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Influence of Al,0; Particle Size on Microstructure,
Mechanical Properties and Abrasive Wear Behavior
of Flame-Sprayed and Remelted NiCrBSi Coatings
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The influence of micrometric alumina (low surface area-to-volume ratio) and nanometric alumina (high
surface area-to-volume ratio) on microstructure, hardness and abrasive wear of a NiCrBSi hardfacing alloy
coating applied to an AISI 304 substrate using flame spraying (FS) combined with surface flame melting
(SFM) is studied. Remelting after spraying improved the mechanical and tribological properties of the
coatings. Microstructural characterization using XRD, SEM and EDS indicated that alumina additions
produced similar phases (NiSi, NizB, CrC and Niz;Si;;) regardless of the alumina size, but the phases
differed in morphology, size distribution and relative proportions from one coating to another. The addition
of 12 wt.% nanometric AL,O; increased the phases concentration more than five- to sixfold and reduced the
hard phases size about four-to threefold compared with NiCrBSi + 12 wt.% micrometric Al,O3;. Nanoa-
lumina led to reduced mass loss during abrasive wear compared to micrometric alumina and greater

improvement in hardness.

Keywords abrasive wear, flame spray, micrometric and nanomet-
ric AlL,O3, NiCrBSi, particles surface area, surface
flame melting

1. Introduction

Wear-resistant hard coatings obtained by different reinforce-
ment powders are applicable in many fields of industry.
NiCrBSi coatings are widely used to improve the quality of
components whose surface is subjected to severe work
conditions such as coal-fired boilers, heat exchangers, turbines,
tools, extruders, plungers, roller tables, piston rings, wearing
plates, pump shafts, agriculture machinery (Ref 1, 2). Nickel-
based alloys used either on their own or combined with other
reinforcement particles have become popular because of both
outstanding wear and corrosion resistance at high temperatures
and relatively low cost (Ref 3-6). Such protective coatings are
applied for original part production as well as for restoration
purposes.

In recent years, the use of thermal spraying techniques for
the application of self-fluxing (SFA) NiCrBSi coatings has
increased enormously (Ref 7-10). Nevertheless, some results
show that, despite the introduction of new deposition methods
such as high-velocity oxy-fuel, thermal-sprayed Ni-based
coatings have low to moderate adhesion to the substrate,
porosity and form oxide interlayers (Ref 11-14), which impair
their properties. As a result, subsequent melting could be
necessary to reduce the porosity and improve their tribological
properties. There are a considerable number of techniques to
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melt and propel the coating material. Flame spray is the one
most commonly applied (Ref 15). It is also one of the most
economical and can be applied to a wide range of materials.
Many researchers have studied the addition of different
types of reinforcement in order to improve the wear resistance
of SFA coatings (Ref 16-18). Carbides (Ref 16-19) and carbide-
based cermets, mostly WC-Co (Ref 19-22), are used as hard
particles in the majority of cases. However, the usage of WC or
WC-Co entails some problems, such as loss of carbon and
formation of brittle W,C phase (Ref 16). This is why studying
the alternatives, such as TiC- and Cr,Cs-based materials (Ref
23) was considered important. Previously, the addition of
TiC-NiMo and Cr,C;-Ni cermet particles proved to enhance the
abrasive wear resistance of Ni-based SFA HVOF coatings up to
2 times (Ref 24). Anyway, a central problem with the carbide
reinforcement is the dissolution of the carbide particles (Ref 25)
that results in lowered wear resistance, as there are less
remaining metallic carbides to reinforce the material to protect
the coatings (Ref 26). Carbide particle dissolution occurs when
enough heat is attained, above a critical temperature (Ref 27).
In order to avoid this problem, oxide ceramics such as alumina,
zirconia, titania, chromia, silica and yttria have been also
widely used as coating materials to improve wear, erosion,
cavitation, fretting and corrosion resistance (Ref 28-30). Other
researchers have studied the particle volume fraction, size and
stiffness on wear resistance of particle-reinforced composites
(Ref 31). Natarajan et al. investigated the effect of graphite
addition on the microstructure, hardness and abrasive wear
behavior of flame-sprayed NiCrBSi coatings (Ref 32). Harsha
et al. also studied the influence of the WC particle addition on
the microstructure, microhardness and abrasive wear behavior
of flame-sprayed Co-Cr-W-Ni-C (EWAC 1006) coatings
deposited on low-carbon steel substrate (Ref 33). A review of
technical literature regarding cermet coatings after it is sprayed
and remelted does not address the question concerning the
influence of reinforcement particles surface area on the
microstructure and abrasive wear behavior of these coatings.
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In the current work, a comparison of the abrasive wear behavior
of NiCrBSi coatings deposited by flame spray technique and
reinforced with micro- and nanometric particles of alumina is
made with the aim of establishing the relationship between the
tribological response of the material and the influence of Al,O3
particles surface area.

2. The Experimental Procedure

2.1 Materials

A NiCrBSi Castolin PE 3307 alloy with an average grain
size range of 125/45 pm and melting point of 1025° C was used
as metal matrix, and its nominal chemical composition in
weight is: 0.4% C, 3.1% Si, 1.6% B, 10.1% Cr, 2.8% Fe and Ni
rest. Spherical micro-Al,O3; (PRAXAIR ALO-101, ALO-325
mesh) and nano-Al,O; (NANOX S2600S) were used as
reinforcement ceramic phase, in order to obtain two different
coatings (NiCrBSi + micrometric Al,0; and NiCrBSi + nano-
metric Al,O3).

Powder mixture of commercial NiCrBSi alloy (88 wt.%)
and micro- and nanometric Al,O3 (12 wt.%) was prepared with
a Turbula rotative mixer, for 4 h at 300 rpm, in order to obtain
an homogeneous powder.

2.2 Al,0; Surface Area Determination

In order to compare the surface area of micro- and
nanometric Al,Oj3-strengthened NiCrBSi spray powder, N,
adsorption measurements were taken at 77 K using an Accel-
erated Surface Area and Porosimetry Analyzer (ASAP 2020;
Micrometritics Instrument Corp.). The N, adsorption technique
quantifies the surface area and porosity characteristics by
measuring the amount of N, adsorbed and desorbed onto a
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Fig. 1 BET plot of N, adsorption and desorption isotherms of
nanometric and micrometric Al,O3 dispersion-strengthened NiCrBSi
spray powder

Table 1 Thermal spray parameters

porous solid material over a wide range of relative pressures P/
P, from 10 to 1 (where P is the equilibrium pressure and P, is
the saturation pressure). The adsorption isotherms obtained
from these measurements allow to determine the surface area,
pore volume, and pore size distributions (PSDs) (Ref 34-36).
The specific surface area is calculated based on Brunauer,
Emmett and Teller (BET) theory (Ref 37) from the linear part of
the adsorption isotherm, at pressures 0.05 < P/P, < 0.30.
According to Fig. 1, nanometric Al,O; has a greater surface
area compared to the micrometric Al,Os.

2.3 Thermal Spray

AISI 304 test specimens of 8 mm diameter and 18 mm
length were grit-blasted with corundum particles of 99.6%
purity and mean size of 0.53 mm, using 0.4 MPa air pressure,
incidence angle of~45° and gun-to-substrate distance of
130 mm. The surface was then cleaned and degreased using
acetone within an ultrasonic bath. The average surface rough-
ness was 5.1 £0.5 um, and the mean roughness depth (defined
as the vertical distance between the highest peak and deepest
valley) was 28.3+2.4 um. They were measured using a
profilometer (Perthometer M1, Mahr GMBH, Germany).

Coatings were all deposited with a CDS-8000 flame spray
gun, made by Castolin Eutectic. Thermal spray parameters are
shown in Table 1. After the flame spraying process (FS),
coatings underwent surface flame melting (SFM). Furthermore,
other samples were coated with commercial NiCrBSi (unmod-
ified) powders to evaluate the effect of dispersed micro- and
nanometric Al,O5 reinforcement on abrasive wear behavior.

The melting process was performed using the surface flame
melting (SFM) with scanning speed of approximately 150 mm/
min. The coatings obtained were about 1.5 mm thick.

2.4 Methodology of XRD Measurement

The crystalline phases of the initial sprayed powder and after
remelting were analyzed by x-ray diffraction (XRD), using a
D5000D diffractometer by Siemens (Germany), employed at
ambient temperature with an intensity scanner vs. diffraction
angle between 5° and 70° (step size of 0.050°, scanner
velocity = 3 s/step) using copper Ko radiation (1 = 1.5406 A),
a voltage of 40 kV and a 30 mA filament current.

2.5 Microhardness

Vickers microhardness testing was conducted using a
Shimadzu tester applying 200 g load during 15 s to determine
the microhardness profile along the cross section of deposited
coatings from the substrate base metal to the coatings surface.
At least six measurements were taken in each distance, and the
average values have been taken in this study.

2.6 Abrasive Wear Test

Abrasive wear tests were conducted on a TE79/P pin-on-
disk multi-axis tribometer from Plint and Parteners under room
temperature and humidity. Self-fluxing NiCrBSi alloy 12%

Gun speed, mm/s Number of strokes Distance, mm Acetylene pressure, bar Oxygen pressure, bar Air pressure, bar Flame type

67.5 5 120

4 2.5 Neutral
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dispersed alumina (micro- and nanoparticles), over stainless
steel pins were slid under a 5, 10 and 20 N load against a SiC
disk (Buehler metallographic abrasive, 400 GRIT 100 pm). A
new abrasive disk was used for each 10-m test run, in order to
provide fresh abrasives over a sliding distance of 100 m. The
loss of material was determined by weighting the samples
before and after the tests, and ultrasonic cleaning was carried
out for each of them. Three abrasion tests were performed for
each type of samples, and their results were reproducible within
5% deviation. The width of the wear track was also measured at
the end of each test so as to calculate the total volume worn
away in line with the recommendation of the ASTM G77
norms.

3. Results and Discussion

3.1 Microstructural Characterization

3.1.1 XRD Analysis. The comparison of x-ray diffraction
patterns for each coating and the initial powder are shown in
Fig. 2. It can be observed that Ni and Cr peaks are detected in
the x-ray diffraction analysis of the initial powder and the same
peaks, even weaker, are observed in the deposits. With
reference to the original powder, the results show that the
biggest peaks correspond to Ni and also to the Cr solid solution
in Ni matrix. On the other hand, two Cr peaks exist, which can
be attributed to BCr and SiCr.
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Fig. 2 X-ray diffraction for the NiCrBSi-Al,O; coatings on AISI 304: (a) no modified NiCrBSi, (b) NiCrBSi + 12% micrometric Al,O3 and (c)

NiCrBSi + 12% nanometric Al,O3
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In Fig. 2(a), two spectra of commercial powder and
NiCrBSi coating can be seen. The one at the bottom shows
the powder diffraction peaks and the top one shows XRD
spectra of remelted coating. As it can be expected in all three
cases, Fig. 2(a), (b) and (c), Ni peaks are the strongest. We can
see a small Cr peak at 49° and at about 45° chromium peak
overlaps with the strong Ni peak. There are some minor peaks
in all three spectra. These belong to borides, carbides and
silicates. It can be observed that no significant changes occur in
diffractograms after the remelting process of NiCrBSi coating.
Ni peaks are still the most intense, and there is just small
increase in their width. It can indicate slight amorphization
during deposition and remelting processes. Smaller peaks of
CrC, Ni3B and NiSi can hardly be detected in the diffrac-
tograms of the remelted coating. It is possible that decompo-
sition of some of those compounds had taken place during the
coat deposition and remelting processes.

In Fig. 2(b) and (c), the addition of 12% of micrometric
(lower-alumina surface area) and nanometric (higher-alumina
surface area) results in appearance of alumina peaks. In
remelted coating diffractograms, these peaks are relatively
weak. It can be explained by the gradual separation of NiCrBSi
and Al,O5 during deposition and remelting processes, because
of the different particle size and different mass of the powders
mixed. Smaller peaks of CrC, Ni;B and NiSi appear in all of
diffractograms, and no major changes occur.

Generally speaking, the solid solution is created during the
cooling period of the atomization process. The slow cooling rate
allows the precipitation of NixB and NiSi phases because of their
low melting point (Ref 38, 39). That is, during the spray, the
powder is completely melted inducing the dissolution of borides
and silicides in the liquid phase. It must be underlined that the
presence of B and Si elements makes difficult the crystallization
phenomena. With reference to previous works (Ref40, 41), when
the cooling rate increases, a crystallization process becomes
impossible and amorphous formation conditions are satisfied.
Then, during the cooling of the particles just after impacting the
substrate, this building material presents an amorphous structure
if its cooling rate is relatively high. The cooling rate is also
influenced by the thickness of the splats. When a critical
thickness is reached, the contact surface between the particle and
the substrate is reduced, leading to a lower cooling rate and thus
the crystallization process occurs.

3.1.2 Coatings Microstructure. The general view of the
coatings cross section is shown in Fig. 3. The porosity of
remelted coatings is generally low and can be observed in the

upper part of the deposited coating, but the overall homogene-
ity is quite good, as the splat boundaries disappeared in
consequence of fusing process. Moreover, the absence of
cracking or delamination and the good bond with the substrate
show that the processing parameters selected in this study have
ensured high-quality coatings. The boundary roughness
between coating and substrate is preserved; no metallurgical
bonding can be expected due to flame remelting process.

The SEM image of unmodified NiCrBSi coating, Fig. 4,
shows a homogenous microstructure and some porosity. As
seen in the EDX, this microstructure based on Ni matrix is rich
in Cr and poor in Fe and Si. The randomly scattered and
relatively darker gray phase contains Ni, Cr, C, Si and Fe as
well as other compounds based on chromium carbides and
borides or even amorphous phases along the grain boundaries.
EDS spot analysis were performed to identify the chemical
composition of different phases, and the corresponding results
are listed in Table 2.

In Fig. 5, corresponding to the NiCrBSi + 12% micrometric
Al,05 coatings the melted zone has a homogenous distribution
of Cr precipitation of blocky morphology (light gray). X-ray
point microanalysis and chemical mapping of this zone indicate
that the Cr solid solution contains Ni (28.36 wt.%), C
(15.31 wt.%), Si (2.29 wt.%) and Fe (2.29 wt.%). The micro-
metric alumina is black-colored and randomly scattered.

S
Spectrum 1

+
Spectrum 2

10pm v Electron Image 1

Fig. 4 SEM micrograph of melted NiCrBSi coating

Fig. 3 SEM images showing morphologies of: (a) unmodified NiCrBSi, (b) NiCrBSi + 12% micrometric alumina and (c) NiCrBSi + 12%

nanometric alumina

1650—Volume 26(4) April 2017

Journal of Materials Engineering and Performance



Table 2 Chemical composition (wt.%) of remelted NiCrBSi coating

Elements C (0] Si Cr Fe Ni

Spectrum 1 11.14 2.80 1.53 37.87 2.08 44.58
Spectrum 2 8.31 2.20 22.04 2.87 64.58
Spectrum 3 7.89 3.01 7.69 2.48 78.94
Spectrum 4 12.74 1.97 20.49 1.95 62.84

Al Ka1

Fig. 5 Mapping of Al and Cr elements distribution of NiCrBSi + 12% micrometric Al,O5

(a)

Fig. 6 MEB image of microstructure of upper and lower parts of NiCrBSi + 12% nanometric Al,O3 coating

Figure 6 shows the microstructure of the NiCrBSi + 12%
nanometric Al,O3 coating. The remelting zone has a non-
homogenous microstructure, probably because of the local
change in solidification conditions (Ref 42, 43). It can be
observed that the lower zone is around 0.9 mm thick and their
microstructural constituents are a homogenous distribution of
small precipitation (1-2 pm) on Cr and Ni metal matrix, Fig. 6
and 7. The thin Cr precipitation has been formed at the
substrate interface (lower zone) because of the metal carbides
formation during the melting process and higher surface area of
well-distributed nanometric alumina (Fig. 8). This fact accel-
erates the nucleation and acts as a heat sink (high undercool-
ing), where the temperature gradient (G) is fairly low and the
solidification velocity (v) is relatively high, with a sufficient
low G/v ratio. Figure 7 shows the chemical mapping of Al and
Cr elements distribution of NiCrBSi + 12% nanometric Al,Os.

X-ray point microanalysis, Fig. 9(a), reveals that the
microstructure of the NiCrBSi + 12% nanometric alumina
consists mainly of a Ni-based matrix with Cr (7.86 wt.%), Fe

Journal of Materials Engineering and Performance

(5.06 wt.%) and Si (3.65 wt.%). Coarse dark gray phase (1)
contains Cr (67.98 wt.%), Ni (29.23 wt.%), B (1.88 wt.%) and
Si (0.9 wt.%); light gray phase (2) principally consists of Cr
(68.15 wt.%), C (17.21 wt.%), Ni (11.75 wt.%) and Fe
(2.89 wt.%); and finally black phase (3) consists of alumina.
Immediately above this layer (upper zone), higher inhomo-
geneity is shown. This is mostly due to the increasing size of
hard inclusions (5-6 um) and their different shapes. The
microstructural changes usually are related to the change in
the solidification condition, which means that the temperature
gradient (G) is fairly high and the solidification velocity (v) is
relatively low (low undercooling).

So the reinforcement particles below a certain size (with
enough surface area) are pushed of solidification front and can
act to restrict the precipitates grain growth. At the same point,
the energy required to push the particles will be less than that
for dendrite, to branch out from same gap in the surrounding
particles and nucleate a new grain. This mechanism results in a
smaller grain size and thus increased strength. If one could get

Volume 26(4) April 2017—1651
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Fig. 7 Chemical mapping of Al and Cr elements distribution of NiCrBSi + 12% nanometric Al,O5 (lower zone)
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Fig. 9 MEB cross section (lower zone) of NiCrBSi + 12% nanometric alumina showing: (a) diverse phases existing and (b) eutectic morphol-

ogy

nucleation of a grain around each or a large percentage of
nanosized particles with higher surface area, a very fine grain
could be obtained.

There are two considerations that are involved in restricting
growth by particle pushing: (1) The lower thermal conductivity
of the particle affects the temperature gradient ahead of the
solidification front and therefore acts as a barrier to the removal
of heat necessary for further solidification and (2) the solid
particle acts as a barrier preventing solute diffusion away from
tip of the growing dendrite, thereby changing the concentration
gradient and restricting growth (Ref 44).

XRD and SEM results strongly suggest that the blocky dark
gray phase (1) is CrB- and Cr;B-type chromium boride, and its
formation may possibly take place by primary solidification. On
the other hand, the light gray phase (2) could be determined as a
complex chromium-iron carbide and its formation could occur
by a local change of the primary solidification mode. The

1652—Volume 26(4) April 2017

formation of carbides and borides during the remelting process
of this group of Colmonoy alloys has been previously reported
by several authors (Ref 45-47). Moreover, it has been found
that, during the solidification of the clad molten pool, it is
inevitable that large amounts of eutectics are formed, such as
the lamellar eutectic shown in Fig. 9(b).

3.2 Coatings Microhardness

Figure 10 shows the measured microhardness for the three
obtained coatings, corresponding to the different powder types
tested. The unmodified NiCrBSi alloy presents a uniform
hardness value closer to 450 HV with relatively uniform
behavior. NiCrBSi + 12% micrometric Al,O5 increases hard-
ness around 20.45% but with strong variations, which can be
attributed to the micrometric Al,O3 particles being dispersed
into a weak Ni-based matrix and the heterogeneous distribution

Journal of Materials Engineering and Performance



of coarse Cr carbides, while the NiCrBSi + 12% nanometric
Al,O5 further increases hardness around 50% and has more
uniform behavior, with mean value proportional to the Al,O3
surface area and higher relative proportions of fine metallic
carbides and borides precipitation.

3.3 Abrasive Wear Results

Figure 11 illustrates the roughly linear evolution of volume
loss over sliding distance for test applying the same velocity
(8.8 m/min).

Abrasive wear behavior of unmodified and modified
coatings with micro- and nanometric alumina as a function of
normal load applied is shown in Fig. 12. In general, it can be
seen that there is significant difference in wear according to
changes in normal load, except at lowest load (5 N), where
there was a marked reduction in wear rate.

Wear rate versus normal load relationship for unmodified
NiCrBSi shows that wear rate is largely governed by the
applied load. Increase in wear rate of coating due to increase in
normal load depends on the hard microstructure components
distribution on the Ni soft matrix.

Influence of alumina addition on wear rate of NiCrBSi
coatings. It can be observed that addition of 12% of micro-
metric alumina lowers the wear rate of coating about 25%
under the same sliding conditions. However, nanometric
alumina addition lowers the wear rate about 54%. The less
cutting extent and lower SiC penetration was found due to the
higher hardness and more refined grain structure, and carbide
phases distribution along the track is also responsible for
different wear rates.

SEM images of wear surface of unmodified coating show
the damage increase on wear surface in the form of higher
number of microgrooves, and plastic flow of coating in
perpendicular direction to sliding direction takes place,
Fig. 13(a). Microgrooves are running in sliding direction.
Plastic deformation can be seen as extruded fins at the edge of
the grooves-produced rubbing. These fins can get detached to
form secondary chips when coalescence of cracks takes place.
Furthermore, the observation of the worn surface shows that the
grooves are step-side and correspond well in size to the
abrasive particles used.

The addition of micrometric alumina coating is shown in
Fig. 13(b), and it can be observed that the wear surface is not
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subjected to as much damage and lower plastic flow as in case

of unmodified coating under identical sliding conditions.
NiCrBSi coating with nanometric alumina addition, shows

that the damage of the wear surface was found to be a quite
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smooth than that with micrometric alumina and the coating
presented comparatively lower plastic flow and hence better
abrasive wear resistance as show in Fig. 13(c).

3.4 Effect of Micro- and Nano-Al,0; on Abrasive Wear
Resistance

In this study, it has been found that the microstructure of
unmodified NiCrBSi coating is based on solid solution of weak
Ni matrix and on other compounds based on CrC and CrB
deposited along the grain boundary. The abrasive wear tests of
this alloy have demonstrated a higher wear rate which can be
attributed to deeper, winder scratches and thereby damage on the
soft Ni-Cr matrix, Fig. 14(a). Addition of hard particles of
micrometric alumina (lower particles surface area) to compara-
tively soft Ni-Cr matrix increases the microhardness which, in
turn, lowers the damage on wear surface by abrasion. This might

be due to improving the temperature distribution and increasing
the cooling rates during the solidification process which enhances
the formation of relatively low intensity hard carbide and boride
of Cr precipitates on the Ni-Cr matrix. However, wear surface of
NiCrBSi + 12% micrometric alumina coating showed craters
due to dislodging of Al,O5 particles, Fig. 14(b), and brittle
fracture of the particles not extracted from the matrix, Fig. 14(c).

Addition of 12% nanometric alumina (higher-particles
surface area) produces microstructural change in NiCrBSi
coating. This change in morphology has played a major role in
improving of abrasive wear behavior, which can be attributed to
the: (a) higher surface area of nanometric alumina compared to
the micrometric one, (b) higher cooling rate during solidifica-
tion process and c) formation of high-intensity and well-
distributed cuboids of Cr carbide on the Ni-Cr matrix. Also it is
expected that alumina addition and the primary crystals of Cr
carbide precipitation formed with sharp edges are the possible

Fig. 13 SEM micrograph of the wear track of: (a) NiCrBSi, (b) 12% micrometric Al,O3 dispersion-strengthened NiCrBSi coating, (c) 12%

nanometric Al,O3 dispersion-strengthened NiCrBSi coating

(a)

Fig. 14 (a) SEM image of the worn surface of NiCrBSi + 12% micrometric alumina shows a brittle fracture of the micrometric alumina, (b)
and (c) damage caused by micrometric alumina reinforcement extracted from the matrix (40 x)

1654—Volume 26(4) April 2017
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causes of stress concentrated which increase the Ni matrix
hardness.

4. Conclusions

Experimental investigations conducted in the present work
to study the effect of Al,O3 particles size on abrasive wear of
NiCrBSi metal matrix composites have provided the following
conclusions:

e Under employed spray conditions, unmodified NiCrBSi,
NiCrBSi + 12 wt.% micrometric Al,O3; and NiCrBSi +
12 wt.% nanometric Al,O; (both mixed powder) have
been deposited by thermal spray technique combined with
surface flame melting process to develop coatings of aver-
age 1.5 mm thick on AISI 304 stainless steel substrate.
Microhardness of the deposited coatings is found to be
450,00 for unmodified NiCrBSi, 542,40, for NiCrBSi +
12 wt.% micrometric Al,O; and 813,09 for NiCrBSi +
12 wt.% nanometric Al,Os.

* The microstructure of unmodified NiCrBSi coating layer
is mainly composed of Ni-Cr solid solution matrix and
hard compounds based on carbide, boride and silicide
(CrC, NizB, NiSi and Ni;z18Sil,) along the grain bound-
aries.

e The addition of 12 wt.% Al,O; in the NiCrBSi coatings
contributes to improving the hard phases (CrC, NizB, NiSi
and Ni;;Sij,) distribution on the soft Ni-Cr matrix by
increasing the cooling rates after remelting process which
in turn depends on the surface area of the Al,O3 rein-
forcement particles.

e The addition of 12 wt.% nanometric Al,O3 in the NiCrBSi
coatings reduces the grain size of hard phases (CrC, Ni3B,
NiSi and Ni3;Sijy) from 6-7 pm, obtained with addition of
12 wt.% of micrometric Al,Os, to 1-2 pm, which results in
a harder coating.

¢ The abrasive wear rate of the unmodified NiCrBSi coating
is 23% higher than the NiCrBSi + 12 wt.% micrometric
Al,O3, and 86% than the NiCrBSi + 12 wt.% nanometric
Al,O3. The lower wear rate of NiCrBSi + 12 wt.% nano-
metric Al,O3 is due to higher hardness, more refined and
uniformly distributed hard phases (CrC, Ni;B, NiSi and
Ni3;Sij») on the soft Ni-Cr matrix.
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