
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2016; 00:1–21
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe

Communication in Task-Parallel
ILU-Preconditioned CG Solvers using MPI+OmpSs

José I. Aliaga1, Marı́a Barreda1∗, Goran Flegar1, Matthias Bollhöfer2,
Enrique S. Quintana-Ortı́1

1Depto. de Ingenierı́a y Ciencia de Computadores, Universidad Jaume I (UJI), 12071–Castellón, Spain.
{aliaga,mvaya,flegar,quintana}@uji.es

2 Institute of Computational Mathematics, TU Braunschweig, Braunschweig, Germany.
m.bollhoefer@tu-bs.de.

SUMMARY

We target the parallel solution of sparse linear systems via iterative Krylov subspace-based methods
enhanced with ILU-type preconditioners on clusters of multicore processors. In order to tackle large-
scale problems, we develop task-parallel implementations of the classical iteration for the CG method,
accelerated via ILUPACK and ILU(0) preconditioners, using MPI+OmpSs. In addition, we integrate several
communication-avoiding (CA) strategies into the codes, including the butterfly communication scheme and
Eijkhout’s formulation of the CG method. For all these implementations, we analyze the communication
patterns and perform a comparative analysis of their performance and scalability on a cluster consisting of
16 nodes, with 16 cores each. Copyright c© 2016 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Sparse linear systems; Krylov subspace methods; Incomplete LU (ILU) preconditioner;
ILUPACK; task-parallelism; MPI; OmpSs

1. INTRODUCTION

The solution of linear systems is an ubiquitous computational problem appearing in fundamental
numerical simulations as well as in recent methods for data analytics [1]. In order to tackle sparse
instances of these linear algebra problems, ILUPACK† provides sequential implementations of
several key Krylov subspace methods, such as CG, BiCG, SQMR and GMRES [2], enhanced with
a sophisticated multilevel Incomplete LU (ILU) preconditioner [3].

The notable cost of computing and applying ILUPACK’s preconditioner, in the framework of the
CG method for large symmetric positive definite (s.p.d.) linear systems [2], motivated the design of
a task-parallel procedure for clusters of multicore processors (see [4] and the references therein).
For this type of computer architectures, this parallel version of ILUPACK exposes task-parallelism
via nested dissection applied to the coefficient matrix of the linear system. As a consequence,
it usually performs more floating-point operations (flops) than the original ILUPACK, with the
overhead mildly growing with the number of tasks [5]. Furthermore, the parallel implementation
calculates a preconditioner which differs from that computed by the sequential ILUPACK, yielding
distinct convergence rates (though they are not necessarily slower).

∗Correspondence to: Marı́a Barreda, Depto. de Ingenierı́a y Ciencia de Computadores, Universidad Jaume I (UJI),
12071–Castellón, Spain. mvaya@uji.es
†Incomplete LU decomposition PACKage. Available at http://ilupack.tu-bs.de.

Copyright c© 2016 John Wiley & Sons, Ltd.
Prepared using cpeauth.cls [Version: 2010/05/13 v3.00]

http://ilupack.tu-bs.de

2 J. I. ALIAGA ET AL.

In [6] we introduced a parallel implementation of ILUPACK’s preconditioned CG (PCG) solver
that combines the advantages of the programming models embedded in MPI and OmpSs [7, 8]
to improve the performance of a pure MPI-based solution. Due to the classical formulation of the
iterative PCG scheme and the use of an ILU-type preconditioner, the (pure-MPI and MPI+OmpSs)
task-parallel variants feature a series of communication (and synchronization) points that impair
their concurrency. In this work, we analyze the parallel performance of several task-parallel ILU-
PCG solvers, explicitly exposing the communication patterns in their MPI+OmpSs implementation.
Concretely, our work makes the following specific contributions:

• We develop task-parallel implementations of the classical iteration for the CG method,
preconditioned with ILUPACK and ILU(0), that rely on a hybrid programming solution based
on MPI and OmpSs.

• We integrate three communication-avoiding (CA) strategies into the classical ILUPACK-PCG
and ILU(0)-PCG:

– The butterfly transformation scheme for collective communication primitives [9, 10].
– Eijkhout’s formulation of the PCG method [11] that shifts all reduction operations into

a single synchronization point per iteration.
– A modification to merge and reduce the volume of tasks corresponding to multiple

“communication-less” vector operations that diminishes the scheduling overhead.

• We discuss in detail the communication and synchronization patterns appearing in these
8 parallel implementations (two preconditioners × four formulations: classical+enhanced
with 3 CA strategies).

• For all these implementations we perform a comparative analysis of their weak and strong
scalability on a cluster consisting of 16 nodes, with two 8-core sockets per node. Our
experiments show that, in order to offer a significant acceleration, the CA strategies will
require additional optimization and/or an evaluation at a larger scale. Unfortunately, the
current parallelization approach offers a limited degree of scalability. The primary reason
is that, as the amount of computational resources grows, the additional concurrency which is
explicitly exposed by partitioning the computational load (sparse matrix/adjacency graph) of
the problem into further levels does not compensate the overhead that is introduced by the
splitting.

The communication analysis performed in this work carries over to several alternative CA variants
of the CG solver (see related work next), enhanced with an ILU-preconditioner such as ILU(0),
ILU(p), ILUT, etc. [2], that rely on task-parallelism. On the other hand, the analysis of the numerical
properties of these distinct preconditioners and CA variants has been performed elsewhere and
it is out-of-scope for this paper. We instead focus on their parallel properties, communication
patterns/costs, and synchronization overheads.

1.1. Related work

Task-parallelism is usually exploited by parallel direct solvers for sparse linear systems [12, 13,
14, 15, 16]. Our approach also leverages task-parallelism but, when applied to iterative ILU-
preconditioned solvers, yields significantly different properties for the task dependency graph
(TDG) associated with the problem and the distribution of the computational cost among the graph
nodes [5]. These factors dictate the regular communication patterns yielding the parallel efficiency
discussed in this work.

The cost of process/thread synchronization in parallel computers has resulted in a number of
research efforts pursuing CA re-formulations of iterative solvers for linear systems. In general,
these solutions trade off rounding errors, which may produce slower convergence to the solution, for
higher parallel performance. A collection of CA variants of the CG method for s.p.d. linear systems
are surveyed in [11, 17, 18]. Our work differs in that we target the solution of sparse linear systems
using task-parallel CG solvers and CA variants of these, in combination with (simple) ILU(0) as
well as (complex) ILUPACK preconditioners.

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

COMMUNICATION IN TASK-PARALLEL ILU-PCG SOLVERS USING MPI+OMPSS 3

A00 A04 A06

A11 A14 A16

A22 A25 A26

A33 A35 A36

A40 A41 A44 A46

A52 A53 A55 A56

A60 A61 A62 A63 A64 A65 A66

 T0 T1 T2 T3

T5T4

T6

Figure 1. Partitioning of the coefficient matrix A (left) and task dependency tree for the diagonal blocks
(right). Task Tj is in charge of processing the diagonal block Ajj . T6 is associated with the separator

obtained from the first application of nested dissection, and T4, T5 with those after the second one.

2. TASK-PARALLEL ILU-PCG SOLVERS

2.1. ILUPACK

Consider the linear system Ax = b, where A is the n× n sparse coefficient matrix, b is the right-
hand side vector, and x is the sought-after solution, with both b, x of size n. For s.p.d. linear systems,
ILUPACK’s implementation of the CG method integrates an efficient preconditioner obtained from
an incomplete LU factorization A ≈ LU = LLT = M . This method relies on dropping combined
with pivoting to bound the norm of the inverse triangular factor L, yielding a numerical multilevel
hierarchy of partial inverse-based approximations [19, 20]. (For s.p.d., ILUPACK specifically
computes the factorization A = L(DLT) = LU , where L is a lower triangular factor and D is a
diagonal matrix. For simplicity, we will skip the diagonal scaling from our discussion.)

From the perspective of a parallel implementation, the computation and application of
the preconditioner are two challenging operations that, furthermore, concentrate most of the
computational cost of the solve. We next review the approach to extract task-parallelism for these
operations; for details on the numerical foundations of the method, see e.g. [5].

Exposing task-parallelism The parallel version of ILUPACK recursively applies nested
dissection in order to identify a collection of independent blocks in A via row/column
permutations [5]. This process defines a hierarchy of subgraphs and separators, which then
dictates the order in which the blocks have to be factorized during the preconditioner computation
and the triangular systems need to be solved during the subsequent PCG iterations. Concretely, the
hierarchy defines a TDG with a binary-tree form, where the subgraphs occupy the leaves of the
graph/tree and the separators correspond to the internal nodes. Figure 1 (left) illustrates the effect
of applying two nested dissection steps on a sparse matrix, yielding 4 subgraphs and 3 separators.
Note that, due to the symmetry, Aij = Aji. Figure 1 (right) shows the corresponding TDG of the
transformed matrix. The edges of that graph specify the dependencies between the diagonal blocks
(tasks) for the preconditioner computation (i.e., the approximate matrix factorization).

Computing the preconditioner In order to increase the degree of concurrency during the
computation of the preconditioner, the submatrices for the graph in Figure 1 are decomposed asA00 A04 A06

A40

A60

A0
44 A0

46

A0
64 A0

66

,
A11 A14 A16

A41

A61

A1
44 A1

46

A1
64 A1

66

,
A22 A25 A26

A52

A62

A2
55 A2

56

A2
65 A2

66

,
A33 A35 A36

A53

A63

A3
55 A3

56

A3
65 A3

66

, (1)

where
A44 = A0

44 +A1
44, A55 = A2

55 +A3
55, A66 = A0

66 +A1
66 +A2

66 +A3
66,

A46 = A0
46 +A1

46, A56 = A2
56 +A3

56,
A64 = A0

64 +A1
46, A65 = A2

65 +A3
65.

(2)

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

4 J. I. ALIAGA ET AL.

After this reorganization, the factorizations of the leading blocks of these four submatrices can
proceed in parallel, while the modified blocks A0−3

ij are needed to solve the dependencies of the
ancestor tasks. This process continues traversing the dependency tree, until the root task factorizes
its local submatrix; see [5] for details.

Applying the preconditioner The subsequent application of the preconditionerM = LLT during
the iterative PCG solve requires the solution of two triangular systems, for the lower triangular factor
L and its transpose, per iteration. Consider, for example, the solution of the linear system Ly = c,
with L featuring the same block structure as the lower triangular part of A in Figure 1 (left); and
assume y = [y0, y1, y2, y3 | y4, y5 | y6], c = [c0, c1, c2, c3 | c4, c5 | c6] denote partitions conformal to
that of A in the same figure. In this case, to unleash a parallel execution, the triangular solve Ly = c
is decomposed asL00

L40

L60

 y0 =

c0c04
c06

 ,
L11

L41

L61

L44

L64

[y1
y4

]
=

c1c14
c16

 ,
L22

L52

L62

 y2 =

c2c25
c26

 ,
L33

L53

L63

L55

L65 L66

y3y5
y6

 =

c3c35
c36

 ,
(3)

where
c4 = c04 + c14, c5 = c25 + c35, c6 = c06 + c16 + c26 + c36. (4)

In (3), the leading blocks L00, . . . , L33 define four lower triangular linear systems that can be solved
concurrently for y0, . . . , y3. After that, forward substitution yields updates values for c4, c5 which
are used in the solves with L44, L55 for y4, y5; and repeating the process we obtain an updated value
c6 to be used in the final solve with L66 for y6. The TDG for the lower triangular system therefore
presents the same binary-tree structure identified via nested dissection; see Figure 1 (right). For the
triangular solve involving LT though, the dependencies are reversed, pointing down from the root
to the leaves.

The key to high performance during a task-parallel execution of ILUPACK’s CG solver lies in
concentrating most of the computational work on the leaves of the TDG so that the internal nodes
contribute little to the global computation from the perspective of the operation count [5]. The reason
is that, as one proceeds upwards in the binary-tree TDG, the amount of concurrency is reduced. This
lack of concurrency can be compensated if most of the computational work is concentrated in the
leaves while the internal nodes only represent a small fraction of the cost.

2.2. Other ILU-PCG solvers

The previous approach to formulate a task-parallel execution of ILUPACK’s PCG solver also applies
to other ILU-type solvers in general and ILU(0) [2] in particular. As a result, the communication
patterns that we identify in the next two sections apply to a generic task-parallel ILU-PCG solver.

3. CLASSICAL TASK-PARALLEL ILU-PCG SOLVERS

3.1. The iterative PCG solve

We focus the analysis in this section on the iterative PCG solve, as this phase is usually more
expensive than the computation of the preconditioner. Figure 2 offers an algorithm description of the
classical iterative PCG scheme. The loop body consists of a sparse matrix-vector product (SPMV,
S1), the preconditioner application (equivalent to two triangular solves, S5), three DOT products (S2,
S6 and S9), three AXPY(-like) operations (S3, S4 and S8), and a few scalar operations.

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

COMMUNICATION IN TASK-PARALLEL ILU-PCG SOLVERS USING MPI+OMPSS 5

Compute preconditioner for A ≈ LLT = M

Set starting guess x(0)

Initialize z(0), d(0), β(0), τ (0), k := 0

r(0) := b−Ax(0)

τ0 :=< r(0), r(0) >

while (τk > τmax)

Step Operation Kernel
S1 : w(k) := Ad(k) SPMV
S2 : ρ(k) := β(k)/< d(k), w(k) > DOT product
S3 : x(k+1) := x(k) + ρ(k)d(k) AXPY

S4 : r(k+1) := r(k) − ρ(k)w(k) AXPY

S5 : z(k+1) := M−1r(k+1) Apply preconditioner:
S5.1 : y := L−1r(k+1) Lower triangular solve
S5.2 : z(k+1) := L−T y Upper triangular solve

S6 : β(k+1) := < z(k+1), r(k+1) > DOT product
S7 : α(k) := β(k+1)/βk Scalar operation
S8 : d(k+1) := αkd(k) + z(k+1) AXPY-like
S9 : τ (k+1) := < r(k+1), r(k+1) > DOT product

k := k + 1
end while

Figure 2. Classical formulation of the iterative ILU-PCG solver with annotated computational kernels. The
threshold τmax is an upper bound on the relative residual for the computed approximation to the solution. In

the notation, < ·, · > computes the DOT (inner) product of its vector arguments.

3.2. Communications in the classical PCG

For clarity, in the remainder of the paper we will drop the superindices that denote the iteration
count in the variable names. Thus, for example, x(k) becomes x, where the latter basically stands
for the storage space employed to keep the sequence of approximations x(0), x(1), x(2), . . . computed
during the iteration. For the communication analysis, we will first explore the following simplified
scenario:

1. The parallel platform consists of two processes, P0 and P1, where the term “process” is generic
and refers to either MPI ranks or OmpSs threads. Without loss of generality, we will assume
a message-passing communication mechanism operating in a distributed-memory setting.

2. The target TDG results from a single dissection step and consists only of two leaves connected
by a root node. Correspondingly, the coefficient matrix A is decoupled into 3× 3 blocks: A00 A02

A11 A12

A20 A21 A22

 ,
and is disassembled as

A0 =

[
A00 A02

A20 A0
22

]
, A1 =

[
A11 A12

A21 A1
22

]
,

whereA22 = A0
22 +A1

22 is not built explicitly but instead maintained as two separate addends.

State Hereafter, we will say that an operand like this is in inconsistent state, and we will
distinguish this property by adding a hat to its variable name, as in Â. This implies that
recovering a consistent state requires some arithmetic (e.g., A22 = A0

22 +A1
22).

Storage The data for an inconsistent matrix (or vector) is always distributed between the
processes. For the particular case of matrix A, P0 and P1 respectively store A0 and A1.

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

6 J. I. ALIAGA ET AL.

This means that some blocks of the original matrix are kept by a single process only
(e.g., A00 and A20 in P0), while others can be only retrieved after some communication
(e.g., forming A22 requires that either A0

22 or A1
22 are transferred from one process to the

other).

3. All vectors are partitioned conformally with Â. For example, x = [x0, x1 |x2].
4. The residual r̂ and ŵ are maintained in inconsistent state. For example, the subvectors
r0 = [r0 | r02] and r1 = [r0 | r12] (with r2 = r02 + r12) are respectively stored in P0 and P1. This
is conformal with the inconsistent state (and storage) of Â.

5. The solution vector x and the recurrence vectors z, d maintain consistent information; i.e.,
no arithmetic is required to recover their complete state. In most cases, the data entries of
consistent variables are partially replicated so that, e.g., P0 and P1 store x0 = [x0 |x2] and
x1 = [x1 |x2], respectively. Thus, both processes keep their own copy of the “common” part
x2, while each process stores its “local” part with x0 in P0 and x1 in P1.

6. At each iteration, during application of the preconditioner, a consistent/partially replicated
copy is created for r̂.

7. The scalars α, β, ρ, τ are globally replicated.

Sparse matrix-vector product Let us analyze next each one of the operations comprised by the
loop body of the PCG iteration, starting with the SPMV (S1). The inputs to this operation are
Â (inconsistent) and d (consistent/partially replicated). Therefore, the following computations can
proceed concurrently:

P0 :

[
w0

w0
2

]
:= A0

[
d0
d2

]
=

[
A00 A02

A20 A0
22

] [
d0
d2

]
,

P1 :

[
w1

w1
2

]
:= A1

[
d1
d2

]
=

[
A11 A12

A21 A1
22

] [
d1
d2

]
.

Thus, by keeping the result inconsistent (in our notation, ŵ := Âd,) this operation requires no
communication. This is a direct consequence of the states of the input/output operands, defined
in the introductory part of this section.

DOT products The next operation is the DOT product S2 between d and ŵ. Here, it is easy to see
that the following partial results can be computed concurrently:

P0 : σ0 := < [d0, d2], [w0, w
0
2] >,

P1 : σ1 := < [d1, d2], [w1, w
1
2] >,

after which, P0 and P1 exchange σ0 and σ1, and then compute the globally replicated scalar
ρ := β/(σ0 + σ1). The same idea applies to the DOT products in S6 and S9.

AXPY(-like) vector updates Consider now the AXPY operation in S3, which involves vectors x, d
and the scalar ρ. Both processes replicate part of this computation (concretely, that involving x2, d2),
to obtain the result without any communication:

P0 :

[
x0
x2

]
:=

[
x0
x2

]
+ ρ

[
d0
d2

]
,

P1 :

[
x1
x2

]
:=

[
x1
x2

]
+ ρ

[
d1
d2

]
.

The same applies to S8 if we require that z is maintained consistent/partially replicated during
the iteration. On the other hand, for the AXPY in S4, the input vectors r̂, ŵ are inconsistent. This
means that the updated result can be maintained in the same state. Moreover, it can be computed

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

COMMUNICATION IN TASK-PARALLEL ILU-PCG SOLVERS USING MPI+OMPSS 7

concurrently, without any communication, as:

P0 :

[
r0
r02

]
:=

[
r0
r02

]
− ρ

[
w0

w0
2

]
,

P1 :

[
r1
r12

]
:=

[
r1
r12

]
− ρ

[
w1

w1
2

]
.

Lower triangular solve Let us partition the triangular factor resulting from the ILU factorization
A ≈ LLT = M as L00

L11

L20 L21 L22

 .
This factor is maintained in consistent state while its data is disassembled and (fully) distributed
among the processes with

L0 =

[
L00

L20

]
and L1 =

[
L11

L21 L22

]
stored in P0 and P1, respectively. Thus, the processes do not keep duplicate copies of any block of
the triangular factor, but the information in it is consistent (no arithmetic is required to recover any
block of L). Hereafter, we distinguish this by adding a bar to the name of such variables, as in L̄.

Now, the lower triangular system in S5.1 boils down to L00

L11

L20 L21 L22

 y0
y1
y2

 =

 r0
r1

r02 + r12

 ,
and we can then solve it by first computing in parallel

P0 : y0 := L−100 r0, t02 := r02 − L20y0,
P1 : y1 := L−111 r1, t12 := r12 − L21y2.

After this, P0 sends t0 to P1 (the owner of L22) which then proceeds to compute:

P1 : t2 := t02 + t12, y2 := L−122 t2,

while P0 remains idle. We note that the solution shares the properties of L̄: it is consistent but
distributed conformally, with y0 in P0 and y1, y2 in P1. We will therefore refer to it as ȳ.

Upper triangular solve The solve in S5.2, L̄T z = ȳ, can be partitioned as LT
00 LT

20

LT
11 LT

21

LT
22

 z0
z1
z2

 =

 y0
y1
y2

 ,
where we will leverage that the triangular matrix L̄ and the right-hand side ȳ are both consistent and
distributed. In this case, we commence by solving a triangular system in P1:

P1 : z2 := L−T22 y2,

after which, this process sends the result z2 to P0. Next, in parallel, we obtain

P0 : y0 := y0 − LT
20z2, z0 := L−T00 y0,

P1 : y1 := y1 − LT
21z2, z1 := L−T11 y1.

Here, we note that z0 = [z0|z2] are stored in P0, while P1 contains a copy of z1 = [z1|z2]. This
corresponds to a consistent/partially replicated result.

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

8 J. I. ALIAGA ET AL.

Level L0

Level L1

Level L2

Level L3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

0 0

1

2

3

4

6

7

8

9

10

11

12

13

14 0 1 2 3 4

5

5 6 7

12

8 9 10 11

13

14

P7P1P0 P2 P3 P4 P5 P6

P7

P7

P7

P5P3

P3

P1

Figure 3. Left: Partitioning of the inconsistent matrix Â using three nested dissection steps and conformal
partitioning of the inconsistent vector r̂. (For clarity, the variable names for the matrix blocks and subvectors,
and some of the nonzero blocks in Â are not shown.) Right: Corresponding TDG consisting of 4 levels (Level

0–Level 3) and mapping of nodes/tasks to processes (P0–P7).

Level Send Compute

3 P0→P1: r014 (P1→P0: r114 In P1 (and P0): r0−1
14 := r014 + r114

r012 r112 r0−1
12 := r012 + r112

r08 r18) r8 = r0−1
8 := r08 + r18

P2→P3: r214 (P3→P2: r314 In P3 (and P2): r2−3
14 := r214 + r314

r212 r312 r2−3
12 := r212 + r312

r29 r39) r9 = r2−3
9 := r29 + r39

P4→P5: r414 (P5→P4: r514 In P5 (and P4): r4−5
14 := r414 + r514

r413 r513 r4−5
13 := r413 + r513

r410 r510) r10 = r4−5
10 := r410 + r510

P6→P7: r614 (P7→P6: r714 In P7 (and P6): r6−7
14 := r614 + r714

r613 r713 r6−7
13 := r613 + r713

r611 r711) r11 = r6−7
11 := r611 + r711

2 P1→P3 (and P0→P2): r0−1
14 (P3→P1, P2→P0: r2−3

14 In P3 (and P0–P2): r0−3
14 := r0−1

14 + r2−3
14

r0−1
12 r2−3

12) r12 = r0−3
12 := r0−1

12 + r2−3
12

P5→P7 (and P4→P6): r4−5
14 (P7→P5, P6→P4: r6−7

14 In P7 (and P4–P6): r4−7
14 := r4−5

14 + r6−7
14

r4−5
13 r6−7

13) r13 = r4−7
13 := r4−5

13 + r6−7
13

1 P3→P7 (and P0→P4, (P7→P3, P4→P0,

P1→P5, P2→P6): r0−3
14 P5→P1, P6→P2: r4−7

14) In P7 (and P0–P6): r14 = r0−7
14 := r0−3

14 + r4−7
14

Figure 4. From top to bottom, sequence of messages and computations required to carry out the
transformation r̂ → r̄. Inside parenthesis: additional messages and operations to perform the transformation

r̂ → r in one step.

Transformation of the residual In preparation for the DOT product in S9, the application of the
preconditioner creates a consistent/partially replicated version of r̂. For this purpose, during the
lower triangular solve, P0 sends r02 (together with the message for t02) to P1. This information is then
used by P1 to obtain r2 := r02 + r12 , building a consistent but distributed copy of the residual vector.
In our notation, this is equivalent to the transformation r̂ → r̄. Next, during the subsequent upper
triangular solve, (and together with the message containing z2,) P1 sends a copy of r2 to P0, so that
upon completion the platform stores the sough-after consistent/partially replicated residual vector
after the preconditioner application: r̄ → r.

Generalization Let us consider now a more general scenario, consisting in a parallel platform
with 8 processes, P0–P7, and a TDG resulting from three nested dissection steps, composed of
8 subgraphs (leaf nodes 0–7) and 7 separators (internal nodes 8–14); see Figure 3.

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

COMMUNICATION IN TASK-PARALLEL ILU-PCG SOLVERS USING MPI+OMPSS 9

The inconsistent state of r̂ implies that the subvectors r8, r9, . . . , r14 are maintained implicitly as:

ri = rji + rj+1
i , i = 8, 9, 10, 11, j = 2(i− 8);

ri = rji + rj+1
i + rj+2

i + rj+3
i , i = 12, 13, j = 4(i− 12); and

r14 = r014 + r114 + · · ·+ r714,

where the superindex indicates the process that owns that subvector. Thus, for example, the
8 subvectors necessary to build r14 = r014 + r114 + · · ·+ r714 are mapped to P0–P7, respectively.

Figure 4 shows the messages exchanged and the computations performed in order to transform r̂
from inconsistent to consistent/distributed r̄. This communication pattern can be easily recognized
as a binary-tree reduction following the mapping of TDG nodes to processes in Figure 3 (right). The
same pattern appears during the simultaneous lower triangular solve L̄ȳ = r̂, with the difference
between transformation and solve residing in the specific operator that is applied to r̂. For example,
in Level 3 of the solve procedure, the following computations occur initially in P0 and P1:

P0 : y0 := L−100 r0, t014 := r014 − L14,0y0,
t012 := r012 − L12,0y0,
t08 := r08 − L80y0;

P1 : y1 := L−111 r1, t114 := r114 − L14,1y1,
t112 := r112 − L12,1y1,
t18 := r18 − L81y1.

Next, P0 sends t014, t012, t08 to P1, which are then used by the latter process to aggregate these with the
local information forming t0−114 , t0−112 , t0−18 (= t8) in preparation for the next level of the triangular
solve. The upper triangular solve L̄T z = ȳ basically reverses the communication pattern in Figure 4,
yielding a binary-tree broadcast.

After some initial local computations, from the communication point of view, the DOT product
simply involves a global reduction (Alltoall in the MPI world).

To close this discussion, the dimension of each message is directly derived from the number of
elements the corresponding subvector of r̂, which in turn depends on the dimension of each diagonal
block of Â. Thus, all rji and tji have, at least, the same size as the number of columns/blocks in Aii.

Summary The previous elaboration identifies the communication patterns underlying a task-
parallel ILU-PCG solver as well as some interesting observations for a TDG of arbitrary dimension:

1. The SPMV does not require any sort of communication.
2. The AXPY(-like) operations do not involve any communication either. This type of kernel is

embarrassingly parallel, but those calls operating with consistent/partially replicated vectors
replicate part of the computation to avoid the communication.

3. Each DOT product requires a global reduction (synchronization point). The loop body of the
PCG solve can be re-arranged so that S9 is pushed up next to S6. A simultaneous execution
of these two reductions then decreases the number of synchronization points from 3 to 2 per
iteration in the classical PCG iteration.

4. The application of the preconditioner requires a binary-tree reduction for the lower triangular
solve followed by a binary-tree broadcast for the upper triangular one.

5. The transformation r̂ → r̄ → r occurs during the application of the preconditioner and the
message exchanges required for this operation can be combined with those for the triangular
solves.

6. The price to pay in order to expose increased levels of concurrency in some kernels is a partial
replication of arithmetic, in particular due to the operation with the inconsistent matrices
and vectors. An appropriate application of nested dissection aims to find a graph with small
separators that concentrates most of the computational work on the leaves.

The transitions between states and storage patterns dictating the communications are summarized
in Figure 5.

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

10 J. I. ALIAGA ET AL.

Compute preconditioner for Â ≈ L̄L̄T
= M

Set starting guess x
Initialize z, d, β, τ, k := 0

r̂ := b̂− Âx
τ :=< r, r̂ >
while (τ > τmax)

Step Operation Communication pattern
β′ := β –

S1 : ŵ := Âd –
S2 : ρ := β/< d, ŵ > Global reduction
S3 : x := x+ ρd –
S4 : r̂ := r̂ − ρŵ –
S5 : z := M−1r̂

S5.1 : ȳ := L̄
−1
r̂ Binary-tree reduction

r̄ := r̂

S5.2 : z := L̄
−T

y Binary-tree broadcast
r := r̄

S6 : β := < z, r̂ > Combined global reduction
S9 : τ := < r, r̂ >
S7 : α := β/β′ –
S8 : d := αd+ z –

k := k + 1 –
end while

Figure 5. Detailed implementation of the classical formulation of the task-parallel ILU-PCG solver
annotated with state and storage modes for the variables and communication patterns: v for
consistent/partially replicated; v̂ for inconsistent; and v̄ for consistent/distributed. Note the reorganization of

the code to enable the merge of S6 and S9.

3.3. Mapping the TDG

The task-parallel implementation of ILUPACK’s PCG method for clusters of multicore processors
in [6] partitions the TDG at a certain level, mapping the tasks in the parts of the tree above this
division to MPI ranks and those in the lower levels to OmpSs threads. The same observation
applies to similar task-parallel implementations of alternative ILU-PCG solvers. Figure 6 shows
this partitioning between the MPI and OmpSs “worlds” for a simple TDG consisting of 8 leaves
that represents the solve with the lower triangular factor L. In the figure, two OmpSs threads per
node collaborate to execute the tasks within the bottom two levels. For the top two levels, four
MPI ranks take over the computation in order to process the tasks, while the OmpSs threads remain
idle. The same partitioning between MPI and OmpSs occurs during other operations of the PCG
iteration. On the leaves, the OmpSs threads operate with their local submatrices/subvectors. For the
DOT products, these computations are propagated into the MPI world next in order to obtain the
global result.

From the perspective of synchronization, there is little difference between the communication
operations performed inside the MPI and OmpSs worlds. However, the combination of MPI+OmpSs
allows this hybrid programming model solution to exploit dynamic scheduling within the cluster
nodes via OmpSs. This implies that there is no a priori mapping of the tasks to the thread team,
offering higher flexibility than the MPI solution and, in general, higher performance [6].

Inside OmpSs, task dependencies are mostly controlled with a fine-grain granularity that operates
at the level of nodes of the TDG. Thus, for example, the computation of the tasks for the DOT
product in S2 commence as soon as the tasks for SPMV (S1) generating the corresponding parts of ŵ
have completed their execution, with these dependencies in the loop body controlled by the OmpSs
runtime. Inside the triangular solves (S5.1 and S5.2) the task dependencies are also controlled with
a granularity dictated by the nodes of the TDG. The fact that some of these operations require
explicit (MPI) communication points turn these synchronization among OmpSs tasks unavoidable,

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

COMMUNICATION IN TASK-PARALLEL ILU-PCG SOLVERS USING MPI+OMPSS 11

Figure 6. Mapping of a TDG to 4 MPI ranks (R0–R3) with 2 OmpSs threads per rank.

in practice yielding a barrier. This occurs, for example, within the DOT products as well as in the
transition between the lower and upper triangular solves.

At this point, we recognize that a similar task-parallel hybrid (MPI+X) version could have been
obtained using, e.g., OpenMP instead of OmpSs. The primary reason for adopting OmpSs in our
codes is that, when we commenced our development of a multi-threaded task-parallel version of
ILUPACK, the OpenMP standard did not support tasks. During the past few years, OpenMP has
integrated this mechanism (in part, under the influence of task-parallel programming languages like
OmpSs) and the differences between OpenMP and OmpSs tasking mechanisms are now blurry.
However, we believe that OmpSs still provides some advanced features, such as sophisticated
support for nested parallelism and task priorities, that can deliver slightly higher performance for
some of our implementations.

4. COMMUNICATION-AVOIDING TECHNIQUES FOR ILU-PCG SOLVERS

4.1. Butterfly communication pattern

The butterfly transformation is an efficient communication scheme for collective operations [9, 10].
In the framework of the task-parallel PCG, this technique can be leveraged during the application of
the preconditioner in S5, provided the lower triangular factor L is consistent and partially replicated.
For our simplified scenario, this implies that P0 stores L00, L20, P1 stores L11, L21, and both of them
have a copy of L22. The direct consequence is an increase in memory usage, but there are also some
changes on the communication patterns for the preconditioning step that we review next.

Lower triangular solve In this new scenario, with L consistent and partially replicated, we solve
the lower triangular system in S5.1 by first computing in parallel

P0 : y0 := L−100 r0, t02 := r02 − L20y0,
P1 : y1 := L−111 r1, t12 := r12 − L21y2.

However, now P0 and P1 exchange t02 and t12, and then replicate the computation:

P0 : t := t02 + t12, y2 := L−122 t,
P1 : t := t02 + t12, y2 := L−122 t.

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

12 J. I. ALIAGA ET AL.

Compute preconditioner for Â ≈ LLT = M
Set starting guess x
Initialize z, d, β, τ, k := 0

r̂ := b̂− Âx
τ :=< r, r̂ >
while (τ > τmax)

Step Operation Communication pattern
β′ := β

S1 : ŵ := Âd –
S2 : ρ := β/< d, ŵ > Global reduction
S3 : x := x+ ρd –
S4 : r̂ := r̂ − ρŵ –
S5 : z := M−1r̂
S5.1 : y := L−1r̂ Binary-tree reduction-broadcast

r := r̂

S5.2 : z := L−T y –
S6 : β := < z, r̂ > Combined global reduction
S9 : τ := < r, r̂ >
S7 : α := β/β′ –
S8 : d := αd+ z –

k := k + 1
end while

Figure 7. Detailed implementation of the classical formulation of the task-parallel ILU-PCG solver enhanced
with the butterfly transformation.

After these operations, the solution y is consistent and partially replicated. Compared with this, in
the classical PCG solve implementation described in section 3, P0 had to send t02 to P1, and y2 was
only computed in the latter. As a result, the solution ȳ was consistent/distributed.

Upper triangular solve To solve the triangular system in S5.2, both processes replicate the
computation

P0 : z2 := L−T22 y2,

P1 : z2 := L−T22 y2,

and next they compute in parallel

P0 : y0 := y0 − LT
20z2, z0 := L−T00 y0,

P1 : y1 := y1 − LT
21z2, z1 := L−T11 y1.

Thus, there is no communication during the upper triangular solve, and the result z is consistent
and partially replicated, as required by subsequent operations. With respect to the classical iterative
PCG scheme, we save the communication of z2 from P1 to P0.

Transformation of the residual In order to create a consistent/partially replicated version of r̂ in
r, during the lower triangular solve in S5.1, P0 and P1 exchange r02 and r12 . This information is then
used by both processes to obtain r2 := r02 + r12 , building a consistent and partially replicated copy of
the residual vector already during this step. Contrary to the classical PCG, no additional operation
is required during S5.2 when the butterfly transformation is in place. In conclusion, the variations in
the communication patterns during the transformation of the residual, with respect to the classical
PCG solve, are analogous to those experienced by the lower/upper triangular solves.

Generalization Figure 4 illustrates the changes in the message exchanges for the transformation
from inconsistent r̂ to consistent/partially replicated r in a single step, analogous to those appearing

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

COMMUNICATION IN TASK-PARALLEL ILU-PCG SOLVERS USING MPI+OMPSS 13

Compute preconditioner for Â ≈ LLT = M

Set starting guess x0
Initialize z, d, ŝ, ŵ, β, γ, τ, α, ε, k := 0

r̂ := b̂− Âx
τ :=< r, r̂ >
while (τ > τmax)

Step Operation Kernel Communication pattern
β′ := β Copy –

S1 : ρ := β/(γ + αε) Scalar operation –
S2 : d := αd+ z AXPY-like –
S3 : ŵ := αŵ + ŝ AXPY-like –
S4 : x := x+ ρd AXPY –
S5 : r̂ := r̂ − ρŵ AXPY –
S6 : z := M−1r̂ Apply preconditioner –
S6.1 : y := L−1r̂ Lower triangular solve Binary-tree reduction-broadcast

r := r̂

S6.2 : z := L−T y Upper triangular solve –
S7 : ŝ := Âz SPMV –
S8 : β := < z, r̂ > DOT product

Combined global reductionS9 : γ := < z, ŝ > DOT product
S10 : ε := < z, ŵ > DOT product
S11 : τ := < r, r̂ > DOT product
S12 : α := β/β′ Scalar operation –

k := k + 1
end while

Figure 8. Detailed implementation of the Eijkhout’s variant of the task-parallel ILU-PCG solver enhanced
with the butterfly transformation.

in the solve Ly = r̂ that yields a consistent/partially replicated y. The communication pattern can be
identified as a simultaneous binary-tree reduction-broadcast. In this case, there is no communication
for the upper triangular solve.

Summary The result of applying the butterfly transform is illustrated in Figure 7 using the
notation for state and storage modes. This technique replicates some of the information of the
preconditioner, increasing the demand of memory. On the positive side, it diminishes the amount
of messages (though not the total volume of communication), and it does not change the numerical
properties of the solver.

4.2. Eijkhout’s PCG solver

Synchronization due to (global) reductions is a well-known cause for reduced scalability on
massively-parallel platforms. For iterative Krylov subspace based methods, synchronization is in
particular due to the DOT products. In response, a number of research efforts have addressed this
bottleneck, via new CA methods or by overlapping (hiding) communication with computation; see,
e.g., [17, 11] and the references therein. In brief, these approaches reformulate the operations in
the iterative method, replacing some of the computations by alternative recurrences while aiming
to shift together all DOT products in the loop body so that their communication stages can be
merged. Unfortunately, these variants suffer from the accumulation of rounding error, presenting
less favorable numerical properties than the classical CG method [17].

Eijkhout’s variant of PCG [11] is a representative example of the effect of these CA approaches on
the communication pattern of a parallel implementation. The variant is presented in Figure 8, where
it is easy to detect that, in exchange for an increase in the number of AXPY(-like)+DOT kernels
from 3+3 (in the classical formulation) to 4+4, the DOT products are now all consecutive (S8–S11).
Clearly, this enables their combination into a single synchronization point. The communication due

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

14 J. I. ALIAGA ET AL.

to the lower triangular solve, during the preconditioner application, still remains but now occurs
right before the SPMV. Unfortunately, the data dependency between these two operations prevents
their concurrent execution.

Figure 8 also illustrates how a task-parallel execution can integrate Eijkhout’s variant, with the
following similarities to the classical PCG (with the butterfly transformation in place in both cases):

1. Matrix Â is inconsistent and factor L is consistent/partially replicated.
2. Vectors r̂, d̂ are inconsistent, with a consistent/partially replicated copy of the former being

created during each lower triangular solve. The new recurrence vector ŝ (not present in the
classical PCG) also shares this state/storage mode.

3. Vectors x, z, d as well as the temporary y are maintained in consistent/partially replicated state
during the iteration.

With these premises, the communication patterns appearing in Eijkhout’s variant are similar to those
in the classical algorithm (with butterfly transformation in place):

1. The AXPY(-like) operations always combine two vectors with the same state/storage mode,
requiring no communication.

2. The lower triangular solve receives an inconsistent right-hand side vector producing a
consistent partially replicated result. In combination with the transformation r̂ → r, it only
requires a binary-tree reduction-broadcast.

3. The SPMV receives an consistent/partially replicated input vector and calculates an
inconsistent result, with no communication involved.

4. All four DOT products multiply an inconsistent vector with a consistent/partially replicated
one, requiring a global reduction each that can be combined into a single synchronization
point.

Our current implementation of Eijkhout’s variant mimics our routine for the classical PCG in that
the task dependencies are controlled by OmpSs with the granularity of nodes of the TDG.

4.3. Other CA CG solvers

There exist other variants that trade off numerical stability for higher scalability among which, we
can mention Chronopoulos and Gear’s [21], Meurant’s [22], Saad’s [23], and a pipelined version of
the first [17]. Like Eijkhout’s, all these variants present, for each iteration, a single synchronization
point (in the form a combined global reduction), together with a SPMV and, for preconditioned
versions, the application of the preconditioner. They differ slightly in the number of recurrence
vectors and the order of the operations. Therefore, in a task-parallel implementation accelerated
with an ILU-preconditioner, their communication patterns do not differ from those already exposed
in this section for Eijkhout’s variant.

Recent s-step Krylov methods further reduce the number of synchronization points, aggressively
bargaining stability for parallel scalability, as their numerical properties rapidly deteriorate with the
size of the step s; see [18] and the references therein. The communication analysis of these variants
is part of ongoing work.

4.4. Merging task-parallel vector operations

The task-parallel solvers present a few consecutive AXPY(-like) operations that require no
communication: S3–S4 for the classical ILU-PCG, with and without the butterfly transformation;
and S2–S5 for Eijkhout’s variant. When these tasks are executed in parallel, they incur a certain
scheduling cost for OmpSs because they are divided into tasks following the partitioning induced
by the system matrix. This small overhead can be avoided if we merge these sequences into a single
task-parallel operation from the point of view of the OmpSs scheduler.

4.5. Relaxing the convergence test

In Eijkhout’s variant with the butterfly technique, the transformation of the residual vector from
inconsistent to consistent/partially replicated during the triangular solve is performed to compute

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

COMMUNICATION IN TASK-PARALLEL ILU-PCG SOLVERS USING MPI+OMPSS 15

Matrix Dimension n #non-zeros nz Density (%)
A159 4,019,679 16,002,873 9.90E-7
A200 8,000,000 31,880,000 4.98E-7
A252 16,003,008 63,821,520 2.49E-7
A318 32,157,432 128,326,356 1.24E-7
A400 64,000,000 255,520,000 6.23E-8

Table I. Matrices employed in the experimental evaluation. In the table nz counts the non-zeros in the upper
triangular part only.

the tolerance threshold τ . This in turn is necessary in order to check the convergence test at the
beginning of the following iteration. If we perform the convergence test every s iterations, we can
save the transformation r̂ → r during the lower triangular solve in S6.2 (and the DOT product for τ)
during s− 1 iterations. With this option, the binary-tree reduction still occurs, but involves less data.
In exchange for this, the solver may incur up to s− 1 extra iterations. Nevertheless, a rough analysis
of the convergence rate for the iteration can offer some heuristic strategy to reduce this risk.

5. EXPERIMENTAL RESULTS

5.1. setup

The experiments in this section employed IEEE754 double-precision arithmetic and were carried out
on the MareNostrum supercomputer at Barcelona Supercomputing Center (BSC). We performed
our evaluation on 16 compute nodes of this infrastructure, connected via an Infiniband Mellanox
FDR10 network. Each node comprises two 8-core Intel Xeon E5-2670 processors (2.6 GHz) and
64 Gbytes of DDR3 RAM. The codes were compiled using Mercurium C/C++ (1.99.8), with
OpenMPI (1.8.1). Other software included OmpSs (16.06), ILUPACK (2.4), ParMetis‡ (4.0.2) for
the graph reorderings, and Extrae+Paraver§ (3.4.1 + 4.6.3) to obtain and visualize execution
traces.

For the experimental analysis, we relied on a s.p.d. coefficient matrix arising from the finite
difference discretization of a 3D Laplace problem; see Table I and [5] for details. For the linear
systems, the right-hand side vector b was initialized with all entries set to 1, and the PCG iterate
was started with the initial guess x0 ≡ 0. The parameters that control the fill-in and convergence of
the iterative process in ILUPACK were set as droptool = 1.0E-2, condest = 5, elbow = 10, and
restol = 1.0E-6.

We have chosen the Laplacian operator since this particular problem is easy to generate and to
verify. Certainly, there exits alternative problems that are harder to solve and tackling this equation
is easy from the mathematical point of view. However, the Laplacian problem represents a worst-
case scenario for parallel computing. Concretely, since solving single subsystems is easy and fast,
the communication overhead for the Laplacian case is more significant and dominating than for
other problems. Moreover, the graph structure of the underlying graph reveals all aspects of domain
decomposition as obtained by a graph partitioner. This is worse than for many other problems
because its uniform structures lead to relatively large-size interfaces, increasing the work that is
required beyond the leaf tasks.

5.2. Analysis of single-node execution

Figure 9 provides Extrae traces corresponding to the execution one iteration of two of the
task-parallel PCG solvers: classical scheme and Eijkhout’s variant. We note that the butterfly
transformation, the merge of AXPY(-like) vector operations, or the integration of an ILU(0)

‡http://glaros.dtc.umn.edu/gkhome/metis/parmetis/
§http://www.bsc.es/computer-sciences/extrae.

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

http://glaros.dtc.umn.edu/gkhome/metis/parmetis/
http://www.bsc.es/computer-sciences/extrae

16 J. I. ALIAGA ET AL.

Figure 9. Execution traces for the classical CG and Eijkhout’s variant (top and bottom, respectively), in
both cases preconditioned with ILUPACK: single node, 1 MPI rank, 16 OmpSs threads per MPI rank. The
execution time of one iteration of the classical CG (top) is 2.14 s while for Eijkhouts variant (bottom) it is

2.28 s.

preconditioner instead of ILUPACK’s produce only minor changes in the execution traces. For this
initial experiment, we employed a single node of the cluster, 1 MPI rank, and 16 OmpSs threads.
The TDG was composed of 64 leaves (4 leaf tasks per thread) and 7 levels.

In the top timeline in the figure, we can observe the sequence of operations for the classical
PCG iteration, consisting of SPMV (S1), DOT product (S2), and 2×AXPY (S3–S4); followed by
the application of preconditioner (upper and lower triangular solves; S5.1 and S5.2, respectively);
and terminated with three vector kernels: 2×DOT product (S6 and S9) and AXPY(-like) (S8). In the
bottom timeline (Eijkhout’s variant) the sequence commences with the four AXPY(-like) operations
(S2–S5); which are directly followed by the application of the preconditioner (S6.1 and S6.2), and
the SPMV (S7); and completed with the combined four DOT products (S7–S11).

Both traces show that, during the triangular solves, each OmpSs thread executes between 5 and 7
leaf tasks. The traces also expose that the SPMV and triangular solves dominate the execution time
of the iteration, but the cost of the vector operations is not negligible. Furthermore, for the triangular

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

COMMUNICATION IN TASK-PARALLEL ILU-PCG SOLVERS USING MPI+OMPSS 17

solves, the computations corresponding to non-leaf tasks also contribute a mild cost compared with
that involving the leaves.

The traces identify a synchronization point in the transition between the upper triangular solve and
the lower one, in addition to those imposed by the DOT products. This yields three synchronization
points per iteration for the classical PCG solver compared with only two for Eijkhout’s variant.
The negative impact of these synchronizations comes from the communication overhead and,
especially for this single node execution, workload imbalance that leads to idle waits and waste
of computational resources.

5.3. Optimal configuration

In [6] we evaluated the performance of the parallel MPI+OmpSs version of the classical PCG
solve preconditioned with ILUPACK for different combinations of MPI ranks and OmpSs threads
per node (configurations). Given the node architecture (the same computer targeted in the present
work), with 2 sockets/8 cores per socket, we employed 1, 2, 4, 8 or 16 MPI ranks per node and the
corresponding number of OmpSs threads that filled all cores per node: 16, 8, 4, 2 or 1, respectively.
The analysis of performance and weak/strong scalability in that work offered three key insights:

1. In general, the best configuration maps 2 MPI ranks/8 OmpSs threads per node, mimicking
the internal socket/core architecture of the servers.

2. The MPI+OmpSs implementation outperforms its pure-MPI counterpart by a non-negligible
margin that is in the range 5–10%.

3. The best configuration employs 1 leaf per core. While a raise in the number of leaves can
potentially produce a more balanced distribution of the workload, it also increases the number
of levels and the cost of processing the intermediate (non-leaf) tasks. At a certain point during
the application of the preconditioner, the number of tasks in a level becomes smaller than the
amount of cores, yielding idle waits.

We thus adopt the same decisions for the remaining experiments, mapping 2 MPI ranks per node,
with 8 OmpSs threads per MPI rank; and creating a TDG composed of 1 leaf per core.

5.4. Scalability

We next evaluate the scalability of the task-parallel ILU-PCG solvers, focussing this analysis on
the effect of the two major CA techniques: the butterfly transformation and Eijkhout’s variant. The
top two graphs in Figures 10 and 11 show the execution time-per-iteration of the task-parallel PCG
solver for the A400 problem as the resources are increased from 1 to 16 nodes respectively using
a single socket or both sockets per node. For reference, the latter figure also includes the results
for an implementation that relies on MPI only. We note that the results collect the average iteration
time. The execution time of each iteration, for the distinct versions, which already provides some
information on the dispersion of the values, showed relative small variations between iterations. For
example, in the execution with a single node and 16 cores, the average time-per-iteration for the
classical variant was about 0.278 s and the standard deviation between the time of the iterations
was around 0.0219 s only. Similar dispersion results were observed for other variants and parallel
configurations. In general, all implementations show a similar decrease in the iteration time as the
number of cores grows, exposing their scalability.

The bottom two graphs in both figures assess the weak scalability of the task-parallel ILU-
PCG solvers. To perform this evaluation, we set the number of non-zeros of the sparse matrix
(nz) to be roughly proportional to the number of cores. However, we note that nz only offers
an estimation of the computational cost, as the fill-in/quality of the preconditioner, among other
factors, has a significant role. The bottom row of plots reports the execution time per iteration
of the parallel implementations for the different matrices in Table I. These results show that, for
all implementations, the execution times grow with the number of nodes/cores and the problem
dimension at a similar pace. The reason is that the number of flops per iteration increases with the
number of cores and, therefore, levels due to the overhead caused by the operation with inconsistent
data.

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

18 J. I. ALIAGA ET AL.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1 2 4 8 16

T
im

e
 p

e
r

it
e
r

(s
)

Number of nodes

Strong scalability of ILU0-PCG solver

Classical
Butterfly
Eijkhout

Butterfly+Eijkhout

0.00

1.00

2.00

3.00

4.00

5.00

6.00

1 2 4 8 16

T
im

e
 p

e
r

it
e
r

(s
)

Number of nodes

Strong scalability of ILUPACK-PCG solver

Classical
Butterfly
Eijkhout

Butterfly+Eijkhout

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

1 2 4 8 16

T
im

e
 p

e
r

it
e
r

(s
)

Number of nodes

Weak scalability of ILU0-PCG solver

Classical
Butterfly
Eijkhout

Butterfly+Eijkhout

0.00

0.10

0.20

0.30

0.40

0.50

0.60

1 2 4 8 16

T
im

e
 p

e
r

it
e
r

(s
)

Number of nodes

Weak scalability of ILUPACK-PCG solver

Classical
Butterfly
Eijkhout

Butterfly+Eijkhout

Figure 10. Scalability of the task-parallel ILU-PCG solvers using a single socket (8 cores) per node.

0.00

0.20

0.40

0.60

0.80

1.00

1 2 4 8 16

T
im

e
 p

e
r

it
e
r

(s
)

Number of nodes

Strong scalability of ILU0-PCG solver

MPI-only
Classical
Butterfly
Eijkhout

Butterfly+Eijkhout

0.00

0.50

1.00

1.50

2.00

2.50

3.00

1 2 4 8 16

T
im

e
 p

e
r

it
e
r

(s
)

Number of nodes

Strong scalability of ILUPACK-PCG solver

MPI-only
Classical
Butterfly
Eijkhout

Butterfly+Eijkhout

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 2 4 8 16

T
im

e
 p

e
r

it
e
r

(s
)

Number of nodes

Weak scalability of ILU0-PCG solver

MPI-only
Classical
Butterfly
Eijkhout

Butterfly+Eijkhout

0.00

0.10

0.20

0.30

0.40

0.50

1 2 4 8 16

T
im

e
 p

e
r

it
e
r

(s
)

Number of nodes

Weak scalability of ILUPACK-PCG solver

MPI-only
Classical
Butterfly
Eijkhout

Butterfly+Eijkhout

Figure 11. Scalability of the task-parallel ILU-PCG solvers using two sockets (16 cores) per node.

5.5. Parallel performance

All plots in Figures 10 and 11 reveal that the butterfly transformation as well as Eijkhout’s CA
variant introduce small overheads compared with the classical iteration, independently of whether
the implementations are preconditioned via ILU(0) or ILUPACK. This is more visible for the

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

COMMUNICATION IN TASK-PARALLEL ILU-PCG SOLVERS USING MPI+OMPSS 19

Figure 12. Execution traces for the classical CG and Eijkhout’s variant (top and bottom, respectively)
preconditioned with ILUPACK: 8 nodes, 2 MPI ranks per node, and 8 OmpSs threads per MPI rank. For
clarity, we only show the detail for nodes 7 and 8. The legend of colors is the same as that in Figure 9. The
execution time of one iteration of the classical CG (top) is 0.42 s while for Eijkhouts variant (bottom) it is

0.44 s.

execution that employs a single node for the strong scaling experiment and 8–16 nodes for the
weak scaling one.

For the butterfly transform, a separate analysis of communication traces revealed that the use
of MPI’s Sendrecv primitive (necessary to implement the binary-tree reduction-broadcast that is
present in this scheme) produces a slightly worse overlap of communication and computation than
the regular MPI message exchanges via Send and Recv. We next discuss in detail the comparison
between the classical PCG iteration and Eijkhout’s variant. For this purpose, we will employ traces
for an execution using 8 nodes; with 2 MPI ranks per node and 8 OmpSs threads per MPI rank; and

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

20 J. I. ALIAGA ET AL.

the A400 problem. This yields a TDG with 128 leaf tasks (16 leaves per node, 8 per MPI rank),
organized into a binary-tree consisting of 8 levels.

Figure 12 reports traces for the classical iteration vs Eijkhout’s variant, in both cases accelerated
with ILUPACK’s preconditioner. The timelines in the figure reveal several observations:

• The limited dimension of the problem compared with the amount of resources
(128 cores) produces a substantial increase of the overheads due to inter-process
communication/synchronization and the computation with top levels of the tree hierarchy
during the triangular solves (bars in magenta color).

• The generation of a TDG with one leaf per OmpSs thread is the source of a significant
workload imbalance, especially visible for the SPMV and the triangular solves.

• The binary tree structure imposes a special synchronization pattern with the same structure in
both execution because the upper triangular solve cannot commence till the result of the lower
triangular system is available.

• For the classical iteration (first and third timelines), the SPMV is immediately followed by a
DOT product, which introduces a synchronization in the execution. The duration of these two
operations is determined by that of the slowest core. A similar situation appears at the end of
the iteration, when the upper triangular solve is followed by (an AXPY) and a DOT product.

• Instead of the two periods of idle time per iteration present in the classical PCG solve, we
easily identify a single one in Eijkhout’s variant. However, the workload imbalance due to
the upper triangular solve and SPMV aggregate so that the duration of this single period is
approximately equal to the addition of the two periods in the classical PCG iteration. As a
result, the higher execution time of Eijkhout’s variant is determined by the larger number of
flops per iteration (4+4 AXPY(-like) and DOT products vs 3+3).

• Unfortunately, increasing the number of leaves/levels of the TDG, which could improve the
distribution of the workload, will likely shift more cost to the computation with the non-leaf
tasks and an increase of idle resources.

6. CONCLUSIONS

We have proposed, analyzed and evaluated a number of parallel implementations of the PCG
method. All these parallel routines extract task-parallelism via nested dissection and leverage the
message-passing programming model underlying MPI and the task-parallel approach in OmpSs
to map the execution of the iterative PCG solve to a cluster of multicore processors. They
differ in the definition of the iteration recurrences (classical PCG iteration vs Eijkhout’s CA
formulation) and the type of preconditioner they integrate (ILU(0) vs ILUPACK). In addition,
we accommodate complementary communication/synchronization-avoiding strategies such as the
butterfly communication scheme and a strategy to merge OmpSs tasks.

Our experimental results show strong and weak scalabilities for all variants on up to 16 nodes/256
cores. (Our experiences with asynchronous versions of MPI Send did not show any performance
differences.) These results can be expected to carry over to any task-parallel formulation of a PCG
solver that relies on an ILU-type preconditioner as well as Chronopoulos and Gear’s, Meurant’s and
Saad’s CA formulations of the CG method, among others.

The analysis also marks a research direction that aims to increase the asynchronism of our
task-parallel PCG implementations, and improve workload balance, in order to render a faster
execution. For this purpose, we plan to decompose some of the computational kernels in the iteration
(especially the SPMV) to expose further levels of task-parallelism that can be then exploited from
OmpSs. This is part of ongoing work, together with the analysis of the communication patterns for
s-step Krylov methods, and the use of asynchronous versions of MPI Recv.

ACKNOWLEDGEMENT

J. Aliaga, M. Barreda, G. Flegar and E. S. Quintana-Ortı́ were supported by project TIN2014-53495-R of

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

COMMUNICATION IN TASK-PARALLEL ILU-PCG SOLVERS USING MPI+OMPSS 21

the MINECO and FEDER, project P1-1B2015-26 of the Universitat Jaume I, and the H2020 EU FETHPC
Project 671602 “INTERTWinE”. Marı́a Barreda was supported by the FPU program of the Ministerio de
Educación, Cultura y Deporte.

The authors thankfully acknowledge the computer resources provided by BSC-CNS (Centro Nacional de
Supercomputación).

REFERENCES

1. Kepner J, Gilbert J ((eds.)). Graph Algorithms in the Language of Linear Algebra. SIAM, 2011.
2. Saad Y. Iterative Methods for Sparse Linear Systems. SIAM, 2003.
3. George T, Gupta A, Sarin V. An empirical analysis of the performance of preconditioners for SPD systems. ACM

Trans. Mathematical Software August 2012; 38(4):24:1–24:30.
4. Aliaga JI, Badia RM, Barreda M, Bollhöfer M, Dufrechou E, Ezzatti P, Quintana-Ortı́ ES. Exploiting task- and

data-parallelism in ILUPACK’s preconditioned CG solver on NUMA architectures and many-core accelerators.
Parallel Computing 2016; 54:97–107.

5. Aliaga JI, Bollhöfer M, Martı́n AF, Quintana-Ortı́ ES. Exploiting thread-level parallelism in the iterative solution
of sparse linear systems. Parallel Computing 2011; 37(3):183–202.

6. Aliaga JI, Barreda M, Bollhöfer M, Quintana-Ortı́ ES. Exploiting task-parallelism in message-passing sparse
linear system solvers using OmpSs. Euro-Par 2016: Parallel Processing: 22nd Int. Conf. Parallel and Distributed
Computing, Springer, 2016; 631–643.

7. Duran A, Ferrer R, Ayguadé E, Badia RM, Labarta J. A proposal to extend the OpenMP tasking model
with dependent tasks. International Journal of Parallel Programming 2009; 37(3):292–305, doi:10.1007/
s10766-009-0101-1.

8. Programming Models@BSC. The OmpSs programming model. https://pm.bsc.es/ompss 2014.
9. Bruck J, Ho CT, Kipnis S, Upfal E, Weathersby D. Efficient algorithms for all-to-all communications in multi-port

message-passing systems. IEEE Trans. on Parallel and Distributed Systems 1997; 8(11).
10. Hoefler T, Schneider T. Runtime detection and optimization of collective communication patterns. Proc. 21st Int.

Conf. on Parallel Architectures and Compilation Techniques, PACT ’12, 2012; 263–272.
11. Dongarra J, Eijkhout V. Finite-choice algorithm optimization in Conjugate Gradients. LAPACK Working Note 159

UT-CS-03-502, University of Tennessee 2003.
12. Hénon P, Ramet P, Roman J. PaStiX: A high-performance parallel direct solver for sparse symmetric definite

systems. Parallel Computing 2002; 28(2):301–321.
13. P R Amestoy JK I S Duff, L’Excellent JY. A fully asynchronous multifrontal solver using distributed dynamic

scheduling. SIAM J. Matrix Analysis and Applications 2001; 23(1):15–41.
14. Irony D, Shklarski G, Toledo S. Parallel and fully recursive multifrontal supernodal sparse Cholesky. Future

Generation Computer Systems — Special issue: Selected numerical algorithms archive 2004; 20(3):425–440.
15. Schenk O, Gärtner K. On fast factorization pivoting methods for symmetric indefinite systems. Electronic Trans.

Numerical Analysis 2006; 23(1):158–179.
16. Li XS. An overview of SuperLU: Algorithms, implementation, and user interface. ACM Trans. Mathematical

Software 2005; 31(3):302–325.
17. Cools S, Y EF, Agullo E, Giraud L, Vanroose W. Analysis of rounding error accumulation in Conjugate Gradients

to improve the maximal attainable accuracy of pipelined CG. Research Report RR-8849, Inria Bordeaux Sud-Ouest
2016.

18. Hoemmen M. Communication-avoiding Krylov subspace methods. PhD Thesis, Berkeley, CA, USA 2010.
AAI3413388.

19. Bollhöfer M, Grote MJ, Schenk O. Algebraic multilevel preconditioner for the Helmholtz equation in heterogeneous
media. SIAM J. Scientific Computing 2009; 31(5):3781–3805.

20. Bollhöfer M, Saad Y. Multilevel preconditioners constructed from inverse–based ILUs. SIAM J. Scientific
Computing 2006; 27(5):1627–1650. Special issue on the 8–th Copper Mountain Conference on Iterative Methods.

21. Chronopoulos A, Gear C. s-step iterative methods for symmetric linear systems. J. Computational and Applied
Mathematics 1989; 25(2):153–168.

22. Meurant G. Multitasking the Conjugate Gradient method on the Cray X-MP/48. Parallel Computing 1987; 5(3):267
– 280.

23. Saad Y. Krylov subspace methods on supercomputers. SIAM J. Scientific and Statistical Computing 1989;
10(6):1200–1232.

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

https://pm.bsc.es/ompss

	1 Introduction
	1.1 Related work

	2 Task-Parallel ILU-PCG Solvers
	2.1 ILUPACK
	2.2 Other ILU-PCG solvers

	3 Classical Task-Parallel ILU-PCG Solvers
	3.1 The iterative PCG solve
	3.2 Communications in the classical PCG
	3.3 Mapping the TDG

	4 Communication-avoiding techniques for ILU-PCG Solvers
	4.1 Butterfly communication pattern
	4.2 Eijkhout's PCG solver
	4.3 Other CA CG solvers
	4.4 Merging task-parallel vector operations
	4.5 Relaxing the convergence test

	5 Experimental Results
	5.1 setup
	5.2 Analysis of single-node execution
	5.3 Optimal configuration
	5.4 Scalability
	5.5 Parallel performance

	6 Conclusions

