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Abstract

Lately, video games sector is experiencing an exponential growth based on the appearance of a great
quantity of new multiplayer video games. In fact, this feature has turn basically into a requirement.
Most video games provide a story mode in which all narrative action is performed and in which
the player learns the mechanics and learn how to master the controls and a multiplayer mode, in
which players carry out the playful or ludic action based on the competition and the showing of
their skills. This duality may be caused by the fact that in multiplayer mode, players match up each
other without the intervention of any agent controlled by an artificial intelligence. This supposes a
greater challenge due to the fact that, usually, is very common to determine the patterns with which
an enemy has been built after a few attempts to beat it. Once a player has discovered its behavior,
the complexity of the battle is drastically reduced, and so, the fun degree.

This paper constitutes the memory of the Final Project in the Game Design and Development
degree and proposes a solution for this existent problem, by means of the design and implementation
of machine learning techniques, specifically, reinforcement learning. With this solution, NPCs
(non-playable characters) are able to learn from the player’s actions and modify its behavior to
provide a better experience to the gameplay.

In this project, two different types of enemies have been developed with Unreal Engine 4 for a
shooter video game called Hive: Altenum Wars, which is expected to be released in a few months.
On the one hand, there are the agents built up with predefined rule-based artificial intelligence
techniques, specifically, behavior trees. On the other hand, analogous agents have been developed
based on reinforcement learning to provide them the ability to adapt their behavior to the player’s
gaming experience.
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1. Technical Proposal

This Section presents an overview of the project, including the motivation of the research. This
summary lists the principal objectives to be fulfilled during the elaboration of the project together
with the planning associated and tools employed.

1.1 Introduction
Nowadays, multiplayer games are in an exponential growth period. In fact, this feature is practically
a requirement in video games destined to a massive audience. It can be found a large variety of
multiplayer games according to their genre, from the widespread shooters such as Overwatch [14]
(Blizzard) to casual games for mobile devices as Clash Royale [4] (Supercell).

Commonly, these games are constituted by a story mode in which the narrative action is
elaborated, and a multiplayer mode, in which players develop their skills with greater dexterity and
interact between them. This duality is caused by the fact that enemies in story mode are established
by patterns, which are easily predicted by the players after various attempts to beat them, so the
confrontation between the human and the machine stops being a challenge. This project is born by
the necessity of the creation of autonomous agents capable of modifying their behavior to adapt
themselves to the player’s actions in order to be reactive and less predictable. The proposed solution
is to apply machine learning techniques, so the NPCs could be trained with information extracted
from the game session. decision-making would be based on the skill level of the player and the
state of the game. For this project, two different types of NPCs are going to be designed and
programmed with Unreal 4 Engine: ones with a classic behavior, based on predefined rules and
others capable of learning by themselves due to the application of machine learning techniques, in
particular, reinforcement learning.

This NPCs are going to be included in a MOBA (Multiplayer Online Battle Arena) shooter
named Hive: Altenum Wars [2] which will be released in a couple of months. Its gameplay consists
of battles of two teams with 5 players each one. These players control a character with different
weaponry and abilities, including special attacks bound to the type of the character. The idea of
applying machine learning techniques is due to the fact that in the first months after the launch of a
game, there is not a large amount of players, so there is the possibility that a game could not be
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created, because the number of players at that moment is not enough to make a team. This problem
can be solved by introducing NPCs to the teams.

Furthermore, when a someone plays a game for the first time, it is essential that he or she had
available a suitable training mode in order to avoid the issues which happen when the matchmaking
system makes unbalanced teams, that is when the algorithm selects users with different experience
to play the same battle. In this cases, the most probable option is that the player could not enjoy his
first experience, existing the possibility that he leaves the game and would not play it anymore. To
prevent this from happening the second part of this project is proposed, the creation of enemies
which could learn by themselves and be capable of modifying their actions so that the learning
curve of the player could be as most satisfying as possible.

1.2 Related subjects and justification

In this Section, a justification of the project is presented relative to different competences obtained
during the study of specific subjects taught in the video games’ design and development degree.

1.2.1 VJ1203, VJ1208 - Programming I, II
Programming is a fundamental aspect which is learned in different subjects throughout this bache-
lor’s degree. Programming skills such as problem solving, algorithm understanding and translation
of algorithms expressed in natural languages into specific functions are taught in both subjects. As
this proposal consists of designing and implementing different NPCs, programming is the core of
the project, so proficiency in all these aspects is indispensable and justified with the skills acquired
during the degree.

Applied competences:
• IB03 - Capacity to understand and domain the basic concepts of discrete maths, logic, algo-

rithmic and computational complexity, and their application for the resolution of problems in
the field of engineering.
• IB04 - Basic knowledge about the use and programming of computers, operating systems,

databases and computer programs with applications in the field of engineering.

1.2.2 VJ1231 - Artificial intelligence
This project is oriented to program different intelligent agents, so is essential to know how artificial
intelligence works and the keys and limitations of different techniques to program rule-based NPCs,
such as decision trees, behavior trees, state machines, etc. to achieve the best goals in this project.

Applied competences:
• IR06 - Knowledge and application of basic algorithmic procedures to design solutions to

problems, analyzing the suitability and complexity of the proposed algorithms.
• IR15 - Knowledge and application of fundamental principles and basic techniques of intelli-

gent systems.

1.2.3 VJ1234 - Advanced interaction techniques
One of the aims of this subject was to explain different techniques of machine learning, so it has
been a useful introduction to be able to go into detail in this area of artificial intelligence. This
aspect is a fundamental basis of the research addressed in this paper.
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1.2.4 VJ1227 - Game Engines

Although this subject focused on the use of Unity, the principles and inner functioning of a game
engine can be applied to Unreal Engine 4, as well. Auto-didactic capacity was enhanced with this
subject and it is an essential generic skill which has been applied in the learning process of Unreal
Engine 4, during my stay in Catness, company developer of Hive.

Applied competences:
• E12 - Capacity to evaluate, manage and understand game engines.
• G09 - Autonomous learning.
• IR07 - Knowledge, design and utilization of the most suitable data structures to problem

solving.

1.2.5 VJ1224 - Software engineering

At this subject, project planning has been learned together with class design techniques, use cases,
activity diagrams, etc.
Applied competences:
• G01 - Ability to analyze and synthesize.
• IR01 - Ability to design, develop, select and evaluate applications and computer systems and

ensure its own reliability, security and quality.
• IR02 - Ability to plan projects and computer systems in the video games scope.

1.2.6 VJ1215 - Algorithms and data structures

This subject teaches different complex algorithms and data structures and provides knowledge
about their performance, such as their computational cost.
Applied competences:
• IB01 - Capacity to solve mathematical problems that can appear in the engineering.
• IB03 - To use maps and understand its implementation by means of trees.

1.3 Tools

This Section lists the tools that will be used during the design and development of this application,
grouped by its function.

1.3.1 Programming

1. Unreal Engine 4
This is the game engine employed to develop the video game Hive, in which the results of
the agents will be tested. It allows the combination of visual scripting in blueprints and C++
scripting. This provides a wide flexibility to create complex behaviors for the agents.

2. Visual Studio
It is the main integrated development environment (IDE) used to program scripts in C++. The
reason to use it is that it is considered the best IDE for UE4 due to the fact that its building
system is based around it.

1.3.2 Debugging, Testing and Profiling

1. Unreal Engine 4 Developer Tools
Unreal Engine 4 provides several information gathering tools such as debuggers, analyzers
and profilers.
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1.3.3 Documents
1. Overleaf

Overleaf is an online LaTeX and Rich Text tool.
2. Google Slides

It is an online application for creating and editing slide show presentations.
3. Creately

This is a free online tool to make different diagrams. In this case, it has been used to create
the UML diagrams.

1.3.4 Version Control System
1. Git

It is a free and open source distributed version control system which handles large projects
with efficiency.

2. GitHub
It is the repository hosting service used to manage the project.

1.3.5 Video
1. Action!

This tool captures any area of the screen. Its use its justified due to it is very intuitive and
offers several options for professional screen capture.

2. Adobe Premiere Pro
It is a powerful video editing application.

1.4 Objectives
The main objective of this project is to compare different techniques from rule-based systems to
machine learning methods to develop intelligent agents while implementing them to create NPCs
which simulate a human behavior.

This large objective can be broken down in the implementation of behavior trees and Q-learning,
with the purpose of being compared, testing both in a shooter video game called Hive in order
to determine the viability of implementing machine learning in video games. This analysis will
indicate if machine learning would solve all the problems mentioned previously related to the ease
of discovering the patterns in which the enemies are built around.

In fact, this goal includes the creation of different NPCs capable of interacting with their envi-
ronment and with other agents and the development of NPCs capable of modifying and adapting
their behavior to the player skills during the gaming session which means developing an online
training.

Concretely, all the objectives can be listed in the following way:
• Comparison of the different artificial intelligence techniques.
• Implementation of artificial intelligence techniques to create NPCs which simulate a human

behavior.
• Creation of NPCs capable to interact with different agents and environment elements.
• Development of enemies which modify their behavior to adapt to the player skills and his

playing style.
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1.5 Project Planning

1.5.1 Project Schedule
This Section presents all the phases and its planning for the development of two intelligent agents,
both including two versions, one rule-based and other with machine learning. The totality of the
project can be divided into five different phases, each one containing a different set of tasks. Figure
1.1 summarizes the contents of this Section in a Gantt chart.

• Phase 1 - Documentation
All the project is documented in different papers, including a technical proposal, a technical
memory and a presentation which contains different videos for the defense before the
evaluation court. The planning of this phase is shown in Table 1.1.

Table 1.1: Documentation phase - Tasks Breakdown

ID Task Period Hours
TPC Technical Proposal Courses 30-01-2017 to 02-02-2017 8
TP Technical Proposal 07-02-2017 to 10-02-2017 6
TM Technical Memory 20-05-2017 to 11-06-2017 40
PDV Project Defense Video 12-06-2017 2
PDP Project Defense Presentation 13-06-2017 4

Total Hours 60

• Phase 2 - Research
As this project is a comparison between different artificial intelligence techniques, a thought-
ful research is essential, specially, a study in machine learning methods to select the most
suitable one for this project. In total, 60 hours should be spent in this research. Its breakdown
is shown in Table 1.2.

Table 1.2: Research phase - Tasks Breakdown

ID Task Period Hours
BT Behavior Trees and UE4 AI System 13-02-2017 to 18-02-2017 10
ML Machine Learning Techniques 19-02-2017 to 05-03-2017 40

MLV Machine Learning and video games 19-02-2017 to 05-03-2017 10
Total Hours 60

• Phase 3 - Design
Once the appropriate method of machine learning is selected, the design of the different NPCs
takes part. This phase can be divided into 3 sub-phases for each enemy to develop as shown
in Table 1.3. First, the conceptual design of two agents will be carried out. Next, it is time to
the design of the rule system based version and to design the proper machine learning method.

• Phase 4 - Development
The implementation of each of the sub-phases designed in the previous Section and a system
to gather information about the game state so the agents can recognize it and a mechanism to
save that information in a server. Table 1.4 shows a breakdown of the development phase.
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Table 1.3: Design phase - Tasks Breakdown

ID Task Period Hours
CD1 Conceptual Design enemy 1 06-03-2017 to 07-03-2017 4
CD2 Conceptual Design enemy 2 07-03-2017 to 08-03-2017 4
R1 rule-based enemy 1 09-03-2017 to 11-03-2017 10
R2 rule-based enemy 2 12-03-2017 to 15-03-2017 15

ML1 Machine Learning enemy 1 19-03-2017 to 23-03-2017 15
ML2 Machine Learning enemy 2 24-03-2017 to 05-04-2017 20

Total Hours 68

Table 1.4: Development phase - Tasks Breakdown

ID Task Period Hours
IR1 Implementation rule-based enemy 1 06-04-2017 to 09-04-2017 15
IR2 Implementation rule-based enemy 2 10-04-2017 to 17-04-2017 25
SGS System to get game state 27-04-2017 to 29-04-2017 10
IML1 Implementation Machine Learning enemy 1 30-04-2017 to 06-05-2017 20
IML2 Implementation Machine Learning enemy 2 06-05-2017 to 13-05-2017 30

S Saving information in server 20-05-2017 to 25-05-2017 15
Total Hours 120

• Phase 5 - Testing and Results
Once, the agents are developed, they will be tested in the video game Hive, which is under
development for the moment. At this phase, different experiments will be performed in order
to compare the results of the different techniques implemented. Table 1.5 shows the planning
for this phase.

Table 1.5: Results phase - Tasks Breakdown

ID Task Period Hours
TR1 Testing rule-based enemy 1 15-05-2017 3
TR2 Testing rule-based enemy 2 16-05-2017 3

TML1 Testing Machine Learning enemy 1 15-05-2017 to 16-05-2017 5
TML2 Testing Machine Learning enemy 2 16-05-2017 to 17-05-2017 5

RA Results analysis 18-05-2017 to 19-05-2017 5
Total Hours 21
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Figure 1.1: Project Gantt Diagram
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1.6 Expected Results
With this project it is expected to design and develop different NPCs to be able to contrast results
between classic artificial intelligence techniques and machine learning, so that this investigation
could be a reference to decide if the application of machine learning techniques would be suitable
for the development of a video game. In particular, it is expected to develop a rule-based behavior
tree system and machine learning techniques, with a previous deep investigation about different
algorithms.
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2. State of art

John McCarthy [11], one of the fathers of artificial intelligence (AI) defines it as:
"It is the science and engineering of making intelligent machines, especially intelligent

computer programs."
On his behalf, Millington [AIvideo games] specifies that intelligent machines should be able

to perform the thinking tasks that humans and animals are capable of. Even so, Stuart Russell and
Peter Norvig [19] defend that AI concept can be defined around four categories, shown in Table
2.1, combining the reasoning and behavior processes dimension with the fidelity to human acting
and a perception of ideal rationality.

Having these definitions of AI in mind, as video games developers, it has to be differentiated
academic AI and game AI. The first one tries to solve a problem optimally with less emphasis on
hardware and time limitations, so it is flexible in terms of performance. On the other hand, game
programmers have to work with limited resources and the real goal is to simulate intelligent behavior.
In addition, video games are a battlefield for academic AI, due to the fact that advancements in
research might be tested there.

Since the 90s, progress in AI is so immense that the leap from classical rule-based procedures
to systems which can learn by themselves, has been taken. This is the point in which this project is
focused, due to the fact that it deals with a comparison between techniques of both milestones for
developing the decision-making of an NPC for a shooter video game.

The explanation above justifies the following Sections. At first, definitions of classical AI
techniques and Machine Learning techniques are provided. Secondly, state of art of ML in video
games is summarized.

2.1 Classical Artificial Intelligence Techniques
This division refers to systems which are mainly based on rules. It includes the majority of
techniques used at this moment to develop autonomous agents for video games. Despite the
existence of a wide variety of techniques, behavior trees (BT) have been selected for the development
of the decision-making in this project, due to the fact that they are a very powerful, flexible and
intuitive methods to create complex behaviors.
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Table 2.1: AI definitions according to the four categories by Stuart Russell and Peter Norvig [19].

Humans Rationally

Think
like

"The exciting new effort to make comput-
ers think ... machines with minds, in the
full and literal sense" (Haugeland, 1985)
"[The automation of] activities that we
associate with human thinking, activities
such as decision-making, problem solving,
learning ..."(Bellman, 1978)

"The study of mental faculties through the
use of computational models" (Charniak
and McDermott, 1985)
"The study of the computations that make it
possible to perceive, reason, and act" (Win-
ston, 1992)

Act
like

"The art of creating machines that perform
functions that require intelligence when
performed by people" (Kurzweil, 1990)
"The study of how to make computers do
things at which, at the moment, people are
better" (Rich and Knight, 199 1)

"A field of study that seeks to explain
and emulate intelligent behavior in terms
of computational processes" (Schalkoff,
1990)
"The branch of computer science that is
concerned with the automation of intel-
ligent behavior" (Luger and Stubblefield,
1993)

Specifically, BT have a few advantages over finite state machines (FSM): they provide lots of
flexibility, are very powerful, and they are really easy to make changes to. Nevertheless, they do
not replace the functionality of FSM. This is the reason why they should be combined to achieve
robust agents. In addition, it is easier to create a BT that will adapt to all sorts of situations whereas
it would take a lot of states and transitions with a FSM in order to have similar behavior.

As stated above, one final BT advantage is that they are really intuitive and easy to make
changes to. Lots of different visual editors for BT creation have appeared, so it seems reasonable
that they have grown in popularity for modeling the artificial intelligence in computer games such
as Halo [10] and Spore [9]. Using this tools, changing the priority of the tasks consists of dragging
them from one branch to another. On the contrary, changing it in a FSM involves changing the
transitions between states. Also, it is really easy to completely change how the AI reacts to different
situations just by changing the task’s priority or adding a new parent task to a branch of tasks.

Behavior trees consist of a tree of hierarchical nodes that control the flow of decision-making
of an AI entity. At the leaves, commands that control the agent are placed and forming the branches
are various types of utility nodes that control the AI’s walk down the trees to reach the sequences
of commands best suited to the situation.

The trees can be extremely deep, with nodes calling sub-trees which perform particular func-
tions, so it allows to combine complex behaviors. Development is highly iterative because the
programmer can start creating a basic behavior and then, adding new branches ordered by their
desirability, allowing the AI to have backup plans against a particular behavior fail.

According to execution, BT are depth-first traversal (Figure 2.1). This means that the first time
they are evaluated or when they are reset, they start from the root and explore as far as possible along
each branch before backtracking, checking the conditions of the nodes. Each child is evaluated
from left to right, so they are ordered based on their priority. If all of a child node’s conditions
are met, its behavior is started. The tree is then reset and ready to go again. When a node starts a
behavior, that node is set to ’running’ and it returns the behavior. The nodes that failed or completed
are returned to ’Ready’. Then the next time it checks, it starts again with the highest priority node.
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Figure 2.1: Depth-first search VS Breadth-first search

If any condition fails, the traversal returns to the parent and then moves on to the next priority child.

2.1.1 Unreal Engine 4 Artificial Intelligence System
As this project is developed in Unreal Engine 4 [6], its AI System based in a Behavior Tree Editor
has been used. Unreal Engine 4 BT consist of different nodes: tasks, composites, decorators and
services.
• Tasks

They are the actions the agent can perform. They are placed at the bottom part of the
BT, called leaves. Unreal Engine 4 provides different ready-to-use tasks such as MoveTo,
PlaySound, Wait, etc.
• Composites

These nodes define the rules for how the branch is executed and they can have decorators
attached to them to modify the execution flow. Three types of composites are provided by
the UE4 BT Editor: selectors, sequences and simple parallels. The first ones, execute their
children from left to right and stop executing its children when one of their children succeeds.
If a selector’s child succeeds, the selector succeeds and if all the selector’s children fail, the
selector fails. Sequences can be seen as the opposite nodes of the mentioned before, due to
the fact that they stop the execution of the branch when one of their children fail. When a
child succeeds, the children in the right are executed too and if all the children succeed, then
the sequence succeeds. Finally, simple parallel nodes allow to perform two tasks at the same
time, normally, the main task and a secondary sub-tree or task. When the main task finishes,
the property Finish Mode is set, dictating if the node should finish immediately, aborting the
secondary tree or if it should delay for the secondary tree to finish. This node type is very
useful in cases when it is desired the agent to perform different actions such attacking while
it is moving, for instance.
• Decorators

They are commonly known as conditionals and are attached to other nodes such as com-
posites or tasks. UE4 Editor offers different decorators such as getting values from the
blackboard, conditional loops, etc., but it also offers the possibility to implement custom
made conditionals.
• Services

These are special nodes which execute at their own defined frequency, which can be modified
by the user. Their common use is to update the blackboard values.

Also, it is necessary to mark the differences between this BT and the conventional ones, because
there are different critical ways in which the UE4 implementation of BT differs from standard BT:
• Event-Driven

UE4 BT is event-driven, what means that they avoid doing lots of work each frame, because
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they just wait for events which make changes in the tree, instead of being constantly checking
if a relevant change has occurred. Apart from being an advantage in the performance of the
trees, this feature makes visual debugging easier because the BT visual editor only shows the
differences in the execution.
• Conditionals are not leaves

In the standard BT, conditionals are task leaf nodes, which simply do not do anything else
than succeeding or fail, but UE4 BT system uses conditionals as decorators which provide
different advantages. Firstly, conditional decorators make the BT visual editor more intuitive
and easier to read. Also, since all leaves are action tasks, it is easier to see what actual actions
are being ordered.

2.2 Machine Learning Techniques
In this subsection, firstly, part of the content of the subject VJ1234 related to Machine Learning
and ML types is summarized. After that, a deep research in Reinforcement Learning techniques
will be presented, to justify the next Section about the design of our agents.

In 1959, an American pioneer in the field of computer gaming and artificial intelligence called
Arthur Samuel, coined the term "machine learning" and defined it as:

"giving computers the ability to learn without being explicitly programmed." [12]
In particular, ML is defined as a set of methods that can automatically recognize patterns in data and
then, use the uncovered patterns to predict future data or to perform other kinds of decision-making
under uncertainty. [13]

Arthur Samuel developed a Checkers-playing Program which is considered as the world’s first
self-learning program. [17] He was the first person to propose and implement a learning method
that included temporal-difference ideas, a technique that will be explained afterwards.

In machine learning, predictions are data-driven and probability theory is applied to solve this
uncertainty related problems. This is the reason why the probabilistic approach to ML is closely
related to the field of statistics, but differs slightly in terms of its emphasis and terminology. [21]

Machine learning can be divided into three different areas: predictive, descriptive and rein-
forcement learning. Despite some literature describes reinforcement learning as a specific type of
descriptive learning [16], it will remain in a separated Section for the purpose of making a deep
research about that concept.

2.2.1 Predictive Learning
Predictive or supervised learning is the form of ML most widely used today. It is based it the ability
to learn a mapping from inputs x to outputs y, given a labeled set of input-output pairs:

D = {(xi, yi)} Ni = 1, [13]
where D is called the training set and N consists of the number of training examples.

Inputs x are called features and they are a D-dimensional vector of numbers that represent
the attributes. Furthermore, inputs can be complex objects such as images, sentences, messages,
graphs, etc. Outputs y are a variable which the algorithm will try to predict. If there exists a finite
set for that variable, it consists of a categorical problem, which is solved with classification. On the
contrary, when y is a scalar, the problem is known as regression.
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2.2.1.1 Classification

As said before, the goal of classification is to learn to map from inputs x to outputs y, where:
y ∈ {1, . . . , C} [13].
C is the number of classes of the variable that is going to be predicted. If there are only two

classes for the problem, it is called binary classification, for instance, true or false, man or woman,
etc. When C is greater than two, it is considered a multiclass problem. In these cases, normally, a
single output is predicted, but it can occur that labels are not mutually exclusive; this is the case of
multi-label classification.

Mapping is formalized as a function approximation. Considering y = f(x) for some unknown
function f. The goal of f is to make predictions given the discrete labeled training set.

Classification is probably the most widely used form of ML and has been used to solve many
interesting and often difficult real-world problems such as classification of documents, email spam
filtering, image classification and handwriting recognition or face detection and recognition, among
others.

There exist a wide variety of classification algorithms, the most common are kNN, SVM, Naive
Bayes, logistic regression and decision trees.

2.2.1.2 Regression

Regression is just like classification except the output variable is continuous. Some examples of
real-world regression problems are predicting tomorrow’s stock market price given current market
conditions and other possible side information, predicting the temperature at any location inside a
building using weather data, time, door sensors, etcetera [21].

2.2.2 Descriptive Learning

The second main type of machine learning is the descriptive or unsupervised approach, which does
not require training samples. It only receives data and its goal is to find patterns which relate them,
which in literature is known as knowledge discovery [13].

D = {xi}Ni=1

Unsupervised learning does not calculate the desired output for each input, as supervised
methods do. Instead, it calculates a density estimation in an iterative process. Also, it does not
require a human expert to manually label the data.

One of the most popular examples of unsupervised learning is clustering.

2.2.2.1 Clustering

This technique consists of grouping different data in different collections called clusters, so that
data in the same group are more similar to each other than to the other clusters.

When clustering is required to solve a problem few steps have to be taken into account. Firstly,
depending on the data set, an appropriate algorithm has to be selected and its parameters, such as a
number of clusters (K) or the distance function to use, have to be set. Then, it is time to proceed to
the estimation of the cluster each point belongs to.

Clustering is, essentially, employed in data mining and analysis and it is used in many fields,
including pattern recognition, image recognition, information retrieval, bioinformatics, data com-
pression and computer graphics [13].
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2.2.3 Reinforcement Learning
This approach is based in the theory [21] that humans and animals learn by interacting with their
environment, so it defends that computers should do a similar procedure to acquire knowledge. This
technique is much more focused on goal-directed learning from interaction than other approaches
to ML are, and it bases the learning process in numerical reward and punishment signals.

Reinforcement learning consists of the decision of what to do to maximize the reward signal.
This means that it relies on mapping situations to choose the best action in each moment. To
discover so, the learner agent has to try the actions to contrast which of them generates the most
reward, not only the immediate reward, but long-term bonuses. So, RL is constituted by two
distinguishing characteristics: trial and error and delayed rewarding.

RL separates itself from other learning methods like Supervised Learning, which makes
decisions based on previously experienced states provided by an intelligent and external supervisor.
As data from previous experiments are not available for RL, an agent needs to be able to learn from
its own experiences and not others, so it has to interact with its environment to achieve a goal which
is related to the actual state. This means that at each state of the environment, a different action
should be chosen to achieve the best reward possible.

As RL is based on learning- by doing and trial and error, a balance between exploration and
exploitation [5] is a must. The first term, as its name indicates, is the act of selecting random
actions to discover their impact on the environment in a specific state. This states the process of
learning. On the contrary, exploitation is employing those learned experiences. Here, the agent
prefers actions that it has tried in the past and were effective in producing rewards, but this step
requires the discovery of those actions by means of exploration and this is the point where a balance
is required: how to explore in order to make better action selections in the future. The problem here
is obvious neither of these both actions can be performed exclusively, so they must be combined to
provide a proper learning.

"One of the most important problems in machine learning—and life—is the exploration-exploitation
dilemma. If you’ve found something that works, should you just keep doing it? Or is it better to
try new things, knowing it could be a waste of time but also might lead to a better solution?" [7]
-Pedro Domingos, 2015

This exploitation-exploration dilemma has been studied by mathematicians for many decades.
As this process relies on random determinations, it is considered a stochastic task, so many iterations
in the decision of which action to perform it are needed to obtain a reliably expected reward.

As it has been said before, RL is a goal-directed technique and this is a key feature, because
other approaches consider subproblems such as supervised learning does [21]. RL considers a
complete goal.

In a Reinforcement Learning system, five important elements exist: a policy, a reward function,
a value function, states space and an actions space [8].
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2.2.3.1 Policy
The policy defines how the learning agent should behave at a specific time. It is a mapping
from the actual state of the environment to an action.The policy can vary from a simple function
to a complex algorithm, which involves a lot of calculations and searches. Sutton defines policies as:

It corresponds to what in psychology would be called a set of stimulus-response rules or
associations [21].

The policy citeRLRTSis written as: Π : s→ a, where Π is the policy, S is all possible states of
the environment, s is a specific state of S where s ∈ S, A is all actions, and a is a specific action,
where a ∈ A.

The policy is the core in RL an agent, due to the fact that it is the mechanism which decides the
behavior of the agent.

There are three main policies [8] to select the desired behavior: ε-greedy, ε-soft and softmax.
• ε-greedy

In this policy, the most of the time the action with the highest estimated reward (greediest
action) is chosen, but, with a small probability ε , an exploration is taken into account to
discover better results by picking random actions.
• ε-soft

We can consider this policy as the contrary to ε-greedy. Exploitation is performed with
probability 1-ε .
• Softmax

Softmax assigns a rank or weight to each of the actions, according to their action-value
estimate, so the worst actions are unlikely to be chosen.

2.2.3.2 Reward Function
The reward is a numerical value that represents the degree of desirability for an action in a specific
state, so this mapping indicates how good is to take that action.

The reward function is written as: R : s→ r, where R is the reward function, s is a specific state
being mapped into a specific reward r [RLRTS].

As the purpose of an RL agent is to maximize the total reward, it bases its selection in the
reward function which determines which actions are good or bad to take immediately in a specific
state. It is important to mark that the reward function remains the same after the learning process, it
can not be changed by the agent, but it is used to modify the policy because if a policy determines
to take a bad action, it must change to avoid picking it often in future.

2.2.3.3 Value Function
Despite evaluating which action is better to take for immediate results, as reward functions do,
value functions consider the future states and their rewards, so they choose actions for long term
benefits in a particular policy. This means that a value function provides the total amount of reward
that an agent should expect in the future when it is in a specific state.

The value function can be written: U as: s→ R, where U is the value function, s is a specific
state being mapped into a total amount of reward being R [RLRTS].

There are two type of value functions: Vπ(s) and Qπ(s,a).

• Vπ(s): represents the value when starting in the state s and following π policy.
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• Qπ(s,a): this is the value of taking action a in state s under π policy.
To define these value functions, there are two methods: Monte Carlo Method and Temporal

Difference Method.
• Monte Carlo Method requires experience from states, actions and rewards got by the inter-

action with the environment. This technique divides the experience into episodes, which
will finish independently of which actions were taken. MC updates the values only when an
episode is completed, getting the final reward and taking the path back from the final state
to the first one. this is the reason why MC method is incremental in an episode-by-episode
sense, but not in a step-by-step sense [21].
MC method is expressed as:
V(st)←V(st)+α[Rt−V (st)] [8]

• Temporal Difference Method is a combination of Monte Carlo ideas and dynamic program-
ming. TD methods update estimations based in part on other learned estimates, without
waiting for an outcome. The difference with the method above is that TD estimate the value
functions after each step. An estimate of the final reward is calculated at each state and the
state-action value updated for every step. This reflects a more realistic assignment of rewards
to actions compared to MC, which updates all actions at the end directly. [21]
TD method is expressed as:
V(st)←V(st)+α[rt+1 +γV(st+1)−V(st)] [8],
where rt+1 is the reward at time rt+1.

In these functions, there are different parameters that are really important in the learning process:

• Learning Rate α: This parameter defines the proportion of the old estimation that will be
replaced with the new value. If α is 0, the agent will not learn anything, because it relies on
its decisions in the old estimation, which is 0 from the start. On the contrary, values near to 1
will completely change the previous value.

• Discount Factor γ: It defines what fraction of the new reward is taken into consideration for
the updating. If γ is 0, the new rewards will be ignored and for values near to 1 the agent will
consider the reward as equal weight as the learnt value.

• Exploration Rate ε : This parameter appears in the policy and it determines the proportion of
exploration and exploitation.

2.2.3.4 State Space
The set of states S consists of all the states that can take part in the environment of the problem. In
the next chapter, we will see that for a video game this can become really huge, so discretization
of the state space is a key task to develop autonomous agents for video games by means of
reinforcement learning.

2.2.3.5 Action Space
The set of all actions A the agent would be able to perform in the environment.
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2.2.3.6 Markov Property
Previously, it has been set that in RL an agent bases its decisions in the environment’s states, so
it is essential to know what kind of information should provide the state signal, which is called
the Markov property. This property states that a state signal should include immediate sensations,
but at the same time they should not provide everything about the environment, only the useful
information to take decisions. On the other hand, the information provided by a state signal must be
something that the agent could have received by its sensations. Summarizing, a signal which can be
accepted by Markov property is the one which represents relevant past sensations. Markov property
dictates that if an environment model has this feature, given a state and an action, is possible to
predict the next state, so this is a key in reinforcement learning problems.

2.2.3.7 Markov Decision Process
In 1960, Ronald A. Howard’s published the book Dynamic Programming and Markov Processes
[1], where he treated the Markov decision processes. when a RL problem satisfies the Markov
property, it is called Markov decision process.

A Markov Decision Process is defined by the state and action sets and the dynamics of the
environment. The probability of each possible next state are called transition probabilities.

2.2.3.8 SARSA
This algorithm for learning a Markov decision process policy works with an action-value called
Q-value, Q(s,a), where s is a state and a, the best action possible for the state s. These values
represent the possible reward received in the next state s’ taking the action a in the state s. The
name of this algorithm summarizes itself, because it is formed by the quintuple ( s,a,r,s’,a’), being
r the reward associated to the next state s’ and the best action a’ for s’.

SARSA algorithm is called an on-policy learning algorithm, because the agent updates the
policy π based on the interaction with the environment at the same time it calculates the Q-value.
As shown in Figure 2.2, the Q-value is updated taking the learning rate α into account. This update
is done after every state transition when the state is not the final state.

Figure 2.2: SARSA algorithm
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2.2.3.9 Q-learning
Q-learning was introduced by Watkins [21] in 1989. This algorithm differs from SARSA by not
using the action-value of the next state. It uses the value of the action with the highest value and
Q-learning does not wait until a second action is chosen before updating the value. Furthermore, it
is an off-policy algorithm, because it works independently of π; this means that the policy is given
directly instead of obtaining by itself by means of the model parameters of a transition and reward
functions.

As shown in Figure 2.3 Q-learning updates the Q-value of a state-action pair after the action
has been taken and an immediate reward has been received.

Literature shows that Q-learning converges earlier than SARSA, because it utilizes a greedy
method determining the action-value rather than selecting a random action with a certain probability
[21].

Figure 2.3: Q-learning algorithm

2.3 Video games and Machine Learning

After describing what machine learning is, its principles and some techniques, let’s see how ML is
being done in video games today.

First, ML has to be divided in two areas: off-line learning and on-line learning.

2.3.1 Off-line Learning
This type of ML refers to the techniques which are applied during the design phase of the video
game, to find the best behavior for the agents and, then, the results of this techniques are applied
before releasing the game, by means of other traditional techniques.

In this case, reinforcement learning is used during the development of several video games,
specifically during the testing phase, to balance properly the enemies. Also, it is during this
phase when the agents have the most information possible to learn. When the learning algorithms
converge, developers find the strategies of those results, and then, hard-code them.

One example of a game with off-line learning is City Conquest [20] (Figure 2.4), a real time
strategy game and tower defense, developed in 2011 by Intelligence Engine Design Systems. It is
defined by its developers as:

"City Conquest is an epic mobile strategy game that combines innovative strategy with classic
tower defense gameplay. It evolves the core tower defense concept by adding an offensive gameplay
element and territorial expansion and control mechanics..."

During the development phase, they used genetic optimization techniques and evolutionary
algorithms for gameplay balancing and design optimization. They developed a tool named Evolver
[3] that played 1-2 million missions against itself per day, to find patterns and then balance the
game elements such as buildings of buildings updates.
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Figure 2.4: City conquest screenshot

2.3.2 On-line Learning

In this case, learning process happens during the game session, so it adjusts itself to the player.
Reinforcement learning is hardly ever used for online learning due to two main reasons:

• CPU resources
Usually, reinforcement learning tends to require a lot of CPU power. This issue is disappear-
ing as technology advances so fast.
• Control

Reinforcement learning puts the agents out of control for the programmers and this is the
most drawback of implementing RL techniques in video games since it requires a shift in the
video game’s design paradigm. Game developers and players are used to agents that can not
take unexpected paths, for instance, because they have not been programmed to it, but RL
can break this rule.

Already in 2001, Lionhead Studios released a video game with on-line learning called Black
and White (Figure 2.5). It used a variety of techniques, integrating them into an impressive overall
AI system. Belief–desire–intention models, rule-based systems, decision trees and neural networks.
[22] The video game was a god simulator, where the player teaches the creatures how to act, by
interacting with them. It was based on the concept of good and evil, so the behavior and personality
of the creatures were shaped by the player.

Although Belief-Desire-Intention is not a ML technique, it can be expanded to incorporate
learning. The BDI technique is like a bunch of complex if-then-else sentences. In Black and White,
BDI is used to determine if certain thresholds have been exceeded and thereby expressing the desire
of the creature. The agent then reviews its desire and choose actions to satisfy them. Black and
White used a simple feedback learning technique in order for the creature to learn which actions
were the most appropriate to take.

Next summer, Hello Neighbor [15] will be released (Figure 2.6). It is a first-person tactical
puzzle developed by Dynamic Pixels, which is programmed with machine learning. The agent
observes the player’s actions, learning where they succeed and where they make mistakes on any
given level and he reacts to that information, so the more one plays, the smarter and harder the
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Figure 2.5: Black and White capture

enemy becomes.

Figure 2.6: Hello Neighbor

2.4 Hive: Altenum Wars

Hive [2] is a horizontal scroll shooter video game which is in development at the moment, by the
video games studio Catness. This video game has two modes: multiplayer and survival.

Regarding the first mode, an online battle of two teams takes part. Each team is formed by five
players, who control different characters. Depending on the character selected, the players can
choose among a wide variety of weapons and special abilities, including bombs, lasers... In the
survival mode, one single player or a team fight against hordes formed by different enemies, that
will appear during the game, which lasts until the player dies. The scoring consists of as more time
the player survives and more hordes defeat, the more score he will achieve.

One distinctive feature of this game before other video games of the same genre is the envi-
ronment. The maps, settled into a futuristic atmosphere, consist of one or more interconnected
hexagons divided into six sectors, each one with different gravity. This feature is a key in the
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development of the agents. As it will be explained later, the gravity affects their movement and
their axis are exchanged.
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3. Design

In this chapter, the design phase of the agents is addressed. In relation to traditional techniques,
Unreal Engine 4 behavior trees have been employed, using the editor presented previously. The
machine learning agents have been implemented with Q-learning, comparing two value functions
Q(s,a) and (s). Furthermore, as the game in which the agents are introduced is a survival shooter
with the apparition of different hordes, it has been decided that the learning process will be on-line,
so each horde should be more complex than the previous ones because they will learn from them.

As a premise for the development of our enemies, we need to remember that to embrace the
fun processes of the player, the agents must be:

• Intelligible: The AI should be easy to understand.
• Interactive: All in-game actors should focus on the player
• Unpredictable: Gameplay should not become repetitive.

3.1 Speeders

3.1.1 Concept Design
Firstly, a basic physical and behavioral description is approached in this Section. Lately, the tasks
this type of agent must perform will be introduced.

Speeders are a type of futuristic spider, covered by an exoskeleton. They have three pairs of
limbs, with powerful claws. These agents have the skill of jumping and its main feature is their high
speed and their ability to move in groups. Once they have reached their target, part of the group
tries to catch the prey. Also, the bite of these enemies is toxic, so it makes damage per time. The
rest of group will jump to reach the upper parts of the victim. If the speeder reaches the target in the
jump, it sticks its claws on the skin of the prey, to tear it up and cause a plentiful hemorrhage. When
they attack in a group there is no hierarchy, they have no leaders or followers, all the members
behave in the same way. The model and some animations have been provided by the artist of the
game Hive. The physical appearance of speeders is shown in Figure 3.1.
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Figure 3.1: Speeder appearance

Speeders statistics are presented in Table 3.1:

Table 3.1: Speeders - Statistics

Speeders
Feature Level
DAMAGE From 1 to 5
AI LEVEL Simple
MOVEMENT Very Fast
SPAWN NUMBER Groups from 4 to 16
HEALTH POINTS 100
BASIC ATTACK Toxic bite
ATTACK SPEED High

Regarding its abilities, they are summarized in Table 3.2. Speeders have two abilities, TOXIC
BITE, which is their common attack, and SAW JUMP, which is their special ability. The first one, is
a fast, non ranged, attack which poisons the prey, making damage per second (DPS), during 10
seconds. The jump has more range than the basic attack, so speeders can jump from the distance.
This attack makes a high immediate damage and a continuous bleeding for 15 seconds.

3.1.2 Behavior Trees

Once the conceptual design of the speeders’ behavior is completed, let’s proceed to design the
behavior tree and its different nodes. As well as having the two skills mentioned previously, the
agents must have the ability to move. This task causes several problems due to the fact that the
Hive video game, contains gravity changes. The problems and its solutions related to the movement
dimension will be detailed in next chapter.

To accelerate the BT calculations, is necessary to employ a blackboard, which will be updated
in a node placed at the root of the BT, so when a node needs a value it has just to pick it from the
blackboard, instead of making all the calculations.

Each agent has a blackboard with the following information: one reference to the player (if
the speeder has sensed it), the distance between them, two booleans to indicate if the abilities are
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Table 3.2: Speeders - Abilities

TOXIC BITE
TYPE Poisonous
IMMEDIATE DAMAGE From 1 to 5
EFFECT Poison: From 1 to 2 DPS/10 sec
COOLDOWN 5 sec

SAW JUMP
TYPE Range sweep
IMMEDIATE DAMAGE From 5 to 15
EFFECT Bleeding: 1 DPS/15 sec
COOLDOWN 10 sec

available or they are in cooldown, two variables to store the last time each ability was performed, a
counter for the attacking speeders at the same time and a random position.

All of them are updated each 0.5 ± 0.1 seconds, in a service placed in the BT root. They are
updated at that time because it is the most suitable referenced in the UE4 documentation.

Next, the explanation of the five branches of the task leaves of the BT, which is shown in Figure
3.2, is presented. As said before, the tasks priority increments from left to right.

The first four tasks depend whether the agents have noticed the player and have stored its
reference in their blackboard. The process of detecting the player is performed by a UE4 event
called OnPawnSensing, which works with a raycast from the agent forward its direction, so if
another agent intersects with this ray, for instance, the player, this event will be triggered.

3.1.2.1 FLEE FROM THE PLAYER

This is the task with the highest priority. When the agent has been hurt, he must flee from the player,
to avoid more damage. To do so, there is a branch with a decorator which checks its health level,
followed by a sequence which consists of a task that calculates a point in the opposite direction of
the player and the task moveTo that point.

3.1.2.2 TOXIC BITE

This task has the second priority and it constitutes the basic attack of the agent. It is a hand to hand
attack, and because of this, it is necessary that the distance between the agent and the player to be
less or equal to 200 units of measurement in UE4. Furthermore, to avoid the agents taking this task
continually, it can only perform it if there are less than 4 speeders attacking the player already, so
there can only be 5 speeders performing this ability at the same time.

3.1.2.3 SAW JUMP

This ability is the action with the next priority. As it is a ranged attack, the agent can perform
this task if the distance between it and the player is less or equal than 600 units. Also, this ability
will be enabled if there are already some speeders attacking the player with the ability mentioned
previously, so this branch has to check the number of attackers.



44 Chapter 3. Design

Figure 3.2: Speeders behavior tree
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3.1.2.4 MOVE TO PLAYER

The agents’ movement causes several problems which will be detailed in Section 4. Nevertheless,
this function works with a target point to reach, so in this case, the speeder needs to know the
player’s position.

3.1.2.5 MOVE RANDOMLY

At the moment when the agent has not detected the player, it should move randomly. Therefore,
the BT contains a branch set up with a sequence with a task which gets a random point beneath a
radius and the function MoveTo to reach that.

Summarizing, the following nodes have to be implemented for the speeders’ behavior:
• TASKS

– TOXIC BITE
– SAW JUMP
– MOVE TO PLAYER
– FLEE FROM PLAYER
– MOVE RANDOMLY

• DECORATORS
– IS TARGET SET?
– IS NEAR DISTANCE?
– IS Med. DISTANCE?
– ARE THERE LESS THAN 4 SPEEDERS ATTACKING THE PLAYER?
– IS TARGET SET?
– IS SPEEDER HURT?
– IS RANDOM POINT REACHED?

• SERVICES
– BLACKBOARD UPDATE VALUES

3.1.3 Q-Learning

First, the five most important elements of a reinforcement learning system have to be designed: a
policy, a reward function, a value function, states space and an actions space.

3.1.3.1 Action Space

As this is the first learning agent that it has developed, the complexity of its behavior has been
reduced in pursuit of the investigation. Also, this type of enemy has a constant tracking of the
player position, so it will always know where he is. This way, the agent will have three possible
actions: SAW JUMP, MOVE TO PLAYER and FLEE FROM PLAYER.

3.1.3.2 State Space

The environment state model is constituted by two features: the speeder-player health proportion
and the distance between them. Regarding the first feature, it can be: the speeder has health
advantage, the speeder and the player have the same health proportion, the speeder has less health
than the player and the player is almost dead, which means that if he receives one attack more,
it would die. Regarding distance measurement, all the possibilities have been discretized to: the
speeder is near, they are at a medium distance or the speeder is far away from the player. The
combination of these features leads to twelve different states which can be seen in Tables 9 and 10.
The exact proportions and values of these features will be detailed in the fourth chapter.
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3.1.3.3 Value Function and Reward Function
These two functions are presented together, due to the fact that the reward function depends on the
value one. Q-learning algorithm works with a value function which provides values per state and
action. Regarding the reward function, the results of a reward function for pairs state-action and
other with only rewards per state are compared in Section 5.

The first reward function is shown in Table 3.3 and the second custom reward function for only
states, in Table 3.4.

In both reward functions, a value of -10 or -1 identifies the actions and states less desirable, 0 to
the no influent, 100 to the desired state (the final state) and a range of 1 ,10, 20 and 60 for the rest
of the actions and states depending on its desirable level.

Table 3.3: Speeders - Reward function for pairs state-action

STATE ACTIONS
Move Attack Flee

Near and more health 0 1 0
Near and same health 0 1 1
Near and less health -10 -10 1
Near and player is almost dead 1 100 -1
Med. distance and more health 10 1 0
Med. distance and same health 10 0 0
Med. distance and less health -1 0 1
Med. distance and player is almost dead 100 1 0
Far and more health 10 0 -1
Far and same health 1 0 0
Far and less health -1 -1 1
Far and player is almost dead 10 0 -1

Table 3.4: Speeders - Reward function for states only

STATE REWARD
Near and more health than player 10
Near and same health than player 0
Near and less health than player -10
Near and player is almost dead 100
Med. distance and more health than player 10
Med. distance and same health than player 0
Med. distance and less health than player -10
Med. distance and player is almost dead 60
Far and more health than player 10
Far and same health than player 0
Far and less health than player -10
Far and player is almost dead 20
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3.1.3.4 Policy
A ε-greedy policy has been used, with ε equal to 0.2, which means that 2 from 10 actions will be
randomly taken, so exploration can discover better choices.
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3.2 Dyggers

3.2.1 Concept Design

Regarding their physical appearance, which is shown in Figure 3.3, this type of agents is greater
than the speeders, more than the double of its size. They have a heavy shield, which allows them to

Figure 3.3: Dygger appearance

resist the pressure under the ground. Regarding its physiognomy, two parts can be differentiated:
its exterior thick shield and the weak structure covered by it. Furthermore, its head counts with its
own protection, which seems to be like a helmet for them. They have three pairs of armored legs.

The dygger’s tusks are the most highlighted feature of their physic. These have dispropor-
tionately dimensions, so they offer the dyggers, a lot of attack power. Furthermore, these agents
can move with facility under the ground. That is the reason why when they feel threatened, they
prefer to dig and protect themselves. Also, they can attack from the ground, taking advantage of
the surprise factor. When they perceive the player over their position, they make a powerful attack,
which consists in drilling the ground and jumping vertically to catch him.

This type of enemies try to work together to destroy their victim, so when one dygger finds a
human, if it is alone, it will immobilize him to make time for other diggers to arrive at that position.

Despite its powerful ability to dig, their tusks can only resist rock. This means that dyggers can
only dig where the floor is rocky, not when it is made of metal. Dyggers statistics are presented in
Table 3.5:

Table 3.5: Dyggers - Statistics

Dyggers
Feature Level
DAMAGE From 20 to 40
AI LEVEL Advance
MOVEMENT Slow
SPAWN NUMBER Groups from 4 to 8
HEALTH POINTS 500
BASIC ATTACK Tusk attack
ATTACK SPEED Slow
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Regarding its abilities, they are summarized in Table 3.6. Dyggers have five abilities. Its basic
attack is the TUSK ATTACK, it is fast and has a small cooldown. As said previously, these agents
can dig and undig, but only when they are over a rocky floor, so they can not trespass metal floor.
When they are underground, they are invulnerable to the player’s attacks. By this mean, they have a
special ability, the JUMP ATTACK, which lets the dygger to impulse vertically from the ground to
reach and hit the player. Furthermore, dyggers behavior complexity is greater than the speeders,
because they try to work together and coordinate to catch the player, so if one dygger is alone and it
catches the player, it will execute its BREAK HUMAN attack which will immobilize the player so
other dyggers can reach and attack him.

3.2.2 Behavior Trees

In this Section, the dygger’s behavior tree and tasks are presented. As it has been done previously
with speeders, the basic movement and flee tasks are out of the scope of this chapter. Also, dyggers
need a blackboard which updates its values constantly the same way speeders do.

Each agent contains one blackboard with the following information: a reference to the player,
the distance between them, a counter for the dyggers near the player, a boolean to determine if
the dygger is over or under the ground, the time it has been in that mode, three booleans for the
abilities availability and other three more to store the time they were executed.

As in the speeders’ blackboard, these values are updated each 0.5 ± 0.1 seconds, in a service
placed in the BT root.

Now is time to explain all the branches of the dyggers’ BT, which is shown in Figure 10.

3.2.2.1 UNDIG

This branch triggers when the dygger is already under the ground, so here, the two possibilities
for the agent to execute the undig task to go over the ground are either the time has expired or the
point towards it is moving is located in a metallic floor, which it can be perforated by the dygger, so
it must leave the ground. With the first option, it is being referred to the fact that dyggers have a
timer of 20 seconds, which means that each 20 seconds they have to change its mode from under
the ground to over the ground or vice-versa.

3.2.2.2 DIG

This branch is like the previous branch, but in the opposite way. If the dygger is over the ground
and its time has expired, it has to dig as long as the floor is made of rock.

3.2.2.3 JUMP ATTACK

Once the dygger has targeted the player and knows its position, if it is under the ground and near
him (about 250 units), he will execute this attack. This task has two different effects. If at the
moment of the execution of this task, the player is flying or jumping, the dygger will run under the
ground to a predicted position for the player, and then jump vertically to try to hit him. If the player
is on the floor, the dygger will just do its attack in that location.

3.2.2.4 BREAK HUMANS ATTACK

This type of attack is performed when the dygger is outside the ground and it catches the player,
when any other agent is near. As said before, this ability is about immobilizing the player, so other
dyggers can run to catch him in a group.

3.2.2.5 TUSK ATTACK

This is the basic attack, with no range, so it is executed when the dygger is near the player and other
agents are near him, too.
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3.2.2.6 FLEE FROM PLAYER

When the dygger has been hurt, he must flee from the player, to avoid more damage. To do so, there
is a branch with a decorator which checks its health level, followed by a sequence which consists of
a task that calculates a point in the opposite direction of the player and the task moveTo that point.
After reaching that point, the agent will dig to protect himself under the ground.

3.2.2.7 MOVE RANDOMLY

At the moment when the agent has not detected the player, it should move randomly. Therefore,
the BT contains a branch set up with a sequence with a task which gets a random point beneath a
radius and the function moveTo to reach that.

Summarizing, we have to implement the following nodes:
• TASKS

– DIG
– UNDIG
– JUMP ATTACK
– BREAK HUMANS ATTACK
– TUSCK BASIC ATTACK
– MOVE TO PLAYER
– FLEE FROM PLAYER
– MOVE RANDOMLY

• DECORATORS
– IS TARGET SET?
– IS UNDER THE GROUND?
– IS UNDER ROCK GROUND?
– IS TIMER COMPLETED?
– IS NEAR DISTANCE?
– IS MEDIUM DISTANCE?
– ARE THERE NO DYGGERS NEAR THE PLAYER?
– IS DYGGER HURT?
– IS RANDOM POINT REACHED?

• SERVICES
– BLACKBOARD UPDATE VALUES
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3.2.3 Q-Learning
As it has been done for the speeders, the five elements of a reinforcement learning system have to
be designed for this second agent: a policy, a reward function, a value function, states space and an
actions space, but this time they will be more complex, because in this case, the agents will not get
their tasks reduced, so reinforcement learning techniques in both simple and complex agents can be
compared.

3.2.3.1 Action Space
The unique ease this type of dygger has among the previously mentioned one is that this has a
constant tracking of the player position, so it will always know where he is. As with the BT dyggers,
this will have seven actions: MOVE TO PLAYER, FLEE FROM PLAYER, DIG, UNDIG, JUMP
ATTACK, BREAK HUMANS ATTACK and TUSK ATTACK.

3.2.3.2 State Space
As this enemy is more complex, the environment state model has to be constituted by five features:
the speeder-player health proportion, the distance between them, the type of the floor where the
dygger is, the mode (under or above) of the ground and the number of dyggers which are near the
player.

The two first features are the same as for the speeders, so the health proportion can be: dygger
has health advantage, dygger and player have the same health proportion, dygger has less health
than player and the player is almost dead; and the distance: the dygger is near, they are at Med.
distance or the dygger is far away from the player. The last feature, number of dyggers, has been
discretized due to the fact that it only matters if that is zero or different to zero, the dygger is
the only enemy near the player or not. The combination of these features leads to 96 different
states which can be seen in Table 3.7. This change in the environment has led to an exponential
increment of the complexity of the states space, with a difference of 84 states between the two
types of enemies. This fundamental rising of complexity, will let us compare both agents in terms
of usability of reinforcement learning depending on the complexity of the agent.

3.2.3.3 Value function and Reward function
Again, these two functions are presented together, due to the fact that the reward function depends
on the value one. The reward function for the value function Q(s,a), is shown in Table 3.7.

3.2.3.4 Policy
A ε-greedy policy has been used, with ε equal to 0.2, which means that 2 from 10 actions will be
randomly taken, so exploration can discover better choices.

Table 3.7: Dyggers - Q(s,a)

STATE ACTIONS
Move Flee Dig Undig Jump A. Break A. Tusk A.

Near, more h., rock, over g. 0 -1 1 -1 -1 10 5
Near, more h., rock, over g. 0 -1 1 -1 -1 -1 10
Near, more h., rock, under g. 0 -1 -1 1 1 -1 -1
Near, more h., rock, under g. 0 -1 -1 1 1 -1 -1
Near, more h., metal, over g. 0 -1 -1 -1 -1 10 5
Near, more h., metal, over g. 0 -1 -1 -1 -1 -1 10
Near, more h., metal, under g. 0 -1 -1 -1 -1 -1 -1
Near, more h., metal, under g. 0 -1 -1 -1 -1 -1 -1

Continued on next page
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Table 3.7 – continued from previous page
STATE ACTIONS

Move Flee Dig Undig Jump A. Break A. Tusk A.

Near, same h., rock, over g. 0 1 1 -1 -1 10 5
Near, same h., rock, over g. 0 0 1 -1 -1 -1 5
Near, same h., rock, under g. 0 -1 -1 1 1 -1 -1
Near, same h., rock, under g. 0 -1 -1 1 1 -1 -1
Near, same h., metal, over g. 0 1 -1 -1 -1 5 5
Near, same h., metal, over g. 0 0 -1 -1 -1 -1 5
Near, same h., metal, under g. 0 -1 -1 -1 -1 -1 -1
Near, same h., metal, under g. 0 -1 -1 -1 -1 -1 -1
Near, less h., rock, over g. -1 1 1 -1 -1 1 0
Near, less h., rock, over g. -1 1 1 -1 -1 -1 1
Near, less h., rock, under g. -1 1 -1 0 0 -1 -1
Near, less h., rock, under g. -1 1 -1 0 1 -1 -1
Near, less h., metal, over g. -1 1 -1 -1 -1 1 0
Near, less h., metal, over g. -1 1 -1 -1 -1 -1 1
Near, less h., metal, under g. -1 1 -1 -1 -1 -1 -1
Near, less h., metal, under g. -1 1 -1 -1 -1 -1 -1
Near, P. dead, rock, over g. 0 -1 0 -1 -1 20 50
Near, P. dead, rock, over g. 0 -1 0 -1 -1 -1 100
Near, P. dead, rock, under g. 0 -1 -1 0 20 -1 -1
Near, P. dead, rock, under g. 0 -1 -1 0 20 -1 -1
Near, P. dead, metal, over g. 0 -1 -1 -1 -1 20 50
Near, P. dead, metal, over g. 0 -1 -1 -1 -1 -1 100
Near, P. dead, metal, under g. 0 -1 -1 -1 -1 -1 -1
Near, P. dead, metal, under g. 0 -1 -1 -1 -1 -1 -1

Med., more h., rock, over g. 1 -1 0 -1 -1 5 1
Med., more h., rock, over g. 1 -1 0 -1 -1 -1 5
Med., more h., rock, under g. 1 -1 -1 0 1 -1 -1
Med., more h., rock, under g. 1 -1 -1 0 1 -1 -1
Med., more h., metal, over g. 1 -1 -1 -1 -1 5 1
Med., more h., metal, over g. 1 -1 -1 -1 -1 -1 5
Med., more h., metal, under g. 1 -1 -1 -1 -1 -1 -1
Med., more h., metal, under g. 1 -1 -1 -1 -1 -1 -1
Med., same h., rock, over g. 1 0 0 -1 -1 5 1
Med., same h., rock, over g. 1 0 0 -1 -1 -1 1
Med., same h., rock, under g. 1 0 -1 0 1 -1 -1
Med., same h., rock, under g. 1 0 -1 0 1 -1 -1
Med., same h., metal, over g. 1 0 -1 -1 -1 5 1
Med., same h., metal, over g. 1 0 -1 -1 -1 -1 1
Med., same h., metal, under g. 1 0 -1 -1 -1 -1 -1
Med., same h., metal, under g. 1 0 -1 -1 -1 -1 -1

Continued on next page
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Table 3.7 – continued from previous page
STATE ACTIONS

Move Flee Dig Undig Jump A. Break A. Tusk A.
Med., less h., rock, over g. 0 1 1 -1 -1 1 0
Med., less h., rock, over g. 0 1 1 -1 -1 -1 0
Med., less h., rock, under g. -1 1 -1 0 0 -1 -1
Med., less h., rock, under g. -1 1 -1 0 0 -1 -1
Med., less h., metal, over g. 0 1 -1 -1 -1 1 0
Med., less h., metal, over g. 0 1 -1 -1 -1 -1 0
Med., less h., metal, under g. -1 1 -1 -1 -1 -1 -1
Med., less h., metal, under g. -1 1 -1 -1 -1 -1 -1
Med., P. dead, rock, over g. 5 -1 0 -1 -1 5 1
Med., P. dead, rock, over g. 5 -1 0 -1 -1 -1 5
Med., P. dead, rock, under g. 5 -1 -1 0 1 -1 -1
Med., P. dead, rock, under g. 5 -1 -1 0 1 -1 -1
Med., P. dead, metal, over g. 1 -1 -1 -1 -1 5 1
Med., P. dead, metal, over g. 1 -1 -1 -1 -1 -1 5
Med., P. dead, metal, under g. 1 -1 -1 -1 -1 -1 -1
Med., P. dead, metal, under g. 1 -1 -1 -1 -1 -1 -1

Near, more h., rock, over g. 10 -1 1 -1 -1 0 0
Near, more h., rock, over g. 10 -1 1 -1 -1 -1 0
Near, more h., rock, under g. 10 -1 -1 1 0 -1 -1
Near, more h., rock, under g. 10 -1 -1 1 0 -1 -1
Near, more h., metal, over g. 10 -1 -1 -1 -1 0 0
Near, more h., metal, over g. 10 -1 -1 -1 -1 -1 0
Near, more h., metal, under g. 10 -1 -1 -1 -1 -1 -1
Near, more h., metal, under g. 10 -1 -1 -1 -1 -1 -1
Near, same h., rock, over g. 10 -1 1 -1 -1 0 0
Near, same h., rock, over g. 10 -1 1 -1 -1 -1 0
Near, same h., rock, under g. 10 -1 -1 1 0 -1 -1
Near, same h., rock, under g. 10 -1 -1 1 0 -1 -1
Near, same h., metal, over g. 10 -1 -1 -1 -1 0 0
Near, same h., metal, over g. 10 -1 -1 -1 -1 -1 0
Near, same h., metal, under g. 10 -1 -1 -1 -1 -1 -1
Near, same h., metal, under g. 10 -1 -1 -1 -1 -1 -1
Near, less h., rock, over g. 1 0 1 -1 -1 0 0
Near, less h., rock, over g. 1 0 1 -1 -1 -1 0
Near, less h., rock, under g. 1 0 -1 1 0 -1 -1
Near, less h., rock, under g. 1 0 -1 1 0 -1 -1
Near, less h., metal, over g. 1 0 -1 -1 -1 0 0
Near, less h., metal, over g. 1 0 -1 -1 -1 -1 0
Near, less h., metal, under g. 1 0 -1 -1 -1 -1 -1
Near, less h., metal, under g. 1 0 -1 -1 -1 -1 -1
Near, P. dead, rock, over g. 10 -1 1 -1 -1 1 1
Near, P. dead, rock, over g. 10 -1 1 -1 -1 -1 1

Continued on next page
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Table 3.7 – continued from previous page
STATE ACTIONS

Move Flee Dig Undig Jump A. Break A. Tusk A.
Near, P. dead, rock, under g. 10 -1 -1 1 0 -1 -1
Near, P. dead, rock, under g. 10 -1 -1 1 0 -1 -1
Near, P. dead, metal, over g. 10 -1 -1 -1 -1 1 1
Near, P. dead, metal, over g. 10 -1 -1 -1 -1 -1 1
Near, P. dead, metal, under g. 10 -1 -1 -1 -1 -1 -1
Near, P. dead, metal, under g. 10 -1 -1 -1 -1 -1 -1
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Table 3.6: Dyggers - Abilities

DIG
TYPE No damage skill
EFFECT Invulnerability under the floor
COOLDOWN 20 sec

UNDIG
TYPE No damage skill
EFFECT To go from underground to over the floor
COOLDOWN 20 sec

JUMP ATTACK
TYPE Vertical jump from underground
IMMEDIATE DAMAGE From 30 to 50
EFFECT Positioned over the floor, next to the player
COOLDOWN 20 sec

BREAK HUMANS ATTACK
TYPE Immobilization
IMMEDIATE DAMAGE 0
EFFECT Immobilization: From 15 to 30 DPS/5 sec
COOLDOWN 9 sec

TUSCK BASIC ATTACK
TYPE Basic attack
IMMEDIATE DAMAGE From 20 to 40
EFFECT
COOLDOWN 2 sec
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Figure 3.4: Dyggers behavior tree
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4. Development

In this chapter, the development phase of each of the agents described in the design Section is
addressed.

4.1 Speeders

4.1.1 Speeders Behavior Tree
At first point, let’s analyze the class (and blueprints) diagram which has been implemented for the
first agent (Figure 4.1). To favor its readability the diagram has been simplified.

There are two main blueprints (visual scripting in UE4 for implementing classes), which
are SpeederBT and SpeederController. The first one, is the main class of the agent, due to
the fact that it constitutes the actor in essence. It contains the meshes, animations, collisions,
movement components and so forth. As said before, it is essential that an agent has also a controller,
which is a class that operates as the brain of the agent. This class is linked to the behavior tree
and the blackboard and it is the responsible to indicate, at each moment, what should do the
speeder: where to go, where to orientate, etc. This controller inherits from an Unreal class called
DetourCrowdController, which will be explained in detail later with the movement dimension.

The agent’s blueprint (SpeederBT)inherits from a C++ class called Speeder, which inherits
from MinionCharacter, which inherits from the Unreal class Character. Character is a predefined
class of the engine, which manages all the components related to the agent. Specifically, an Unreal
Character is a Pawn that has a mesh, collisions and movement. It is the responsible of all the
physical interaction between the player and the agent. Also, they are designed to provide the ability
to walk, jump, fly and swim using the CharacterMovementComponent. The Pawn is the base class
of all actors that have a controller, which means that they are the physical representation of the
agents. An actor is whatever object placed in the game world and it can have several components,
which control the movement, the render, etc.

For the development of the game Hive, its creators, implemented some classes which inherit
from Character, to differ each type of character of the game. for instance, there is a ConceptPlayer
class, which manages all the player’s actions (which are out of the scope of this project) or the class
MinionCharacter, that manages the autonomous agent’s movement taking the gravity changes into
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account. It also controls how to hurt the player or how to receive damage from him. This class was
developed by the Hive team and it has been a starting point for the development of the characters,
due to the fact that it manages several actions and functions that remain beyond my reach because
of the game’s magnitude. Nevertheless, I have had to modify this class in several times to adapt
it to the necessities of the proposed agents in this paper, such as adding new different types of
permanent damage like immobilization or bleeding.

From this class (MinionCharacter), both of the agents designed for the use of behavior trees,
inherit.

4.1.1.1 Movement Dimension
Regarding the movement, the UE4 default movement component has been used. This employs a
pathfinding with a navigation mesh. In this case, pathfinding parameters have been set, to let the
agent avoid collisions with static objects such as the environment, and with the player, but it has not
set to avoid other speeders. The reason of this is because speeders will spawn by hordes of several
agents, and avoiding all the collisions consumes too many resources, what affected directly in the
performance of the game, slowing the framerate. Nevertheless, as the visual effect was not suitable
because the agents went through each other and moved into a single file as it was the shortest path
to the player. Furthermore, they usually overlapped. The first solution planned, was to elaborate
a steering behavior consistent in modifying the agents’ trajectory, based on its direction and the
others’ ones. This was not effective because this solution combined the custom made steering with
the default UE4 pathfinding, which can not be controlled anyway. This leads to a problem, because
each movement method contradicted sometimes and the movement was not suitable because it
seemed that the agents moved in zig zag too fast, because the agent was trying to reach two different
positions at the same time.

The next step was to discard that steering and implement another one, which consisted in that
the agent jumped over the one which interjected its direction. For this solution, three different
mechanisms were implemented:

• To add a constant impulse: This solution did not work properly, because it was always the
same impulse, but the distances between the agents were different.
• Parabolic jump: In this attempt, the angle and the velocity of the jumping impulse, were

calculated with the parabolic movement formula. Despite it was a realistic jump, the visual
effect was that the speeder never jumped over the others, it jumped but is final position in
relation to the intersecting agent was the same. After several attempts to try to solve that
issue by augmenting the impulse, the jump remained the same. Again, it was a problem of
incompatibility of having two movement methods, but in this case, it was different than the
previous one. In this case, the maximum speed of the pathfinding did not let the impulse
velocity to be greater, so the jump was not strong enough to pass over the agents. After trying
to modify its parameters, this idea was discarded because the conflicts of the movement could
not be solved.

After this fails, a thoughtful research in UE4 documentation was made and different solutions
were found, but the information was incomplete.

One solution was to enable a parameter of the pathfinding called RVO avoidance, which is
an implementation of the Reciprocal Velocity Obstacle algorithm. This algorithm works with
velocities, when choosing a new velocity for the agent, it is taken from an average of its current
velocity and a velocity outside the velocity obstacle [18].

The main drawback of this method is that it does not care about the navigation mesh and its
bounds which in turn means that the agents can end up being pushed outside it. Nevertheless, our
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Figure 4.1: SpeederBT class diagramm
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problem was different: it was related to the game environment. As in Hive the map is a hexagon,
agents must walk through slopes and change from a plane with one orientation to another plane
with a different one and when the agents reached the corner formed by two planes, they detected the
plane as an obstacle which covered all the path and they got stuck, so they could only move in one
plane, which was not acceptable for the gameplay. Furthermore, there is not enough information of
this algorithm in the UE4, so it was discarded.

Finally, a solution was found in the UE4 documentation. there is a controller class, named
AIDetourCrowdController. It is an algorithm that works better than RVO, because it bases the
avoidance on the direction of movement and it also affects navigation movement, so the solution
was to re-parent the speeder controller to inherit the movement from that class and it provided a
desirable avoidance without causing a loss of computing resources.

Other problems have appeared in relation to this dimension. For instance, as the player has the
possibility to jump/fly, the pathfinding is not capable of following him, when the player was not
colliding with the navigation planes and, therefore, they remained immobile when the player was
jumping. To solve this unacceptable issue, at the moment when the player is on air, its position is
projected to the navigation plane, and the agents move towards that point, so that the movement is
fluent and without errors.

In relation to the sequences movement-attacks, another problem appeared due to some reasons
which will be explained lately. It was necessary to create a function which is called LookAtPlayer
for the agents to fix their orientation towards the player whenever it was required, such as in the
movement case. Theoretically, UE4 pathfinding already has it implemented, but due to the shape of
the map, this failed, causing the agents to move backwards or sideways on several occasions.

The main problem with this map, is that depending on the area where the agents are placed,
they have different rotation in its three axes, what means that they can not rotate in the Z axis,
which is the most common case when approaching orientation issues. For instance, when they
were located in a vertical plane (90 degrees from what we understand as the common floor), the
resulting rotation was incorrect, due to the fact that instead of rotating in the yaw axis, visually it
looked like the rotation was in the roll axis. To solve this, an interpolation has been made from the
forward vector of the agent to the direction from itself to the player. This interpolation returns a
vector, which can be directly converted into a rotator, which is an orthogonal rotation in 3d space
that Unreal manages the rotations with. this rotator can be used to realize the orientation properly,
because it contains all the axis. All these solutions to the movement issues have been employed for
all the different agents, so we are not going to detail the dimension movement of the others.
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4.1.1.2 Decision Dimension

As mentioned before, a behavior tree has been implemented for the decisions of the autonomous
agents. It has been developed by means of the UE4 visual editor. To build it up, the following
nodes and functions have been implemented.

• DECORATORS
– IS TARGET SET? This conditional consists in the application of a default decorator

of UE4, which accesses directly to the blackboard to check a value stored in it, in this
case, the target reference.

– IS IT NEAR DISTANCE?
This checks if the blackboard value of the distance between player and agent is less or
equal than 200 measurement units.

– IS IT AT MEDIUM DISTANCE? it verifies if the distance stored in the blackboard
is less or equal than 600 units.

– ARE THERE LESS THAN 4 SPEEDERS ATTACKING THE PLAYER? Again,
accessing to the blackboard and getting the value of the counter of attacking speeders.

– IS SPEEDER HURT? Unreal default decorators only make simple comparisons, so
this condition has been implemented entirely. It consists of getting some percentages to
determine the hurt level of the agent.

• TASKS
– TOXIC BITE

This BT task makes some accesses to the agent’s controller and to its blackboard
to update some variables which indicate that the agent must perform the function
ApplyBasicAttack of the SpeederController. These variables are controlled in the tick
(update function) and they manage the attacks. At first place, the attack animation is
managed, modifying the variables that show the transitions between the attack and
movement states in a Finite State Machine (Figure 4.2) which controls the animations
of the agent. Lately, the counter of simultaneous attacking speeders is augmented
and the function ApplyDamage is called. In this function, the player’s damage is
executed only if the distance between agent and player is small enough to consider
that they have collided, by means of a function named ApplyDamage, implemented
in the MinionCharacter class, which accesses to the player’s variables to update them
depending on the attack type and others. This attack is formed by two parts: an
immediate damage and a continuous one in form of poison, which has been programmed
in C++, with the combination of different timers to get the effect of making X damage
points per second, during Y seconds.
Lately, the variables which control the availability of each attack, are updated. They will
return to true when the cooldown time has passed, what is performed in the CheckTimer
function that can be observed in the UML diagram.

– SAW JUMP
This task works in a similar way to the previous one, the attack control parameters are
set so the controller can manage them and perform the attack in the proper moment to
hurt the player if it is precise. The main difference with the attack explained before, is
that at the moment when the animation starts, an impulse towards the player is added
to the agent. in this case, the animation was created by myself with a tool of the same
engine, so I had to learn how to use it and make the animation, task which was not
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Figure 4.2: Speeder finite state machine for animations

taken into account in the planning of the project. To make this impulse, three different
methods were implemented:

∗ Parabolic jump A:
The parabolic jump is calculated taking the distance between the actors into ac-
count. The jump angle is got with it and its arctangent. Lately, with the cosine
between that angle and the distance, the impulse velocity is calculated, and can be
split up in its components, Z (height) and Y (horizontal), to apply the impulse with
them. This is made with the UE4 function AddImpulse which gives the agent an
instantaneous force. This solution did not work properly because the gravity did
interfere with the velocities and the final jump was not suitable.

∗ Parabolic jump B:
In this case, the gravity is employed with a parabolic function which works with
the maximum time of the jump. The time of the jump in air and the falling time
are calculated with the gravity and the maximum height of the jump. With them,
we get the total time of the jump, which can be used with the gravity to get the
velocity vector needed for the AddImpulse function. As this solution requires
several calculations, another third one has been implemented.

∗ Final jump: This method gets the impulse vector with the direction vector from
the speeder to the player and the up vector of the speeder multiplied by an offset
that determines the strength of the jump. Despite this jump is the less realistic, it
provides a suitable result and it is not resources consumer, so this has been the one
method selected finally.

– FLEE FROM PLAYER and MOVE RANDOMLY
These functions are used together with the movement of the agents. Basically, each one
returns a point either a random point, inside a radius, or a point in the opposite direction
from the player to the speeder.

With all the processes explained previously, the development of the speeders with behavior
trees is settled. To summarize, the base class of the speeder, its controller, its BT, its blackboard
and a C++ script that inherits from a class which controls the interaction between player-enemy,
has been implemented for this type of agent.
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4.1.2 Speeders Q-Learning
The class diagram for the learning speeders is shown in Figure 4.3. There, it can be appreciated
that the structure of the main blueprint is similar to the one of the previous case, due to the fact that
it inherits from the same C++ class Speeder, so we are not going to highlight them, because they
have been explained in Section before.

This blueprint has a reference to its controller blueprint (SpeederMLController), which inherits
from a C++ class called SpeederML, which is the class in charge of making all the agent’s learning
process. this class has direct access to another one named SpeedersSharedBrainMatrix, which
collects the value and reward functions in form of matrix, so there is only one instance of them in
the game, which is shared by all the agents, saving, this way, memory resources.

For the development of this agent, it has been necessary to implement the interaction between
blueprints and c++ scripts, due to the fact that it is precise to create the actions functions (move,
attack and flee) in the class SpeederML. Furthermore, all of them have to be implemented in the son
blueprint, SpeederMLController, because it is easier to implement this kind of actions via the UE4
visual blueprint editor. To do so, in the parent class, the functions should be declared as Unreal
functions, specifying that they are going to be implemented in blueprints:

UFUNCTION(BlueprintNativeEvent, BlueprintCallable, Category = "Speeder_ML") void
Flee() ;

UFUNCTION(BlueprintNativeEvent, BlueprintCallable, Category = "Speeder_ML") void
MoveToPlayer() ;

UFUNCTION(BlueprintNativeEvent, BlueprintCallable, Category = "Speeder_ML") void Ap-
plySaltoSierra();

The next step is to implement those functions in the blueprints as events. Once the communica-
tion between scripts and blueprints is clear, emphasize that the core of the learning process is done in
the script SpeederML. In this class, the identification of the state and the action selection depending
on the policy is realized. Most part of these functions access to the SpeedersSharedBrainMatrix
script to get and update the values of the Q matrix.

4.1.2.1 Main Core Function
All the learning process is made inside the Tick function, which is executed once per frame
continuously. This learning core is shown in Figure 4.4.

This function works in what can be called learning cycles. Each cycle consists in identifying
the state, selecting an action depending on the followed policy which will determine if the agent
has to chose a random action of the one that best results had provided up to the moment. After that,
the action is performed and one timer starts depending on the action default time. After that time,
the new state is identified and the Q matrix is updated with the obtained results, closing the cycle
that way and starting the following one immediately.

4.1.2.2 State Identification
The state is identified in this case by the combination of two enumerations:
• Distance To Player

– NEAR: If the distance is less or equal to 100 units.
– MEDIUM: If the distance is between 101 and 400 units.
– FAR: If distance is greater than 400.

• Speeder Health Proportion To Player
– PLAYER_ALMOST_DEAD: If the player’s health is the 10 % of its maximum health.

For the next states, we need to calculate the proportions of the player’s health and the
agent’s health, dividing its current health between the maximum.
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Figure 4.3: SpeederML class diagramm
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Figure 4.4: Core of speeder learning process

– MORE_HEALTH_PROPORTION: The difference between the speeder’s health pro-
portion and the player’s one is greater or equal than 0.25.

– LESS_HEALTH_PROPORTION: The opposite of the previous one. The difference
between the player’s health proportion and the agent’s one is greater or equal than 0.2.

– SAME_HEALTH_PROPORTION: The rest of the states.

It has to be remembered, that the value and reward functions have been implemented as two
matrices with the same number of rows as states in the environment, and columns like actions as
explained in the chapter before. Once these enumerations have been determined according to the
game state, the function stateParsing is called, to convert that combination of enumerations into
an integer that identifies the state row in the matrix. In this case, as the possible combinations are
12 states, it is acceptable to implement a state recognition mechanism with the combination of
different switch statements. Nevertheless, this is possible only because this number is not too big,
fact which occurs with the second agent and which solution will be discussed later.

4.1.2.3 Action Selection and Performance

To determine the resolution of the policy, a threshold value of 0.2 has been employed, so as before
determining the action, a random is performed. If this is lower than the threshold, the exploration is
performed by means of the selection of a random action. Otherwise, the best learned action for the
current state is selected. the function which performs this, accesses to the value Q matrix int the
SpeederSharedMatrix, getting the value of the row that identifies the state. In this row, the column
with the greater value is chosen, determining that way, the best action. Once the action has been
selected, it is performed by triggering the events of those tasks in the SpeederML blueprint and the
timer is started.
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4.1.2.4 Obtaining Values and Updating Q Matrix
Once the timer has finished, the Q matrix is updated depending on the last state, the selected action,
the current state and the action’s reward. furthermore, to test whether the matrix was updating
correctly, a writing to file mechanism has been developed to store the current time, the state, the
action selected and the values of the Q matrix, which has been really useful to debug the learning
process. This issue will be discussed in the testing chapter.

4.1.2.5 Problems
In this Section, we are going to address all the problems that have appeared during the development
of this learning system. The main drawback is caused by two features related to the game genre:
real time and shooter. On the first place, aim that previous researches about reinforcement learning
by experts in this area, which have been mentioned at the state of art Section were tested in games
by turns, such as strategy games. In this case, Hive is a real time game, which means that both the
player and the autonomous agents take decisions simultaneously and continuously. This causes a
problem because decisions can overlap, so after the agents chooses an action for the current state, it
does not always lead into the same state, due to the fact that in that decision period, the player has
taken his own actions. for example, if the state is that they are near and the player is about to die,
the most effective action for the speeder is to attack him, because it would probably kill the player,
which is the desirable state. Nevertheless, in hat decision period, the player could have moved,
changing the game state, so the result of the same action in a determined state will be different each
time. This provokes the learning process to be slow and, also, it complicates the convergence of the
value Q matrix.

On the other hand, as the game is a shooter, there is a main feature that affects the learning
process. This is the fact that the player can aim with the mouse to shoot to different points of the
map, to destroy the speeders. In an ideal learning system, this should be taken into account so as
the agent could avoid the player’s attacks. Nevertheless, checking these cases, would lead to an
exponential increment of the state space, due to the fact that it should register the weapon’s type,
its states (with ammunition or not and making a shoot or not) and the trajectory of the projectiles
to check whether they are going to collide with the autonomous agent. To solve this issue, each
time that the agent is reached by a player’s projectile, its Q value matrix is accessed at the row of
the state in which the last action was taken and in the column of that action and is reduced by one
unit, to decrease the probability of taking that action again in the same state. This is very useful, for
instance, in the case where the actors are at medium distance so the agent alternates between the
actions move towards the player, flee from him and jump (attack), which generates the feeling that
it is trying to avoid the player’s attacks.

The last issue to outline about the learning process is that it needs a player. As this is an online
learning approach its not such problem, because it makes sense inside the technique employed.
Nevertheless, if the learning was off-line, this would be a problem because it would require lots of
human resources who were taking continuous games with the machine, fact that is a expense of
time and financial resources. One possible solution, would be to make the agents learn by fighting
with the speeders which have a behavior tree, but as the player’s actions differ from the speeders’
ones, this would not be a suitable learning. Another solution could be to implement an artificial
intelligence likeness the humans with a behavior tree, but this idea has been discarded due to the
fact that the project’s dimensions are too large, that it would be practically impossible to consider
all the possible actions of the player.
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Figure 4.5: Dyggers class diagram

4.2 Dyggers

In this Section, the implementation process of the second enemy, the dygger, is described.

4.2.1 Dyggers Behavior Tree

The class diagram developed for this type of agent is shown in Figure 4.5. the inheritance is
very similar to the speeder’s one (Section 4.1.1), so only the two main classes will be focused:
the dygger’s blueprint and its controller. The blueprint dygger is the one which forms the agent,
its mesh, its movement and the implementation of its actions. Furthermore, in this class, the
management of the animations is performed by a finite state machine. In this case, the actions dig,
undig and the jump attack have been implemented as events, specifically, two events for each attack.
The first one is the action’s start and this event is triggered from the leaf node of this task in the
BT. At this moment, all the animation’s control variables are set and it is determined if the agent is
under the ground or over it (function SetUnderground). As mentioned before, this event controls
the start of the animations, which also call the second event when the animation’s execution has
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finished. At that event, all the variables are re-set, so the agent can go back to its IdleRun state
(Figure 4.6).

To illustrate this sequence, we are going to see a clear example. Let’s suppose that the BT
determines that the dig node has to be executed. At the first moment, it checks whether the
floor is rocky, because if it was the case that the floor is made of metal, the dygger could not
perform the dig action and the node would return false to its selector, so the branch failed. If the
raycast employed to check the floor’s material determines that it is rock, the node triggers the
event OnstartDig. This event sets the proper parameters to indicate the FSM that the state is going
to change from IdleRun to Dig, which would provoke the animation to start its execution. This
animation is linked to the OnEndDig event, which is triggered when the animation reaches its last
frame. Finally, this event re-sets that variables again and calls the controller’s SetUnderGround
function to determine that now the agent in under the floor. There, the blackboard is updated and the
collisions and visibility of the agent are managed, to make the dygger invulnerable under the ground.

4.2.1.1 Movement Dimension

In this agent, the movement problem has been solved the same way we did in the previous enemy:
the agent has a movement component controlled by a pathfinding which avoids collisions with
static obstacles and the player. To make the dyggers avoid each other and not overlapping, the AI
DetourCrowdController has been employed, because it manages dynamic collisions in an optimal
way, so computing resources are not wasted. On the other hand, as we mentioned previously, these
enemies have two mechanisms to move: above the ground and under it. The first one consists of the
normal movement, but to achieve the feeling that the agent is moving under the ground a hack has
been implemented. Instead of moving the agent in its vertical axis to set it under the ground and
then move it by means of projections of its navigation mesh positions, its visibility, collisions and
animations are modified in order to give the feeling that the dygger is moving under the ground,
when it is, in fact, moving normally.

4.2.1.2 Decision Dimension

Specifically, the following nodes and functions have been implemented.
• DECORATORS

– IS TARGET SET? It consists of accessing the blackboard to check the reference to the
player.

– IS UNDER THE GROUND?
Access to the blackboard to check the boolean that determines whether the dygger is
under or over the ground.

– IS UNDER ROCK GROUND? this condition has been implemented in a node, in which
a raycast is projected from the agent towards its down vector, to check if the floor which
it is colliding is the type of rock or metal, accessing its tag.

– IS TIMER COMPLETED? For this node, the dyggers have a timer that indicates if
they have to change their movement mode. It accesses the blackboard and checks the
float which stores the last time is changed from one mode to the current mode, and it is
compared with the maximum allowed value.

– ARE THERE NO DYGGERS NEAR THE PLAYER? In this verification, the class of
all the actors which are at a distance less or equal to 400 from the player is checked, to
determine the number of dyggers near the player.

• TASKS Most part of the tasks require an animation, so it is essential the use of a finite state
machine which controls the transitions between that states. It is shown at Figure 16. In this
Section only the specific tasks of the dyggers are focused, because movement and blackboard
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Figure 4.6: Dyggers finite state machine for animations

updating is made the same way that in the speeders.
– DIG

The conditions to enter in this node are the dygger to be over the ground and its timer
had expired. In this BT task, at first place, one raycast is launched from the dygger
downwards to check whether the floor is rocky. If the process is satisfactory, in the
blackboard, the value which stores the time under the ground is set to the current time.
Lately, OnstartDig event is triggered and the animation is set. After that, OnEndDig
event starts, to change again the animation and to update the blackboard boolean which
stores the dygger movement state to underground, and modifies the collisions and
visibility of the agent to ignore the player’s projectiles.
There is another dig node in the BT with minor priority located in a branch that checks
if the dygger has been hurt. If so, it will flee from the player and dig in a safer place.

– UNDIG
There are two reasons that will make the agent undig: to be under the ground with
an expired timer or to be under the ground and its forward floor is metallic, which is
impassable, so it must exit from the ground. Regarding the actions flow, it is very similar
to the complementary previous action. the node triggers the event OnStartUndDig
which launches the animation, and manages its collisions and visibility.

– JUMP ATTACK
This attack is made when the dygger is under the ground and is near the player. This
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attack has two different modes whether the player is over the ground or on the air. If it is
on air, the dygger predicts the player’s next position based on his velocity and direction,
and then, projects that point to the navigation plane to move toward it. Whenever
it reaches that predicted position, it is triggered an event that controls the jumping
animation and also, an impulse is added to the agent in the vertical axis. If during this
attack the distance between both actors is small enough to consider they have collided,
the dygger damages the player. If the player is over the ground, the dygger just jumps
from below him to hurt him.

– BREAK HUMANS ATTACK This task constitutes a constrictor attack, which is exe-
cuted if and then the agent is located over the ground, at a near distance from the player
and with no other dyggers near them. Then, it performs an attack of type constrictor
which hurts the player and immobilizes him during a couple of seconds to allow other
agents reach them and attack.

– TUSK BASIC ATTACK Finally, the basic attack is triggered if the agent is over the
ground and there are more dyggers near.

As we can see, the dyggers behavior is far more complex than the speeders, because they have
different cooperative strategies.

4.2.2 Dyggers Q-learning

The diagram class for this agents is shown in Figure 4.7. As we can see, the structure is very similar
to the speeders one. The most meaningful differences are located in the class DyggersSharedBrain-
Matrix, in the reward and value functions and in the identifying state system.

The class DyggerML is responsible for the learning process and it has direct access to Dyg-
gersSharedBrainMatrix to get the values of the learning matrix. Note that there is only one instance
of this class, so all the dyggers share the same knowledge, which is a save in terms of space
resources.

4.2.2.1 Main core function

The learning algorithm is exactly the same as in the other type of agents. As said previously, this
algorithm takes place in the tick function, each frame.

4.2.2.2 State identification

This case, the agent has 96 states which are identified by the combination of different enumerations:
• Distance To Player

– NEAR: If the distance is less or equal to 100 units.
– MEDIUM: If the distance is between 101 and 400 units.
– FAR: If distance is greater than 400.

• Speeder Health Proportion To Player
– PLAYER_ALMOST_DEAD: If the player’s health is the 10 % of its maximum health.

For the next states, we need to calculate the proportions of the player’s health and the
agent’s health, dividing its current health between the maximum.

– MORE_HEALTH_PROPORTION: The difference between the speeder’s health pro-
portion and the player’s one is greater or equal than 0.25.



4.2 Dyggers 73

Figure 4.7: DyggersML class diagram
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– LESS_HEALTH_PROPORTION: The opposite of the previous one. The difference
between the player’s health proportion and the agent’s one is greater or equal than 0.2.

– SAME_HEALTH_PROPORTION: The rest of the states.
• Floor Type

– ROCK
– METAL

• Floor Status
– UNDERGROUND
– OVERGROUND

• Near Dyggers Amount
– DYGGER_ALONE
– MORE_DYGGERS

As said previously, the identifying state mechanism is different than the speeders’ one, due to
the fact that because of the huge amount of states, it is not suitable to make a bunch of nested switch
statements. As we need a system to get fast an integer to identify the matrix’s row by related to the
current enumerations combination, the solution employed has been to use a map. First, each type of
enumeration is set depending on the dygger’s state. With that combination, a string is constructed.
At the C++ map, there is a list of integers (rows identification) and their key, which is that string
that identifies the state. This way, there is a really quick access from a state to the number of the
row that it identifies, because maps are balanced binary trees, which means that a lookup to a key
value has a cost of O(log N), with N equal to the number of entries.

4.2.2.3 Action selection, performance, Obtaining values and updating Q matrix
In this case, all this processes are done in the same way than the speeders, so it will be superfluous
to explain them again.

4.2.2.4 Problems
In addition to the problems mentioned in the speeders section, the dyggers deal with another issue.
As their behavior is way more complex than the speeders, they have several restrictions, such as
the impossibility to dig if the floor is metal. These restrictions have been considered with the
state identifying system, by giving them a heavy punishment of -100 points in the reward matrix.
Nevertheless, as in exploration dyggers take random actions, there exist the possibility that they
make "forbidden" actions, which affects the gameplay. This will be discussed thoroughly in Chapter
5.
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5. Results, Testing and Evaluation

In this Section, results of the projects are presented. First of all, a comparison between each type of
agent will be described and its testing process. Finally, a task overview is going to be evaluated to
see whether the planning in the technical proposal has been accomplished.

To evaluate the agents’ effectiveness, the number of defeated agents per minute is going to be
analyzed. The measurement employed consists in the greater value, the lesser is their difficulty to
the player, so the challenge for him is not good balanced.

In an ideal performance of Q-learning, it is expected this value to be the lowest, which means
that the agents are more difficult to defeat, so that can prove that they are learning. Furthermore, as
it is possible that the average defeated agents per minute did not provide sufficient information to
make a statement about the learning agents performance, in different games of five minutes, the
number of defeated agents each minute is going to be compared. That way, it can be observed if
there exists a difference from the minute 1, to each one of the following minutes. Also, as this paper
is treating online learning, each time an agent dies, another one is spawned with the same value Q
matrix, so the experience of the agents is going to be accumulative and shared during generations.

5.1 Results Speeders

Firstly, the results of the different techniques employed for the speeders are going to be analyzed.

5.1.1 Speeders: Results Behavior Trees
To determine the number of speeders per minute, five games of five minutes each one have been
played. In Table 5.1, results of this games against agents whose behavior are managed by a behavior
tree are show. The resultant average is 6.68 speeders per minute and 0.2 player deaths per game,
which means that the player hardly ever dies during five minutes.

5.1.2 Speeders: Results Q-Learning Reward Pair Action-State
In Table 5.2, the results of the speeders with Q-learning based in a reward matrix per pairs action-
state are shown. To analyze the results lately, they have been organized so that the number of
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Table 5.1: Speeders - results behavior trees

GAME ID Killed speeders Player deaths
G1 31 1
G2 33 0
G3 36 0
G4 35 0
G5 32 0

Speeders/Minute 6.68
Deaths/Game 0.2

killed speeders each minute in the game can be observed, to then conclude if the number of them
decreases with time, what will provide a direct feedback of the learning effectiveness. There is
a decrement in the number of killed speeders among the time, from an average of 6.6 agents per
minute, to 5.2. Despite this is a very small difference, the learning time has been only 5 minutes
and it can be considered that the learning is effective.

Table 5.2: Speeders - results reward pair action-state

GAME ID Killed speeders Player deaths
min 1 min 2 min 3 min 4 min 5

G6 10 15 17 22 28 1
G7 9 15 22 27 32 1
G8 7 11 17 20 22 1
G9 4 7 11 14 23 2
G10 8 12 20 27 30 1
Avg. 6.6 12.4 17 22 27.2 -

Increment 6.6 5.8 4.6 5 5.2 -
Average Speeders/Minute 5.4
Deaths/Game 1.4

Now, an analysis of the value functions of the agents from that games is presented to see if
they reach any kind of convergence. At Table 5.3, the first column refers to the movement towards
the player action, the second is the attack and the third the fleeing from the player. Let’s analyze
the data collected, to extract some conclusions. There are five rows whose all column values are 0
which belong to the states:

• NEAR DISTANCE AND MORE HEALTH THAN THE PLAYER
• NEAR DISTANCE AND LESS HEALTH THAN THE PLAYER
• NEAR DISTANCE AND PLAYER IS ALMOST DEAD
• MEDIUM DISTANCE AND MORE HEALTH THAN THE PLAYER
• FAR DISTANCE AND LESS HEALTH THAN THE PLAYER

The possible reasons to that can be, on the first point, that is really difficult to the speeder to be
near the player, because he can shoot projectiles and kill him from the distance.
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In the sixth row, we can appreciate that the agent has learned that when it is at a medium
distance from the player and has the same health proportion, the best action is to move toward him.
Also, at the same distance, if it has less health than him, it prefers to attack to try to hurt him instead
of catching him. Probably, this is due to the fact that this enemy has been designed to appear in
hordes, so when there are various speeders and one is about to die, it worths to take a kamikaze
strategy, and try to hurt the player before it gets killed.

The state which presents the biggest values is when they are at medium distance and the player
is almost dead. In that case, the speeder prefers to chase him. Furthermore, when it is far and has
more health than the player, the speeder prefers to jump and attack rather than chasing the player.
This can be caused because when the agent has to go across a big distance to reach the player, the
chances to get hit by a projectile are really large, so if he jumps, he can difficult the process to
the player, as it can avoid some shoots. In this case, it seems that the agent has discovered a new
function to a task that was not designed specifically to do that.

Table 5.3: Speeders - convergence speeders function value Q

Game 1 Game 2 Game 3 Game 4 Game 5 Avg.
M A F M A F M A F M A F M A F M A F
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 2 -2 0 1 0 0 6 0 1 3 -1 0 3.2 -0.6 0.2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 2 13 7 3 12 7 3 12 2 1 13 2 2 12.4 3.6 2.2
0 7 0 0 4 0 0 7 0 0 2 0 0 4 0 0 5.4 0

122 74 98 121 95 0 83 0 0 124 99 98 98 87 98 109.6 71 58.8
-3 98 0 -1 98 0 0 0 0 -5 98 0 -2 98 0 -2.2 78.4 0
0 1 0 2 0 0 2 0 0 5 0 1 1 1 0 2 0.4 0.2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
61 58 0 59 0 0 12 8 0 49 0 0 55 26 0 47.2 18.4 0

5.1.3 Speeders: Results Q-Learning with Reward per State

This time, our approach is to have a reward matrix, with values for states only, without taking into
account the actions. Results (Table 5.4) are not very good, as the average number of speeders killed
is around 7 per minute. With the pass of the time, the number of speeders killed is not reduced.
On the contrary, it increases until four points, so it seems that the agent is not learning properly.
Analyzing the convergence of value functions, shown in Figure 5.5 to determine what is happening
in this case, it can be seen that the speeder is in the most part, learning to flee from the player and
chase him in only two cases: when they are at a medium distance and the player is almost dead,
and the same when he is far. Also, he will attack when it is far from the player and has more health.
As we can see, this strategy has no sense, because it seems that the agent is waiting until the player
has hurt himself with a bomb to give him the last attack.
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Table 5.4: Speeders - results speeders Q-learning with reward per state

GAME ID Killed speeders Player deaths
min 1 min 2 min 3 min 4 min 5

G6 5 9 15 22 30 2
G7 8 19 24 27 32 1
G8 7 20 17 38 46 1
Avg. 6.67 16 18.66 29 36 -

Increment 6.67 9.33 2.66 10.34 7 -
Average Speeders/Minute 7.2
Deaths/Game 1.33

Table 5.5: Speeders - convergence for reward per state

Game 6 Game 7 Game 8 Avg.
M A F M A F M A F M A F
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 -1 0 0 -0.33 0 0
-3 0 0 0 0 0 0 0 0 -1 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
-1 11 0 -1 43 0 -1 -1 1 -1 17.66 0.33
0 0 0 -3 0 0 -1 0 0 -1.33 0 0

118 70 91 71 71 93 48 0 63 79 47 82.33
-1 114 0 0 118 0 0 0 0 -0.33 77.33 0
-2 15 0 -1 0 29 -1 -2 18 -1.33 4.33 15.66
-8 2 0 -6 0 0 -4 0 0 -6 0.67 0
77 32 39 66 50 52 0 33 38 47.67 38.33 43

5.1.4 Speeders: Results Random Agents
In Table 5.6, the results of different games with speeders which take random actions are shown.
The average of kills of this agent is 8.5 per minute and the player has a probability to die around
the 30% each game with a duration of 5 minutes.

Table 5.6: Speeders - results random agents

GAME ID Killed speeders Player deaths
G9 42 0
G10 46 0
G11 39 1

Speeders/Minute 8.5
Deaths/Game 0.33
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5.1.5 Speeders: Results Conclusion
At this Section, a comparison of the results obtained with each type of speeder is presented.
Regarding the average number of killed enemies per minute, the BT produced a result of 6.68
speeders per minute. The Q-learning system leads to 5.4 agents per minute. On the other side, the
attempt of using Q-learning with a reward function that only had values per state, gives an average
of 7.2 speeders per minute. Finally, random artificial intelligence produces an average of 8.5 killed
speeders per minute. In order from the most useful method to the less one, it has been determined
that:

Q-learning > the behavior tree > our custom Q-learning > random agents

On the other hand, regarding the times that the player had died per game:
Q-learning (1.4) > custom Q-learning (1.3) > random (0.33) > Behavior tree (0.2)

With these results, it can be confirmed that applying reinforcement learning via the Q-learning
algorithm can be useful in video games, at least, in those where the enemies are not too complex.

5.2 Results Dyggers

At this section, we will compare the results of the second enemy implemented. It must be said, that
as the attempt to use a reward matrix to only states failed in the previous agent, it has not been
implemented in this type of enemy. For each type of dygger, another five games of five minutes
have been carried through.

5.2.1 Dyggers: Results Behavior Tree
First, Table 5.7 shows the results of the implementation of a complex behavior tree. The average of
killed dyggers is 2.88 per minute and also, the player dies 2 times per game.

Table 5.7: Dyggers - results behavior trees

GAME ID Killed dyggers Player deaths
G12 15 1
G13 12 2
G14 13 3
G15 17 2
G16 15 2

Dyggers/Minute 2.88
Deaths/Game 2

5.2.2 Dyggers: Results Random Agents
Random agents (Table 5.8) provide unacceptable results for a video game, as the player does not
die during the game, and he can kill about 14 enemies per minute, which is a really big amount in
this case.

5.2.3 Dyggers: Results Q-Learning
Table 22 shows the results of applying Q-learning to the dyggers. As we can see, the average of
dyggers per minute is 5.8. Furthermore, regarding to the dyggers killed at each minute, we can see
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Table 5.8: Dyggers - results random agents

GAME ID Killed dyggers Player deaths
G17 70 0
G18 68 0
G19 69 0
G20 70 0
G21 72 0

Dyggers/Minute 13.96
Deaths/Game 0

that despite there is an increase from the first minute to the second, from that moment to the final of
the game, there is a great decrease of killed dyggers, an average of almost 7 dyggers less, which is
a significant prove to show that the dyggers are learning from the players actions, because as time
passes it is more difficult to the player kill them. Especial attention to passing from minute 3 to 4,
in which the average indicates that not any dygger was killed in that transition, fact which is the
first time to appear.

Table 5.9: Dyggers - results Q-learning

GAME ID Killed dyggers Player deaths
min 1 min 2 min 3 min 4 min 5

G22 5 12 17 23 30 0
G23 5 11 14 23 29 0
G24 8 15 22 28 33 1
G25 3 10 12 19 23 1
G26 4 12 18 25 30 1
Avg. 5 17.13 23.6 23.6 29 -

Increment 5 12.13 6.47 0 5.4 -
Average Dyggers/Minute 5.8
Deaths/Game 0.6

5.2.4 Dyggers: Results Conclusions

The testing process has determined that behavior trees provide an average of 2.88 dyggers per
minute, nearly 14 random agents are killed each time and with Q-learning the player kills almost 6
dyggers per minute, so in this case, the order is:

Behavior tree > Q-learning > random agents

Despite behavior trees offer a better solution in this case, it is not arguable that the agents
have learned from the interaction with the player, as they have become more resistant with time.
Furthermore, there is the possibility this type of agents need more time to learn as they have
complex behavior.
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5.3 Comparison of both agents

All the results above, justify that Q-learning can be used in online learning for real time video
games. In this case, it seems that it works better in simple agents, but it is essential to remark that
the state space for both agents has been discretized as much as possible, instead of working with
thousands of states as it is usually done in the training process.

Apart from observing that the number of killed agents per minute was decreasing as the
time passed, determining that the agents were learning, we have seen that one of our agents has
discovered a new function for a task which was not designed for: the speeder attacks to use the
jump for trying to avoid getting hit by the player’s projectiles.

Another advantage that provides reinforcement learning is this type of games is that hordes
are more dynamic. For example, in hordes made with 10 speeders implemented with behavior
trees, as they follow the same rules, when certain states are accomplished in the game all of them
decide to make the same action such as attacking simultaneously. This was partially solved, by
using randoms and delays to avoid them make the animation at the same time, but they did one
after other. On the contrary, this issue does not happen when employing reinforcement learning,
because despite the agents use the same matrix, they have their own process of action selection
following the policy, which leads to a more realistic result.

Finally, despite behavior trees have a great performance regarding the number of agents
destroyed per minute, they do not progress over time. From the start until the end of a game, the
NPCs stay the same, so the solution to increase the difficulty of the agents in this case is to modify
their attributes such as health or attack power, which can moderately complicate the game for the
player. Nevertheless, this alternative does not modify the agents’ behavior unless new rules are
implemented. However, machine learning provides the solution to this problem, without the need
of designing and programming different behaviors.

5.4 Videos

In this Section, different videos of the agents are shown. Each video is constituted by several clips
that have been selected by its importance in the study.
• Speeders Behavior Trees: This video is named SpeedersBT and shows a horde compound by

various speeders controlled by the behavior tree. The collision avoidance and the poisonous
attack, which makes the player’s health decrease during a couple of seconds can be observed
during the fist part of the clip. Also, the simultaneity issue is shown.
• Speeders Q-learning Reward per pair action-state: SpeedersRL_RperActionState shows

Q-learning working with the reward matrix per pairs action-state. During the first seconds,
the agent is exploring random actions: It goes back and forth to the player, it stays near the
player without attacking, etc. In minute 0:34, the agent tries to attack the player for the first
time and, after that, it tries to reach the player and attack him another time. Even, it kills the
player at minute 1:07. Once the player starts to shoot the agent more precisely, it discovers
that the jump of the attack can be useful to avoid getting hit by the projectiles (minute 2:22).
At the last part of the video, some speeders are put together and it can be seen that the horde
is more dynamic than the one controlled by BT, because each agent takes the most suitable
action for its state.
• Dyggers Behavior Trees: This clip is named DyggersBT shows the ferocity of this type of

agents, as they make the player to be continually jumping to avoid their attacks and shooting
them when they are over the ground.
• Dyggers Q-learning Reward per pair action-state: The last video DyggersRL shows the

same agent implemented with reinforcement learning. It can be seen that the learning process
is slower than for the speeders, as they have more states. After trying different options, the
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first thing it learns is to cover itself by digging. This can be observed by the fact that after
dying several times during 2 minutes, the first thing the dygger does when respawning, is
digging, so it can avoid getting killed by the player. Nevertheless, it needs a lot more time
to learn to attack from underground. At the last part of the video, some dyggers are put
together with the player and it can be seen that they are not as difficult to beat as the dyggers
controlled by a behavior tree. Probably, because they have not achieved the convergence for
their value function in only five minutes.

5.5 Testing

The testing has been a great part of the project, as it has been an iterative process until their behavior
was completely satisfactory. This has been an arduous task due to the fact that the game Hive is still
under development, so it has been subjected to several modifications which directly have an impact
on the proper functioning of the agents, which have caused several bugs that had to been solved.
Once this was achieved, the second testing process was carried out to get the results of the different
agents. This has been a really tedious process, as several games have been performed, and on top
of that, much more games should have been played in order to get more realistic results and results
from different people are needed, but this has not been possible due to the nature of the project.
Despite having only five samples of each agent, as we have shown previously it has been possible
to extract some conclusions.

Also, for Q-learning agents, a testing method has been implemented by means of storing the
value Q matrix in a file, which has been really useful to analyze the learning process.

5.6 Evaluation of the project

In this chapter, the development process of the final project of the degree in video games’ design
and development is exposed. To clarify that, an overview task to task from the planning section in
the first chapter is going to be detailed, to contrast if all of the tasks have been accomplished.

5.6.1 Phase 1 - Documentation
This phase consists of all the tasks needed to document the research done in this paper.
• TPC At the Technical Proposal Courses, which took place in the last week of January, the

structure of that article was presented. Also, different tips for how to approach the project
were provided.
• TP During the week after the assistance to that courses, the technical proposal was elaborated.

The motivation of the selected theme was that I wanted to do a research in a currently open
issue as machine learning in video games, because it was a greater challenge to try to
implement online learning in a real time game, which has not been exploited in the industry
than simply making another video game.
• TM The task related with the elaboration of this paper, has taken the month of June. To

remark that this process duration has exceeded the estimated time in twenty more hours.
• PDV and PDP The project defense videos and presentation have been realized together, the

las week of June.

5.6.2 Phase 2 - Research
As said previously, one of the largest processes has been the research, due to my lack of experience
in the field, also the planning for this task has been suitable, because it has needed around the
predicted 60 hours. The results of this phase have been exposed in the second chapter of this paper,
state of art and it consists of different tasks:



5.6 Evaluation of the project 85

• BT Despite having theoretical knowledge in behavior trees, as they were part of the set of
themes in the artificial intelligence subject, I had not the chance to implement them before,
so I needed to document about them. Also, as this project has been developed in Unreal
Engine 4, a game engine which I had never used before an underlying learning process about
this tool has been done in a short period of time. This process has been shown in Section 2.1.
• ML The most part of the research has treated machine learning, specifically, reinforcement

learning, due to the fact that this was a completely new area for me.
• MLV The last part of the process was to investigate how video games deal with machine

learning nowadays. For my astonishment, there are only a few video games which make
use of learning techniques and if they do, the most part is for offline training. This matter
magnified my interest in investigating if online learning can be useful to games.

5.6.3 Phase 3- Design of the agents
Once the different techniques to implement selected, it was time to design how to implement them
in the agents. This issue is shown in chapter three, design. The process was divided into three
subtasks for each type of enemy. The followed steps have been to decide the desirable behavior
(CD1) for the first enemy, the speeder, and then design it with behavior trees (R1) and implement it.
When the result was acceptable, it was turn to design the Q-learning (ML1) one and implement it.
At the same time, improvements in the design of the behavior took place. After I was satisfied with
the result of both agents I repeated the same process for the second enemy, the dygger. This time,
the Q-learning design process (ML2) was easier, because I based it on the work I had previously
done, but the conceptual design (CD2) and the design of the behavior tree needed more time, due
to the wanted complexity searched for the behavior.

As we can see, the order of this phase has differed from the planning, but in this way, we have
taken benefit from time, because as we waited to have one complete enemy in all its forms, before
designing the second one, a lot of problems have been avoided, because of the experience. This can
be proved because the process took less than the estimated time, between 15 to 20 hours less.

5.6.4 Phase 4- Development of the agents
Just like it has said previously, this process has supposed a great effort, due to my inexperience
with Unreal Engine 4. As this engine is far more complex than the one I had used before (Unity)
at the same time I was implementing the agents, I was getting over a heavy learning curve of
the tool in a very short time, because I could not delay the development of the agents. Also, a
programming language that I had not too much experience with was used. Both reasons made that
the implementation of the autonomous agents have taken about 40 hours more than I had predicted.
Another drawback was that I had to familiarize with a large project such as Hive. All the tasks have
been thoroughly explained in Section 4. As we said in Section before, their order has been different
from the planning one. The actual order has been: development of behavior trees for speeders
(IR1), implementation of the learning one (IML1) at the same time with the system to get the game
state for it (SGS, which had resulted different for both enemies), implementation of BT for dyggers
(IR2) and implementation of the learning dyggers (IML2) and its state identifying system (SGS).
In the planning for this phase, which is shown in Table 4, another task was proposed: saving the
learned information in a server (S). It has not been possible to achieve this task, because I needed
to master network processes and I run out of time to learn it. Nevertheless, I have it prepared for
future work, by saving the value matrix in a file, which could then be uploaded to the server.

5.6.5 Phase 5- Results
All the tasks related to the testing and results phase have been explained previously in this chapter.
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6. Conclusions

This paper presented the comparison between the artificial intelligence behavior trees technique and
Q-learning. This project not only included a deep research on the techniques and a comparison of
them by means of related works, but it also covered the design and implementation of two different
agents employing both techniques, extracting results and comparing them. All of this, made under
a tight time schedule around about 300 hours.

First, we presented the Technical Proposal which described the work meticulously task by task
to be done during this project. As we have seen in the chapter before all those tasks have been
accomplished except the server storing mechanism. Also, objectives were described, so let’s check
if they have been achieved:

• Comparison the different artificial intelligence techniques.
In chapter 5, results and comparison between behavior trees and Q-learning are shown.
• Implementation of artificial intelligence techniques to create NPCs which simulate a

human behavior.
This consists in a really ambitious and abstract objective, but if we consider that human
behavior is not predictable by simple patterns as traditional AI is, we can aim that our learning
agents accomplish at least in part, this objective.
• Creation NPCs capable of interacting with different agents and environment elements.

Both agents interact with the environment and other agents, for instance, they interact with
the player by attacking him, they also are capable of avoiding each other to avoid collisions
between them and between static objects, dyggers can detect the floor in which they are over,
to decide whether they can dig or not, etc.
• Development enemies which modify their behavior to adapt to the player skills and his

playing style.
This objective was related to the implementation of machine learning techniques, so this has
been properly accomplished with the Q-learning as we have analyzed their value functions to
determine the strategies that the agents had learned.

With all of this, we can conclude that the objectives of the project have been successfully
accomplished.
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Also, summarizing all the knowledge obtained:
• Planning

As shown in the technical proposal, it is a good idea to make the planning of the project to
end before the deadline, so we have some extra time if a delay it is produced, in this case,
this time has been really useful to end the agents, as the UE4 learning process, has difficulted
some tasks.
• Behavior trees

This project has been really useful to master the behavior design of agents by means of
behavior trees and also their implementation with the Unreal Engine 4 BT tool.

– Performance and flow
– Types of nodes

• Reinforcement learning
This implies the major apprenticeship as this area was completely new to me. We can outline
the following items:

– The two most important solution methods using Temporal Difference are Q-Learning
and SARSA.

– The state space consists in the model of the environment containing all relevant infor-
mation regarding the possible states.

– An action space needs to be defined.
– The reward function which gives a positive or negative reward when executing a specific

action in a specific state.
– The value function determines for each state which action yields the best reward over

time.
– The policy decides which action to take in a specific state.
– The exploitation-exploration dilemma.
– Despite literature discards reinforcement learning in shooter games, Q-learning can be

in fact used in real time shooters if the agents have the same behavior and share their
experience.

• Problem solving
As this project was a bit ambitious, several problems have appeared during its development,
and all of them have been solved by making research.

With all of this, personally, I think that I have successfully completed my goals, because I have
created autonomous agents, which can learn in games of 5 minutes of duration.
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