
(https://www.cyberbotics.com/doc/guide/using-the-pioneer-
3-at-and-pioneer-3-dx-robots)

Week 2 - Ultrasonic Sensing

An autonomous robot needs to acquire knowledge about its
environment. This is done by taking measurements using sensors
and then extracting information from those measurements.

There is a wide variety of sensors in mobile robots. In this week
we present a very popular type of sensor, ultrasonic devices,
which are used for measuring distances to solid obstacles.

We will explain how ultrasonic sensors can be used for simple
navigation tasks, including wandering while avoiding obstacles, and wall following.

Ultrasonic Sensors (Ultrasonic%20Sensors.ipynb)
Detecting Obstacles (Detecting%20Obstacles.ipynb)
Searching for Free Space (Searching%20Space.ipynb)
Wandering (Wandering.ipynb)
Wall Following (Wall%20Following.ipynb)

For more comprehensive information about sensors used on mobile robots, refer to H.R. Everett's book Sensors for

Mobile Robots: Theory and Application (http://barteverett.com/book.html).

Try-a-Bot: an open source guide for robot programming

Developed by:

(http://robinlab.uji.es)

Sponsored by:

(http://www.ieee-ras.org) (http://www.cyberbotics.com) (http://www.theconstructsim.com)

Follow us:

(https://www.facebook.com/RobotProgrammingNetwork) (https://www.youtube.com/user/robotprogrammingnet)

default http://54.229.252.76:8888/nbconvert/html/default...

1 of 1 02/10/2017 11:37 AM

MOOC Autonomous Mobile Robots Week 2

(https://www.generationrobots.com/en/content
/65-ultrasonic-sonar-sensors-for-robots)

Ultrasonic Sensors
Ultrasonic sensors work by measuring the return time
of a high-frequency sound wave emitted by the sensor
(over 20,000 Hz, which is therefore inaudible to
humans). As the speed of sound is essentially known,
the obstacle’s distance can then be deduced.

The distance of the object causing the reflection is:

where is the speed of the sound (343 m/s in air at standard pressure and 20ºC) and is the time of flight.

The Pioneer 3-DX robot includes 8 forward-facing ultrasonic sensors, and 8 optional rear-facing sonar for
distance measurements. In the simulations of this course, we are going to use only the forward-facing set
of sensors.

In []:

With the following GUI widget you can move the robot around.

In []:

And you can plot a diagram with the position of the robot in the environment, and the measurements of the
ultrasonic sensors.

The plot is not updated automatically as the robot moves. You need to click on the "Refresh" button.

In []:

In []:

The values of the measurements are stored in an array:

In []:

d

d = c ⋅ t2
c t

import packages.initialization
import pioneer3dx as p3dx
p3dx.init()

import motion_widget

%matplotlib inline
import sonar_plot

in case that the plot does not appear, you may run this other cell
reload(sonar_plot)

p3dx.distance

Ultrasonic Sensors http://54.229.252.76:8888/notebooks/Ultrasonic ...

1 of 2 02/10/2017 11:55 AM

The sensors are numbered from 0 to 7 starting from the left
side of the robot, in clockwise order (see the figure).

Each measurement can be read individually with the
appropriate index in the array, e.g. the first measurement is

p3dx.distance[0]

The following code uses a for loop for displaying the values
of the eight sensors with a precision of three digits. Even if the
robot is not moving, the values are likely to be different from those measured above, because of the
(simulated) noise in the readings.

In []:

Let's test the sensors in a first simple application: detecting obstacles (Detecting%20Obstacles.ipynb).

Try-a-Bot: an open source guide for robot programming

Developed by:

(http://robinlab.uji.es)

Sponsored by:

(http://www.ieee-ras.org) (http://www.cyberbotics.com) (http://www.theconstructsim.com)

Follow us:

(https://www.facebook.com
/RobotProgrammingNetwork)

(https://www.youtube.com
/user/robotprogrammingnet)

for i in range(8):
print("Sensor %d is %.3f" % (i, p3dx.distance[i]))

Ultrasonic Sensors http://54.229.252.76:8888/notebooks/Ultrasonic ...

2 of 2 02/10/2017 11:55 AM

Detecting Obstacles
An obstacle can be detected by comparing the values
returned by the ultrasoinc sensor with a predefined

distance threshold.

For values below that threshold, the detected obstacle is
considered too close to the robot, and an action should be
taken, for example stopping and/or turning, in order to
avoid collision.

In the example figure, the value of sensor 3 is less than
the threshold (represented by the dotted circle), as signaled by the green arrow.

In []:

Exercise:

Make a program for the robot to move forward until any of the front sensors (numbered 3 and 4) detects
an obstacle below a given distance threshold, for example 1 meter. Use the following template code:

In []:

You may confirm the proper functioning of your code with the following test:

In []:

And you can plot a diagram with the position of the robot in the environment, and the measurements of the
ultrasonic sensors.

The plot is not updated automatically as the robot moves. You need to click on the "Refresh" button.

In []:

In []:

Let's try the next step: searching for free space (Searching%20Space.ipynb).

import packages.initialization
import pioneer3dx as p3dx
p3dx.init()

...
while ...:

p3dx.move(2.5,2.5)
...

p3dx.move(0,0)

for i in range(3,5):
print("Sensor %d is %.3f" % (i, p3dx.distance[i]))

%matplotlib inline
import sonar_plot

in case that the plot does not appear, you may run this cell
reload(sonar_plot)

Detecting Obstacles http://54.229.252.76:8888/notebooks/Detecting O...

1 of 2 02/10/2017 11:56 AM

Searching for Free Space
After an obstacle is detected, the robot must turn either left or right in search for free space, and move
forward again.

Here is one possible solution:

Find the minimum of the three left
sensors (0, 1, 2)
Find the minimum of the three right
sensors (5, 6, 7)
If the left minimum is bigger than
the right minimum

Turn left
Else

Turn right
In any case, keep turning until both front sensors (3, 4) are bigger
than the chosen minimum

In the sample figure, the robot would turn right, since the minimum of the right side sensors (green arc) is
bigger than the one of the left side (red arc).

In []:

Minimum and maximum of an array

For finding the minimum and maximum of an array, you can use the Python built-in functions min and max
(https://docs.python.org/2/library/functions.html#max).

In []:

In []:

In []:

For finding the minimum in a specific sub-array, you can use the Python slice notation for lists
(http://stackoverflow.com/questions/509211/explain-pythons-slice-notation):

In []:

In []:

In []:

Exercise

Implement the presented algorithm for turning towards free space.

import packages.initialization
import pioneer3dx as p3dx
p3dx.init()

p3dx.distance

min(p3dx.distance)

max(p3dx.distance)

left sensors
p3dx.distance[:3]

front sensors
p3dx.distance[3:5]

right sensors
p3dx.distance[5:]

Searching Space http://54.229.252.76:8888/notebooks/Searching ...

1 of 2 02/10/2017 11:56 AM

In []:

You can plot a diagram with the resulting position of the robot in the environment, and the measurements
of the ultrasonic sensors.

In []:

Let's put together the last two exercises in a simple application: wandering (Wandering.ipynb).

Try-a-Bot: an open source guide for robot programming

Developed by:

(http://robinlab.uji.es)

Sponsored by:

(http://www.ieee-ras.org) (http://www.cyberbotics.com) (http://www.theconstructsim.com)

Follow us:

(https://www.facebook.com
/RobotProgrammingNetwork)

(https://www.youtube.com
/user/robotprogrammingnet)

...
if ...

while ...
p3dx.move(-1,1)

else:
while ...

p3dx.move(1,-1)
p3dx.move(0,0)

%matplotlib inline
import sonar_plot

Searching Space http://54.229.252.76:8888/notebooks/Searching ...

2 of 2 02/10/2017 11:56 AM

Wandering
A simple wandering behavior can be achieved by the combination
of the previously coded exercises:

repeat forever
 move forward until an obstacle is detected
 turn either left or right for free space

Instead of startinf from scratch, you will reuse the code in two
Python functions, which can be called from inside the main loop.

In []:

First, you need to copy and paste the code inside the following functions:

In []:

In []:

Finally, you should run the main loop in
the following cell.

The execution can be stopped at any time

by pressing the interrupt kernel button.

In []:

The resulting trajectory can be plotted.

In []:

Next application: wall following (Wall%20Following.ipynb).

import packages.initialization
import pioneer3dx as p3dx
p3dx.init()

def forward():
...

def turn():
...

try:
while True:

forward()
turn()

except KeyboardInterrupt:
p3dx.move(0,0)

%matplotlib inline
import trajectory_plot

Wandering http://54.229.252.76:8888/notebooks/Wandering....

1 of 2 02/10/2017 12:03 PM

(http://java-player.sourceforge.net/examples-3.php)

Wall Following
This is another popular behavior for mobile robots
indoors. The robot keeps a constant distance to a
lateral wall (either left or right) while moving forward
and turning at corners.

In this way, the robot can explore rooms or corridors
safely.

For this application, we are going to implement in
Python a Java algorithm by Radu Bogdan Rusu (https://www.linkedin.com/in/radubogdanrusu) from his
Javaclient Player/Stage Project (http://java-player.sourceforge.net/examples-3.php).

The full source code can also be found here (img/WallFollowerExample.java).

In []:

Define the wall threshold.

In []:

Define the default translational and rotational speeds.

In []:

We need to control the speed of the robot with the function that computes the angular velocities of the
wheels based on the linear and rotational speed of the robot. This function was defined in an exercise
during the first week of the course. You can copy and paste the code here:

In []:

We need to implement now the getSonars function (lines 142-156 of the Java source).

This function returns the minimum value of the left sensors (0, 1, 2) and the minimum value of the front
sensors (3, 4).

As in previous exercises, you can use the built-in min function and array slicing, for greatly simplifying the
code.

In []:

import packages.initialization
import pioneer3dx as p3dx
p3dx.init()

MIN_WALL_THRESHOLD = 0.3
MAX_WALL_THRESHOLD = 0.4

DEF_X_SPEED = 0.2
DEF_YAW_SPEED = 0.15

def move(V_robot,w_robot):
...

def getSonars():
leftSide = ...
frontSide = ...
return leftSide, frontSide

Wall Following http://54.229.252.76:8888/notebooks/Wall Followi...

1 of 3 02/10/2017 12:05 PM

Now it's time to implement the getWall function (lines 109-140 of the Java source).

This function works in two steps:

The robot goes forward until a wall is detected1.
The robot turns right until it gets a smaller value in sonar 02.

WARNING: due to the fact that sensor noise is simulated in Webots, the condition

sonarValues[0] <= previousLeftSide

will not work properly, and it has been replaced by a comparison with the wall threshold.

In []:

Finally, we implement the main function (lines 52-107 of the Java source - obviously the Player/Stage
code is not necessary).

In []:

The resulting trajectory of the robot can be plotted.

In []:

def getWall():
leftSide, frontSide = getSonars()
while ...:

move(...)
leftSide, frontSide = getSonars()

while p3dx.distance[0] > MAX_WALL_THRESHOLD: # don't use previousLeftSide
if ...:

yawSpeed = ...
else:

yawSpeed = ...
move(...)
leftSide, frontSide = getSonars()

move(0,0)

try:
Go ahead and find a wall and align to it on the robot's left side
getWall()
while True:

get all SONAR values and perform the necessary adjustments
leftSide, frontSide = getSonars()
by default, just move in front
xSpeed = ...
yawSpeed = ...
if we're getting too close to the wall with the front side...
if ...:

back up a little bit if we're bumping in front
...

else:
if we're getting too close to the wall with the left side...
if ...:

move slower at corners
...

else:
if we're getting too far away from the wall with the left side...
if ...:

move slower at corners
...

Move the robot
move(...)

except KeyboardInterrupt:
move(0,0)

%matplotlib inline
import trajectory_plot

Wall Following http://54.229.252.76:8888/notebooks/Wall Followi...

2 of 3 02/10/2017 12:05 PM

Try-a-Bot: an open source guide for robot programming

Developed by:

(http://robinlab.uji.es)

Sponsored by:

(http://www.ieee-ras.org) (http://www.cyberbotics.com) (http://www.theconstructsim.com)

Follow us:

(https://www.facebook.com
/RobotProgrammingNetwork)

(https://www.youtube.com
/user/robotprogrammingnet)

Wall Following http://54.229.252.76:8888/notebooks/Wall Followi...

3 of 3 02/10/2017 12:05 PM

