9] Edward Johns, Stefan Leutenegger, and Andrew J. Davison. Deep Learning a Grasp

Function for Grasping under Gripper Pose Uncertainty. In 2016 IEEE International

Conference on Robotics and Automation (ICRA), 2016. ISBN 9781509037612. URL

http://arxiv.org/abs/1608.02239.

[10] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig

Citro, Greg S. Corrado, Andy Davis, Je↵rey Dean, Matthieu Devin, Sanjay Ghe-

mawat, Ian Goodfellow, Andrew Harp, Geo↵rey Irving, Michael Isard, Yangqing Jia,

Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané,

Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon

Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Van-

houcke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin

Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale

machine learning on heterogeneous systems, 2015. URL http://tensorflow.org/.

Software available from tensorflow.org.

[11] Radu Bogdan Rusu and Steve Cousins. 3D is here: Point Cloud Library (PCL).

In IEEE International Conference on Robotics and Automation (ICRA), Shanghai,

China, May 9-13 2011.

[12] K. Huebner, S. Ruthotto, and D. Kragic. Minimum volume bounding box de-

composition for shape approximation in robot grasping. In 2008 IEEE Interna-

tional Conference on Robotics and Automation, pages 1628–1633, May 2008. doi:

10.1109/ROBOT.2008.4543434.

[13] Andreas ten Pas and Robert Platt. Using Geometry to Detect Grasp Poses in 3D

Point Clouds, pages 307–324. Springer International Publishing, Cham, 2018. ISBN

978-3-319-51532-8. doi: 10.1007/978-3-319-51532-8 19. URL https://doi.org/10.

1007/978-3-319-51532-8_19.

[14] G. De Novi, C. Melchiorri, J.C. Garcianda, P.J. Sanz, P. Ridao, and G. Oliver.

New approach for a reconfigurable autonomous underwater vehicle for intervention.

Aerospace and Electronic Systems Magazine, IEEE, 25(11):32 –36, nov. 2010. ISSN

0885-8985. doi: 10.1109/MAES.2010.5638803.

[15] N. Palomeras, A. Peñalver, M. Massot-Campos, G. Vallicrosa, P. L. Negre, J. J.

Fernández, P. Ridao, P. J. Sanz, G. Oliver-Codina, and A. Palomer. I-auv docking

http://ijr.sagepub.com/content/34/4-5/705.short
http://ijr.sagepub.com/content/34/4-5/705.short
http://arxiv.org/abs/1608.02239
http://tensorflow.org/
https://doi.org/10.1007/978-3-319-51532-8_19
https://doi.org/10.1007/978-3-319-51532-8_19

Chapter 5. Conclusions 75

and intervention in a subsea panel. In 2014 IEEE/RSJ International Conference on

Intelligent Robots and Systems, pages 2279–2285, Sept 2014. doi: 10.1109/IROS.

2014.6942870.

[16] A. Palomer, P. Ridao, D. Ribas, and G. Vallicrosa. Multi-beam terrain/object clas-

sification for underwater navigation correction. In OCEANS 2015 - Genova, pages

1–5, May 2015. doi: 10.1109/OCEANS-Genova.2015.7271587.

[17] P. J. Sanz, A. Peñalver, J. Sales, D. Fornas, J. J. Fernandez, J. Perez, and J. Bernabe.

GRASPER: A Multisensory Based Manipulation System for Underwater Operations,

pages 4036–4041. Oct 2013. doi: 10.1109/SMC.2013.689.

[18] M. Prats, J. Pérez, J. J. Fernández, and P. J. Sanz. An open source tool for sim-

ulation and supervision of underwater intervention missions. In 2012 IEEE/RSJ

International Conference on Intelligent Robots and Systems, pages 2577–2582, Oct

2012.

[19] Sanjay K. Dhurandher, Sudip Misra, Mohammad S. Obaidat, and Sushil Khairwal.

Uwsim: A simulator for underwater sensor networks. SIMULATION, 84(7):327–

338, 2008. doi: 10.1177/0037549708096606. URL http://dx.doi.org/10.1177/

0037549708096606.

[20] Vision-based Object Handling. Grasping the Not-So-Obvious. Grasping the Not-

So-Obvious, (September):44–52, 2005. ISSN 1070-9932. doi: 10.1109/MRA.2005.

1511868.

[21] Johannes Speth, Antonio Morales, and Pedro J. Sanz. Vision-based grasp planning of

3D objects by extending 2D contour based algorithms. 2008 IEEE/RSJ International

Conference on Intelligent Robots and Systems, IROS, pages 2240–2245, 2008. doi:

10.1109/IROS.2008.4650632.

[22] Alex Krizhevsky, Ilya Sutskever, and Geo↵rey E Hinton. Imagenet

classification with deep convolutional neural networks. In F. Pereira,

C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Ad-

vances in Neural Information Processing Systems 25, pages 1097–1105.

Curran Associates, Inc., 2012. URL http://papers.nips.cc/paper/

4824-imagenet-classification-with-deep-convolutional-neural-networks.

pdf.

[23] Zhe Wang, Hong Liu, Yueliang Qian, and Tao Xu. Real-Time Plane Segmentation

and Obstacle Detection of 3D Point Clouds for Indoor Scenes, pages 22–31. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2012. ISBN 978-3-642-33868-7. doi: 10.1007/

978-3-642-33868-7 3. URL https://doi.org/10.1007/978-3-642-33868-7_3.

http://dx.doi.org/10.1177/0037549708096606
http://dx.doi.org/10.1177/0037549708096606
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://doi.org/10.1007/978-3-642-33868-7_3

Chapter 5. Conclusions 76

[24] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.

Iclr, pages 1–15, 2015. ISSN 09252312. doi: http://doi.acm.org.ezproxy.lib.ucf.edu/

10.1145/1830483.1830503. URL http://arxiv.org/abs/1412.6980.

[25] A. T. Hadgu, A. Nigam, and E. Diaz-Aviles. Large-scale learning with adagrad

on spark. In 2015 IEEE International Conference on Big Data (Big Data), pages

2828–2830, Oct 2015. doi: 10.1109/BigData.2015.7364091.

[26] Yann Lecun and Corinna Cortes. The MNIST database of handwritten digits. URL

http://yann.lecun.com/exdb/mnist/.

[27] Y. Ioannou, B. Taati, R. Harrap, and M. Greenspan. Di↵erence of normals as a multi-

scale operator in unorganized point clouds. In 2012 Second International Conference

on 3D Imaging, Modeling, Processing, Visualization Transmission, pages 501–508,

Oct 2012. doi: 10.1109/3DIMPVT.2012.12.

[28] Radu Bogdan Rusu. Semantic 3D Object Maps for Everyday Manipulation in Human

Living Environments. KI - Kunstliche Intelligenz, 24:345–348, 2010. ISSN 09331875.

doi: 10.1007/s13218-010-0059-6.

[29] Ruwen Schnabel and Reinhard Klein. Octree-based Point-Cloud Compression. Spbg,

pages 111–120, 2006. doi: 10.2312/SPBG/SPBG06/111-120.

[30] Javier Perez, Aleks C. Attanasio, Nataliya Nechyporenko, and Pedro J. Sanz. A Deep

Learning Approach for Underwater Image Enhancement, pages 183–192. Springer

International Publishing, Cham, 2017. ISBN 978-3-319-59773-7. doi: 10.1007/

978-3-319-59773-7 19. URL https://doi.org/10.1007/978-3-319-59773-7_19.

http://arxiv.org/abs/1412.6980
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1007/978-3-319-59773-7_19

	Acknowledgements
	1 Introduction
	1.1 Robotic grasp
	1.2 Applications
	1.3 Problem Statement
	1.4 State of the Art
	1.4.1 Machine Learning and Deep Learning
	1.4.2 Point Cloud Processing

	1.5 Underwater Intervention Robotics
	1.5.1 Reconfigurable Autonomous Underwater Vehicle for Intervention mission (RAUVI) (2009 - 2011)
	1.5.2 Triton and Grasper (2012 - 2015)
	1.5.3 UWSim (2012)

	1.6 Objectives

	2 Deep Learning for Classification
	2.1 Basic Concepts
	2.1.1 The Sigmoid Neuron
	2.1.2 Structure of a Neural Network
	2.1.3 Different Kind of Layers
	2.1.4 Dataset Structure

	2.2 Classifying Shapes with a Deep Network
	2.2.1 Dataset
	2.2.2 Neural Network Structure
	2.2.3 Learning Phase
	2.2.3.1 Softmax over Cross Entropy
	2.2.3.2 Adam Optimizer

	2.2.4 Results

	3 Point Cloud Processing
	3.1 Definition and Characteristics of a Point Cloud
	3.2 PCL Processing Routine
	3.2.1 Acquisition and Merging of Point Clouds
	3.2.2 Difference of Normal Segmentation
	3.2.3 Region Growing Segmentation for Objects Subparts
	3.2.4 Voxel Representation
	3.2.5 Reconstruction
	3.2.5.1 Cube Reconstruction
	3.2.5.2 Cylinder Reconstruction
	3.2.5.3 Cone Reconstruction
	3.2.5.4 Sphere Reconstruction
	3.2.5.5 Recovery from Failures

	4 Results
	4.1 Scenes and Objects
	4.2 Classification and 3D Reconstruction
	4.2.0.1 Results: amphora_0
	4.2.0.2 Results: broken_amphora
	4.2.0.3 Results: box_0
	4.2.0.4 Results: black_box
	4.2.0.5 Results: Spheres

	4.3 Failure Modes
	4.3.1 Bad classification
	4.3.2 Bad Reconstruction

	5 Conclusions
	5.1 Future Development
	Different neural network structure
	Dataset
	Reconstruction and voxel resolution

