
                             Elsevier Editorial System(tm) for Ceramics 

International 

                                  Manuscript Draft 

 

 

Manuscript Number: CERI-D-17-03721R1 

 

Title: SOLUTION COMBUSTION SYNTHESIS OF (Ni,Fe)Cr2O4 PIGMENTS: EFFECT OF 

POST-SYNTHESIS THERMAL TREATMENTS  

 

Article Type: Full length article 

 

Keywords: Powders: chemical preparation (A); Calcination (A); colour (C); 

spinels (D); post-synthesis treatments 

 

Corresponding Author: Mrs. Jessica Gilabert, M.Sc. 

 

Corresponding Author's Institution: Instituto de Tecnología Cerámica 

(ITC). Asociación de Investigación de las Industrias Cerámicas (AICE) 

 

First Author: Jessica Gilabert, M.Sc. 

 

Order of Authors: Jessica Gilabert, M.Sc.; Maria Dolores Palacios, PhD; 

Maria Jose Orts, PhD; Sergio Mestre, PhD 

 

Abstract: Mixed spinel pigments Ni1− ΨFeΨCr2O4 (0 ≤ Ψ ≤ 1) were 

synthesized by means of a method known as Solution Combustion Synthesis, 

using urea as fuel. Effects on mineralogy, microstructure and colouring 

power of composition and parameters of post-synthesis thermal treatments 

(temperature and kiln atmosphere) were studied. The as-synthesized 

powders were calcined at two different temperatures (800 and 1000ºC) and 

atmospheres (oxidizing and inert). Powders were characterized by X-ray 

diffraction (XRD), thermogravimetry (TG), scanning electron microscopy 

(FEG-SEM) and colour development in glaze.  

Mineralogy was highly affected by post-synthesis parameters. A 

progressive evolution from a Fd-3m face-centred spinel to a rhombohedral 

(Fe,Cr)2O3 structure was identified as the calcination temperature 

increased and composition enriched in iron. Inert atmosphere slowed down 

spinel-(Fe,Cr)2O3 transformation. Moreover, crystallite size of both 

phases showed characteristic critical points with composition and 

calcination conditions. On the other hand, microstructure analysis showed 

an important grain growth as the calcination temperature increased using 

the oxidizing atmosphere, but it was considerably altered with inert 

atmosphere.  

Regardless of post-synthesis thermal treatment parameters, all pigments 

showed high colouring power in a glaze. As Ψ increased, generated colours 

evolved from yellow-greenish to brown. Only luminosity coordinate L* of 

glazes subtly decreased as calcination temperature of the pigment 

increased, while a* and b* were nearly constant. This behaviour is 

related to the evolution of the pigment during the heating interval of 

the firing cycle of the glazed samples.  
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SOLUTION COMBUSTION SYNTHESIS OF 

(Ni,Fe)Cr2O4 PIGMENTS: EFFECT OF POST-

SYNTHESIS THERMAL TREATMENTS  

J. Gilaberta,*, M.D. Palaciosb, M.J. Ortsb,c, S. Mestreb,c 

aInstituto de Tecnología Cerámica. Asociación de Investigación de las Industrias Cerámicas. 

Castellón (Spain) 

bInstituto Universitario de Tecnología Cerámica. Universitat Jaume I. Castellón (Spain) 

cDepartamento de Ingeniería Química. Universitat Jaume I. Castellón (Spain) 

*Corresponding Author jessica.gilabert@itc.uji.es (Tlf: +34964342424; Fax: 

+34964342425) 

Abstract 

Mixed spinel pigments Ni1− ΨFeΨCr2O4 (0 ≤ Ψ ≤ 1) were synthesized by means of a 

method known as Solution Combustion Synthesis, using urea as fuel. Effects on 

mineralogy, microstructure and colouring power of composition and parameters of 

post-synthesis thermal treatments (temperature and kiln atmosphere) were studied. 

The as-synthesized powders were calcined at two different temperatures (800 and 

1000ºC) and atmospheres (oxidizing and inert). Powders were characterized by X-

ray diffraction (XRD), thermogravimetry (TG), scanning electron microscopy (FEG-

SEM) and colour development in glaze.  

Mineralogy was highly affected by post-synthesis parameters. A progressive 

evolution from a Fd-3m face-centred spinel to a rhombohedral (Fe,Cr)2O3 structure 

was identified as the calcination temperature increased and composition enriched in 

iron. Inert atmosphere slowed down spinel®(Fe,Cr)2O3 transformation. Moreover, 

crystallite size of both phases showed characteristic critical points with composition 

*Manuscript
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 2 

and calcination conditions. On the other hand, microstructure analysis showed an 

important grain growth as the calcination temperature increased using the oxidizing 

atmosphere, but it was considerably altered with inert atmosphere.  

Regardless of post-synthesis thermal treatment parameters, all pigments showed high 

colouring power in a glaze. As Ψ increased, generated colours evolved from yellow-

greenish to brown. Only luminosity coordinate L* of glazes subtly decreased as 

calcination temperature of the pigment increased, while a* and b* were nearly 

constant. This behaviour is related to the evolution of the pigment during the heating 

interval of the firing cycle of the glazed samples.  

Keywords: Powders: chemical preparation (A); Calcination (A); colour (C); spinels 

(D) 

1 Introduction 

Spinel-type mixed oxides have been used as ceramic pigments because of their 

thermal and chemical colour stability [1, 2] and insolubility into the substrate they 

are applied [3]. 18 from 44 pigments classified by the Color Pigments Manufacturers 

Association (CPMA) [4] present spinel-type structure, being considered one of the 

most important pigment group by the ceramic sector. The formulation of an 

inorganic pigment for glazed ceramic tiles is not an easy task because of the specific 

technical requirements to be achieved: chemical resistance to molten glazes, 

colouring power and thermal stability at temperatures over 1100°C [5-7] are some of 

the most important ones. 

Ceramic sector has traditionally manufactured pigments by solid-state reaction 

among raw materials as oxides, hydroxides and carbonates, applying high calcination 

temperatures (up to 1400ºC) and long soaking times (3-6 hours) [8]. Such a ceramic 
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 3 

route is really energy intensive and time consuming, and the products are usually 

inhomogeneous, coarse, impure, and away from stoichiometry because of the thick 

diffusion barriers resulting from the lack of molecular-level mixing [9]. Digital inkjet 

decoration of ceramic products is demanding alternative pigment synthesis 

methodologies to overcome these mentioned drawbacks in order to obtain a broader 

colour palette and/or reduce processing costs (specially the milling step). To prevent 

their print head nozzles from clogging by pigment’s particles [10-12], is required that 

99% of the particles were less than 1 µm in diameter [13-15]. Therefore, ceramic 

inks are currently prepared from industrial ceramic pigments by means of a high-

energy ball milling process to reduce particle size from micrometric to 

submicrometric range to meet the latest inkjet machines demands. 

Solution combustion synthesis (SCS) is an emerging wet-chemical technology 

appropriate to get over some of the most important limitations that traditional 

ceramic route presents, since it allows the generation of chemically and thermally 

stable mixed oxides applying low temperatures and really short soaking times [16]. A 

general SCS is based on an exothermic reaction between an oxidizer such as metal 

nitrates and an organic fuel (frequently urea or glycine), being the internal chemical 

energy the driving force for crystalline lattice formation. In addition, SCS allows 

some control of the as-synthesized pigment sizes in the nanometric scale, because it 

inhibits particle size growth and favours a spongy microstructure development. In 

fact, solution-based combustion synthesis offers advantages in terms of improved 

compositional homogeneity and purity of the final product, because it begins from an 

aqueous solution, which assures a molecular-level mixing of reagents. As a result, 

SCS serves as a promising synthesis route for mass production of nanomaterials in a 

fast and direct way [9]. 



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

 4 

Nevertheless, SCS process has not been widely studied from a technical point of 

view, noticing the lack information available on the effects of combustion parameters 

as fuel [17] and ignition temperature [18] or the reaction mechanisms [19]. In 

addition, despite SCS general capability to obtain high-purity products as relevant 

bibliography states [19, 20], some studies have demonstrated the appearance of 

secondary products and fuel traces that can damage pigment’s final behaviour, 

specially under fuel-rich condition [3, 4]. In our case, these secondary phases could 

react during the firing cycle of the glazes that contain the SCS pigments, changing 

his nature and generating unexpected effects over the properties of the final product. 

Therefore, studying the effect of applying a second thermal treatment on the as-

synthesized SCS pigment is highly required to evaluate the evolution of the pigment 

(crystalline phases, microstructure and colouring power) with the parameters of the 

thermal cycle, in order to understand pigment evolution during the firing cycle of the 

glaze.  

The present research is aimed at studying the effect of post-synthesis calcination 

temperature (Tc) and kiln atmosphere on the evolution of spinel-type pigments 

Ni1−ΨFeΨCr2O4 (0.0 ≤ Ψ ≤ 1.0) synthesized by Solution Combustion Synthesis, using 

urea as fuel. As reported, there are relevant studies which apply a calcination process 

after combustion [1, 3, 21, 22], but little attention has been paid to this stage when 

observing its effect on the as-synthesized product. In fact, there is a growing 

uncertainty about the changes undertaken in pigment characteristics when it is added 

to a glaze until the very first moment in which it starts to melt.  

NiCr2O4 and FeCr2O4 selected pigments present a high technological interest in the 

ceramic industry [23], since they are frequently used to generate green and brown 

shades respectively. Introducing appropriate procedures in SCS is supposed to result 
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in a good control of mineralogy and particle morphology. In this way, the study of 

the effects of the parameters of secondary thermal treatment is considered an 

essential factor in regards to optimize the performance of the pigments. 

2 Experimental procedure 

2.1 Material and methods 

Solid solutions between nickel and iron chromites Ni1-YFeYCr2O4 (0.0 ≤ Y ≤ 1.0) 

have been synthesized by solution combustion synthesis in steps ΔY = 0.2. 

Corresponding metal nitrates were weighted according to their molar proportions, 

following Table 1, and then dissolved in 50 mL of distilled water adding 24g of urea 

as fuel. Fuel/oxidizer molar ratio was maintained constant (6/40) to limit the number 

of variables in the study. SCS route was carried out using all reagents of analytical 

grade from Panreac Quimica.  

The aqueous solution was vigorously stirred in a 700-mL pyrex container previously 

to carry out the combustion process in a preheated kiln at 500 ºC (BLF 1800, 

Carbolite Furnaces Ltd, UK) with 20 min of soaking time to favour the complete 

combustion reaction. During soaking time, the sample dries, boils, foam, ignites and 

burns achieving temperatures around 1500ºC [16]. Moreover, heat transfer takes 

some time, and this 20-min period allows sample cooling and reduce the thermal 

gradients that can damage the containers.  

After SCS process, samples were calcined at 800ºC and 1000ºC in air for 1h in an 

electric furnace (RHF 1600, Carbolite Furnaces Ltd, UK). Additionally, pigment 

calcination at the higher temperature was also carried out in nitrogen atmosphere in a 

tubular kiln (HST 12/400, Carbolite Furnaces Ltd, UK). 
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All pigments were ball milled (Pulverisette 5, Fritsch GmbH, Germany) with water 

at 260 rpm for 15 min, dried under infrared lights and sieved through a 200 µm 

mesh.  

Finally, pigments were mixed in a 2/98 wt% proportion into a transparent single-

fired porous tile glaze (chemical composition: 0.5% Na2O 4.0 % K2O, 15.3% CaO, 

0.9 MgO, 9.0% ZnO, 7.4% Al2O3, 3.0% B2O3, 59.5% SiO2) and fired in an electric 

laboratory furnace according to an optimized thermal cycle of single-fired floor tile 

(maximum temperature 1100 ºC and 6 min of soaking time). All process has been 

summarized in Fig. 1, where the followed SCS process scheme is described. 

2.2 Pigment characterization 

Characterization of crystalline structures was performed using an X-ray 

diffractometer (Theta-Theta D8 Advance, Bruker, Germany), with CuK radiation (λ 

= 1.54183 Å). The generator applied an intensity light source of 45 kV and 40 mA. 

XRD data were collected by means of a VÅNTEC-1 detector in a 2θ from 5 to 90º 

with a step width of 0.015º and a counting time of 1.2 s/step. Phase quantification 

was carried out by Rietveld method using DIFFRACplus TOPAS (version 4.2). The 

agreement indices, as defined in Topas, for the final least-squares cycles of all 

refinements were in the following ranges: 1.06 ≤ Rwp (Weight profile R-factor) ≤ 

2.44 and 1.01 ≤ GOF (Goodness of fit) ≤ 1.25.  

Simultaneous thermal analysis (ATD-TG) were conducted with a TGA-SDTA 

851E/160 (Mettler Toledo, Switzerland). Thermal treatment conditions consisted of a 

heating process in a platinum vessel from 25 to 1000ºC at 10ºC/min using two 

dynamic atmospheres (50 mL/min flow), air and nitrogen, respectively. 
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Microstructural characterization was performed with a FEG-SEM (QUANTA 200F, 

FEI Co, USA) and specific surface area values were determined according to the 

BET method (Brunauer-Emmet-Teller) using nitrogen gas as adsorbate (Tristar 3000, 

Micromeritics, USA) and a degassing temperature of 150ºC for 3 hour. 

Colour of the glazed tiles was evaluated with a spectrophotometer (Color Eye 

7000A, X-Rite Inc, USA), and CIELab* chromatic coordinates were calculated using 

CIE Illuminant D65 and CIE 10º standard observer.   

3 Results and discussion 

After SCS combustion, materials with low bulk density and very spongy appearance 

were obtained (Fig. 1), increasing practically ten times the volume occupied by the 

liquid precursor. They were easy to disaggregate, without needing an additional 

grinding process.  

3.1 Crystalline structure 

All as-synthesized pigments contain a phase with a spinel-type Fd-3m face centred 

structure [24]. Furthermore, a crystalline secondary phase with a rhombohedral 

eskolaite-type structure appeared progressively as Y increased, which was identified 

as a solid solution between iron and chromium trioxides (chemical formula 

(Fe,Cr)2O3). In Fig. 2, XRD analysis for as-synthesized and calcined pigments at Tc = 

1000ºC are detailed. Both crystalline phases have been labeled in their corresponding 

positions after identification. Results show that the mineralogy of the pigments 

evolved with Y. On one hand, spinel reflections shifted towards lower angles as the 

composition enriched in iron, following the evolution of the solid solutions between 

both extreme spinels (Y!= 0.0 and Y!= 1.0) [25,26].  
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Table 2 shows crystal structural data of as-synthesized pigments: unit cell parameters 

(lattice parameters and oxygen coordinate of spinel phase) and estimated crystal 

chemistry of all phases formed in the as-synthesized and calcined pigments. Crystal 

chemistry data were calculated applying a property balance approximation using the 

corresponding mass and atomic balances between the initial solution and the 

proportions of Ni1-xFexCr2-yFeyO4 and Cr2-zFezO3 phases obtained by Rietveld’s 

method. The equations’ system was solved by a least squares method to minimize the 

differences between the calculated and the experimental data. All results are shown 

in Table 2, except for the y index which has a value lower than 0.01 in all the 

samples. Taking into account the uncertainties of the results of the Rietveld analysis, 

this value was considered not significant. 

The results obtained pointed to a practically fixed Fe/Cr ratio in the as-synthesized 

eskolaite-type phase, around 0.6. However, after the thermal treatments, this ratio 

slightly increased, tending to a value of 2/3, being this trend clearer as the initial 

composition enriched in iron. This result is logical since the compositions with 

Y=1.0 corresponds to this stoichiometric relation. On the other hand, this result 

means that the eskolaite-type phase stoichiometry is relatively narrow despite the 

wide range of initial compositions tested. 

In the case of the spinel phase, its composition in the as-synthesized pigments was 

progressively richer in iron as the initial solution was increasing the proportion of 

this element. The pigments annealed under air atmosphere after the synthesis 

contained only the NiCr2O4 spinel, except the pigments with Y!= 1.0. The pigments 

annealed under nitrogen, contained the spinel NiCr2O4 only if the iron proportion in 

the initial solution was low (Y!≤ 0.4), but for higher proportions of iron, a mixed 

spinel was obtained. 
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The thermodynamic criteria seem to explain the effect of Tc over crystalline phase’s 

evolution. When samples were calcined in oxidizing atmosphere, only if composition 

was iron-free (Y!= 0.0), a spinel was the unique crystalline phase present in the 

product. In the rest of the calcined samples, (Fe,Cr)2O3 was also present. According 

to Fig. 3 a, as the composition enriches in iron, the transformation of spinel to 

(Fe,Cr)2O3  is progressively more favourable as Fe(II) is oxidized to Fe(III). Finally, 

nickel-free composition (Y!= 1.0) gives calcined pigments without spinel. Thus, a 

thermal treatment combined with an oxidizing atmosphere favour the transformation 

spinel®(Fe,Cr)2O3. Probably, the thermodynamic trend towards obtaining the most 

stable crystalline phase between iron, chromium and oxygen ions is coupled with 

enough thermal energy to overcome the activation energy of the transformation. 

The spinel®(Fe,Cr)2O3 transformation involves the oxidation of iron. Therefore, the 

composition of the atmosphere during calcination was another parameter to analyse. 

When pigments were calcined in nitrogen atmosphere, spinel was the only crystalline 

phase obtained if Y!= 0.0, as in the case of oxidizing environment (Fig. 3 b). 

Nevertheless, when iron enrichment was evident, the spinel®(Fe,Cr)2O3  

transformation slowed down with respect to the oxidizing treatments. This fact 

confirms the effect of calcination atmosphere over phase transformation. Thus, using 

inert atmospheres, some percentage of spinel-type phase could be maintained in the 

pigment. Probably, a slightly reducing atmosphere can stop the spinel®(Fe,Cr)2O3 

transformation. However, the pigment would again be in contact with the oxygen 

during its application. 

In Fig. 4 a and 4 b the evolution of the mass percentages calculated for both 

crystalline phases after Rietveld refinement is represented, evidencing the low 
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proportion of (Fe,Cr)2O3 present in the as-synthesized pigments, which did not 

exceed 10%wt in any sample. Therefore, SCS method can be thought to allow 

obtaining nearly single-phase spinel-type pigments from the original nitrate reagents, 

without having the necessity of applying additional thermal treatments after the 

combustion process. These results also show the clear advance in the 

spinel®(Fe,Cr)2O3 transformation after applying a calcination processes in oxidizing 

atmosphere. However, an effect of Tc value over (Fe,Cr)2O3 percentage was not 

detected, which means that the transformation is thermodynamically controlled, at 

least in the investigated interval of Tc. When enough thermal energy is available, the 

system reaches the equilibrium with a relatively fast kinetics. On the other hand, the 

effect of inert atmosphere over (Fe,Cr)2O3 percentage was only clear for pigments 

with Y ≥ 0.6. It is possible that the bed of particles had retained enough oxygen to 

sustain the transformation when it occurs to a small extent, but not when a larger 

extent is possible. 

The results demonstrated an unwanted behaviour of the NiCr2O4-FeCr2O4 system. 

The iron-rich spinels obtained by SCS are not thermodynamically stable, and their 

evolution towards the secondary phase (Fe,Cr)2O3 is activated by temperature and 

can be partially controlled by modifying the composition of the calcination 

atmosphere.  

According to Muan et al. [27], iron-chromium spinel is not thermodynamically stable 

under 1400ºC, and shifts to the (Fe,Cr)2O3 phase, which is the stable crystalline 

phase. In addition, Dondi et al. [28] stated that Fe(II) is known to be easily oxidized 

in "ceramic conditions" to the point it is retained only when Cr(III) saturates the 

occupancy of the octahedral site. In other words, the synthesized FeCr2O4 is a 

metastable phase at room temperature obtained thanks to the fast kinetics of SCS 
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process, which prevents from reaching the system’s equilibrium. An open question is 

the possibility of having some substitution of Ni(II) by Fe(III) in the tetrahedral sites 

of the spinel, also as a consequence of SCS’s kinetics, leaving some vacancies in 

order to maintain the electroneutrality. 

Crystallite size of spinel and (Fe,Cr)2O3 solid solution phases was also calculated 

(Fig. 4 c and 4 d respectively). When phase percentages were lower than 5%wt. 

crystallite size determinations presented a lack of precision, being omitted from the 

representations.  

NiCr2O4 pigments showed a crystallite size around 50 nm that was nearly 

independent of their thermal history (Fig. 4 c). However, as Ni was progressively 

substituted by iron, spinel’s crystallite size showed a parabolic-like trend, reaching a 

maximum of approximately 80 nm at intermediate compositions (0.2 ≤ Y≤ 0.4). The 

curve was shifted to higher crystallite sizes when a second thermal treatment was 

applied, being the displacement as bigger as higher was Tc. In addition, the 

maximum was displaced to Y = 0.6 (120 nm for Tc = 1000 ºC). Finally, an inert 

atmosphere during the calcination slowed the crystallite growth with respect to an 

oxidizing one. In consequence, iron addition in low proportions favoured crystallite 

growth and spinel crystallinity. Nevertheless, as Y increased beyond 0.6, crystallite 

size decreased markedly, reaching values near 40 nm for Y = 1.0 (in the samples 

where spinel was present). Obviously, there were two effects competing during the 

calcination. On one hand, the spinel’s crystallite growth. On the other hand, the 

spinel®(Fe,Cr)2O3 transformation, which could limit the maximum crystallite size of 

the remaining spinel. The combined effect was the presence of a critical point in the 

crystallite size. 
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The (Fe,Cr)2O3 crystallite size also showed a complex evolution (Fig. 4 d). In the 

case of the as-synthesized pigments, crystallite size decreased from 70 nm to 40 nm 

nearly lineally as Y increased. However, crystallite size always increased after a 

thermal treatment but the increase was a function of Y and Tc, without a clear effect 

of calcination atmosphere. As a result, a minimum appeared at Y!= 0.4 but the 

crystallite size was larger as calcination temperature was higher, reaching 120 nm for 

Tc = 1000 ºC and Y = 1.0. This behaviour is complementary of the spinel’s 

crystallite size. The growth of the (Fe,Cr)2O3 crystallites is limited by the progress of 

the spinel®(Fe,Cr)2O3 transformation. 

Spinel phase lattice parameters were also evaluated with Y (Fig. 5). As-synthesized 

samples and the ones calcined in an oxidizing atmosphere followed a sigmoidal 

behaviour, which was far from the lineal trend stated by Vegard’s law as it was 

described in previous works carried out by Gilabert et al. [29] in other spinel-type 

systems. Estimated behaviour according to Vegard’s law showed in Fig. 5 is based 

on the ICCD data from the spinels NiCr2O4 (Ψ = 0.0) [25] and FeCr2O4 (Ψ = 1.0) 

[26], respectively. Despite deviating from the theoretical trend, the lattice parameter 

evolution was similar to the one described previously by authors as Mestre et al. 

[30], where spinel studied also contained iron. In consequence, it seems that the 

presence of iron promotes this characteristic sigmoidal behaviour, which leads to 

lower lattice parameters than expected. In addition, as the Tc increased, the decrease 

of lattice parameter with respect to the expected one was higher, pointing that the cell 

volume of the spinel remaining after the thermal treatment was lower. In the case of 

the pigments thermally treated in inert atmosphere, the observed trend was 

completely different, as lattice parameter presented a strongly parabolic decreasing 

trend. A hypothesis could be proposed to interpret this behaviour. The 
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spinel®(Fe,Cr)2O3 transformation involves the transport of iron ions from the spinel 

to the growing (Fe,Cr)2O3 network and its oxidation. Therefore, the number of 

vacancies in the iron positions of the spinel increases strengthening distances 

between ions and reducing the lattice parameter. The calcination in nitrogen 

atmosphere leads to a loss of oxygen atoms in the structure, creating additional 

vacancies and a further decrease in the lattice parameter. This hypothesis is not a 

substantiated evidence but, taking into account the lack of research about this 

subject, it seems to be the most reasonable explanation about the observed behaviour. 

More sophisticated analytical techniques are required to confirm the hypothesis or 

give an alternative interpretation. 

3.2 Thermal behaviour 

Thermogravimetric analyses were carried out to characterize the evolution of the 

Fe(II) to Fe(III) oxidation process related with spinel®(Fe,Cr)2O3 transformation. 

The Y = 1.0 as-synthesized sample was tested in oxidizing and inert atmospheres 

(Fig. 6). The DTA curves were also obtained but the small energetic changes were 

masked by the noisy background. A common behaviour was observed in both tests. 

Firstly, a progressive mass loss (25-400ºC) corresponding to two simultaneous 

thermal processes: the loss of residual humidity or dehydration process (25-150ºC) 

and dehydroxylation process due to non-crystallized hydroxides generated as a result 

of the wet-milling process (200-400ºC). In addition, some percentage of this initial 

mass loss could be related to an amount of residual gasification components in the 

obtained powders, which can be emitted at those temperatures, as a result of a lower 

reaction effectiveness [31,32]. 



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

 14 

The process was followed by a subtle mass increase assigned to the partial iron 

oxidation process, which was correlated with spinel®(Fe,Cr)2O3 transformation 

[33]. Finally, a further mass loss was detected after iron oxidation that could be 

assigned to a chromium oxide loss as volatile species as this mechanism has been 

identified in the synthesis of (Fe,Cr)2O3 black pigment [34]. However, despite the 

similar behaviour, considerable differences were detected in the magnitude of the 

observed changes. On one hand, water loss covers a broader interval and oxidation 

process began at higher temperatures (570ºC approximately) working in inert 

atmosphere. On the other hand, water loss was overlapped with the beginning of the 

oxidation step, approximately at 420ºC, when oxygen-rich atmosphere was used. 

Oxidizing atmosphere favours iron oxidation and the global mass loss is lower than 

in the inert atmosphere because iron is not oxidised in the same proportions. 

Stoichiometric calculation estimates a mass increase of 3.5% for the transformation 

of FeCr2O4 to Fe0.67Cr1.33O3 solid solution. Considering that the water loss was the 

same under the two atmospheres, iron oxidation supposes a mass increase of 1.5% 

under air and a 0.5% under nitrogen, values which reflect the effect of atmosphere. 

Probably, the source of oxygen in the inert atmosphere test was air retained between 

the sample particles, whose quantity was limited, the same case that the calcination 

in the tubular furnace. In conclusion, atmosphere strongly influences the iron 

oxidation, and indirectly influences the phase transformation. Owing to this reason, 

an oxygen rich atmosphere during calcination will favour the spinel®(Fe,Cr)2O3 

transformation. Therefore, this transformation can occur when glazes containing the 

pigment are fired in a furnace. 
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3.3 Morphological characterization 

The study of grain morphology showed an evident influence of composition, Tc and 

calcination atmosphere, over the final grain shape and size and porosity (Fig. 7), 

effects that are also reflected in specific surface area values (Table 3).  

As-synthesized pigments images demonstrated that Y=0.0 sample had larger grains 

than the Y=1.0 one, but with more voids between them, which is coherent with their 

higher surface area. Taking into account that both samples contained very high 

proportions of spinel, grain growth is favoured in Ni-rich spinel, but the sintering 

process does not progress in the same extent.  

After the post-synthesis thermal treatment in air, the microstructure of the samples 

was very different. On one hand, Y=0.0 sample showed a heterogeneous grain 

growth. As a result, some grains clearly presented the spinel crystalline habit [35], 

and an increase in porosity was detected, which clearly correlates with the increase in 

specific surface area. The lack of homogeneity could be caused by the Ostwald’s 

ripening mechanism coupled with a gas-phase transport of chromium oxide. 

Escardino et al. [34] studied this kind of grain growth that promotes the appearance 

of an intergrain porosity caused by chromium oxide transport in gas phase from 

smaller decreasing-size particles to the bigger increasing-size ones. In addition, this 

gas phase transport favours the development of the crystalline habit. On the other 

hand, the Y=1.0 sample showed a nearly regular grain growth, which generates a 

microstructure of sintered grains with low porosity, and consequently, with a lower 

specific surface area. In this case, the crystalline habit of eskolaite-type structure of 

(Fe,Cr)2O3 phase, the only phase present, was not clearly detected. However, the 
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larger grains tended to develop flat surfaces, probably an intermediate step in the 

development of the crystalline habit. 

The microstructure of samples treated in inert atmosphere showed big differences 

with their counterparts treated in air, pointing to a clear effect of oxygen. On one 

hand, the grain size of Y=0.0 sample was very similar to the as-synthesized one. In 

other words, the grain growth had been slowed down, but sintering has advanced 

through some surface-transport mechanism as demonstrates the reduction observed 

in specific surface area. On the other hand, the Y=1.0 sample has a grain size and 

specific surface area similar to the air-treated one, but with less agglomerated grains. 

It can be thought that the chromium transport was more difficult in a N2 rich 

atmosphere and grain growth was very slow (Y=0.0 case). However, other transport 

mechanisms, as surface diffusion, are present in Y=1.0 case because the grain 

growth was of the same order in the two atmospheres.  

3.4 Colouring power 

All pigments showed a high colouring power in the glaze, regardless of their thermal 

history (Fig. 8). Generated colours evolved from green-yellowish tones to brownish 

shades. Neither heterogeneities nor other defects (bubbles or pinholes) were 

appreciated in any glaze, which indicated a good homogeneity of the pigments.  

The spectrophotometric curves (Fig. 9) were a function of composition and the 

parameters of the second thermal treatment (atmosphere and Tc). Only curves 

obtained for Y = 0.0 showed reflectance at wavelengths in the green (450 ≤ l ≤ 550), 

blue (350 ≤ l ≤ 450) and red (l ³ 650) intervals at the same time. For Y ³ 0.0 an 

important reduction of reflectance was produced since pigments strongly absorbed 

nearly all visible spectrum, generating colours in the dark brown palette, and were 
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less sensitive to thermal history. When nickel was absent (Y!= 1.0), reflectance 

increased the yellow (600<l<650) and red intervals (l ³ 650), which corresponds to 

lighter brown shades.  

Regardless obtaining brown tones with the (Fe,Cr)2O3-containing pigments, it must 

be stand out that the actual colour of (Fe,Cr)2O3 is black [36, 37]. The discrepancy is 

related to the interaction with the divalent cations present in the ceramic glaze, 

especially owing to the Zn(II) influence. Previous experiences in traditional ceramic 

pigment synthesis [38] pointed out that the (Fe,Cr)2O3 solid solution is a good black 

pigment in porcelain tiles (with few divalent cations to react with). However, 

incorporated into a glaze, the (Fe,Cr)2O3 reacts with divalent ions, probably 

generating a structure related with Zn(Fe,Cr)2O4 brown spinel. 

Regarding post-synthesis parameters, no substantial changes were observed in 

reflectance spectra, obtaining similar colours in all cases regardless Tc and 

atmosphere changes. This behaviour could indicate that whether SCS samples or the 

calcined ones evolve to a very similar material during the heating section of the 

firing of the glaze (up to 1100ºC). This fact combined with the interaction between 

divalent cations and (Fe,Cr)2O3 phase, when present, results in very low differences 

in colouring power. 

CIELab* chromatic coordinates evolution showed important changes with 

composition but not with thermal history (Fig. 10). Whether L* or b* coordinates 

(Fig. 10 a) presented a minimum value at Y = 0.4, corresponding to the darker and 

less-yellowish colour. As the composition enriched in iron, a lightening in colour 

was obtained with a higher yellow component responsible for the brownish tones. 

Regarding a* coordinate evolution (Fig. 10 b), the most pronounced one with a 20-
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point variation, it presented a step increase between Y = 0.0 and Y ≥ 0.2, changing 

from green to red component. Further increases in iron proportion provoked a nearly 

linear growth of red component. 

Chromatic coordinates showed little variation with calcination conditions, although 

darker tones were obtained with calcined pigments. A Fact that may be due to a 

higher pigment particle size due to sintering, which reduces the effect of pigment-

glaze interaction. The rest of the coordinates did not seem to be appreciably 

modified.  

Colouring power of the pigments obtained by SCS showed a high stability against 

post-synthesis thermal treatments. Such conditions can modify the crystalline 

structure, but not surely enough to generate variations in the final colour generated in 

the glaze, which is extremely important when implementing the SCS technique at an 

industrial scale. 

4 Conclusions 

Influence of post-synthesis thermal treatment parameters (temperature and kiln 

atmosphere) over product’s characteristics was studied for Ni1−ΨFeΨCr2O4 (0.0 ≤ Ψ ≤ 

1.0) pigments obtained by Solution Combustion Synthesis. Results showed an 

important influence of calcination process over the mineralogy and crystalline 

parameters. As-synthesized pigments were composed mainly by Fd-3m spinel-type 

structure (>90% wt). However, the presence of iron along with the calcination 

process (higher temperatures and oxidizing atmosphere) progressively favoured the 

transformation of the spinel into the eskolaite-type solid solution (Fe,Cr)2O3, 

thermodynamically more stable in that conditions, whose proportion evolved linearly 

with iron enrichment. Inert atmosphere slows down this transformation, and a 
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proportion of spinel-type structure remains in all compositional range. Crystallite 

size of spinel and (Fe,Cr)2O3 phase presented a complex behaviour with critical 

points around Y=0.4 (maximum and minimum respectively). Spinel lattice parameter 

evolution deviates from Vegard’s law, especially for iron-rich pigments, that 

presented lower values than expected, a possible signal of vacancies in the structure. 

TG results corroborated that atmosphere greatly influences the oxidation of iron, a 

process related with the spinel to (Fe,Cr)2O3 transformation. Microstructural studies 

showed an important grain growth after the second thermal treatment, unless inert 

atmosphere was applied. In such a case, the grain growth is a function of pigment’s 

composition.  

Colouring power in a glaze depends little on thermal history of pigments. All 

pigments showed high colour stability independently of calcination temperature and 

kiln atmosphere. Luminosity parameter L* was the unique coordinate subtly affected 

by increasing calcination temperature, obtaining darker colours in all cases. The 

heating interval of the glaze firing cycle seems to transform the pigments from the 

as-synthesized mineralogy towards the ones obtained after calcination at 1000ºC. 

Thus, the study of the effects of calcination processes is essential in order to 

understand internal changes taken place in mineralogy, microstructure and 

morphology during glazing process, because they are responsible for the final colour 

development. 
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Figure captions 

Figure 1 SCS scheme followed in the lab with subsequent calcination steps 

Figure 2 XRD phase identification for all composition range of Ni1-ΨFeΨCr2O4 (0 ≤ 

Ψ ≤ 1) of the as-synthesized samples (● spinel, o eskolaite-type phase) 
 
Figure 3 Evolution of the XRD main peak of the crystalline phases identified in the 

pigments versus Y, Tc and kiln atmosphere  

Figure 4 Evolution of phase percentage and crystal size depending on parameter Y, 

Tc and kiln atmosphere 

Figure 5 Comparison of the lattice parameter of spinels with the prediction of 

Vegard’s law, based on the ICCD data from the NiCr2O4 (Ψ = 0.0) and FeCr2O4 (Ψ = 

1.0) 

Figure 6 TGA curves for sample Y = 1.0 at two different atmospheres (Air and N2) 

Figure 7 Micrographies obtained by SEM of synthesized pigments 

Figure 8 Example of glazed as-synthesized samples showing saturated colours with 

no defects on the surface 

Figure 9 Reflectance curves of the glazes that contain the synthesized pigments  

Figure 10 Evolution of chromatic coordinates of glaze versus composition of the 

incorporated pigment: a) L* and b* coordinates and b) a* coordinate 
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Tables and table captions 

Table 1 Initial solution composition for each synthesized spinel 

Ref. Y 

Ni(NO3)2 

·6H2O 

(g) 

Fe(NO3)3 

·9H2O 

(g) 

Cr(NO3)3 

·9H2O 

(g) 

S1 

S2 

S3 

S4 

S5 

S6 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

17.4 

13.6 

10.0 

6.5 

3.2 

0.0 

0.0 

4.7 

9.2 

13.5 

17.6 

21.5 

48.0 

46.8 

45.7 

44.6 

43.6 

42.6 

 

Table 2 Crystal structural data of as-synthesized and calcined pigments: unit cell parameters and 

estimated crystal chemistry 

Ref Y!

Post-

synthesis 

conditions 

Cell parameters Crystal chemistry 

Spinel (Cr,Fe)2O3  Spinel 

oxygen 

parameter 

(adim.) 

Ni1-xFexCr2-

yFeyO4 

(Cr2-

zFez)O3 

a (Å) a (Å) c (Å) 

1 0.0 

As-

synthesized 

8.315 4.992 13.518 0.2290 NiCr2O4 Cr2O3  

2 0.2 8.312 4.958 13.591 0.2494 Ni0.84Fe0.16Cr2O4 Cr1.40Fe0.60O3 

3 0.4 8.304 4.956 13.584 0.2559 Ni0.63Fe0.37Cr2O4 Cr1.39Fe0.61O3 

4 0.6 8.305 4.950 13.578 0.2564 Ni0.43Fe0.57Cr2O4 Cr1.38Fe0.62O3 

5 0.8 8.305 4.999 13.479 0.2607 Ni0.21Fe0.79Cr2O4 Cr1.38Fe0.62O3 

6 1.0 8.305 4.966 13.589 0.2610 FeCr2O4 Cr1.39Fe0.61O3 
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7 0.0 

800ºC 

8.316 4.999 13.509 0.2275 NiCr2O4 Cr2O3  

8 0.2 8.315 4.964 13.592 0.2568 NiCr2O4 Cr1.38Fe0.62O3 

9 0.4 8.311 4.971 13.593 0.2591 NiCr2O4 Cr1.37Fe0.63O3 

10 0.6 8.306 4.978 13.594 0.2602 NiCr2O4 Cr1.36Fe0.64O3 

11 0.8 8.302 4.986 13.600 0.2606 NiCr2O4 Cr1.35Fe0.65O3 

12 1.0 8.302 4.990 13.604 0.2611 FeCr2O4 Cr1.34Fe0.66O3 

13 0.0 

1000ºC 

8.313 4.990 13.495 0.2162 NiCr2O4 Cr2O3  

14 0.2 8.316 4.963 13.590 0.2540 NiCr2O4 Cr1.38Fe0.62O3 

15 0.4 8.312 4.969 13.594 0.2557 NiCr2O4 Cr1.38Fe0.62O3 

16 0.6 8.301 4.974 13.592 0.2539 NiCr2O4 Cr1.36Fe0.64O3 

17 0.8 8.299 4.985 13.604 0.2562 NiCr2O4 Cr1.35Fe0.65O3 

18 1.0 8.299 4.993 13.611 0.2611 FeCr2O4 Cr1.34Fe0.66O3 

19 0.0 

1000ºC 

(N2) 

8.318 4.997 13.606 0.2376 NiCr2O4 Cr2O3  

20 0.2 8.316 4.965 13.594 0.2558 NiCr2O4 Cr1.38Fe0.62O3 

21 0.4 8.312 4.971 13.595 0.2567 NiCr2O4 Cr1.37Fe0.63O3 

22 0.6 8.297 4.973 13.593 0.2610 Ni0.93Fe0.07Cr2O4 Cr1.35Fe0.65O3 

23 0.8 8.280 4.979 13.601 0.2610 Ni0.56Fe0.44Cr2O4 Cr1.35Fe0.65O3 

24 1.0 8.262 4.989 13.612 0.2612 FeCr2O4 Cr1.34Fe0.66O3 

Table 3 Specific surface area values (m2/g) for selected samples 

Temperature (ºC) Kiln atmosphere 
Composition 

Y!=!0.0 Y!=!1.0 

500 Air 11.7 7.7 

1000 Air 18.8 3.3 

1000  N2 7.0 3.9 
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