
Efficient coordination in the lab

Abstract

In an infinitely repeated matching pennies game with asymmetric infor-

mation, Gossner et al. (2006) studied coordination levels among agents and

obtained that players may use a block codification using signaling mistakes in

order to efficiently coordinate. Inspired in that model, we experimentally test

coordination in the lab. We first model and establish the appropriate length

of the sequence played by nature and the block strategy for a finitely repeated

version of the game, where the majority rule with 3-length blocks results as the

optimal block codification. Our experimental data give support to the main

results of the original model with respect to the codification rule using signaling

mistakes.
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1 Introduction

Strategic information transmission is a process that plays a crucial role in many

situations in which agents’ decisions depend on disclosure information. In fact, the

lack of information is one of main drawbacks to reach agreements. Hence, sharing

information is a pivotal point that allows agents to get more profitable agreements.

Furthermore, there exists a trade-off between revealed information and profit, which

is due to strategic concerns. In Crawford and Sobel’s (1982) words, revealing all

information to the opponent is not usually the most advantageous policy. As Blume

and Ortmann (2007) highlight, costless messages help overcome strategic uncertainty,

problems equilibrium selection as well as coordination failure.

As a benchmark structure, information transmission between a sender and a re-

ceiver occurs when a message in a common language is sent through a transmission



channel. Specifically, the sender is an agent with private information who sends a

message revealing “some” information to the receiver, who takes a decision affecting

both agents accordingly. The present work concerns strategic information transmis-

sion under asymmetric information.

In their seminal paper Crawford and Sobel (1982) introduced an one-sided com-

munication model between an informed sender and an uninformed receiver and show

how the conflict of interest has a negative effect on the flow of information. Based

in that seminal model, there is a large number of applications of strategic informa-

tion transmission. For example, applications to corporations (Watson, 1996; Kartik,

2005), to operation management (Allon and Bassamboo, 2011; Allon et al., 2011) or

to political sciences (Gilligan and Krehbiel, 1989; Krishna and Morgan, 2001).

Some of our setting’s features are in common with Crawford and Sobel’s frame-

work: 1) Information is transmitted in an one-sided communication channel. 2) The

sender, player 1, is a fully informed player who has complete and perfect information

about nature. While the receiver, player 2, is an uninformed player who knows about

the no-player existence and actions in the past. 3) Sharing information is costless for

the sender. 4) Decisions of the receiver have an effect on both players’ payoffs.

Some other features are specific to our communication protocol, already intro-

duced in Gossner et al. (2003): 5) The sender and receiver form a team with aligned

interests. 6) Players play against the Nature modelized as an i.i.d. process. 7) The

team and the Nature face decisions repeatedly. 8) The sender has private informa-

tion on the future state of nature; while the receiver has public information about the

history of nature’s past states. 9) There is a positive gain when both players match

nature’s,

From a theoretical perspective, Gossner et al. (2003) characterize the equilibrium

payoff that the team can both guarantee and defend against any behavior of the

Nature. As it is already mentioned, the Nature behaves as an i.i.d. process, therefore

the value (in correlated strategies) of the repeated zero sum game where the sender

and the receiver play as a team against the Nature is related with their equilibrium

payoff. Moreover, they construct equilibrium strategies of communication between

the sender and the receiver in this infinitely repeated set-up based on block1 coding.

To be precise, block coding strategies refer to the way how players communicate their

following sequence of actions. Actually, the sequence of actions pairs are chopped in

blocks and each block conveys information for the next block of actions pairs. The

codification skills allow to the players to achieve the target payoff and to guarantee

1This technique is not new in the literature of repeated games under asymmetric information

(AADIR BIBLIOGRAFIA).
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stability conditions. In this setup, the transmission information is only meanwhile the

play, the sequence of actions played by the sender are encrypted working as messages,

and the receiver decodes messages according to a common team’s codebook.

The aim of this paper is to contrast whether under asymmetric uncertainty be-

tween players but still being dominant2 to transmit information, individuals actually

implement such a kind of “block strategies”. To do so, we have adapted the above

situation to be properly contrasted in a controlled environment as a experimental

laboratory. First, we provide a theoretical characterization of optimal block strate-

gies considering that players interact a finite number of periods. Second, fixing the

majority rule with blocks of size three, we establish the corresponding length of the

game. We obtain the duration of 55 periods. These two features were the parameters

used to run an experiment that fits the model and tests its robustness in the lab.

In our experiment, we implement a specific channel for communication between

players. Before the game, a chat is activated during 3 minutes. In this time, players

had the possibility to write free messages designing their strategies without explicit

cost. This chat allowed to the players to fix the common3 codebook and the decod-

ification rules that players may eventually perform. Once the chat was closed, the

realizations of the 55 actions of the Nature were drawn following an i.i.d. process

with law (1
2
, 1
2
). Player 1 was informed of all of them since in his/her screen a matrix

of all realizations was active the whole sequence of actions. The play lates 55 stages

and the information available for each player was different. At stage t, player 1 had

in the screen the whole sequence of action of the Nature, his/her actions played so far

and the sequence of action of the other player played until this stage. Nevertheless,

player 2 had the whole history of the action triples of length t− 1: Nature, the other

player and their own sequence of actions played until this stage. In all this phase,

verbal communication was forbidden. Therefore, Player 1 that knew how the Nature

plays in the future may signal to player 2 by using his/her own actions some event to

reach better coordination. How much information was transmitted depends on how

informative the signal of player 1 was and how receptive player 2 was in receiving

the signal. This eventually determined the payoff of the two players as the number

of concordance with the Nature’s actions.

We analyse the effectiveness of the chat in transmitting information in the terms

of the theoretical model. That is, without specifically analysing what the messages

in the chat contain, we test whether and how much do players coordinate under such

2Given that there is a positive gain when both players match nature’s, the sender has an incentive

to share information in order to improve his own gains. Thus, actions’ coordination is possible being

a strictly dominant strategy for both players.
3This phase fits the assumption in Gossner et al. (2003) of the common set of strategies.
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conditions and, therefore, whether the model predicts reasonable strategies that could

be observed from real heterogeneous agents.

Among our main experimental results we find that subjects design strategies at

three levels of coordination. First, strategies at low level where the receiver ignores or

misunderstands the sender’s message, coordinating actions by pure chance. Second, a

medium level of coordination in which strategies transmit successfully information by

following a joint coordination code. A third level of coordination, the richest, where

coordination codes achieve payoffs close to the optimal predicted by the theoretical

model.

Additionally, we estimate the theoretical model with the data obtained in the

experiment and find that actions by the receiver are significantly explained by actions

played by the nature and the sender. With respect to senders, their signals are precise

most of the times.

The paper is structured as follows. Section 2 reviews related literature on strategic

information transmission. In Section 3 we describe the game and the theoretical

framework. Section 4 explains in detail the experimental environment. In Section 5

we describe the data analysis and highlight the main results. Section 6 concludes.

2 Related literature

Needless to say, strategic transmission of private information deals to many areas re-

lated to economics and political sciences, as clearly stated in Sobel’s (2010) literature

review. A quick look at the state of the art on unmediated communication classifies

this type of research into two categories. First, cheap talk games, where information is

unverifiable and players can lie at no cost.4 Second, games of persuasion or verifiable

disclosure, since it is assumed that information is verifiable and agents can conceal

information but not lie.5 Our set up is directly related with the first category.

The large strand of cheap talk literature was initiated by Crawford and Sobel

(1982) where, primary related to the theory of bargaining, an informed sender sends

a possibly noisy signal based on his private information to an uninformed receiver,

who then takes an action that determines the welfare of both. The authors show

that when there is some, but not complete, common interest imprecise talk may be

necessary and sufficient to sustain credibility. This credibility constraint is necessary

for equilibrium communication. Under milder conditions on that of Grawford and

Sobel, the recent work by Agastya et al. (2015) completes the analysis by establishing

4See Farrell and Rabin (1996) for an exhaustive survey.
5Grossman (1981) and Milgrom (1981) are seminal papers of this line of research.
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that almost full revelation obtains as the two players preferences get arbitrarily close

to each other.

Our main reference, Gossner et al. (2006), is also central in this line of research.

In their model, a sender transmits information to the receiver without incentives to

cheat. Furthermore, randomness is modeled as a binary, uniform random variable

that represents the state of the world. Uncertainty is privately unveiled to the sender

but not to the receiver. Although within a different modelisation of uncertainty,

Agastya et al. (2014) analyze a context in which the sender has expertise on some

but not all the payoff-relevant factors. Such an uncertainty can either improve or

worsen the quality of transmitted information, which depends on the effective bias.

For symmetrically distributed uncertainty or quadratic loss functions, the authors

highlight three results: the quality of information transmission is independent of the

riskiness of that uncertainty, it may be suboptimal to allocate authority to the in-

formed player, and despite players’ preferences being arbitrarily close, it is impossible

to hold that the receiver prefers delegation over authority or vice versa.

Common to Crawford and Sobel, in Gossner et al.’s model, information transmis-

sion does not have an explicit cost. However, there is an implicit cost that comes

from the trade-off between the cost and benefit of information transmission. Specific

contexts with costly communication are offered by Sobel (2012) and Hertel and Smith

(2013). In the first, it is studied the case in which both sender and receiver undertake

a costly acquisition of communication capacity. The author points out that models

where communication is costly and preferences are aligned can have parallel results to

models of costless communication and not aligned preferences. In particular, for any

communication cost or difference in preferences, full communication is not possible

and failure to communicate is always possible. In the second paper, Hertel and Smith

introduce discrete and costly communication in the Crawford ant Sobel’s setup. The

underlying idea is that words are scarce and costly. The sender can communicate only

through the use of discrete messages which are ordered by cost. The state space is

richer than the space of messages, since the state space is infinite while the number of

messages is finite. The model captures realism since it is impossible to communicate

to others the complexity of the real world. Therefore, the precision of communica-

tion may be enhanced by expending more in costly effort. In addition, the size of

language endogenously emerges due to the cost of communication. As a main result,

when players preferences are not aligned, an increase in communication costs may

improve communication itself.

Some of the theoretical model just mentioned have been also tested in the lab.

Crawford (1998) reviews the experimental literature on communication games, and
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Devetag and Ortmann (2007) critically revise some research on coordination failure in

the lab experimental studies on coordination games with Pareto-ranked equilibrium.

Charness and Grosskopf (2004) analyze which components might make cheap talk

effective in the setting of coordination games. In particular, they design an experiment

based on a two-player game to test whether information provision about the other

player’s action, and whether costless one-way messages before actions are taken have

some influence on coordination. They find that information provision about the other

person’s play only enhances coordination when messages are allowed.

Through an experimental approach, Blume and Ortmann (2007) investigate the

effects of costless pre-play communication in symmetric coordination games of the

stag hung variety. They find that with repeated interaction cheap talk preceding

games with Pareto-ranked equilibria can substantially facilitate player’s coordination

on the Pareto-dominant equilibrium.

The Hertel and Smith (2013) model on costly and discrete communication is

contrasted in a laboratory by Duffy et al. (2014). These authors find that the size

of the language endogenously emerges as a function of the costs of communication:

higher communication costs are associated with a smaller language. They find that

the sender payoffs, relative to equilibrium payoffs, are decreasing in cost, whereas

the receiver payoffs, relative to equilibrium payoffs, are increasing in cost. Moreover,

over-communication is also found.

3 Theoretical framework

Our theoretical set-up is based on previous work by Gossner et al. (2003, 2006).

3.1 The one-shot game

Consider the following game with asymmetric information. Nature, player 1 and

player 2 choose an action 0 or 1, denoted by x, y and z respectively.

If all agents take the same action, player 1 and 2 receive a 1 payoff, and a zero

payoff otherwise. The payoff function for players in the one-shot version of this game

is represented in normal form as,

g(x, y, z) =

{
1 if x = y = z

0 otherwise
(1)

It can also be represented in matrix way:
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z = 0 z = 1 z = 0 z = 1

y = 0 1 0 y = 0 0 0

y = 1 0 0 y = 1 0 1

x = 0 x = 1

where nature chooses the matrix, player 1 chooses the row, and player 2 chooses

the column. Players 1 and 2 have a common payoff function and, therefore, their

incentives are aligned.

In the n-stage version of the game, nature plays a random sequence of actions

denoted as X ∈ {0, 1}n and defined as an i.i.d (1
2
, 1
2
) sequence. Before the game is

played, player 1 learns the future realizations of nature, while player 2 knows only the

law of the Nature’s random process. Both players learn the whole history of actions

pair. Formally, the strategies of the above 3-players game for players 1 and 2 are

defined as,

• a (pure) strategy Y ∈ {0, 1}n for player 1 is a sequence of mappings Yt :

{0, 1}n×{0, 1}t−1×{0, 1}t−1 → {0, 1}. Yt describes player 1’s action at stage t,

which depends on nature’s sequence X and players’ actions in stages previous

to t.

• a (pure) strategy Z ∈ {0, 1}N for player 2 is a sequence of mappings Zt :

{0, 1}t−1×{0, 1}t−1×{0, 1}t−1 → {0, 1}. Zt describes player 2’s action at stage

t which depends on all past actions.

Therefore, given a sequence X ∈ {0, 1}n for nature and a pair of strategies (Y, Z)

for players 1 and 2 the induced sequences of actions (yn)n and (zn)n of players 1 and

2, respectively, are given by the following relations: (yn)n = Y (X) , (zn)n = Z(X, Y ).

Ultimately, player 1’s actions only depend on nature’s actions, while actions of player

2 depend on player 1’s and nature’s actions.

3.2 Finite repetition

In situations under asymmetric information, players may share information in order

to reduce inefficiencies. Gossner et al. (2006) analyze such situations for infinite

repetition. However, many real situations last a finite amount of time. We apply the

techniques introduced in that paper for finitely repeated environments with asym-

metric information. Let us introduce Gossner et al. strategies construction:

Players’ strategies are defined over blocks of length m < n in such a way that, for

any nature’s sequence X = (xm)m, the proportion of stages for which player 2’s action
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matches nature, zt = xt, is denoted by q ∈ [0, 1]. And, the proportion of stages for

which player 1’s action matches nature, yt = xt, conditional on zt = xt, is p ∈ [0, 1].

Therefore, the proportion of stages in which yt = zt = xt is equal to p · q. Given that

strategies in this game are defined over the space {0, 1}, p · q defines, in turn, each

player’s stage average payoff in the long-run.

Player 1 chooses a sequence (ym)m of actions as a signal for player 2 such that:

• the number of times in which yt = zt = xt is equal to bp · q ·mc.

• among the d(1 − q) ·me stages in which zt 6= xt, it occurs that yt = xt about

half of the times, i.e. b1−q
2
mc .

After the first block has been played, along each block player 2 has to interpret the

signal sent by player 1 during the previous block and then choose her own sequence

(zm)m.

Given a strategy (p, q), the number of blocks of length m fulfilling the above

properties is computed as the product of three combinatorial numbers6. For feasibility,

that result should be greater than 2m:(
m

mq

)(
mq

mqp

)(
m(1− q)

m(1− q)1
2

)
≥ 2m (2)

3.2.1 The information constraint

Reescribirlo todo siguiendo OMP

The entropy function7 is used to measure the amount of information conveyed in

a message transmitted through a channel. To our purpose, the entropy allows us to

6In general,

(
m

tx

)
is defined as Γ(m+1)/(Γ(x+1)Γ(m−x+1)). Being Γ(m) the Euler gamma

function that satisfies Γ(m) =
∫∞

0
tm−1e−tdt. For m(1 − q) = 1, we consider

(
m(1− q)
m(1− q) 1

2

)
= 2.

That means that with one digit is possible to construct the two basic sequences: 0 and 1.
7

3.2.2 Entropy and conditional entropy

Let X be a random variable over a finite set Θ with distribution p. The entropy H(X) of X is

H(X) = −Σθ∈Θp(θ) log p(θ) = −EX log p(X)

where 0 log 0 = 0 (by convention log is taken in basis 2). The entropy of a random variable depends

on its distribution only. Thus, for p ∈ ∆(Θ) we let H(p) = H(X) for a random variable X with

distribution p. By convention, if p ∈ [0, 1], H(p) also represents the entropy of a Bernoulli random

variable of parameter p.
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measure the information available to players, individually or as a team. Moreover,

the entropy is also useful to approximate a combinatorial number8 that connects the

number of sequences given by (2) with the amount of information shared by players:

2mH(q)2mqH(p)2m(1−q)H(1/2) ≥ 2m (3)

where H(q) is the amount of information available to player 2 and H(p) the informa-

tion available to player 1. In his own interest, player 1 shares information with player

2, gathering the total amount of information given by the joint entropy H(p, q) which

is defined as,

H(p, q) = H(q) + qH(p) + (1− q)H(1/2) = H(q) + H(p|q) ≥ 1 (4)

The term H(p|q) is the conditional entropy. The first part represents the amount

of information of player 1 when his action matches nature knowing that player 2’s

action also does. The second part represents the amount of information of player

1 when his action matches nature knowing that player 2 does not. Player 2 is a

partial informed agent with imprecise information on nature’s future state, measured

by H(q) and less than the entropy of nature, H(1/2) = 1. Therefore, the amount of

information that player 1 needs to transmit to player 2 to fill in the gap of information

is 1−H(q) ≤ H(p|q). Player 1 does not need to transmit all his private information

to improve his own earnings, and sharing just a part of it is enough for both players

to have incentives to design a joint block strategy (p, q) that will match nature pqm

Given a pair of random variables (X1, X2) taking values in Θ1×Θ2 with joint distribution p(θ1, θ2),

we denote by p(θ2 | θ1) the conditional probability that X2 = θ2 given that X1 = θ1. Define

h(X2 | θ1) = −Σθ2∈Θ2p(θ2 | θ1) log p(θ2 | θ1). Thus h(X2 | θ1) is the entropy of X2 when the

realization X1 = θ1 is known.

The conditional entropy H(X2 | X1) of X2 given X1 is

H(X2 | X1) = EX1
[h(X2 | X1)] =

∑
θ1∈Θ1

p(θ1)h(X2 | θ1)

Direct computation shows that H(X1, X2) = H(X1) + H(X2 | X1). This extends to a family of

random variables (X1, . . . , Xn) to:

H(X1, . . . , Xn) = H(X1) +

n∑
k=2

H(Xk | X1, . . . , Xk−1)

The entropy of a number 0 < x < 1 is defined as H(x) = −xlog2x − (1 − x)log2(1 − x). The

entropy is minimal for x = {0, 1}, H(0) = H(1) = 0, and maximal for x = 1/2, H(1/2) = 1.

8For 0 < x < 1, the combinatorial number

(
m

mx

)
is upper bounded by 2mH(x).
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times within a block. The remaining (1 − pq)m times are errors used to transmit

information about the next block.

The fact that the informa- tion used by the agent cannot exceed the information

received leads to an information-theoretic inequality expressed using the Shannon [13]

entropy function, and which we call the information constraint.

Since the coded information is embedded into the error locations, there is a trade-

off between earnings and errors: the fewer the errors, the more coordination and the

higher earnings for players, but the fewer chances to inform on nature’s future state,

which in turn reduces future earnings.

Ultimately, the number of errors depends on the strategy (p, q) that, for feasibility,

must satisfy the information constraint given in (3). Players choose a joint strategy

from the set of feasible strategies S. Let S be the set of pairs (p, q) verifying (3).

Taking logarithms, set S is defined as,

S = {(p, q) : H(q) + qH(p) + (1− q) ≥ 1} (5)

Notice that if p = 1 and q = 1, both players have perfect information and the

information constraint does not work: H(1)+1H(1)+(1−1) = 0 < 1. Consequently,

we have that the set S is a proper subset of [0, 1]× [0, 1]. Moreover, the information

constraint does not depend on the length of the block m.

3.2.3 Coordination strategies in Q

In order to coordinate actions and maximize payoffs, players need to transmit infor-

mation through actions. In a way, players need to perform a communication system

on finite sequences. To do that, the number of matches must be defined as an integer

number and additional definitions are needed into the rational number set Q.

Given a strategy (p, q) on S, let us define the counterpart in rational numbers

as q̃(m) = bqmc
m

, p̃(m) = bpqmc
bqmc , m is the size of the block. If q ∈ [0, 1] then q̃ ∈

{0, 1
m
, . . . , m−1

m
, 1}. Similarly, since p ∈ [0, 1] then p̃ ∈ {0, 1

mq̃
, . . . , mq̃−1

mq̃
, 1} .

The expression (2) can now be rewritten with rational numbers as,(
m

mq̃

)(
mq̃

mq̃p̃

)(
m(1− q̃)

m(1− q̃)1
2

)
≥ 2m

(6)

also the information constraint (4) as,

H(q̃(m)) + q̃(m)H(p̃(m)) + (1− q̃(m)) ≥ 1 (7)
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and we will refer to this constraint as the rational information constraint.

Denote by S̃m the set of pairs (p̃, q̃) in rational number verifying the rational

information constraint9:

S̃m = {(p̃, q̃) ∈ Z
mZ ×

Z
mZ :

q̃(m) = bqmc
m

, q ∈ [0, 1]

p̃(m) = bpqmc
bqmc , p ∈ [0, 1]

H(q̃) + q̃H(p̃) + (1− q̃) ≥ 1}

(8)

Remark 1 The rational information constraint depends on the size of the block m.

H(q̃(m)) + q̃(m)H(p̃(m)) + (1− q̃(m)) ≥ 1 (9)

The following lemma states the existence of rational joint strategies for players 1

and 2 given a fixed length for the block.

Lemma 2 Let n > 0

• There exists m|n such that S̃m 6= 0.

• Let Dn = {m|n : S̃m 6= 0}. There exists m∗ ∈ Dn and (p∗, q∗) ∈ S̃n∗ such that

p∗q∗ is maximal over (p̃(m), q̃(m)) ∈ S̃m,∀n ∈ Dn.

Proof.

• For all m ∈ Dm consider the family
{
bqmc
n

, bpqmcbqmc

}
m∈Dn

.

Observe that S̃m ⊂ [0, 1] × [0, 1] is a compact set. Therefore, the product

p̃(m)q̃(m) reaches its maximal value in this set.

From the set of pairs (p̃(m), q̃(m)) that verify the rational information con-

straint:

H(q̃(m)) + q̃(m)H(p̃(m)) + (1− q̃(m)) ≥ 1 (10)

We obtain the optimal pair (p∗, q∗) such that the product p∗q∗ reach the maximal

value in S̃m.

9Z denotes the set of positive integer numbers.
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As the entropy approximation provides an upper bound for a combinatorial num-

ber, the rational information constraint (10) is a necessary but not sufficient condition

for a strategy (p̃(m), q̃(m)) to be implementable. Specifically, in the case of blocks of

short length like m = {3, 4}, a strategy may verify the rational information constraint

but not the combinatorial inequality (6). To overcome such cases, we introduce a re-

finement for a strategy to be implementable and define the implementable information

constraint in combinatorial terms as,(
m

mq̃

)(
mq̃

mq̃p̃

)(
m(1− q̃)

m(1− q̃)1
2

)
+

(
m

m

)(
m

m(1− q̃p̃)

)
≥ 2m

(11)

Notice that we have added a second term to the left-hand side of inequality (6),

representing the total number of m-length sequences with a number of signaling errors

equals m(1− q̃p̃).

4 Experimental set-up

In this subsection we determine and justify the criteria that a sequence and block

lengths has to fulfill in order to be adequate for its implementation in the lab.10 We

then define the optimal strategies for the chosen length of the sequence. Finally, we

describe in detail the design of the experimental session undertaken.

4.1 Sequence and block lengths

In order to find the “right” length of the sequence to be used in the experiment, we

explore several sequence lengths (n) combined with several block lengths (m). In fact

we look for the block strategy (p̃(m), q̃(m)) of length m < n that maximizes earnings

in the length of the sequence (n).

Let us denote as G(n,m) the total payoff obtained in a sequence of length n by

a block strategy of length m: G(n,m) = p̃(m)q̃(m)mb(n,m)m. Being mb(n,m) the

number of blocks of length m in the sequence of length n as follows:

mb(n,m) =

{ b n
m
c if n modulo m ≥ m(1− p̃(m)q̃(m))

b n
m
c − 1 otherwise

(12)

10A more extended and preliminary version of this analysis is included in Garćıa-Gallego et al.

(2015).
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Because in the first block players are not able to transmit any information but

just play, any matching in that block occurs by chance. Let n modulo m be the

remainder of the fraction between n and m. If n modulo m is greater than or equal to

the number of errors that are necessary to communicate, i.e m(1− p̃(m)q̃(m)), then

the number of blocks generating payoff is given as the minimum integer number b n
m
c.

Otherwise, the number of blocks is b n
m
c − 1.

Given m, the optimal total earning G∗(n,m) can be obtained by a block strategy

that maximizes the total earnings: G∗(n,m) = maxm G(n,m). Since the solution

to this problem is not unique for n, it is established as the optimal block strategy

(p̃(m∗), q̃(m∗)) the one that has the minimum length, i.e. m∗ = minm arg(G∗(n,m))

We consider that lengths, in order to be implementable in the lab, should be long

enough for subjects to learn during the game and should have an optimal strategy

easy to be designed during the pre-play stage of the game.

We develop an algorithm that solves the min-max problem. In the first place, we

apply lemma 2 in order to construct strategy sets S̃∗m. Divide the interval [0, 1] into

m disjoint intervals such that:

x
m
≤ q̃(m) < x+1

m
, x = 0, 1, . . . ,m (13)

and call x the number of times player 2 matches nature. For each one of m intervals

a rational number exists in the set:

q̃(x|m) =

{
0,

1

m
,

2

m
, . . . ,

m− 1

m
, 1

}
(14)

Let p̃(m) be conditional on q̃(m) such that:

y
x
≤ p̃(m) < y+1

x
, y = 0, 1, . . . , x, x > 0 (15)

For each one of m intervals a set exists expressed as:

p̃(y|x,m) =

{
0

x
,

1

x
, . . . ,

x− 1

x
, 1

}
, x 6= 0 (16)

By programming with Mathematica 7.0, we provide strategy sets S̃m. Table 4 in

the Appendix shows the set of optimal strategies verifying the rational information

constraint. As an example, m = 2, 3, 4, 5 the sets are:

S̃2 = {(1
2
, 1), (1, 1

2
)}

S̃3 = {(1, 1
3
), (1

2
, 2
3
), (1, 2

3
)}
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S̃4 = {(1
2
, 1), (1, 1

4
), (1

2
, 1
2
), (1, 1

2
), (1

3
, 3
4
), (2

3
, 3
4
), (1, 3

4
)}

S̃5 = {(1, 1
5
), (1

2
, 2
5
), (1, 2

5
), (1

3
, 3
5
), (2

3
, 3
5
), (1, 3

5
)(1

4
, 4
5
), (1

2
, 4
5
), (3

4
, 4
5
)}

Observe, for example, that the strategy (1, 3
4
) in S̃4 does not fulfill the imple-

mentable information constraint given in (11):(
4

3

)(
3

3

)(
1

1/2

)
+

(
4

4

)(
4

1

)
= 12 � 24 = 16

That means that it is not possible to construct blocks of length m = 4 with only

one signaling mistake. Furthermore, note that 2-length blocks and 3-length blocks

are implementable strategies that need only one signaling mistake.

Given a set of strategies, we are able to optimal strategies by maximizing total

earnings per block. For the sets just considered above, the optimal strategies are:

S̃∗2 = {(1
2
, 1), (1, 1

2
)}

S̃∗3 = {(1, 2
3
)}

S̃∗4 = {(2
3
, 3
4
)}

S̃∗5 = {(1, 3
5
), (3

4
, 4
5
)}

Once the optimal strategies are identified, the next step is evaluating each strat-

egy calculating the earnings associated with them for a given sequence length n =

5, 6, · · · , N . Each combination (n,m) leads to G(n,m) total earnings.

In addition, given that this problem has multiple solutions for the optimal block

length m∗, we require that, for a given sequence length n, the length of the block to

be minimal, that is, m∗ = minm arg(G∗(n,m)).

Table 7 in the Appendix reports the optimal implementable strategies. Taking

into account all the requirements for a length to be reasonably implementable in the

lab, we choose n = 55. To this sequence length optimally corresponds the block

length m = 3 and the strategy (1, 2
3
) known as majority rule for 3-length blocks, that

we explain next.
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4.2 The majority rule for 3-length block strategy

The 3-length block strategy11 strategy is ruled such that in each block after the first

stage, player 2’s actions match nature’s actions in at least 2 out of the 3 stages. Player

2’s triple action is either (0,0,0) or (1,1,1) in each block, whereas player 1’s actions

signal to player 2 the majority action of nature in the next block. This signaling is

achieved by playing nature’s majority action of the next block in a signaled stage of

the current block. If actions of player 2 match nature’s at all stages of the current

block, then the third stage of the block is the one signaled to signal the majority rule

for the next block. If the actions of player 2 match the sequence of nature in exactly

two out of three stages, the mismatched stage is the one signaled. That strategy

guarantees a per stage payoff of 2/3.

Table 1 shows the 3-length majority rule strategy. Note that there is only one

mistake signaled by player 1’s actions (in bold) and that the total guaranteed payoff

is at least 10 (2 × 5 blocks), and the guaranteed stage average payoff is 10
16

= 0.625.

Furthermore, the signaling action may match the majority action of the current block
1
4

of the times. Thus, there is an additional expected payoff equal to 1.25 (1
4
×5 blocks).

This implies that the stage expected payoff is 11.25
16

= 0.70.

Table 1: Majority rule strategy

PPPPPPPPPPP
Players

Stages
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Nature 1 1 0 0 1 0 1 1 1 1 0 1 0 0 0 0

1 0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0

2 * 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0

Payoff * 0 1 1 1 0 1 1 1 0 1 0 1 1 1 1

11The possible binary sequences of length 3 are: (0,0,0), (0,0,1), (0,1,0), (1,0,0), (1,1,0), (1,0,1),

(0,1,1) and (1,1,1). There are four sequences with majority rule 0, and also four with majority rule

1. The probability of the majority rule ‘equals 0’ is given by prob(majority = 0) = prob(000 ∪
001 ∪ 010 ∪ 100) = 4 1

8 = 1
2 . Similarly, the probability of the majority rule ‘equals 1’is equal to

prob(majority = 1) = prob(110 ∪ 101 ∪ 011 ∪ 111) = 4 1
8 = 1

2 . Thus, the probability of two

consecutive blocks have the same majority is 1
2 . The probability that an intended mistake (say

x) becomes a random match is equal to: P (x = majority = 0)P (majority = 0)P (majority =

0) + P (x = majority = 1)P (majority = 1)P (majority = 1) = 1
4 .
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4.3 Experimental design

The experiment was run at the experimental economics lab at the University of Va-

lencia (LINEEX) in Spain, and consisted of two sessions of 60 subjects each, all third

and fourth year students of Economics, International Business and Business Admin-

istration at that University. In each session, students were grouped in pairs and

randomly assigned a permanent role: Type 1 (plays player 1) or Type 2 (plays player

2).12

At the beginning of the session and before the matching, students performed

several tests. First, the Cognitive Reflexion Test (CRT)13 Second, a Team Work

Test (TWT) of twenty five questions. We used subjects’ performance in the TWT

to rank students from more to less collaborative. Thirty pairs were formed by taking

consecutive people two by two. This way, the pair number 1 was composed by the

two most collaborative ones, and the pair number 30 was formed by the two less

collaborative ones in the sample.

After doing the matching, the instructions of the experiment were given to sub-

jects.14 The decision making of subjects in this experiment consist in playing the

matching pennies repeated game introduced in section 3: a no-player, called Prize,

was defined as an i.i.d random variable taking value 0 or 1 with probability (1
2
). A

55-length random sequence was generated at the beginning of the play phase by a

random number generator. This was common knowledge to both players. Immedi-

ately after, the Type 1 player knew the complete sequence of Prize, while the player

Type 2 did not. After that, subjects started playing the game and, at the beginning

of a new round, each player knew the actions played in the past. Players payoffs were

defined such that, in each round, both players get 1 only if both of them match the

action played by Prize, and zero otherwise. No losses are possible.

In an experimental session, players play twice the coordination game. Specifically,

a session was divided in two parts: In the first part, named Play 1, subjects played

the coordination game during 55 rounds. Immediately after, the second part, named

Play 2, is played. Play 2 is exactly the same as Play 1 but nature plays a different

sequence. Both parts in a session have the same structure: first, the 55 sequence of

nature’s actions is generated and privately transmitted to Type 1 player, and then

both players play the repeated game. At the end of each round, subjects are privately

informed about all actions taken and about individual earnings in that round. As

a result, the two parts of a session differ just in the fact that, when Play 2 starts,

12This experiment is part of the more extended experimental study in Garćıa-Gallego et al. (2013).
13This test measures how reflective a person is in his decision making.
14See the translated version from the original in Spanish in the Appendix.
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subjects have already played Play 1. At the end of each Play, subjects were privately

informed about their final earnings in that part.

Each part, Play 1 and Play 2, had also a pre-play stage of 3 minutes-chat before

the coordination game is played. During the time of the chat, subjects were allowed to

send free-form messages to each other to share information and experience. Subjects

could finish the chat at any moment. Otherwise, the chat would automatically close

once after the three minutes. Once the chat was finished, Type 1 was informed in

private about the sequence of Player 1 and the game started.

The two sequences of a session were randomly generated at the beginning of each

part of the session through a random number generator simulating a ‘0’ and ‘1’ binary

variable, each outcome with a constant probability of 1/2. Subjects were informed

about the computerized random process as being like tossing a coin.

A pilot session of 8 periods was ran for subjects to have an accurate understanding

of the frame of the experiment. Once the pilot finished, the real experiment started.15

At the end of the session, each participant was privately paid in cash. Particularly,

as specified in the instructions, a subject was paid 1 ECU (Experimental Currency

Unit) per round in which all strategies matched. The ECU/Euro exchange rate was

1 ECU = 1
4

Euro. Average payoffs per subject were around 18 Euros.

5 Data analysis and main results

In this section, we first conduct a statistical analysis on the entire sample of the

number of matchings as well as on the respective subsamples corresponding to the

Play 1 and Play 2, second conduct a cluster analysis to identify coordination levels,

then analyze CRT and TWT results including a correlation analysis between CRT

and TWT scores and the number of matchings, and finally perform an econometric

estimation of the theoretical model.

Table ?? reports the main statistics on the number of matchings. In median, the

overall number of matchings is 32, which represents the 58% of success in the 55 rounds

of a play. It emerges that number of rights significantly increases with experience:

subjects improve coordination in the Play 2. In fact, according to Wilcoxon signed-

rank test for the equality of medians, there exists a powerful significant difference

between plays (z = 3.701, p = 0.0002).

15Data from the pilot periods are not reported in our results.
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Table 2: Statistics on matching by play

Descriptive

Statistics Play 1 Play 2 All

Max. 42 44 44

Min. 18 18 18

Average 30.08 33.65 31.87

Median 30 34 32

St.D 5.12 5.72 5.7

Rate 0.55 0.62 0.58

Obs. 60 60 120

‘Rate’ refers to a matching percentage defined

as the quotient between the median and the

length of sequence n=55.

Result 1: Experimental subjects coordinate their actions with experience, arriv-

ing to high levels of coordination in the second play of the session.

We follow to identify the characteristics of coordination clusters by executing

the K-MEANS algorithm (MacQueen, 1967) on the entire sample of the number

of matchings16, and then within each cluster strategies are separated by plays. As

reported in table ??, we identify three clusters corresponding to three coordination

levels:

• Cluster L includes the poorest strategies: strategies in which player 1 plays

nature’s action and player 2 plays at random. Both strategies are naive and

have a correspondence with the theoretical (p, q) = (1, 1
2
), an expected payoff of

1
2

per stage and a total expected payoff over the whole sequence of 55× 1
2

= 27.5.

In practice, 38 out of 120 lab strategies were classified as low coordination and

produced the 47% of success, in median.

• Cluster M includes suboptimal strategies like the one of 2-length block, with

a guaranteed per period payoff of 1 and a per period expected payoff of 5
8
.

Therefore, the total payoff lays within the interval [27.5, 34.37] for the 55-length

sequence. Regarding the lab strategies, 29 out of 120 were classified as medium

coordination with a rate of success of the 56%.
16K-means algoritm is implemented in the scientific program Matlab. The distance measure

applied is the sum of absolute differences, known as the L1 distance. Each centroid is the component-

wise median of the points in that cluster: d(x, c) =
∑p
j=1 |xj − cj |.
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• Cluster H includes the optimal 3-length block strategies, with a guaranteed per

period payoff of 2
3

and a per period expected payoff of 3
4
. The total payoff for

the whole sequence lays in the interval [36.66, 41.25]. The number of strategies

implemented in the experiment considered as high coordination was 53 out

of 120, that means a success of 67%. In spite of the surprising number such

strategies, only 2 out of 53 performed the optimal coding rule.

Table 3: Statistics on matching within coordination clusters

Descriptive Play 1 Play 2 All

Statistics L M H L M H L M H

Average 24.67 29.63 35.35 26.65 32.15 38.27 25.55 30.76 37

Median 26 30 35 27 32 39 26 31 37

St.D 2.52 1.78 2.31 3.55 2.19 2.41 3.14 2.32 2.76

Rate 0.47 0.55 0.64 0.49 0.58 0.71 0.47 0.56 0.67

Obs. 21 16 23 17 13 30 38 29 53

‘Rate’ refers to a matching percentage defined as the quotient between the median

and the length of sequence n=55.

As mentioned in the subsection 4.3 the participants of the experiment were face

a Cognitive Reflection Test (CRT) composed by 3 questions and a Team Work Test

(TWT) of 25 questions17 in the likert scale from 1 to 4, meaning 1 no cooperative at

all and 4 absolutely cooperative18. Participants, separate by role player 1 and player

2, were sorted in decreasing order according to their TWT score, and then each

participant was paired to the counterpart in the same order to form a permanent

pair. Thus, the pair 1, the highest scored pair, score would be presumably the most

inclined to coordinate each other, whereas the pair 30, the lowest scored pair, would

be the less inclined to coordinate each other. Therefore, we would expect to find a

positive relation between coordination and TWT score in our experiment.

Figure 1 plots the distributions of TWT and CRT scores. Panel (a) shows the

overall distributions by types of players, which indicate homogenous groups regard-

ing to subjects’ attitudes towards cooperation and reflection. Furthermore, by coor-

dination levels, subjects exhibit no significant differences in such attitudes: median

TWT(CRT) score was around 78(13.98), in overall. Panel (b) represents the distri-

bution of players’ TWT scores by play and cluster. Looking at the left of the graph,

17See appendix for question test.
18The maximal score is 100 and the minimal score is 25.
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we find that 12 out of 21 pairs coordinated at level L in Play 1 enhanced coordina-

tion in Play 2. In contrast, at the right of the graph, we find that 7 out of 23 pairs

coordinated at level H in Play 1 diminished coordination in Play 2. The distributions

of TWT scores by coordination levels look like really different, which indicates that

there is no relation between such scores and coordination. In fact, the coefficient

of Pearson’s correlation between the number of matchings and TWT scores is not

significant, neither between the number of matchings and CRT scores nor between

TWT scores and CRT scores. This evidence leads to the following result:

Result 2: Experimental subjects’ attitudes towards reflection and cooperation

do not matter to coordination.
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(a) TWT and CRT scores by type of player

(b) TWT scores by cluster and type of player

Figure 1: Distributions of CRT and TWT scores

5.1 Coordination strategies (p, q) in the lab

In the pure matching pennies game coordination is tacit and random. In contrast, in

our matching pennies game coordination is also tacit but not random.

Players jointly define a coordination strategy before playing the game, which al-

lows to assure their matching and payoff. Superior coordination strategies convey
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more information that player 2 decodes according to a joint coordination rule and

matches nature’s action in proportion q.Player 1 makes one or more mistakes to in-

form his partner about nature future playing. Thus, player 1 matches both player

2 and nature’s actions in the proportion p1, while matches just nature’s actions in

proportion p2.

As far as the corresponding experimental strategies for proportions (p, q), as al-

ready defined in Section 3, the evidence is the following:

• Figure 2 reports proportions q in Plays 1 and 2 distributed by coordination

cluster. Firstly, the median values are increasing in coordination, and higher in

the Play 2. In overall, there exists a powerful significant difference of medians

between both plays (z = −3.610, p = 0.0003).

• However, in the case of proportions p1 and p2 no differences of medians are

found between plays (z = 0.936, p = 0.3494; z = −0.738, p = 0.4608).19

• Regarding the relation between player 1 ’s and player 2’s decisions. On the

one hand, the proportion p1 exhibits an overall negative coefficient of Pearson’s

correlation with the proportion q (corr = −0.474, p = 0.0001). In other words,

because player 1 uses mistakes to inform the player 2 about the nature’s next

actions, the higher p1 is the lower the number of mistakes is and therefore the

less information is transmitted and, as a result of coordination strategy, the

lower the number of player 1’s chances to match nature q is. On the other

hand, the proportion p2 is uncorrelated with the proportions q and p1 since the

corresponding coefficient of correlations are not statistically significant at con-

ventional levels. That means that the player 1’s decision is random (theoretical

optimal value is p2 = 1
2
) when player 2 does not match nature.

All these findings lead to our third result.

Result 3: The behavior of player 1 induces the behavior of player 2. Being

information transmission based on the mistakes (1−p1) of player 1 that are interpreted

by and converted in rights (q) of player 2.

19It is applied Wilcoxon signed-rank test for the equality of medians.
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Figure 2: Player 2’s matching frequency by cluster

5.2 Logit model estimation

According to the theoretical model, codification rules implicitly define player 1 and

player 2 matching proportions p and q, which, in turn, determine the long term

average payoff (p · q ·n). In previous sections, we characterized the optimal pair (p, q)

= (1, 2
3
) for a finite sequence of nature of length 55, being the corresponding strategy

the majority rule for 3-length blocks. In this subsection, we estimate the models of

players behavior by binary logit models.

We first estimate the model of player 2. If information transmission exists, the

decisions of players 2 will depend on nature and the previous decisions of players

1, which is included by lagging one and two periods the variable representing the

decisions of player 1. Also, dummies variables to catch the effect of coordination

clusters M and H are added. Furthermore, the model estimation with the entire

sample include dummies per session and play.

Regarding the estimation of the model of player 1, we estimate the probability p1,

which is conditional on the player 2 matches nature’s action, and then estimate the

probability p2, which is conditional on the player 2 does not match nature’s action.

In this case, the only explanatory variable is nature’s action and also dummies per

cluster and session are included.

Table 6 reports the logistic regression marginal effects of probabilities q, p1, and

p2 for the entire sample and each play.

We find a positive effect of nature intervention on q. In other words, when na-
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ture’s action changes from ‘0’ to ‘1’, then q increases, and viceversa. Concerning the

entire sample, we find significant both the one and two lagged actions of player 1.

When player 1 changes his action from ‘1’ to ‘0’ q diminishes one period later, but

increases two periods later. Additionally, Play 2, clusters M and H have positive

effects on coordination, and also Session 1 distinguishes from Session 2 by increasing

coordination. By interpreting the marginal effects per Plays 1 and 2, we only com-

ment relevant differences: when player 1 changes his action from ‘1’ to ‘0’ q always

diminishes in Play 1, and Session 1 does not show differences from Session 2.

A positive marginal effect between the probability p1 and nature indicates that

player 1 follows nature. Nevertheless, the smarter players 1 (in cluster H) make

signaling mistakes to inform at the cost of diminishing p1. It is worth to comment

that in Play 2 of Session 1, players 1 make more mistakes than in Session 2 as indicated

by the negative marginal effect of dummy Session 1

Regarding probability p2, it is remarkable the negative effect that Session 1 has

on such probability, which might conceal over-signaling in Session 1. In contrast,

clusters M and H have significant positive effect on the probability p2.

Result 4: Some mis-signaling is observed in the behavior of player 1 subjects.

When player 2 matches nature’s action, player 1’s and nature’s actions match around

the 98% of the times, on average. Whereas when player 2 does not match nature’s

action, player 1 matches nature’s action significantly less in session 1 than in session

2 -around 25.99% less in session 1.

6 Conclusions

How efficiently players can coordinate under certain conditions in the lab is the scope

of this paper. Specifically, our experimental set up has been inspired by the repeated

matching pennies game with asymmetric information already introduced by Gossner

et al. (2003, 2006). In their paper, Gossner et al. design optimal strategies of

communication between sender and receiver in an infinitely repeated set-up. The

authors use a binary information source and model the uncertainty coming from

nature as a no-player playing a binomial random variable taking either the value

0 or 1 (each with probability 1/2). Players are characterized by their information

available: the sender has private information on the future state of nature; while the

receiver has public information about the history of nature’s past states. The role of

the strategic interaction is crucial since the gains of players are mutually conditional.

Given that there is a positive gain when both players match nature’s, the sender has

an incentive to share information in order to improve his own gains. Thus, actions’
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coordination is possible being a strictly dominant strategy for both players. The main

finding of that paper is the construction of optimal strategies based on communication

blocks.

In order to create the correct experimental environment for testing the set-up

described above, we first have determined that the length n = 55 is the appropriate

for the finite sequence to be generated randomly by nature. We have then provided

a theoretical characterization for strategies designed and implemented under that

experimental environment.

More specifically we have provided an information constraint with rational num-

bers that we call the rational information constraint. This constraint takes into

consideration the fact that the number of bytes available for players to transmit

information is finite. Furthermore, such a constraint is a necessary condition for com-

munication to be possible but it is not sufficient, since an operational communication

device should be implementable. To that purpose, we introduce as a refinement, the

implementable information constraint, which is expressed in terms of combinatorial

numbers. Therefore, this refinement takes into account the number of finite binary

sequences under the requirements of the strategy of the two players.

We have implemented in the lab a specific channel for communication between

players: previously to the playing of the game, a chat is activated during 3 minutes.

During this time, players had the possibility to write free messages hopefully designing

their strategies without explicit cost. How much information is transmitted depends

on how informative the signal of player 1 is and how receptive player 2 is in receiving

the signal. This will eventually determine the payoff of the two players. Here we have

analysed the effectiveness of that chat on transmitting information in the terms of

the theoretical model. That is, without specifically analysing what the messages in

the chat contain, we have tested whether and how much did players coordinate under

such conditions and, therefore, whether the model predicts reasonable strategies that

could be observed from real heterogeneous agents.

Among our main experimental results we find that subjects design strategies at

three levels of coordination. First, strategies at low level where the receiver ignores or

misunderstands the sender’s message, coordinating actions by pure chance. Second, a

medium level of coordination in which strategies transmit successfully information by

following a joint coordination code. A third level of coordination, the richest, where

coordination codes achieve payoffs close to the optimal predicted by the theoretical

model. Overall, we confirm that subjects coordinate their actions with experience,

arriving to high levels of coordination in the second play of the session.

In a further analysis of the data, we have applied binary logit models. Theoreti-
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cally, actions of player 2 depend on nature’s and player 1’s behavior. Moreover, the

full informed player 1 coordinates with the uninformed player 2 via a coordination

strategies that are designed during the pre-play phase. Consequently, what player 1

does in the game depends only on nature’s actions, this fact being common knowledge

by the two players before the game starts. From our logit estimation of the match-

ing probabilities we obtain that the behavior of player 2 subjects is significantly

explained by actions taken by nature and the corresponding player 1. Moreover,

player 1’s action shift conveys nature’s action mostly played. As far as player 1 sub-

jects is concerned, there is somehow mis-signaling in the sense that, when player 2

matches nature, player 1 makes mistakes in excess thus deviating from the theoretical

prediction. However, if we measure the deviations taking coordination clusters, we

calculate that deviations are small, between 2% and 11%. When player 2 does not

match nature, we find opposite evidence from our data. In particular, in session 1

the estimated probability is much lower than the theoretical prediction, which can be

interpreted as over-signaling, while in session 2 the contrary happens, which evidences

under-signaling. Some mis-signaling is observed in the behavior of player 1 subjects.

Sumarising, we conclude that communication reduces inefficiencies and players

follow a class of strategies, the block strategies, salient in the literature of repeated

games in general and in Gossner et al. in particular. Finally, it is quite significant,

that very little experience is enough to make a difference in the implementation by the

part of informed players of strategies using mistakes, or strategic signaling, to convey

information even in complex setups of dynamic environments under uncertainty.
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7 Appendix 1: Instructions of the experiment (trans-

lated from Spanish)

You are going to participate in an experimental session that will give you the possi-

bility to earn some money in cash. How much money you will ultimately take will

depend on luck and your and others’ decisions. Please switch off your mobile phone

and leave your things to one side. For your participation in the session you need just

the instructions and the computer on your desk. Please raise your hand if you have

any questions, and one of us will see to it privately.

In this experiment, you will be paired with another participant, who will not

change throughout the session. A pair is composed of two types of participants:

‘Type 1’ and ‘Type 2’. At the beginning of the session, the computer will randomly

assign you a role and display it on your screen. The experiment is divided into two

plays of 55 rounds each. At the beginning of each play, the computer will randomly

determine, for every round, a value that may be either 0 or 1. This value will be

called ‘Prize’. In each round, the probability that the Prize is associated to 0 or to 1

is exactly the same: 50% (it is like tossing a coin). Each of value will determine your

earnings in each round, according to the following rules.

Each round, your decision making consists in choosing either 0 or 1. In each pair,

the two participants simultaneously choose either 0 or 1 taking into account that:

- If the decisions of both participants coincide with the Prize, they both get 1

ECU each in that round.

- If at least one decision within the pair does not coincide with Prize, then both

get nothing in that round.

At the beginning of each block, you will have 3 minutes to communicate with

your partner through a chat. You can end the chat at any time before the end by

clicking on the option ‘Exit from the chat’. Every message sent through the chat will

be recorded and carefully analyzed by the those conducting the experiment. At the

end of each round, your screen will display information concerning the value of the

‘Prize’ (0 or 1), the decision of your partner (0 or 1) and your own decision in that

round.

To be ‘Type 1’ or ‘Type 2’ has consequences:

- If you are ‘Type 1’, at the beginning of each block of 55 rounds, and after using

the chat to communicate with your partner, you will be aware of the sequence of

values of the Prize that corresponds to that block.

- If you are ‘Type 2’, you will be aware of the value of the Prize at the end of each

round.
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Moreover, participant ‘the agent’ knows that participant ‘the wiser’ will be aware

of the values of Prize for each block just after the chat time. the wiser knows that

the agent will have that information at the end of each round.

Earnings

At the end of each block, the participants in the experiment will know the number

of winning rounds. At the end of the session, you will be paid your total payoff in

cash, that is, the total number of rounds (in the two blocks of 55) in which you won

the prize of 1 ECU. The exchange rate between ECUs and Euros is 1 ECU=1/4 Euro.
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8 Appendix 2: Tables 6 and 7

Table 4: Optimal strategies for blocks of length m = {2, 3, 4, . . . , 27} under a rational

information constraint.

m (p∗, q∗) p∗q∗

2 (1, 1
2
), (1

2
, 1) 1

2

3 (1, 2
3
) 2

3

4 (1, 3
4
) 3

4

5 (1, 3
5
),(3

4
, 4
5
) 3

5

6 (1, 4
6
),(4

5
, 5
6
) 2

3

7 (1, 5
7
),(5

6
, 6
7
) 5

7

8 (1, 6
8
),(6

7
, 7
8
) 3

4

9 (7
8
, 8
9
) 7

9

10 (8
9
, 9
10

) 4
5

11 (1, 8
11

),(8
9
, 9
11

),( 8
10
, 10
11

) 8
11

12 (1, 9
12

),( 9
10
, 10
12

),( 9
11
, 11
12

) 3
4

13 (1, 10
13

),(10
11
, 11
13

),(10
12
, 12
13

) 10
13

14 (11
12
, 12
14

),(11
13
, 13
14

) 11
14

15 (12
13
, 13
15

) 4
5

16 (1, 12
16

),(12
13
, 13
16

),(12
14
, 14
16

),(12
15
, 15
16

) 3
4

17 (1, 13
17

), (13
14
, 14
17

),(13
15
, 15
17

), (13
16
, 16
17

) 13
17

18 (14
15
, 15
18

), (14
16
, 16
18

), (14
17
, 17
18

) 7
9

19 (15
16
, 16
19

), (15
17
, 17
19

) 15
19

20 (16
17
, 17
20

), (16
18
, 18
20

) 4
5

21 (1, 16
21

), (16
17
, 17
21

), (16
18
, 18
21

), (16
19
, 19
21

), (16
20
, 20
21

) 16
21

22 (1, 17
22

), (17
18
, 18
22

), (17
19
, 19
22

), (17
20
, 20
22

) 17
22

23 (18
19
, 19
23

), (18
20
, 20
23

), (18
21
, 21
23

) 18
23

24 (19
20
, 20
24

), (19
21
, 21
24

), (19
22

, 22
24

) 19
24

25 (20
21
, 21
25

), (10
11
, 22
25

) 4
5

26 (21
23
, 23
26

) 21
26

27 (21
22
, 22
27

) ,(21
23
, 23
27

),(21
24
, 24
27

),(21
25
, 25
27

) 7
9
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Table 5: Optimal implementable strategies for sequences of length n = {5, 6, . . . , 60}.

n m∗ p∗ q∗ p∗q∗ gain/block m∗(1− p∗q∗) nb(n,m∗) total earnings

5 2 1 1/2 1/2 1 1 2 2

6 2 1 1/2 1/2 1 1 2 2

7 3 1 2/3 2/3 2 1 2 4

8 3 1 2/3 2/3 2 1 2 4

9 2 1 1/2 1/2 1 1 4 4

9 3 1 2/3 2/3 2 1 2 4

10 3 1 2/3 2/3 2 1 3 6

11 3 1 2/3 2/3 2 1 3 6

12 5 3/4 4/5 3/5 3 2 2 6

13 3 1 2/3 2/3 2 1 4 8

14 3 1 2/3 2/3 2 1 4 8

15 3 1 2/3 2/3 2 1 4 8

16 3 1 2/3 2/3 2 1 5 10

17 3 1 2/3 2/3 2 1 5 10

18 3 1 2/3 2/3 2 1 5 10

19 3 1 2/3 2/3 2 1 6 12

20 3 1 2/3 2/3 2 1 6 12

21 3 1 2/3 2/3 2 1 6 12

22 3 1 2/3 2/3 2 1 7 14

23 10 7/8 4/5 7/10 7 3 2 14

24 10 7/8 4/5 7/10 7 3 2 14

25 3 1 2/3 2/3 2 1 8 16

26 3 1 2/3 2/3 2 1 8 16

27 3 1 2/3 2/3 2 1 8 16

28 3 1 2/3 2/3 2 1 9 18

29 3 1 2/3 2/3 2 1 9 18

30 13 9/10 10/13 9/13 9 4 2 18

31 3 1 2/3 2/3 2 1 10 20

32 6 4/5 5/6 2/3 4 2 5 20

33 10 7/8 4/5 7/10 7 3 3 21

34 3 1 2/3 2/3 2 1 11 22

35 3 1 2/3 2/3 2 1 11 22

36 11 8/9 9/11 8/11 8 3 3 24

37 3 1 2/3 2/3 2 1 12 24

38 3 1 2/3 2/3 2 1 12 24

39 3 1 2/3 2/3 2 1 12 24

40 3 1 2/3 2/3 2 1 13 26

41 18 13/15 5/6 13/18 13 5 2 26

42 18 13/15 5/6 13/18 13 5 2 26

43 10 7/8 4/5 7/10 7 3 4 28

44 10 7/8 4/5 7/10 7 3 4 28

45 20 15/16 4/5 3/4 15 5 2 30

46 3 1 2/3 2/3 2 1 15 30

47 11 8/9 9/11 8/11 8 3 4 32

48 11 8/9 9/11 8/11 8 3 4 32

49 15 11/12 4/5 11/15 11 4 3 33

50 15 11/12 4/5 11/15 11 4 3 33

51 15 11/12 4/5 11/15 11 4 3 33

52 3 1 2/3 2/3 2 1 17 34

53 10 7/8 4/5 7/10 7 3 5 35

54 24 9/10 5/6 3/4 18 6 2 36

55 3 1 2/3 2/3 2 1 18 36

56 25 19/20 4/5 19/25 19 6 2 38

57 25 19/20 4/5 19/25 19 6 2 38

58 11 8/9 9/11 8/11 8 3 5 40

59 11 8/9 9/11 8/11 8 3 5 40

60 11 8/9 9/11 8/11 8 3 5 40
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