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Abstract

Recently several methodologies for carrying out geostatistical analysis of func-
tional data has been proposed. All of them assume that the spatial functional process
considered is stationary. However in practice we often have nonstationary functional
data sets because there is spatial trend in the mean. Here we propose a methodology
to extend kriging predictors for functional data to the case where the mean function
is not constant through the region of interest. We consider an approach based on
the classical residual kriging method used in univariate geostatistcs. We propose a
three steps procedure. Initially a functional regression model is used for detrending
the mean. Posteriorly we apply kriging methods for functional data to the regression
residuals for doing prediction of a residual curve on a non-data location. Finally the
prediction curve is obtained as the sum of the trend and the residual prediction.
We apply the methodology to a salinity data set corresponding to 21 salinity curves
recorded a the Ciénaga Grande de Santa Marta estuary, located in the Caribbean
coast of Colombia. A cross-validation analysis was carried out in order to establish
the performance of the methodology proposed.

Keywords: Cross-validation; Functional linear model; Residual kriging; Salinity.

1 Introduction

In the last years the number of situations where the data to be analyzed are func-
tions have increased. Since beginning of the nineties, functional data analysis (FDA)
(Ramsay and Silverman, 2005) has been used to describe, analyze and model this
kind of data. Functional versions for a wide range of statistical tools (ranging
from exploratory and descriptive data analysis to linear models and multivariate
techniques) have been developed (see an overview in González-Manteiga and Vieu
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(2007)). The standard statistical techniques for FDA are focused on assuming inde-
pendence among functions. However, in several disciplines of applied sciences there
exists interest in modeling correlated functional data: this is the case when functions
are observed over a discrete set of time points or when these functions are observed
in different sites of a region. In this paper we focus on spatially correlated functional
data, and particularly in predicting curves in sites of a region with spatial continuity.
Several works have been devoted to solve this problem. Giraldo et al. (2011) propose
an ordinary kriging predictor for functional data whose parameters, as in the uni-
variate case, are scalars. Other approaches are based on consider kriging predictors
with functional parameters (Giraldo et al., 2010; Nerini et al., 2010). All of these
methods assume that the spatial functional process considered is stationary, that is,
the mean function is constant (no trend), the variance functions is constant, and
the covariance function depends on the distance between the locations. However in
many practical applications, particularly when we analyze environmental data, the
assumption of constant mean function could be not realistic.

In classical geostatistcs there are several alternatives to solve the problem of spa-
tial prediction for nonstationary process because the mean is not constant. These
are very similar. In others, universal kriging (UK), a variant of UK called in the geo-
statistical literature kriging with external drift (KED), and residual kriging(RK) are
used for doing spatial prediction when there is a trend in the mean. All of them are
based on the estimation of regression models with spatially correlated errors. The
semivariance and covariance must be estimated from the detrended data (Gotway
and Hartford, 1996). UK is the name used when the coordinates are the predictors.
If some auxiliary variables are used, rather than the coordinates, the term KED is
preferred. In the case of UK or KED, the predictors are included in the kriging
solution system and additional unbiasedness constraints must be are made. If the
drift and regression residuals are considered separately, and ordinary kriging based
on residuals and the trend are summed the method is called RK (this is also known
as regression-kriging). All of these methods have theoretical problems when ordi-
nary least squares (OLS) is used to estimate the regression parameters because the
estimation of the semivariance based on residuals is biased. To solve this problem
Cressie (1993) propose to use median-polish kriging. This procedure is similar to
RK but in this case the trend is estimated by median-polish and ordinary kriging is
applied on the median-polish residuals. Also restricted maximum likelihood method
(REML) can be used to estimate from the data both the trend model and the co-
variance parameters of the residual process (Gotway and Hartford, 1996; Minasny
and McBratney, 2007). Another possibility is is to compute the semivariogram from
studentized or recursive OLS residuals (Schabenberger and Gotway, 2005). All of
these approaches allow to solve the problem of using OLS residuals to estimate the
semivariance. However some based on real data studies has reveal that the differ-
ence between UK, KED, and RK based on OLS residuals with other methods is not
large (Knotters et al., 1995; Minasny and McBratney, 2007). This is consequence
that the bias of a residuals-based variogram estimator is small at lags near to the
origen but more substantial at distant lags and because the kriging is carried out
in local neighborhoods, the fitted variogram is evaluated at smaller lags, precisely
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where it has been well fitted (Cressie, 1993). From a practical point of view RK
is easier than UK or KED and has proven to be a robust technique for practical
applications (Minasny and McBratney, 2007). This methodology has been widely
applied in modeling environmental data (see, for example Knotters et al. (1995),
and Alsamamra et al. (2009)). In this work we consider the extension of RK to the
case where data are functions, that is, when we have a spatially correlated data set
where the mean function is not constant through the region of interest. Initially a
functional regression model is used for detrending the mean. OLS method is used
to estimate the functional parameters (Ramsay and Silverman, 2005). Posteriorly
we apply kriging methods for functional data (Delicado et al., 2010) to the OLS
regression residuals for doing prediction of a residual curve on a non-data location.
Finally the prediction curve is obtained as the sum of the trend and the residual pre-
diction. This approach do not consider bias correction because the use of maximum
likelihood (ML) methods for estimating parameters of functional regression models
is to the best of our knowledge an open problem in FDA, particularly when we have
a functional regression model with functional response. This topic is posteriorly
treated in Section 4. We apply the approach to a real data set corresponding to
salinity curves obtained at 21 monitoring stations of the Ciénaga Grande de Santa
estuary located in the Caribbean coast of Colombia. A cross-validation analysis was
carried out. The results show that the methodology proposed is a good alterna-
tive for doing spatial prediction of functional data when the mean functions is not
constant through the region of interest. A comparison between three alternatives
of doing kriging prediction with OLS regression residuals were considered. Results
indicate that the most simple method (based on ordinary kriging for functional data)
is the best option in this case.

This work is organized as follows. Section 2 gives a brief overview about kriging
predictors for functional data and describes the methodology proposed. In Section 3
an application with real data is shown. The paper ends with a brief discussion and
suggestions for further research.

2 Residual kriging for functional data

In this section we show the basics of three methods for carrying out kriging pre-
diction of functional data assuming stationarity. Then we show how these ones can
be extended to the nonstationary case defining the residual kriging predictor for
functional data.

Let
{
χs(t), t ∈ T, s ∈ D ⊂ Rd

}
be a spatial functional process (Delicado et al.,

2010) defined on some compact set T of R where s is a generic data location in the
d-dimensional Euclidean space (d is usually equal to 2) and χs(t) are functional ran-
dom variables (Ferraty and Vieu, 2006), defined as random elements taking values
in an infinite dimensional space (or functional space). We assume that this one is a
separable Hilbert space H of square integrable functions defined on T . The kriging
predictors for functional data (Delicado et al., 2010) assume that the functional ran-
dom process is second-order stationary and isotropic, that is, the mean and variance
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functions are constant and the covariance and semivariance depends only on the
distance between sampling points. Formally is assumed that

• E(χs(t)) = µ(t)

• V (χs(t)) = σ2(t)

• Cov(χsi(t),χsj (u)) = C(h; t, u), si, sj ∈ D, t, u ∈ T , h = ∥si − sj∥, the Eu-
clidean distance. If t = u, Cov(χsi(t),χsj (t)) = C(h; t).

• 1
2V(χsi(t) − χsj (u)) = γ(h; t, u), si, sj ∈ D, t, u ∈ T , h = ∥si − sj∥. If t = u,
1
2V(χsi(t)− χsj (t)) = γ(h; t).

Three kriging predictors based on stationarity are considered here. The simplest
called ordinary for functional data (Giraldo et al., 2011) has the same expression of
a classical kriging predictor but considering curves instead of data. This predictor
is defined as

χ̂s0(t) =

n∑
i=1

λiχsi(t), λ1, . . . , λn ∈ R. (1)

The parameters λi, i = 1, . . . , n are found as the solution of the linear system
∫
T γs1s1(t)dt · · ·

∫
T γs1sn(t)dt 1

...
. . .

...
...∫

T γsns1(t)dt · · ·
∫
T γsnsn(t)dt 1

1 · · · 1 0




λ1
...
λn

−µ

=


∫
T γs0s1(t)dt

...∫
T γs0sn(t)dt

1

 ,

where the function γ(h) =
∫
T γsisj (t)dt, h = ∥si−sj∥, is called trace-semivariogram.

This function is estimated by

γ̂(h) =
1

2|N(h)|
∑

i,j∈N(h)

∫
T
(χsi(t)− χsj (t))

2dt, (2)

where N(h) = {(si, sj) : ∥si − sj∥ = h}, and |N(h)| is the number of distinct
elements in N(h). Once we have estimated the trace-semivariogram for a sequence
of K values hk, we propose to fit a parametric model (any of the classical and
widely used models such as spherical, Gaussian, exponential or Matérn could well
be used) to the points (hk, γ̂(hk)), k = 1, . . . ,K, as if they were obtained in the
classic geostatistical setting.

A second alternative is to consider a kriging predictor with functional parameters
where the influence of curves on the prediction is given in the same argument t ∈ T .
This predictor is considered in Giraldo et al. (2010) and is called continuous time-
varying kriging for functional data. This predictor is defined by the expression

χs0(t) =

n∑
i=1

λi(t)χsi(t), t ∈ T, λi : T 7→ R, i = 1, . . . , n. (3)

The estimation of the functional parameters λi(t), i = 1, . . . , n, is carried out by
using an approach based on the use of basis functions. The curves χsi(t) and the
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functional parameters are represented in terms of K basis functions. Thus a new
parametrization is given where we haveK new variables (formed with the coefficients
of fitting the basis functions to the data) and n×K parameters (given by coefficients
of fitting the basis function to the functional parameters). In order to estimate the
parameters a linear model of coregionalization between the new variables must be
estimated. A detailed overview to this approach is given in Giraldo et al. (2010).

A third alternative for functional kriging is allowing the functional parameters
to be defined in T × T . Then, the predictor of χs0(t) is

χ̂s0(v) =
n∑

i=1

∫
T
λi(t, v)χsi(t)dt, v ∈ T, (4)

such that λ1(t, v), . . . , λn(t, v) : T × T → R. This kriging predictor has been sep-
arately proposed by Giraldo (2009) (called as functional kriging total model) and
by Nerini et al. (2010) (called as Cokriging for spatial functional data). Again the
observed functions χsi(t) and the functional parameters λi(t, v)i = 1, . . . , n are ex-
panded in terms of K basis functions in order to give a solution to the problem of
estimating the functional parameters. An overview about the estimation of param-
eters in the predictor 4 can be done in Giraldo (2009).

In this work we propose a new predictor which is useful when the mean function
is not constant. We give a methodology for doing spatial prediction when the mean
function depends on the location, that is, when E(χs(t)) = µs(t). The methodol-
ogy has three steps. Initially a functional regression model (FRM) (Ramsay and
Silverman, 2005) is used for detrending the mean. Posteriorly we apply some krig-
ing method for functional data to the regression residuals for doing prediction of a
residual curve on a non-data location. Finally the predicted curve is obtained as the
sum of the trend and the residual prediction. Now we show a detailed description
of each step.

Ramsay and Silverman (2005) have shown several alternatives for doing func-
tional regression analysis, that is, to estimate functional FRM where either response
or predictor variables are functions. The first step of the proposed methodology
is to estimate a FRM with functional response and scalar covariates (Ramsay and
Silverman, 2005, chapter 13). Specifically we use the model

Zsi(t) = α(t) + β1(t)xi + β2(t)yi + ϵi(t), (5)

where Zi(t), i = 1, · · · , n are the functions at visited locations, (xi, yi) are geograph-
ical coordinates, α(t), β1(t), β2(t) are the functional parameters of interest and ϵ(t)
is a white noise for each t ∈ T . The parameters are estimated by least squares using
an approach based on the use of basis functions (Ramsay and Silverman, 2005).
The model in equation (5) has scalar covariates, however other FRM could also be
applied (for instance taking functional covariates). Once estimated the regression
model in a second step we obtain the residuals

esi(t) = Zsi(t)− Ẑsi(t)

= Zsi(t)−
(
α̂(t) + β̂1(t)xi + β̂2(t)yi

)
, (6)
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and based on these ones we can do spatial prediction of a residual curve at non-
visited locations by using either the predictors defined in equations (1),(3), and (4),
respectively, that is, we predict a residual function by using some of these predictors

ês0(t) =

n∑
i=1

λiesi(t), (7)

ês0(t) =

n∑
i=1

λi(t)esi(t), (8)

or

ês0(v) =
n∑

i=1

∫
T
λi(t, v)esi(t)dt, (9)

where ei(t), i = 1, . . . , n are the residual curves obtained from the estimated FRM.
Finally in a third step the prediction on a non-visited location is achieved by

χ̂s0(t) = Ẑ0(t) + ê0(t), (10)

where χ̂s0(t) is the function predicted on the location s0, Ẑs0(t) = α̂(t) + β̂1(t)x0 +

β̂2(t)y0 is the trend estimated on the location with coordinates (x0, y0) and ê0(t) is
the prediction of a residual function on a non-visited location s0. We call χ̂s0(t) in
equation (10) residual kriging predictor for functional data.

3 Spatial prediction of salinity curves

In this section we apply the methodology described in Section 2 to a real data set
corresponding to salinity data measured at 21 monitoring stations of the lagoonal-
estuarine system comprised by the Ciénaga Grande de Santa Marta (CGSM) and
Complex of Pajarales (CP) (Figure 1). The CGSM-CP is the largest coastal lagoon
system of Colombia. Several works have shown that the salinity is one of the variables
that better describes the changes of this ecosystem (Blanco et al., 2006). In semi-
closed ecosystems as the CGSM and CP the salinity is highly variable due to in others
river discharges, winds, and the movement of tides. Identifying spatial and temporal
variability in salinity provide important ecological information and for this reason
is important to know its spatial distribution. Classical univariate and multivariate
geostatistical methods have been used to get this objective. Here we give a new tool
for modeling these data. Our approach allows to predict the spatio-temporal salinity
behavior.

Biweekly data from October 1988 to March 1991 were recorded (left panel, Figure
2). Data were smoothed by using a B-splines basis with K = 15 functions (Figure 2).
The number of basis function was chosen by cross-validation (Ramsay and Silverman,
2005).

According to plots in Figure 2 the salinity level in the monitoring stations of CP
(west side in Figure 2) is higher than the salinity level in the CGSM. We note in
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the plots that two stations at CGSM have considerably lower salinity values than
others. These correspond to stations RFU and RSE which are located at the mouths
of Fundación and Sevilla rivers, respectively. This result indicates empirically that
there is a decreasing trend from west to east. Thus the stationarity assumption with
this data set could be not valid and the application of the predictors in equations
(1), (3), or (4) for doing spatial prediction of salinity curves on non-visited locations
from CGSM and CP could be inappropriate. In this case the application of the
residual kriging for functional data seems to be a better option. Taking into account
this result we carry out a functional regression analysis with functional response (the
smoothed salinity curves) and scalar covariates (the geographical coordinates). We
estimate the functional parameters by ordinary least squares following Ramsay and
Silverman (2005). We use the R library fda (Ramsay et al., 2010) to fulfill this task.
Specifically we estimate the model

Zi(t) = α̂(t) + β̂1(t)Longitudei + β̂2(t)Latitudei + ei(t)

= Ẑi(t) + ei(t) (11)

where Zi(t) are the smoothed salinity curves (Figure 2, right panel), Ẑi(t) are the
regression estimations of the salinity curves, α̂(t), β̂1(t), and β̂2(t) are the estimations
of the functional parameters, and ei(t) are the residual curves.

A plot with the estimated functional parameters is shown in Figure 3. We observe
that parameters are significantly different from zero (only β1 is significantly equal
to zero in some time periods). The estimation of the mean α̂(t) show that the level
of salinity increased in the period of study. According to the sign of β̂1 we can
conclude that the salinity decrease from west to east, that is, when the longitude
increase (right panel Figure 1) the salinity level decrease (in those time periods where
β̂1 has negative sign and is significantly different from zero). This is coherent with
the result before mentioned about that the level of salinity is higher in stations from
CP than in stations of CGSM (Figure 2). The sign β̂2 indicates that the salinity
level increase from south to north (Figure 1). This trend is particularly due to the
stations located in the south of the system (RFU and BRF, Figure 1) have a low
level of salinity because of they have direct influence of the Fundación river.

Once estimated the functional regression model we use the residual regression
curves ei(t), i = 1, · · · , 21 (left panel Figure 4) to do spatial prediction of a residual
curve on a non-visited location (with coordinates (945000, 1692000)) by means of the
predictors given in equations (7), (8), and (9). As in the case of the salinity curves a
functional cross-validation analysis (Ramsay and Silverman, 2005) indicated that a
B-splines basis with K = 15 functions was appropriated for smoothing the residual
data (left panel, Figure 4).

For comparison proposes we also obtained predictions applying directly the pre-
dictors in equations (1), (3), and (4) to the salinity data. The predictions obtained
by the six methods are shown in right panel of Figure 4. We note that there is
some important differences between the predictions. In others, two questions arise
naturally after observing this plot. Which method is better?. Methods based on
residual kriging are better than methods for stationary data?. In order to solve these
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ones and to verify the goodness-of-fit of the proposed predictors we use a functional
cross-validation analysis. Each individual smoothed curve χsi(t), i = 1, · · · , 35, was
temporarily removed, and further predicted from the remaining ones. This proce-
dure was realized with each one of the six predictors (three based on the stationarity
assumption and three considering the residual kriging approach). We evaluate on
j = 1, · · · , 55 the cross-validation predictions obtained by each method. Summary
statistics of the sum of squared errors of functional cross-validation (SSEF ) resulting
of applying the six methods to the data set considered are shown in Table 1.

Table 1: Summary statistics of sum of squared errors of cross-validation. OKFD: Ordinary
kriging for function-valued spatial data; CTVFD: Continuous time-varying kriging for functional
data; FKTM: Functional kriging; ROKFD: Residual kriging based on OKFD; RCTVFD: Resid-
ual kriging based on CTVFD; RFKTM: Residual kriging based on FKTM.

Statistic OKFD CTKFD FKTM ROKFD RCTKFD RFKTM
Minimum 242 316 237 538 501 778
Median 806 1336 723 1777 1715 1770
Mean 2710 2870 2652 2146 2157 2175
Maximum 16840 12063 8483 7313 7215 8483
Standard deviation 4018 3527 3824 1463 1442 1693
Sum 56909 60278 55695 45072 45287 45678

The summary statistics of SSEF values (Table 1) and in particular the sum of
SSEF values indicate that methods based on residual kriging (ROKFD, RCTVFD,
and RFKTM) have better performance than other predictors. We also note that
though the differences between methods based on residual kriging are small we get
in general (using as indicator the sum of SSEF values) better results with ROKFD.
In all cases LBA located in the CGSM (Figure 1), is the station with the worst
prediction. According to the maximum SSEF values in this station RCTVFD and
ROKFD methods have the best behavior. The salinity level in station LBA is as
high as the stations located in CP (separated from LBA more than 15 km). The
salinity at stations closer to LBA (as RJA and BRS) have a very different behavior
across the time. Taking into account in kriging prediction curves from locations
closer to the prediction site will have greater influence than other more separated
is expected to have bad prediction at this station. The use of the residual kriging
prediction, in particular of RCTVFD and ROKFD methods, allows to improve the
prediction in this case. We note that there is significantly difference between the
maximum of SSEF values when we compare the methods based on stationarity and
the methods based on residual kriging. In the last case, the effect of the estimated
functional parameter β̂2(t) in equation 11 (which is positive and indicate that there
is a trend from south to north) allows to improve the prediction by kriging. The
differences of SSEF values between ROKFD, RCTVFD and RFKTM are very small
in a high proportion of sites. However taking into account that, from a practical
and computational point of view, ROKFD is simpler than RCTVFD and RFKTM
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we consider that in this case ROKFD is the best option.
A plot of cross-validations residuals obtained by ROKFD is shown in Figure 5.

The residual standard deviation is greater at the end of the time perido considered
(Figure 5) where the smoothed and the predicted curves have greater variation. The
residual mean varies around zero which indicates that the predictions obtained by
ROKFD are unbiased (Figure 5). Similar results are obtained with RCTVFD and
RFKTM.

4 Discussion and further research

We have shown how three predictors used in geostatistcs for functional data, which
are based on the stationarity assumption for the mean function, can be generalizad
to the nonstationary context (where the mean change inside the study) by using a
functional regression model for detrending the mean function. The predictor pro-
posed combine functional regression estimation with functional kriging predictions
based on the regression residual in order to do prediction on non-visited locations.
We apply the methodology proposed to a data set corresponding to salinity curves
obtained in a estuary located in the colombian Caribbean. Results with this data
indicates that although several alternatives for doing functional kriging prediction
with the regression residuals could be used, the method based on the use of ordinary
kriging for functional data is the best alternative. In univariate geostatistics several
works have shown that the use of residual kriging (and other alternatives such as
UK and KED) with OLS estimation causes biased estimations from the covariance
parameters. The solution proposed in that case is based on the use of maximum like-
lihood estimation for estimating simultaneously both the regression parameters and
the covariance parameters. In our approach for doing residual kriging for functional
data we propose to estimate the parameters from the functional regression model by
OLS. The effect of using OLS in this case must be studied. In particular we need
to establish one the one hand, if we use OKFD, the effect of estimating the trace-
variogram function by using equation (2) based on functional regression residuals or
on the other hand, if we use CTKFD and FKTM, which is the effect of estimating
a linear model of coregionalization based on coefficients of fitting a basis function to
functional regression residuals. We consider that a simulation study must be done
to solve these questions. The alternative of doing maximum likelihood estimation of
functional parameters when we have a functional regression model with functional
response and spatially correlated errors is an open problem in FDA. Results of cross-
validation analysis carried out with the salinity data set show a good performance
of the proposed predictor, and indicate from a descriptive point of view that it can
be adopted as a valid method for modeling spatially correlated functional data when
the mean function is not constant through the region of interest.
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Figure 1: 21 monitoring stations of the lagoonal-estuarine system comprised by the
Ciénaga Grande de Santa Marta (stations LBA, BRS, PCO, BRF, RSE, RFU, CEN,
RJA, BCG, PTA, RIN) and Complex of Pajarales (stations CCL, VCH, CCV, CRE,
CBR, CDR, CLU, CCH, CPA, CCG).
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Figure 2: Left panel: Biweekly salinity data recorded on 21 monitoring stations of the
lagoonal-estuarine system comprised by Ciénaga Grande de Santa Marta and Complex
of Pajarales. Right panel: Salinity data smoothed by using a B-splines basis with 15
functions. In both panels gray curves correspond to data measured in Ciénaga Grande de
Santa Marta and dark curves to data measured in stations from Complex of Pajarales.
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Figure 3: Estimated parameters from the functional regression model between the salinity
curves and the geographical coordinates of stations where data were recorded. Dark lines
correspond to estimations and dashed lines to the confidence intervals.
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Figure 4: Left panel: Residuals curves of the functional regression model between salinity
curves and the geographical coordinates of monitoring stations of Ciénaga Grande de Santa
Marta and Complex of Pajarales. Residuals were smoothed by a B-splines basis with 15
functions. Right panel: Predictions of salinity curves on a non-visited location by means
of six spatial predictors for functional data (gray lines are smoothed salinity curves and
dark lines are the predictions).
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Figure 5: Cross-validation residuals obtained by kriging residual (ROKFD) (gray curves).
Dark line is the mean of cross-validation residuals and dashed line is the standard deviation
of cross-validation residuals.
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