DISEÑO DE VIVIENDA UNIFAMILIAR DE CONSUMO CASI NULO: ECOHOUSE

Manuel Cano Gómez | DNI: 20473822 G
e-mail: al117737@uji.es
Tutora: María José Ruá Aguilar
2015-2016
En el siguiente proyecto se tratará el diseño de una vivienda unifamiliar con aspectos ecológicos, aplicando la filosofía de la arquitectura bioclimática y casas pasivas. La finalidad del proyecto es conseguir una vivienda con un gasto mínimo de energía y que parte de la demanda sea producida mediante fuentes renovables. Las operaciones realizadas en el trabajo se han justificado mediante el CTE DB HS y HE.
INDICE

1. MARCO CONCEPTUAL .. 1
 1.1. INTRODUCCIÓN.. 1
 1.2. PLANTEAMIENTO DEL PROBLEMA .. 2
 1.3. OBJETIVOS ... 3
 1.4. FASES DEL TRABAJO Y METODOLOGÍA UTILIZADA ... 3

2. ANTECEDENTES ... 5
 2.1 TERMINOLOGÍA Y CONCEPTOS BÁSICOS .. 5
 2.2. HISTORIA DE LAS VIVIENDAS AUTOSUFICIENTES /PASIVAS Y SUS CARACTERÍSTICAS 12

3. CRITERIOS DE DISEÑO .. 14
 3.1. PRINCIPIOS DE LA ARQUITECTURA BIOCLIMÁTICA .. 14
 3.1.1. ESTRATEGIAS PASIVAS DE DISEÑO BIOCLIMÁTICO ... 16

4. ESTUDIO DEL ENTORNO .. 19
 4.1. LÍMITE TERRITORIAL .. 20
 4.2. LOCALIZACIÓN GEOGRÁFICA DE CASTELLÓN .. 20
 4.3. ANÁLISIS CLIMÁTICO DEL MUNICIPIO DE CASTELLÓN ... 21
 4.4. ESTUDIO DE LA PARCELA ... 23
 4.5. TOPOGRAFÍA DEL TERRENO ... 23
 4.6. ANÁLISIS DE LA ORIENTACIÓN Y SOLEAMIENTO .. 23
 4.7. USUARIOS Y PROGRAMA DE NECESIDADES .. 29
 4.8. DIAGRAMA DE RELACIONES ... 31

5. ANÁLISIS CONSTRUCTIVO DE LA ENVOLVENTE .. 34
 5.1. ANALISIS DE LA NORMATIVA RELACIONADA .. 34
 5.2. sección hs1: protección frente a la Humedad .. 34
 5.2.1. Ámbito de aplicación .. 34
 5.2.2. suelos ... 35
7.2.9. Regulador térmico ... 88
7.2.10. fuente energética de apoyo .. 88
7.2.11. lugar de instalación de los componentes 89
7.2.12. esquema de la instalación solar de ACS 90
.. 90
8. DISEÑO .. 91
8.1. CONCEPTUALIZACIÓN DE LA VIVIENDA 91
8.2. PROPUESTA ARQUITECTÓNICA EN LA ZONA CLIMÁTICA B3 92
8.2.1. PLANOS VALORIZADOS ... 92
8.2.2. Renders .. 99
9. CONCLUSIONES ... 114
10. BIBLIOGRAFÍA ... 116
10.1. PUBLICACIONES .. 116
10.2. direcciones web .. 117
10.3 PROGRAMAS UTILIZADOS.. 118
11. ANEXOS PLANOS ... 119
12. DOCUMENTACIÓN GRÁFICA... 120
INDICE DE FIGURAS

Figura 1. Esquema de la metodología seguida en el trabajo ... 4
Figura 2. Esquema efecto Venturi (Fuente:http://www.casasecologicas.org/2012/03/vivienda-con-2-contenedores-de-40-pies.html) ... 8
Figura 4. Esquema efecto invernadero (Fuente:https://biuarquitectura.files.wordpress.com/2012/02/efecto_invernadero_edificio_vivenda_casa.jpg?w=710) ... 8
Figura 5. Imagen del Sol como fuente de energía. (Fuente: http://4.bp.blogspot.com/CgriQeWyZ8w/Vg55o55dUHI/AAAAAAAABrM/5utHhkVkHQ/s400/Energia%2Bsolar.gif) 9
Figura 7. Porcentajes de energías utilizadas en España en 2015 (Fuente: REE y elaboración AEE) ... 11
Figura 8. Grafica de la potencia eólica instalada desde 1990 hasta el 2015 (Fuente: AEE) 11
Figura 10. Imagen efecto invernadero. (Fuente: Apuntes MEES tema II) ... 16
Figura 11. Imagen doble efecto invernadero.(Fuente:) ... 16
Figura 12. Imagen muro Trombé y rayos de sol entrando a través del cristal para calentarlo. (Fuente: Apuntes MEES tema II) .. 16
Figura 13. Actuación del sistema muro Trombé. El aire caliente asciende, calienta la casa y desciende. (Fuente: Apuntes MEES tema II) .. 17
Figura 14. Imagen funcionamiento convectores solares. (Fuente: Apuntes MEES tema II) 17
Figura 15. Imagen vivienda enterrada. (Fuente: http://www.archdaily.com/43187/villa-vals-search-cma) ... 17
Figura 17. Sección marco y cristal de una ventana de triple hoja. (Fuente: https://es.pinterest.com/pin/308285536976603901/) ... 18

Figura 20. Localización geográfica de Castellón. (Fuente: https://upload.wikimedia.org/wikipedia/commons/thumb/4/44/Localizaci%C3%B3n_de_la_provincia_de_Castell%C3%B3n.svg/600px-Localizaci%C3%B3n_de_la_provincia_de_Castell%C3%B3n.svg.png) .. 20

Figura 22. Gráfico vientos anuales medios de Castellón. (Fuente: https://www.windfinder.com/windstatistics/castellon_san_roque) .. 21

Figura 26. Imagen trayectoria del sol en verano y en invierno. ... 24

Figura 27. Imagen desde el interior del salón-comedor. 8 de la mañana de agosto. Las lámas impiden el paso, por la fachada este, de la mayor radiación directa y crean un patrón en las superficies de la vivienda. ... 25

Figura 28. En la imagen se muestra como a las 12 del mediodía, durante el mes de agosto, el voladizo impide totalmente que el sol entre por los huecos de la fachada sur de la planta 1ª, lo que provocaría un exceso de calor en el interior. .. 25

Figura 29. En la imagen se muestra el atardecer de agosto. Como los rayos de sol inciden en la fachada oeste. .. 26

Figura 30. soleamiento enero fachada este. Las grandes aperturas permiten que entre la luz del sol en el interior .. 26

Figura 31. Imagen del soleamiento en enero al medio día. Vemos como el sol incide totalmente en las ventanas creando el llamado efecto invernadero. 27

Figura 32. Imagen de enero al mediodía desde el interior del salón-comedor. 27

Figura 33. Soleamiento fachado oeste. Atardecer de enero .. 28

Figura 34. Sección de la planta baja. Zonas comunes de la vivienda. Salón, comedor, cocina, baño, jardín, piscina, barbacoa, zona chill out ... 31
Figura 35. Sección primera planta. Zonas privadas, de descanso y estudio. Habitación de matrimonio con baño privado, habitación de invitados, oficina, red para descanso y ocio...... 32

Figura 36. Planta cubierta... 33

Figura 37. Condiciones de las soluciones de suelo dependiendo del grado de impermeabilidad-CTE DB-HS1.. 36

Figura 38. Condiciones de las soluciones de muro dependiendo del grado de impermeabilidad-CTE DB-HS1.. 37

Figura 39. Zonas eólicas de España. CTE DB-HS1 .. 39

Figura 40. Imagen de la tabla 2.6 grado de exposición al viento del CTE DB-HS1 39

Figura 41. Imagen de la Tabla 2.4 zonas pluviométricas de promedios en función del índice pluviométrico anual del CTE DB-HS1.. 40

Figura 42. Imagen de la Tabla 2.5 Grado de impermeabilidad mínimo exigido a las fachadas dependiendo de la zona pluviométrica de promedios y el grado de exposición al viento (CTE DB-HS1) .. 40

Figura 43. Imagen tabla 2.7 Condiciones de las soluciones de fachada dependiendo del grado de impermeabilidad y el revestimiento. CTE- HS1 .. 41

Figura 44. Imagen tipo de junta de dilatación con sus componentes. Figura 2.6 CTE DB-HS1..... 43

Figura 45. Imagen del detalle de la albardilla en el peto de cubierta. Vemos como cumple con los requisitos del CTE. .. 44

Figura 46. Imagen de la Tabla 2.9 Pendientes de cubiertas planas. CTE DB-HS1 44

Figura 47. Tabla 2.1 valor baso y factor correcto por superficie del consumo energético DB-HE .. 47

Figura 48. Imagen de la Tabla B.1. Zonas climáticas de la Península Ibérica DB-HE 49

Figura 49. Imagen de la tabla 2.1 donde indica la transmitancia térmica máxima de la envolvente térmica. DB-HE .. 50

Figura 50. Imagen de la tabla D.2.7 zona climática B3, donde se indica la transmitancia límite en los diferentes elementos constructivos. CTE DB-HE .. 50

Figura 52. Alzados de la vivienda donde se indica la envolvente térmica. 52

Figura 53. Planta de la vivienda donde se indica la envolvente térmica. 52

Figura 54. Planta de la vivienda donde se puede ver la orientación de la fachada respecto a los puntos cardinales. .. 53
Figura 55. Imagen de la tabla A.1 Orientaciones de las Fachadas, donde se escoge la orientación de la fachada dependiendo del ángulo en el que se encuentra ... 53
Figura 56. Imagen de la tabla E.1 Resistencias térmicas superficiales de cerramientos en contacto con el aire exterior en m2K/W. Para fachada se elige un sentido de flujo horizontal... 56
Figura 57. Imagen de la Tabla 3.2. Factor de temperatura de la superficie interior mínimo fru,min. CTE DB-HE... 56
Figura 58. Imagen de la Temperatura media y Humedad media en las distintas localidades de España. Se escoge Castellón. CTE DB-HE... 57
Figura 59. Imagen de la tabla Excel para el cálculo de transmitancias y condensaciones realizadas en la fachada. .. 58
Figura 60. Imagen del gráfico obtenido de la tabla Excel, donde se observa que se cumple con las condensaciones ... 59
Figura 61. Imagen de la tabla E.1 Resistencias térmicas superficiales de cerramientos en contacto con el aire exterior en m2K/W. Para cubierta se elige un sentido de flujo vertical ascendente. ... 61
Figura 62.. Imagen de la tabla Excel para el cálculo de transmitancias y condensaciones realizadas en la cubierta. .. 62
Figura 63. Imagen del gráfico obtenido de la tabla Excel, donde se observa que se cumple con las condensaciones intersticiales de la cubierta ajardinada.. 63
Figura 64. Cámaras sanitarias DA DB HE1 Figura 7 .. 64
Figura 65. Cálculo mediante hoja Excel de la Rf del Suelo (2,441 m²K/W). En este caso la transmitancia se calcula de diferente manera a la usada en el caso de fachada y cubierta. 66
Figura 66. Tabla E.9 Transmitancia térmica Us en W/m²K. Se realiza una interpolación bilineal. 66
Figura 67. Tabla 3.15.2 acristalamientos incoloros del CTE .. 68
Figura 68. UH,m de la ventana escogida... 69
Figura 69. Tabla 12 Factor de sombra para obstáculos de fachada: Voladizo. CTE DA DB-HE-1 .. 71
Figura 70. Tabla 13 Factor de sombra para obstáculos de fachada: Retranqueo. CTE DA DB-HE-1 ... 72
Figura 71. Tabla 14 factor de sombra para obstáculos de fachada: lamas. .. 72
Figura 72. Tabla 3.15.2 acristalamientos incoloros del CTE .. 73
Figura 73. Imagen de la tabla 11 Absortividad del marco para radiación solar. Se escoge el color de los marcos de las ventanas.. 74
Figura 74. Tabla zona climática B3. Factor solar modificado límite de huecos... 75
Figura 75. Tabla 4.2 Valores mínimos de ocupación de cálculo en uso residencial. La vivienda tiene 2 dormitorios por lo que la ocupación es de 3 personas.

Figura 76. Imagen de la Tabla 4.1 Demanda de referencia a 60º C. Para vivienda 28 litros por persona.

Figura 78. Tabla 4.4 Radiación solar global media diaria anual dependiendo de la zona climática.

Figura 79. Tabla 2.1 contribución solar mínima anual para ACS en %. CTE DB HE-4

Figura 80. Tabla 5.1 Plan de vigilancia del apartado 5 del CTE DB HE.

Figura 81. Tabla 5.2 Plan de mantenimiento. Sistema de captación.

Figura 82. Tabla 5.3 Plan de mantenimiento. Sistema de acumulación.

Figura 83. Tabla 5.4 Plan de mantenimiento. Sistema de intercambio.

Figura 84. Tabla 5.5 Plan de mantenimiento. Sistema de captación.

Figura 85. Tabla 5.6 Plan de mantenimiento. Sistema eléctrico y de control.

Figura 86. Tabla 5.7 Plan de mantenimiento. Sistema de energía auxiliar.

Figura 87. Demanda de energía térmica. CENSOLAR

Figura 88. Tabla energía térmica aportada. CENSOLAR

Figura 89. Balance energético de la vivienda. CENSOLAR

Figura 90. Captador solaria 2.2 AL de FAGOR. Recubrimiento selectivo ecológico.

Figura 91. Detalle de la estructura soporte del colector plano. Empresa ZinCo

Figura 92. Acumulador modelo ISF-200 de la casa FAGOR.

Figura 93. Imagen del regulador térmico FAGOR escogido.

Figura 94. Imagen de la caldera seleccionada para la vivienda. Marca FAGOR

Figura 95. Lugar de instalación de la caldera y el acumulador. Opción 1.

Figura 98. Alzado norte valorizado. Software Photoshop

Figura 100. Alzado sur valorizado. Software Photoshop.. 93
Figura 101. Alzado oeste valorizado. Software Photoshop.. 94
Figura 102. Sección realizada a partir del software SketchUp. Valorizada con el software Photoshop. En esta sección se aprecia como el conducto de la chimenea de la planta baja, tiene rejillas en la primera planta para calentar las habitaciones... 95
Figura 103. Sección realizada a partir del software SketchUp. Valorizada con el software Photoshop .. 95
Figura 104. Plano planta baja realizado por medio del software AutoCAD. Valorizado con el software Photoshop.. 96
Figura 105. Plano planta primera realizado por medio del software AutoCAD. Valorizado con el software Photoshop.. 97
Figura 106. Plano planta cubierta realizado por medio del software AutoCAD. Valorizado con el software Photoshop .. 98
Figura 107. Imagen 3D de la puerta de entrada de la vivienda. Se puede apreciar el sistema de apertura por medio de un eje. Diseño realizado por medio de los Softwares: Sketchup, Cinema4D y Photoshop .. 98
Figura 108. Imagen aérea de la parcela a modo esquemático. Software cinema 4D+Photoshop. .. 99
Figura 109. Entrada principal a la vivienda. Fachada oeste. En la imagen se aprecia el sistema rotativo de apertura de la puerta. Renderizado con el software Cinema4D .. 100
Figura 110. Imagen de la fachada norte y este. Renderizado con el software Cinema4D 101
Figura 111. Imagen de la fachada este y sur. A la izquierda se aprecia la zona de la barbacoa. Renderizado con el software Cinema4D .. 102
Figura 112. Imagen de las fachadas Norte y oeste. Renderizado con el software Cinema4D. Vemos los distintos tipos de árboles emplazados en la parcela. Este (playa), palmeras. Oeste (pinar), pinos. .. 102
Figura 113. ambientación nocturna de la figura 111. Renderizado con el software Cinema4D. 102
Figura 114. Imagen fachada sur ambientada por la noche. Renderizado con el software Cinema4D .. 103
Figura 115. Imagen del salón-comedor. Renderizado con el software Cinema4D 104
Figura 116. Imagen de la cocina. Renderizado con el software Cinema4D. 105
Figura 117. En la imagen se aprecia a la izquierda la escalera y a la derecha el salón al fondo. Renderizado con el software Cinema4D .. 106
Figura 118. Imagen desde la primera planta. Se aprecia el detalle del cristal en el techo de la escalera. A través de él, se puede ver la vegetación de la casa y el paisaje de fondo. Renderizado con el software Cinema4D. .. 107

Figura 119. Entrada de la primera planta donde se encuentra una zona de descanso al principio y enfrente el escritorio de la oficina y una red para disfrutar de las vistas de la playa y la montaña. Renderizado con el software Cinema4D. .. 108

Figura 120. Imagen desde la red. Escritorio enfrente y al fondo la salita. Renderizado con el software Cinema4D. .. 109

Figura 121. Imagen desde arriba. Se aprecia el detalle de la red y la conexión con el piso de planta baja. Renderizado con el software Cinema4D. .. 110

Figura 122. Imagen de la habitación de matrimonio. A la izquierda: Ventanal para salir a la terraza privada de la fachada oeste. A la derecha: Marco que sobre sale de la ventana en forma de repisa. Renderizado con el software Cinema4D. .. 111

Figura 123. Imagen de la terraza privada de la habitación de matrimonio. Se aprecian los elementos de protección solar como toldos y lamas. Se diseña una escalera en la pared para subir a realizar las tareas de mantenimiento. Renderizado con el software Cinema4D 112

Figura 124. Imagen del baño privado de la habitación de matrimonio. Renderizado con el software Cinema4D. .. 113

INDICE DE TABLAS

Tabla 1. Materiales más frecuentes, según su origen.. 6
Tabla 2 Materiales naturales locales.. 6
Tabla 3. Materiales con sello.. 7
Tabla 4. Estrategias pasivas de diseño bioclimático... 18
Tabla 5. Superficies de cada estancia de la vivienda y su total.. 29
Tabla 6. Coeficiente de permeabilidad K. (Fuente: CTE)... 35
Tabla 7. Tabla del Grado de impermeabilidad mínimo exigido a los suelos en el CTE DB- HS1
Salubridad.. 36
Tabla 8. Resumen parámetros según Norma HS1... 45
Tabla 9. Sección de fachada indicando cada material, espesor y conductividad de cada elemento. .. 55
Tabla 10. Sección de cubierta ajardinada indicando material, espesor y conductividad de cada elemento. .. 60
Tabla 11. Capas del suelo con sus espesores y conductividad térmica. 65
Tabla 12. Cálculo transmitancia térmica de huecos .. 70
Tabla 13. Porcetanje de huecos de cada fachada. .. 74
Tabla 14. Valores de permeabilidad al aire y presión máxima de la carpintería según norma UNE. ... 76
Tabla 15. Resumen transmitancias de los elementos de la envolvente térmica. 76
1. MARCO CONCEPTUAL

1.1. INTRODUCCIÓN

La arquitectura ecológica no sólo consiste en tener una casa construida sin emisiones de CO2 o completamente autónoma por lo que se refiere a consumo de energía eléctrica o de agua. No sólo el punto de vista del diseñador o arquitecto es importante, sino también el uso de un producto como es un edificio por su usuario. En este contexto, ser ecologista comienza con asumir una actitud y adoptar unos cambios en el comportamiento y los hábitos diarios. Dejar el coche y utilizar el transporte público o la bicicleta para los traslados son prácticas que contribuyen a la sostenibilidad del planeta, otras pequeñas acciones realizadas en nuestros hogares también pueden ser útiles. Es decir, actuar con criterios de sostenibilidad, lo cual implica además otros pequeños gestos en nuestras casas, como utilizar bombillas de bajo consumo, instalar reguladores del caudal de agua en todos los grifos de la casa y aumentar el aislamiento para evitar malgastar calefacción en invierno.

Se puede definir arquitectura ecológica como aquella que contempla múltiples factores dentro del proceso de construcción de una vivienda y el impacto que tendrá la construcción durante su ciclo de vida: desde su planteamiento, ejecución y uso hasta su derribo al final del proceso. La arquitectura ecológica residencial tiene en cuenta además las necesidades específicas de las personas que habitarán cada vivienda.

La evolución y desarrollo de los procesos constructivos pueden ser de ayuda y así, algunas de las tendencias se basan en nuevos materiales prefabricados; su producción en serie permite unos costes más bajos y su montaje es más rápido y fácil, con lo que además se ahorrán emisiones de CO2 al disminuir el transporte de materiales. Otras soluciones se basan en una arquitectura que tradicionalmente ha sido más respetuosa con el medio ambiente, lo que se conoce como arquitectura popular o vernácula. En estos casos se analiza las condiciones del entorno, donde se localizan las parcelas para conseguir una orientación adecuada a las necesidades de la vivienda y adaptada al clima en el que se ubica, para que las casas puedan aprovechar las horas de sol y las corrientes de aire mejorar así la eficiencia energética. En estos aspectos de adaptación al medio que ya tenía en cuenta la arquitectura popular, se basa la conocida arquitectura bioclimática. Por otro lado, la tecnología ha desarrollado sistemas que permiten reutilizar el agua de lluvia o generar energía eólica y solar. La combinación de todos estos aspectos es de utilidad para conseguir una vivienda ecológica.

Desde hace pocas décadas la ecología y la sostenibilidad son conceptos en auge en nuestra sociedad, son muy amplios y abarcan diferentes vertientes. Así, actualmente muy pocos dudan sobre las teorías del calentamiento global y de la necesidad, cada vez más urgente, de reducir las emisiones de CO2. En el campo de la arquitectura, que es el que nos ocupa, se están realizando cambios y avances importantes, pero la realidad nos dice que aún no son suficientes. El porcentaje de edificios sostenibles es todavía reducido y esto topa con un aumento en la construcción en casi todas partes del mundo. Sólo en el campo de la arquitectura residencial ya se produce un incremento del parque de viviendas derivado del crecimiento de la población y, en consecuencia,
se origina también un mayor consumo de materias primas y se elevan los costes ambientales del transporte.

Todavía es necesaria mucha más participación por parte de todos los implicados, desde arquitectos y constructores hasta fabricantes de materiales y clientes finales, si lo que se pretende conseguir es una construcción de calidad que además sea ecológica y sostenible. (Roaf et al., 2013)

1.2. PLANTEAMIENTO DEL PROBLEMA

En este contexto se desarrolla el presente trabajo. Se va a trabajar en el diseño de una vivienda unifamiliar ecológica, teniendo en consideración criterios de diseño sostenibles y soluciones constructivas respetuosas con el medio ambiente, pero a la vez, soluciones que sean aplicables y viables y que se usen en un edificio de tipo residencial en el entorno próximo. Se analiza el problema teniendo en cuenta el emplazamiento del edificio como punto de partida para establecer unos criterios de diseño que se adapten al entorno particular. El clima y microclima del lugar será el primer aspecto a considerar para una selección adecuada de soluciones. Por otro lado, las tipologías edificatorias y soluciones constructivas más frecuentes en la zona, condicionarán en gran medida algunas de las soluciones adoptadas. Igualmente, se tendrá en cuenta la normativa reguladora en construcción de viviendas, ya que hay unos mínimos requerimientos que se deben asegurar en el edificio construido, así como los parámetros de planeamiento urbanístico de la parcela de ubicación del inmueble, que afectarán inevitablemente sobre las limitaciones al diseño.

Se va a enfocar el trabajo teniendo en cuenta tres puntos de vista principales:

a. El entorno y su relación con el diseño. El entorno seleccionado es una parcela situada en primera línea de playa en el Grao de Castellón.

b. Los materiales seleccionados y las soluciones constructivas adoptadas en la envolvente térmica, encaminadas a disminuir la demanda energética para uso del edificio.

c. Las instalaciones diseñadas para funcionamiento de la vivienda, principalmente y siempre que sea posible, de fuentes de energía renovables. A nivel de suministro energético, las viviendas unifamiliares y plurifamiliares de Castellón, cuentan con un servicio eléctrico abastecido por tan solo unas pocas empresas – Iberdrola, Endesa, Fenosa. – las cuales dominan el mercado de suministro eléctrico. Es previsible que, con el paso del tiempo, las fuentes de energía fósiles se vayan agotando, repercutiendo en la subida de precio de las facturas de luz, agua y gas. Esto supondrá que la población que es dependiente de estas compañías y que no esté preparada para producir su propia energía mediante fuentes renovables, pagará precios muy altos por sus facturas. Mientras que los otros, tendrán un ahorro importante.
1.3. OBJETIVOS

a. Objetivos Generales

El objetivo principal de este Trabajo Final de Grado es diseñar una vivienda unifamiliar que se pueda autoabastecer lo máximo posible mediante un diseño adecuado al entorno y una selección de materiales y soluciones constructivas adecuadas, así como mediante el uso de las energías renovables - como el sol y el viento - y que se adapte al ambiente, sin romper la estética paisajística del entorno y cumpliendo también con las limitaciones físicas y normativas que le sean de aplicación.

b. Objetivos Específicos

Como objetivos secundarios se citan los siguientes:

1. Analizar los requisitos normativos de aplicación a una vivienda unifamiliar en lo que se refiere a su comportamiento energético.
2. Analizar el comportamiento energético de la vivienda unifamiliar diseñada con criterios de sostenibilidad. Para ello, se revisarán los principios de la arquitectura bioclimática y se analizará la influencia de la climatología del entorno, adecuando el diseño de la vivienda en zona climática B3, correspondiente a Castellón de la Plana.
3. Realizar una selección justificada de materiales y soluciones constructivas del edificio con el fin de obtener una envolvente térmica que resulte en una demanda de energía muy baja, casi nula.
4. Analizar algunas fuentes de energía renovables, adecuadas al entorno y a la tipología de edificio considerada.

1.4. FASES DEL TRABAJO Y METODOLOGÍA UTILIZADA

Se trata de diseñar una vivienda unifamiliar de acuerdo a criterios de sostenibilidad. Para ello, se utilizarán los principios de las viviendas bioclimáticas, con el fin de adecuar la vivienda a las características ambientales del entorno. Así se analizará la vivienda en la zona climática: B3, correspondiente a Castellón de la Plana, de acuerdo al Código Técnico de la Edificación (CTE).

Las fases seguidas en el trabajo serán:

1. Estudio del diseño adaptado al entorno. Para ello se llevarán a cabo los siguientes trabajos:
 - Revisión bibliográfica con el fin de que el diseño atienda a criterios de diseño, aplicados en arquitectura bioclimática y basados en la adecuación del edificio al entorno. Se estudiarán parámetros como orientación, aprovechamiento del soleamiento, geometría, etc.
 - Recopilación de datos climáticos en el municipio de Castellón de la Plana, lugar seleccionado para la ubicación del edificio.
• Selección del emplazamiento y recopilación de los datos urbanísticos relevantes de aplicación a la parcela de ubicación del edificio.

2. **Análisis y selección de materiales** para la construcción del edificio teniendo en cuenta aspectos que estén directamente relacionados con el tipo de edificio ecológico: su disponibilidad en el entorno próximo, si se trata de un material natural o con sello de calidad, etc. Además, se analizará la aplicación de estos materiales en las **soluciones constructivas de la envolvente** del edificio y el comportamiento medioambiental de las soluciones seleccionadas.

3. **Análisis y selección de instalaciones** para el funcionamiento del edificio, básicamente climatización, agua caliente sanitaria (ACS) e iluminación. En la medida de lo posible, se implementarán instalaciones que puedan abastecerse con energías renovables.

• **Propuesta de diseño de la vivienda unifamiliar** con aplicación de criterios de sostenibilidad, pero, además, vigilando el cumplimiento de la normativa vigente y las necesidades del usuario. Análisis de la eficiencia energética de la vivienda.

Figura 1. Esquema de la metodología seguida en el trabajo
2. ANTECEDENTES

2.1 TERMINOLOGÍA Y CONCEPTOS BÁSICOS

Existe una extensa literatura en torno a los conceptos de sostenibilidad y ecología, adaptados a la edificación y la terminología es muy extensa. Se trata de términos muy genéricos en torno a los cuales surgen otros conceptos mucho más específicos y que de alguna manera, tienen relación con el trabajo aquí presentado. A continuación, se muestran algunas de los más relevantes. En general, vivienda se define como:

“lugar cerrado y cubierto construido para ser habitado por personas” (URL 1). Por su parte se defina casa como “Edificio de una o pocas plantas destinado a vivienda unifamiliar, en oposición a piso” (URL 2).

Por otro lado, la ecología se define como: “Ciencia que estudia los seres vivos como habitantes de un medio, y las relaciones que mantienen entre sí y con el propio medio. (URL 3).

Otros conceptos relacionados con los puntos de vista u objetivos específicos de este trabajo son:

A) Relacionados con el diseño:

1. **Ecodiseño:** El eco diseño es una metodología que promete (según proyectos llevados a cabo) una reducción de un 30 a un 50% del deterioro del medio ambiente. Además, debido al cambio climático es conveniente que en los próximos años se produzca un cambio cultural y tecnológico. (URL 4)

2. **Arquitectura bioclimática:** La arquitectura bioclimática consiste en diseñar casas o edificios, aprovechando los recursos naturales de los que dispone la zona donde se ubica dicha construcción, como pueden ser: sol, lluvia, viento, vegetación. De esta forma se consigue un ahorro en el consumo de energía y se disminuye el impacto medioambiental. (URL 5)

B) Relacionados con la envolvente térmica:

Uno de los principales objetivos al diseñar un edificio es lograr que en su interior exista

1. **Bienestar térmico:** “el bienestar térmico se percibe cuando el cuerpo se encuentra en equilibrio térmico; es decir, cuando el cuerpo funciona con una mínima termorregulación”. (Neufert 2013) Para obtener un bienestar térmico, el calor generado por el cuerpo tiene que ser igual a la pérdida térmica hacia el ambiente. Para ello el cuerpo posee sus propias actividades termorreguladoras y así, se puede generar calor con nuestro cuerpo a partir de la circulación cutánea, aumento de la velocidad del flujo sanguíneo, vasodilatación, temblores; refrigeración: sudoración.

2. **Materiales de construcción ecológicos:** Para la selección de los materiales de la vivienda, valoraremos sus propiedades para hallar los más adecuados para el proyecto, intentando utilizar siempre materiales con sello de calidad, naturales y locales, ya que un transporte de un material más ecológico a una larga distancia, puede repercutir una mayor huella de carbono. (publicación ED951, UJI)
Para la selección de materiales de nuestro proyecto, se utilizarán en la medida de lo posible materiales locales ya que tienen una influencia sobre el ahorro de la energía que sería necesaria para el transporte y para una integración en el entorno más apropiada.

Además, de este modo influimos en la sociedad, ya que, los negocios locales pueden destinar sus actividades a la extracción de materiales del entorno y esto activa la economía local. Los materiales más abundantes en la provincia de Castellón son:

Para la selección de materiales de nuestro proyecto, se utilizarán en la medida de lo posible materiales locales ya que tienen una influencia sobre el ahorro de la energía que sería necesaria para el transporte y para una integración en el entorno más apropiada.

Además, de este modo influimos en la sociedad, ya que, los negocios locales pueden destinar sus actividades a la extracción de materiales del entorno y esto activa la economía local. Los materiales más abundantes en la provincia de Castellón son:

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Animal</th>
<th>Vegetal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construcción</td>
<td>Roca, barro, arcilla</td>
<td>Madera (mínimo impacto ambiental), bloques de paja, bambú</td>
</tr>
<tr>
<td>Aislamiento (Térmico y/o acústico)</td>
<td>Vermiculita, lana mineral, termita, arcilla, paneles de vidrio celular</td>
<td>Lana de oveja, plumas de ave</td>
</tr>
<tr>
<td></td>
<td>Corcho, celulosa, cáñamo, lino, madera, lana de oveja, paja, fibra de coco, algodón...</td>
<td>Corcho, celulosa, cáñamo, lino, madera, lana de oveja, paja, fibra de coco, algodón...</td>
</tr>
<tr>
<td>Impermeabilizante</td>
<td>-</td>
<td>Caúcho, resinas de madera, aceites vegetales.</td>
</tr>
</tbody>
</table>

Tabla 1. Materiales más frecuentes, según su origen.

3. **Propiedades de los materiales ecológicos para la construcción:** Deben ser inocuos, locales, económicos, agradables, fáciles de instalar o aplicar, fáciles de mantener, reciclable, que tenga una larga duración, poca huella de carbono...

4. **Materiales con certificado de calidad:** Existen materiales que disponen de certificados de calidad. Esto son etiquetas que aportan información sobre su carácter respetuoso con el medio ambiente. El objetivo de estas etiquetas es promover la utilización de materiales con menor impacto ambiental. Hay un tipo de etiquetas que no son fiables (tipo II) ya que no han sido certificadas por una tercera parte. Las etiquetas tipo I y III, donde un organismo competente confirma que cumple con los requisitos. Otras, como la *Forest Stewardship Council* (FSC), garantiza que la madera procede de explotaciones sostenibles. (URL6).
<table>
<thead>
<tr>
<th>Descripción</th>
<th>Etiqueta</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSC (Forest Stewardship Council): Garantiza al consumidor que los productos forestales proceden de montes aprovechados de forma racional.</td>
<td></td>
</tr>
<tr>
<td>AENOR (etiqueta de eco diseño): Consiste en una definición formal de las acciones de I+D para crear productos respetuosos con el medio ambiente.</td>
<td></td>
</tr>
<tr>
<td>PEFC (Productos forestales certificados): Garantizan a los consumidores que están comprando productos de bosques gestionados sosteniblemente</td>
<td></td>
</tr>
<tr>
<td>EU Ecolabel (etiqueta ecológica de la unión europea): Identifica a aquellos productos que han sido verificados por organismos independientes y que garantizan el cumplimiento de criterios relativos al medio ambiente y a las prestaciones del producto.</td>
<td></td>
</tr>
<tr>
<td>NF Environment: Tiene por objeto certificar que los productos tienen un menor impacto negativo sobre el medio ambiente y demuestran una superior adaptación al uso destinado, comparados con otros similares del mercado.</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 3. Materiales con sello
C) Relacionados con las instalaciones:

En la medida de los posible se intentará que la climatización para lograr confort térmico en el interior del edificio, sea pasiva. Para ello, se ha tenido en cuenta el entorno y las soluciones constructivas en el diseño. Existen tres formas distintas para una climatización pasiva dentro de una vivienda:

- Efecto Venturi
- Efecto chimenea
- Efecto invernadero

1. **Efecto Venturi**: Mediante una ventilación cruzada en la parte superior de una construcción. Esto produce una succión del aire interior por diferencia de presión entre el aire interior y exterior.

![Figura 2. Esquema efecto Venturi (Fuente: http://www.casasecologicas.org/2012/03/vivienda-contenedores-de-40-pies.html)](http://www.casasecologicas.org/2012/03/vivienda-contenedores-de-40-pies.html)

2. **Efecto Chimenea (Termosifón)**: Mediante diferencia de temperaturas, el aire fresco al tener mayor densidad que el caliente, tiende a precipitarse; mientras que el aire calentado por radiación solar, aparatos eléctricos, personas y otros dispositivos, tiende a elevarse.

3. **Efecto invernadero**: Al pasar la radiación solar a través de una superficie transparente o translúcida y almacenarse en los suelos, muros y objetos, estos disiparán calor en forma de radiación infrarroja, la cual quedará atrapada dentro de la estancia por la opacidad de estas superficies a esta radicación de onda larga.

![Esquema efecto invernadero](https://biuarquitectura.files.wordpress.com/2012/02/efecto_invernadero_edificio_vivienda_casa.jpg?w=710)

A pesar del adecuado diseño, generalmente será necesaria alguna fuente energética para dar servicio al edificio. Dichas fuentes energéticas pueden ser renovables o no renovables. Respecto a las **energías renovables más usuales en vivienda** destacan la energía del Sol y la energía eólica.

C) Energía del Sol

Es una energía renovable, que se obtiene mediante la captación de calor y luz emitido por el Sol. Aprovechados por medio de captadores como células fotovoltaicas, helióstatos o colectores térmicos, pudiendo transformarse en energía eléctrica o térmica.

![Imagen del Sol como fuente de energía](http://4.bp.blogspot.com/-CgriQeWvZ8w/Vq55o55dUHI/AAAAAAAABprW/5utHkhvVkJHQ/s400/Energia%2Bsolar.gif)
España fue uno de los primeros países a nivel mundial en investigación, desarrollo y aprovechamiento de la energía solar (URL 7). Gracias a una legislación favorable, España fue en 2008 uno de los países con más potencia fotovoltaica instalada en el mundo, con 2708 MW instalados en un solo año.

Sin embargo, posteriormente las implantaciones de regulaciones legislativas frenaron esta tecnología (URL 8). En 2009 se instalaron sólo 19MW, en 2010 420MW y en 2011 353MW. La energía solar fotovoltaica en España a finales de 2014 alcanzaba los 4672MW.

En 2015, la potencia total instalada en España alcanzó los 108.299 MW. En este total, la potencia solar fotovoltaica neta representa el 4,3%, alcanzando los 4.667 MW. Si tenemos en cuenta que en 2014 esta cifra fue de 4.672 y en 2013 fue de 4.665, observamos que en los últimos años apenas se produce variación en la potencia conectada a red.

Como consecuencia a la normativa restrictiva, las empresas que habitualmente actuaban en España han expandido sus mercados a otros países, como México o Brasil, que cuentan con una normativa mucho más favorable que asegura un mayor éxito de las inversiones.

“Según Jorge Barredo, presidente de UNEF, España no va a cumplir con los objetivos europeos de 2020, si no se toman medidas claras y urgentes de fomento al desarrollo de la fotovoltaica y de todas las energías renovables.” (URL 9).

D) Energía eólica.

La energía eólica es la obtenida mediante el aprovechamiento del viento. Es una de las energías más antiguas utilizadas. Consiste en “convertir la energía que produce el movimiento de las palas de un aerogenerador impulsadas por el viento en energía eléctrica.” (URL 10)

La energía del viento puede obtenerse instalando los aerogeneradores tanto en suelo firme como en el suelo marino.

A pesar del nulo aumento de potencia en 2015 (0 MW), la energía eólica ha sido la tercera fuente de generación eléctrica en España en 2015 con 22.988 MW de potencia instalada. España es el quinto país del mundo por potencia eólica instalada, tras China, Estados Unidos, Alemania e India. (URL 11)

A continuación, se muestra un gráfico con el porcentaje de energías utilizadas en España en 2015. Vemos que la energía eólica proporciona un 19% de la energía total generada.
El siguiente gráfico muestra la evolución desde 1990 hasta el 2015 de la potencia eólica instalada en España en MW. Vemos cómo en España ha ido creciendo la potencia eólica instalada desde 1999 hasta el 2012 se hizo mucho hincapié en esta medida de generación de electricidad. Desgraciadamente, se puede ver como desde el año 2013 se deja de lado esta energía, hasta el punto de llegar a instalar 0 MW en 2015.
E) Energía geotérmica

Energía procedente del calor interior de la tierra. Mediante una buena instalación de energía geotérmica, se puede abastecer del 100% de ACS y calefacción. Es una de las más costosas de instalar, pero se amortiza rápidamente. (URL 12)

Las principales ventajas de esta energía son (URL 13):

- Poco mantenimiento
- Vida útil por encima de los 30 años
- Estéticamente no se ven instalaciones
- Elimina el riesgo de legionela
- Reducción de emisiones de CO₂ entorno al 50%
- Sistema silencioso y no produce partículas volátiles

2.2. HISTORIA DE LAS VIVIENDAS AUTOSUFICIENTES /PASIVAS Y SUS CARACTERÍSTICAS

Desde los años 70, las técnicas ecológicas y de ahorro de energía han afectado todos los aspectos de la vida. Un tipo de viviendas con consumo casi nulo, son las denominadas casas pasivas. Las primeras casas pasivas reguladas y estandarizadas, fueron construidas en Suecia y Dinamarca. Fue en 1988 cuando Wolfgang Feist, junto con el profesor sueco Bo Adamson, definieron conjuntamente lo que debería conllevar una casa pasiva. En 1996, Feist fundó el instituto alemán de casas pasivas en Darmstadt (URL 14). Hoy en día, este instituto todavía indica los estándares necesarios para poder certificar las casas pasivas. Entre 1999 y 2001, hubo un aumento de un tercio del total de casas pasivas en Europa. Este crecimiento fue posible gracias al programa CEPHEUS (Cost Efficient Passive Houses as European Standards) que fueron los responsables de construir 221 edificios residenciales en 5 países de Europa. En 1998, un año antes de que introdujeran en Alemania una nueva regulación con estándares de bajo consumo de energía, cuando fue construida la primera casa pasiva unifamiliar, a cargo del arquitecto Oehler Faigle Archkom. Mientras que los estándares de bajo consumo de energía en inmuebles requerían menos de 70KWh/m², los requerimientos de las casas pasivas eran de 15KWh/m². Esta diferencia hace que en casas pasivas no sea necesaria la instalación de aire acondicionado o radiadores. Los sistemas activos convencionales quedan remplazados por sistemas pasivos, como un buen aprovechamiento del sol con una buena orientación.
Una casa pasiva permite 15KWh/m² de calefacción máximo o una carga térmica máxima de 10 W/m². Además, exige que la estanqueidad al aire de la envolvente sea de n50 <= 0,6/h (blower door test) y que la demanda de energía primaria esté por debajo de 120 kWh/m² incluyendo todos los aparatos eléctricos (calor/frío, agua y electricidad). Es fácil de ver como en diferentes puntos del mundo, con climas totalmente opuestos, usan diferentes técnicas para llegar a los estándares exigidos. Por ejemplo, mientras que una casa por encima de 60º de latitud necesitaría 335 mm de espesor de aislamiento para no sobrepasar los 10W/m² de carga térmica máxima, una casa en Australia necesita un enfriamiento intensivo, que podría conseguirse a través de la acumulación de agua de lluvia. En Tailandia, una casa necesita ventilación para reducir la humedad y así cumplir con la última demanda de las casas pasivas que indica que no puede haber una pérdida de confort.

En la definición de casa pasiva no exige que no se puedan utilizar materiales como la madera, el hormigón o materiales sintéticos ni que solo sea atribuible a un único tipo de edificio – las fábricas, oficinas y guarderías pasivas se han hecho famosas recientemente – Las casas pasivas son respetuosas con el medio ambiente por sus propiedades de ahorro de energía. Lo que quiere decir que no tienen por qué ser verdes, sostenibles o ecológicas, criterio que sí se tendrá en cuenta en este trabajo. No obstante, el concepto casa pasiva es interesante ya que, el coste extra que se hace para su construcción, se recupera en pocos años. Y, teniendo en cuenta que el precio de las energías va a seguir subiendo, la inversión se recuperará aún más rápido. Además, vivir en una casa pasiva asegura tranquilidad, unas condiciones ambientales constantes lo que hace que trabajar y vivir en ellas sea más cómodo. Finalmente, la mayoría de casas pasivas son ecológicas en más de un aspecto. Combinando el conocimiento de los diseños verdes (reciclaje, materiales de baja contaminación, aguas grises) y el diseño de casas pasivas (cosecha de sol con paneles en una posición adecuada), puede dar como resultado una casa de energía cero o aún mejor, que produzca más energía de la que necesitamos, por lo que en este trabajo se adoptan algunas de las recomendaciones para la construcción de una casa pasiva.

Se pueden usar diferentes técnicas para construir una casa Pasiva; algunas se pueden utilizar en cualquier clima, otras sólo en climas más específicos. Uno de los factores más importantes es la utilización de “súper aislamiento”, que reducirá la transmisión de calor entre el exterior y el interior de la casa al mínimo. Esto, junto con la realización de una construcción estanca, donde haya barreras de aire para controlar las fugas de aire hacia dentro y hacia fuera del edificio, y prestando especial atención en los puntos singulares para evitar puentes térmicos. Al realizar una construcción hermética, es necesaria la utilización de sistemas de ventilación de recuperación de calor, el cual proporciona aire fresco típico de una Casa Pasiva. El sistema de ventilación proporciona control de temperatura de aire fresco como único medio de sistema de calefacción/refrigeración, no se instalan radiadores o aire acondicionado. Además de utilizar un “súper aislamiento”, a menudo la envolvente del edificio presenta tecnología avanzada de ventanas: triple cristal, acristalamiento de baja emisividad, cierres herméticos y especialmente rotura de puente térmico lo que proporciona valores de R altos y de U bajos. Utilizar elementos como: tragaluces y claraboyas resulta en un ahorro de la energía utilizada y proporciona confort. En el diseño de una casa pasiva, las ventanas apuntarán al ecuador para aprovechar al máximo la
luz, mientras que en el resto de fachadas se mantendrán con el menor número de huecos como sea posible.

En Europa central, la fachada norte es la más fría. En cambio, la fachada sur tiene grandes superficies de cristal para que el sol incida dentro de la casa y la caliente incluso en invierno. En verano para no tener un exceso de calor en verano, se utilizan diseños constructivos como voladizos que proporcionan sombra cuando el sol está en su parte más alta. Aunque estos diseños funcionan bien, una casa pasiva va más allá que utilizar la luz directa y de su protección, ya que recolecta y almacena el calor en los muros y suelos de gran masa para su posterior uso en todas las estancias de la casa. Otro aspecto importante en el diseño de casas pasivas es la forma del edificio para minimizar la superficie, para que el área a aislar sea menor. Especialmente en regiones cálidas donde con el uso de árboles de hoja caduca (en verano nos protejan del sol y en invierno dejen pasar la luz), plantas, pérgolas que proporcionan sombra, jardines verticales y cubiertas ajardinadas son elementos de aislamiento naturales. El posicionamiento de la parcela es también un dato importante a tener en cuenta.

Sin embargo, las diferencias no existen solo entre climas distintos. Incluso Alemania, Austria y Suiza tienen sus propios requerimientos para Casas Pasivas; a pesar de que los dos primeros son miembros de la UE. Entonces, ser casa pasiva o no, puede diferir por unos kilómetros de distancia. La certificación por el instituto de casas pasivas de Darmstadt es voluntario, así que no hay indicaciones de lo que una casa pasiva debería ser.

(Chris van Uffelen, 2012)

3. CRITERIOS DE DISEÑO

3.1. PRINCIPIOS DE LA ARQUITECTURA BIOCLIMÁTICA

La arquitectura bioclimática trata de aprovechar las condiciones climáticas de la zona en la que se ubica la construcción. Se ha de diseñar siempre teniendo en cuenta a que uso está destinado el edificio. El diseño en condiciones de verano es más difícil que en invierno ya que no disponemos de una fuente natural para refrigerar nuestro ambiente (al contrario que el Sol). El aprovechamiento de las condiciones del exterior o del entorno es el punto de partida para el diseño de una vivienda de consumo casi nulo. Las condiciones varían de acuerdo a la estación del año. Así en el Hemisferio Norte, podemos distinguir condiciones de invierno con frío en el exterior y de verano, con calor en el exterior, respecto al confort térmico que se quiere lograr en el interior.

Las estrategias utilizadas en invierno que van destinadas a la conservación del calor son:

- Captación
- Acumulación
- Distribución
La **captación** de la energía sucede cuando esta incide en la envolvente del edificio. Hay que controlar la entrada de sol a través de las ventanas, huecos o lucernarios, (captación directa) para evitar sobrecalentamientos en climas cálidos.

- Sistemas de captación directa
- Sistemas de captación diferida o retardada
- Sistemas de captación diferida mixtos

Cuando existe un periodo de tiempo entre la captación y la distribución al interior de la vivienda, se habla de sistemas de captación diferida o retardada. Este efecto es debido a la inercia térmica de los cerramientos que acumulan calor para devolverlo más tarde “El proceso de transferencia de calor hacia el interior es lento y puede durar varias horas. Coincide con el denominado “desfase de la onda térmica”

Esta propiedad de algunos materiales se ha ido perdiendo con los años al añadir una segunda hoja en la envolvente e introducir el aislamiento térmico. Este material impide que el muro distribuya el calor hacia el interior de la vivienda. Aunque, esto ayuda a limitar la pérdida de calor hacia el exterior.

La mejor orientación para una ganancia adecuada de calor es Sur (en el Hemisferio Norte) y la cubierta en estaciones muy cálidas debe preverse un sobrecalentamiento.

La forma de **distribuir** el calor captado o acumulado al interior de todas las estancias, se aplican las siguientes estrategias:

- Distribución directa
- Distribución directa y lazo convectivo
- Distribución indirecta mediante sistemas de doble piel
- Distribución indirecta mediante conductos enterrados

Por otro lado, las estrategias de **verano** se destinan a eliminar el exceso de calor e introducir aire fresco.

- Evitar la radiación solar
- Ventilación
- Evaporación

Para evitar la radiación directa se dispondrán elementos que impidan la entrada directa de la radiación solar en verano, pero dejando pasar en invierno. Puede ser por medio de lamas, voladizos, porches, vegetación, aleros, persianas, etc.

La ventilación de aire en la casa es importante para la eliminación de humedad y una calidad interior del aire adecuada. Cuando el aire se caliente, asciende, creando una masa de aire caliente. Si los techos son bajos, esta masa de aire está en contacto con las personas, creando un desconfort.
3.1.1. ESTRATEGIAS PASIVAS DE DISEÑO BIOCLIMÁTICO

<table>
<thead>
<tr>
<th>Estrategia</th>
<th>Descripción</th>
<th>Imagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efecto invernadero</td>
<td>Los vidrios ordinarios dejan pasar la radiación solar (longitud de onda corta), así, los objetos son calentados y estos ceden calor en forma de radiación de onda larga la cual queda atrapada en la estancia, calentando así el ambiente.</td>
<td></td>
</tr>
<tr>
<td>Doble invernadero</td>
<td>Este sistema utiliza la misma función que el efecto invernadero, pero con un doble cristal para potenciar el efecto. Creando rejillas de ventilación para conducir el aire desde la cámara hasta dentro de la estancia.</td>
<td></td>
</tr>
<tr>
<td>Muro trombé</td>
<td>Es un sistema de captación solar pasivo que potencia la energía recibida. Orientado hacia la posición del sol más favorable (sur), la hoja interior de la fachada debe ser de gran inercia térmica y pintada de un color oscuro. Se realizarán orificios en el muro y se dispondrá un vidrio por delante del muro, creando así una cámara intermedia. El usuario recibe calor en forma de radiación del muro y convección-conducción producido por la corriente de aire. Este sistema cumple las 3 funciones de la arquitectura bioclimática: Captación, acumulación y distribución.</td>
<td></td>
</tr>
</tbody>
</table>
Figura 13. Actuación del sistema muro Trombé. El aire caliente asciende, calienta la casa y desciende. (Fuente: Apuntes MEES tema II)

Convectores solares
Se utiliza un lecho de materiales pesados como gravas o piedras. Se dispone un cristal para aprovechar el efecto invernadero. El aire calentado por las piedras pasa dentro de la estancia calentándose. Cuando el aire se enfría, es succionado de nuevo hacia el lecho.

Calentamiento por inmersión en la tierra
Aprovecha la temperatura constante del terreno. Esto le proporciona un confort gracias al amortiguamiento térmico entre el interior y el exterior.
Otra ventaja es que colabora con el ecosistema al estar cubierto por vegetación y se funde con el paisaje que le rodea.

Cubiertas vegetales
La vegetación y el sustrato actúan como aislante térmico y acústico (efecto martillo de la lluvia), además de proteger a la capa impermeabilizante. Ofrece gran protección contra la radiación solar y absorben CO₂.

Figura 14. Imagen funcionamiento convectores solares. (Fuente: Apuntes MEES tema II)

Figura 15. Imagen vivienda enterrada. (Fuente: http://www.archdaily.com/43187/villa-vals-search-cma)

Vidrios

Hay que dimensionar adecuadamente para equilibrar la ganancia solar con las pérdidas térmicas. En el caso de las ventanas, la transmitancia térmica depende del perfil y el vidrio. La forma de reducir la transmitancia de las ventanas es:
- Incrementar el número de láminas de vidrio,
- Hacer el vacío en la cámara de aire,
- Rellenar con diferentes tipos de gases, aerogel o recubrimientos de baja emisividad.

![Figura 17. Sección marco y cristal de una ventana de triple hoja. (Fuente: https://es.pinterest.com/pin/30828536976603901/)](image)

<table>
<thead>
<tr>
<th>Tabla 4. Estrategias pasivas de diseño bioclimático.</th>
</tr>
</thead>
</table>

En este proyecto se han adoptado algunas de las soluciones indicadas anteriormente como:

- **Efecto invernadero:** Al estar ubicados en una zona climática cálida (B3), hemos tratado de aprovechar el soleamiento para calentar los espacios interiores en invierno utilizando grandes ventanales en la fachada sur (creando así el efecto invernadero), protegidos con voladizos y lamas para evitar el sobrecalentamiento en verano.
- **Cubierta ajardinada:** para una buena adaptación a condiciones de invierno y verano además de colaborar con el ecosistema de la zona.
- **Vidrio de baja transmitancia térmica:** Se ha optado por ventanas con rotura de puente térmico, 3 láminas de vidrio y recubrimientos de baja emisividad.

El resto de soluciones se han descartado por:

- no ser aplicable a las condiciones de Castellón, como es el doble invernadero.
- La inmersión en la requiere movimiento de tierra y es algo que se quiere evitar, además, al estar en primera línea de playa el nivel freático está cerca del nivel del suelo.
4. ESTUDIO DEL ENTORNO

Vemos que España se encuentra en el hemisferio norte, en el trópico de cáncer. Al estar situado entre los 36 y los 43 grados de latitud norte, el clima español puede variar dependiendo de la situación. Mientras que nos encontramos un clima húmedo en el norte con áreas montañosas y vegetación, en el centro sur y este es un clima Mediterráneo más seco.

A continuación, se muestran 2 gráficos con temperaturas del planeta en enero y agosto. Enero suele ser el mes con la temperatura media más baja, mientras que agosto es el mes con el promedio más alto. (URL 15)

4.1. LÍMITE TERRITORIAL

España está limitada continentalmente por un océano, cinco mares y cuatro países.

– Límite al NORTE: Francia, Andorra y el mar Cantábrico.
– Límite al OESTE: Portugal y el océano Atlántico.
– Límite al SUR: Océano Atlántico, mar Mediterráneo, mar de Alborán y Gibraltar (Reino Unido).

(URL 16)

4.2. LOCALIZACIÓN GEOGRÁFICA DE CASTELLÓN

Castellón de la Plana con su extensión de 108 km2 y cerca de 180.000 habitantes, es la capital de la provincia de Castellón. Situada sobre un terreno llano al este de la península ibérica, en la comunidad valenciana, rodeada por distintas sierras por el interior y el mar Mediterráneo al este. El núcleo urbano se encuentra a 30 m sobre el nivel del mar y a 4 km de la costa. El meridiano 0° de Greenwich pasa por el municipio. (URL 17)

Figura 20. Localización geográfica de Castellón. (Fuente: https://upload.wikimedia.org/wikipedia/commons/thumb/4/44/Localizaci%C3%B3n_de_la_provincia_de_Castell%C3%B3n.svg/600px-Localizaci%C3%B3n_de_la_provincia_de_Castell%C3%B3n.svg.png)
4.3. ANÁLISIS CLIMÁTICO DEL MUNICIPIO DE CASTELLÓN

En la siguiente tabla aparecen estadísticas anuales del Grao de Castellón relacionadas con el clima de la zona donde irá emplazada la vivienda, como la temperatura máxima y mínima o la velocidad del viento.

Promedio anual hasta el día 05/10/2016.

<table>
<thead>
<tr>
<th>Max - Min.</th>
<th>Anuales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temporatura</td>
<td>32.5 C</td>
</tr>
<tr>
<td>Min. Temperatura</td>
<td>-17.8 C</td>
</tr>
<tr>
<td>Min. Sens. Térmica</td>
<td>-17.8 C</td>
</tr>
<tr>
<td>Humedad</td>
<td>100 %</td>
</tr>
<tr>
<td>Humedad</td>
<td>0 %</td>
</tr>
<tr>
<td>Max Pto. Rocio</td>
<td>24.9 C</td>
</tr>
<tr>
<td>Min. Pto. Rocio</td>
<td>1.1 C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Max - Min.</th>
<th>Anuales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Veloc. Viento</td>
<td>56 km/h</td>
</tr>
<tr>
<td>Presión</td>
<td>1032.7 km/h</td>
</tr>
<tr>
<td>Min. Presión</td>
<td>996.7 km/h</td>
</tr>
<tr>
<td>Lluvia Total (nov 1/Oct)</td>
<td>0.0 mm</td>
</tr>
<tr>
<td>Caudal Lluv</td>
<td>0.0 mm/h</td>
</tr>
<tr>
<td>Radiación Solar</td>
<td>1160 Watt</td>
</tr>
<tr>
<td>Índice UV</td>
<td>7.9</td>
</tr>
</tbody>
</table>

Los vientos predominantes en Castellón de la Plana en verano son los vientos Siroco y Levante, mientras que en inviernos predominan los vientos de Lebeche, Poniente y Mistral.

Se puede observar en la Figura 22 un gráfico con los vientos medios anuales de Castellón. En la Figura 23 vemos que en Julio predomina el viento de Siroco mientras que en la Figura 24 de enero, predomina el viento de Lebeche.

4.4. ESTUDIO DE LA PARCELA

La parcela se encuentra en primera línea de playa. La parcela adyacente se encuentra vacía, por lo que no encontramos construcciones colindantes.

Algunos datos del catastro sobre la parcela se aprecian en la Figura 25.

4.5. TOPOGRAFÍA DEL TERRENO

Después de una inspección “in situ”, despreciamos la inclinación del terreno al ser casi nula. Se realizará un acondicionamiento del terreno para aplanarlo y eliminar la vegetación. Además de movimiento de tierras para la piscina y el forjado sanitario.

4.6. ANÁLISIS DE LA ORIENTACIÓN Y SOLEAMIENTO

La vivienda está formada por un único volumen compacto de 2 alturas, asentado en una parcela llana en primera línea de playa. Las 4 fachadas están orientadas al norte, sur, este y oeste. En la fachada Norte se sitúa la entrada a la casa desde el parking y la única puerta de acceso a la planta superior. En esta fachada se ha emplazado la escalera para subir a la primera planta. Ésta, se ha cubierto por una estructura metálica adosada a la fachada que ayuda a aminorar las posibles pérdidas a través de las puertas y amortiguar el cambio de temperatura entre el exterior y el interior.

La fachada Sur está diseñada con 2 grandes huecos para calentar y ventilar la cocina-salón-comedor en la planta baja y la oficina en planta superior, cubiertos por lamas horizontales las cuales protegen el interior de una exposición directa del sol, lo que produciría en verano un sobrecalentamiento del espacio interior. Dos huecos más iluminan el recibidor y la habitación de niños/invitados.

En la fachada Este hay 2 huecos de suelo a techo (similares a los de la fachada Sur), que iluminan y ventilan las mismas estancias. Estos huecos también estarán protegidos por lamas.
En la fachada Oeste se dispondrán huecos de tamaño pequeño por privacidad y por soleamiento, ya que es una de las fachadas más difícil de iluminar naturalmente. En esta fachada se encuentra la entrada principal a la casa, la ventana del baño de planta baja, una ventana que pertenece a la habitación de invitados y por último una ventana y una puerta para salir al balcón de la habitación de matrimonio.

Soleamiento

A continuación, se realizará el estudio de soleamiento de la parcela. Para ello, hemos utilizado la herramienta Sketchup en la que te permite situar mediante geolocalización la parcela en la que te encuentras. Además, te permite modificar las fechas y horas, por lo que se puede ver en cada momento en que fachadas incide el sol y cómo evitaremos la incidencia directa en verano, pero dejando que entre el máximo sol posible en invierno. Para ello, hemos realizado el diseño de voladizos y lamas móviles.

El estudio se ha realizado en los meses de enero y agosto, siendo los más fríos y calurosos respectivamente.

![Figura 26. Imagen trayectoria del sol en verano y en invierno.](image)

a) Verano (agosto)
En la Figura 26 vemos como las lamas protegen de la radiación directa parcialmente. Esto es debido a que se ha querido disfrutar del sol por la mañana dentro del comedor a la hora del desayuno.

Figura 27. Imagen desde el interior del salón-comedor. 8 de la mañana de agosto. Las lámas impiden el paso, por la fachada este, de la mayor radiación directa y crean un patrón en las superficies de la vivienda.

En la imagen 27 vemos como el voladizo impide que el sol entre dentro de la primera planta, mientras que en la planta baja apenas entra el sol gracias al grosor de muro y al retranqueo de las ventanas.

Figura 28. En la imagen se muestra como a las 12 del mediodía, durante el mes de agosto, el voladizo impide totalmente que el sol entre por los huecos de la fachada sur de la planta 1ª, lo que provocaría un exceso de calor en el interior.
En la imagen 28 se muestra como las lamas impiden el deslumbramiento durante el atardecer. La fachada oeste es una de las más difíciles de solear ya que el sol está bajo y sigue haciendo calor.

También se utiliza el balcón volado para refrescar la zona inferior y así, crear corrientes de aire más frías a través de la puerta de entrada.

Figura 29. En la imagen se muestra el atardecer de agosto. Como los rayos de sol inciden en la fachada oeste.

b) Invierno (enero)

Vemos como el sol entra por la mañana por los dos grandes huecos de la fachada este calentando las estancias.

Figura 30. soleamiento enero fachada este. Las grandes aperturas permiten que entre la luz del sol en el interior.
La siguiente imagen es de la fachada Sur y Este. En ella se aprecia como en el mes de enero, el sol incide totalmente en las ventanas, calentando el espacio interior.

Figura 31. Imagen del soleamiento en enero al medio día. Vemos como el sol incide totalmente en las ventanas creando el llamado efecto invernadero.

Figura 32. Imagen de enero al mediodía desde el interior del salón-comedor.

Vemos como la fachada oeste y sur siguen iluminadas al final del día.
Figura 33. Soleamiento fachado oeste. Atardecer de enero.
4.7. USUARIOS Y PROGRAMA DE NECESIDADES

La vivienda está diseñada específicamente para albergar 3 o 4 personas.

En la Table 5 aparecen especificadas las áreas de cada estancia de la vivienda, del total de cada piso y, además, el área total útil y construida.

<table>
<thead>
<tr>
<th>Espacio</th>
<th>Superficie útil (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1er piso</td>
<td>55,1 m²u</td>
</tr>
<tr>
<td>Salón-Comedor-Cocina</td>
<td>48,40</td>
</tr>
<tr>
<td>Sala de máquinas</td>
<td>2,80</td>
</tr>
<tr>
<td>Baño</td>
<td>3,90</td>
</tr>
<tr>
<td>2º piso</td>
<td>54,46</td>
</tr>
<tr>
<td>Habitación 1</td>
<td>10,84</td>
</tr>
<tr>
<td>Habitación master</td>
<td>11,74</td>
</tr>
<tr>
<td>Baño habitación master</td>
<td>4,28</td>
</tr>
<tr>
<td>Oficina</td>
<td>20,32</td>
</tr>
<tr>
<td>Escalera</td>
<td>7,28</td>
</tr>
<tr>
<td>TOTAL m²u</td>
<td>109,56</td>
</tr>
<tr>
<td>TOTAL m²c</td>
<td>140,50</td>
</tr>
</tbody>
</table>

Tabla 5. Superficies de cada estancia de la vivienda y su total.

El programa de necesidades realizado específicamente para este diseño es el siguiente:

Iluminación

- Buen nivel de iluminación natural para el trabajo en la oficina
- Iluminación artificial homogénea.
- Luces de bajo consumo LED

Habitación Master

- Armarios independientes para mujer y hombre
- Espejo grande cerca del armario
- Baño privado dentro de la habitación
- Balcón privado
- Sistema de calefacción procedente de la chimenea de la planta baja
- Mesita de noche a ambos lados de la cama
- Estanterías para libros

Habitación 2
- Escritorio cerca de la ventana para obtener la mayor luz posible
- El escritorio debe tener una lámpara propia
- Enchufes para poder conectar el ordenador y la lámpara
- Sistema de calefacción procedente de la chimenea de la planta baja
- Estanterías para libros

Baños
- Serán suficientemente grandes para albergar inodoro, lavabo y ducha.
- El baño de la planta baja dispondrá de ventana al exterior para ventilar e iluminar el espacio.
- El baño privado de la primera planta dispondrá de rejillas de ventilación al exterior y un cristal opaco que comunicará la habitación con el baño para proporcionar luz natural. Al estar orientada en la fachada norte, no queremos realizar aberturas en dicha fachada ya que es la más fría de todas.

Cocina
- Dispondrá de horno, frigorífico y vitrocerámica.
- La lavadora estará situada en la galería donde se guardarán los productos de limpieza y ropa sucia.

Salón- Comedor
- En el desayuno el sol debe entrar por las grandes cristaleras situadas al este, calentando así la sala para tener un desayuno placentero.
- Chimenea en el centro de la sala para una distribución de calor homogénea y eficiente.
- El diseño del salón debe ser tal, que la conexión entre el jardín (exterior) y el salón-comedor (interior) debe ser casi inapreciable. Para ello se utilizarán grandes ventanas y un suelo de madera que conectará el pavimento interior y exterior.

Jardín
- Piscina
- Plantas
- Árboles de hoja caduca para que en invierno dejen pasar los rayos del sol y en verano impidan la radiación directa.
- Deck para conexión interior exterior.
- Barbacoa exterior.
- Privacidad
4.8. DIAGRAMA DE RELACIONES

La distribución de los espacios se ha realizado de forma que las zonas comunes de la vivienda se encuentren en la planta baja (Salón-Comedor-Cocina, Baño y galería) mientras que la zona de descanso y estudio se encuentra en la primera planta (habitaciones 1 y 2, baño 2 y oficina).

En las siguientes dos imágenes (imagen 31 y 32), se muestra la sección de la casa junto con el entorno para ver la conexión interior-exterior y viceversa.

Figura 34. Sección de la planta baja. Zonas comunes de la vivienda. Salón, comedor, cocina, baño, jardín, piscina, barbacoa, zona chill out.
Figura 35. Sección primera planta. Zonas privadas, de descanso y estudio. Habitación de matrimonio con baño privado, habitación de invitados, oficina, red para descanso y ocio.
5. ANÁLISIS CONSTRUCTIVO DE LA ENVOLVENTE

5.1. ANÁLISIS DE LA NORMATIVA RELACIONADA

El análisis constructivo de la envolvente se estudiará teniendo en cuenta el documento “DB-HS salubridad”

El objetivo de este Documento Básico es conseguir unos niveles aceptables de la higiene, salud y protección del medio ambiente en edificios en condiciones normales de utilización con el fin de que los usuarios no padezcan molestias o enfermedades como consecuencia de las características de su proyecto, construcción, uso y mantenimiento.

Para cumplir este objetivo, las edificaciones se proyectarán, construirán, mantendrán y utilizarán conforme lo establecido en las cinco secciones que componen el DB-HS

- HS1 Protección frente a la humedad
- HS2 recogida y evacuación de residuos
- HS3 Calidad del aire interior
- HS4 Suministro de agua
- HS5 Evacuación de aguas

Desarrollaremos la sección primera, HS1 protección frente a la humedad, y la tercera, HS3 Calidad del aire interior.

5.2. SECCIÓN HS1: PROTECCIÓN FRENTE A LA HUMEDAD

5.2.1. ÁMBITO DE APLICACIÓN

“Esta sección se aplica a los muros y suelos que están en contacto con el terreno ya los cerramientos que están en contacto con el aire exterior (fachadas y cubiertas) de todos los edificios incluidos en el ámbito de aplicación general del CTE. Los suelos elevados se consideran suelos que están en contacto con el terreno. Las medianerías que vayan a quedar descubiertas porque no se ha edificado en los solares colindantes o porque la superficie de las mismas excede a las de las colindantes se consideran fachadas. Los suelos de las terrazas y los de los balcones se consideran cubiertas.” (CTE – DB-HS1)
5.2.2. SUELOS

Para una mejor ventilación y protección frente a la humedad, nuestra vivienda se dispondrá sobre zapatas de hormigón prefabricado dejando entre el terreno y el suelo una distancia de 50 cm.

Coeficiente de permeabilidad del terreno

El coeficiente de permeabilidad del terreno (K) se refiere a la resistencia al paso de fluidos a través del terreno. Este coeficiente se extrae de la siguiente tabla:

<table>
<thead>
<tr>
<th>TIPO DE SUELO</th>
<th>PERMEABILIDAD RELATIVA</th>
<th>VALORES DE K (cm/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravas limpias y gravas con arena gruesa limpia</td>
<td>Muy permeable</td>
<td>1 a 10^2</td>
</tr>
<tr>
<td>Arenas limpias y mezcla con medias y gruesas</td>
<td>Permeable</td>
<td>10^-2 a 10</td>
</tr>
<tr>
<td>Arenas finas y limpias, arena limosa, caliza fracturada</td>
<td>Algo permeable</td>
<td>10^-5 a 10^-1</td>
</tr>
<tr>
<td>Limos, limos arenosos, arcilla limosa</td>
<td>Poco permeable</td>
<td>10^-7 a 10^-4</td>
</tr>
<tr>
<td>Arcillas compactas, pizarras</td>
<td>Impermeable</td>
<td>10^-11 a 10^-7</td>
</tr>
</tbody>
</table>

Tabla 6. Coeficiente de permeabilidad K. (Fuente: CTE)

Al estar situado en el Grao de Castellón, la permeabilidad relativa del suelo es poco permeable con una K de entre 10^-7 y 10^-4 propio de la zona.

Presencia de agua en el terreno

Al emplazar la ECOHOUSE sobre las zapatas dejando la casa unos centímetros por encima del terreno, no tenemos peligro de ascensión de agua por capilaridad, por lo que la presencia de agua se considerará baja según el CTE.

La presencia de agua se considera

a) Baja cuando la cara inferior del suelo en contacto con el terreno se encuentra por encima del nivel freático
b) Media cuando la cara inferior del suelo en contacto con el terreno se encuentra a la misma profundidad que el nivel freático o a menos de dos metros por debajo;
c) Alta cuando la cara inferior del suelo en contacto con el terreno se encuentra a dos o más metros por debajo del nivel freático
Grado de impermeabilidad

El grado de impermeabilidad mínimo exigido a los suelos se obtiene de la “Tabla 2.3 Grado de impermeabilidad mínimo exigido a los suelos del DB-HS1 Salubridad”. Teniendo en cuenta que la presencia de agua es baja, ya que la ECOHOUSE queda elevada por encima del terreno, y que el coeficiente de permeabilidad del terreno es de 10^{-7}, obtenemos que el grado de impermeabilidad del terreno es 1.

<table>
<thead>
<tr>
<th>Presencia de agua</th>
<th>Coeficiente de permeabilidad del terreno</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alta</td>
<td>$K_s>10^{-7} \text{ cm/s}$</td>
</tr>
<tr>
<td>Media</td>
<td>4</td>
</tr>
<tr>
<td>Baja</td>
<td>2</td>
</tr>
</tbody>
</table>

Tabla 7. Tabla del Grado de impermeabilidad mínimo exigido a los suelos en el CTE DB- HS1 Salubridad

Condiciones de las soluciones constructivas

Esta sección del DB-HS describe las condiciones exigibles a las soluciones constructivas adoptadas en los suelos, según el tipo de muro de sótano existente. La vivienda no dispone de ningún muro de sótano, por lo que se tomará el caso más desfavorable. Las características de los suelos se extraen de la Tabla 2.4 condiciones de las soluciones de suelo del DB-HS1 Salubridad. Estas condiciones dependen del grado de impermeabilidad mínimo exigido, del tipo de suelo que se va a ejecutar y de las actuaciones en el terreno.

Teniendo en cuenta que el grado de impermeabilidad es 1, de que se trata de un suelo elevado y que no se llevará a cabo ninguna intervención en el terreno, obtenemos que, para los dos tipos de muro de sótano de la tabla, las condiciones exigibles para los suelos es V1.

<table>
<thead>
<tr>
<th>Grado de impermeabilidad</th>
<th>Suelo elevado</th>
<th>Sub-base</th>
<th>Inyección</th>
<th>Sin intervención</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sub-base</td>
<td>Placa</td>
<td>Solera</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inyección</td>
<td>D1</td>
<td>C2+G3+D1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sin intervención</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sub-base</td>
<td>Placa</td>
<td>Solera</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inyección</td>
<td>C2+G3+D1</td>
<td>C2+G3+D1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sin intervención</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sub-base</td>
<td>Placa</td>
<td>Solera</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inyección</td>
<td>C2+G3+D1</td>
<td>C2+G3+D1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sin intervención</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sub-base</td>
<td>Placa</td>
<td>Solera</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inyección</td>
<td>C2+G3+D1</td>
<td>C2+G3+D1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sin intervención</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sub-base</td>
<td>Placa</td>
<td>Solera</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inyección</td>
<td>C2+G3+D1</td>
<td>C2+G3+D1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sin intervención</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sub-base</td>
<td>Placa</td>
<td>Solera</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inyección</td>
<td>C2+G3+D1</td>
<td>C2+G3+D1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sin intervención</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sub-base</td>
<td>Placa</td>
<td>Solera</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inyección</td>
<td>C2+G3+D1</td>
<td>C2+G3+D1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sin intervención</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sub-base</td>
<td>Placa</td>
<td>Solera</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inyección</td>
<td>C2+G3+D1</td>
<td>C2+G3+D1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sin intervención</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sub-base</td>
<td>Placa</td>
<td>Solera</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inyección</td>
<td>C2+G3+D1</td>
<td>C2+G3+D1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sin intervención</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sub-base</td>
<td>Placa</td>
<td>Solera</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inyección</td>
<td>C2+G3+D1</td>
<td>C2+G3+D1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sin intervención</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sub-base</td>
<td>Placa</td>
<td>Solera</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inyección</td>
<td>C2+G3+D1</td>
<td>C2+G3+D1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sin intervención</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 37. Condiciones de las soluciones de suelo dependiendo del grado de impermeabilidad- CTE DB-HS1
Figura 38. Condiciones de las soluciones de muro dependiendo del grado de impermeabilidad- CTE DB-HS1

El DB HS1 indica que para suelos elevados sin intervención con un grado de impermeabilidad de 1:

“V) Ventilación de la cámara:

V1 El espacio existente entre el suelo elevado y el terreno debe ventilarse hacia el exterior mediante aberturas de ventilación reportadas al 50% entre dos paredes enfrentadas, dispuestas regularmente y al tresbolillo. La relación entre el área efectiva total de las aberturas, S_s, en cm², y la superficie del suelo elevado, A_s, en m² debe cumplir la condición:

$$30 > \frac{S_s}{A_s} > 10$$

La distancia entre aberturas de ventilación contiguas no debe ser mayor que 5 m.”

Esto significa que, en suelos elevados, la cámara de aire entre este y el terreno debe ser ventilada mediante orificios de ventilación dispuestos a tresbolillo.

En este caso, al estar la cimentación por debajo del nivel del terreno, las rejillas de ventilación, quedan debajo del suelo de la terraza. Para lograr que la cámara sanitaria ventile, se dejará un espacio alrededor de la casa de 1 m para ventilar por rejillas dispuestas en el suelo de la terraza. Mediante este diseño, tendremos la ventaja de tener la casa ventilada y a nivel del terreno sin necesidad de escalón de entrada.

$$\frac{S_s}{A_s} = \frac{1500}{68,89} = 21,77$$

$$30 > \frac{S_s}{A_s} > 10$$
Cumple la ventilación de la cámara sanitaria.

Ver Plano nº - Ventilación cámara sanitaria

Condiciones de los puntos singulares

Este apartado establece las condiciones de los puntos singulares en los suelos.

 Encuentros del suelo con los muros, la vivienda no dispone de muros de sótano o contención.

 Encuentros entre suelos y particiones interiores, esta condición establece que, en el caso de impermeabilizar por el interior, la partición no apoyará directamente sobre la capa impermeabilizante, lo hará sobre la capa de protección de ésta.

 Al disponer de un suelo elevado, y tener que cumplir con un grado de impermeabilidad 1, no es necesario disponer ningún sistema de impermeabilización.

Ver Plano nº - detalles de la tabiquería

5.2.3. FACHADAS

Grado de exposición al viento

El Grado de exposición al viento se obtiene de la “Tabla 2.6 Grado de exposición al viento del DB-HS1 Salubridad”, en función de la clase del entorno en el que se ubicará la edificación, la altura de coronación y de la zona eólica.

La clase del entorno será E0 o E1 dependiendo del tipo de terreno según la clasificación definida en el DB-SE Seguridad estructural.

“Terreno Tipo I: Borde del mar o de un lago con una zona despejada de agua en la dirección del viento de una extensión mínima de 5 km

Terreno Tipo II: Terreno rural llano sin obstáculos ni arbolado de importancia.

Terreno Tipo III: Zona rural accidentada o llana con algunos obstáculos aislados tales como árboles o construcciones pequeñas.

Terreno Tipo IV: Zona urbana, industrial o forestal.

Terreno Tipo V: Centros de negocios de grandes ciudades, con profusión de edificios en altura.”

Según esta clasificación, los terrenos Tipo I, II y III son un entorno E0 y los Tipo IV y V son un entorno E1. Esto significa que el entorno de la ECOHOUSE es E0 ya que se encuentra en primera línea de playa.

La altura prevista para la casa será menor de 15 metros.
La zona eólica se obtiene de la “Figura 2.5 Zonas eólicas del DB-HS1 Salubridad”. Como la vivienda se sitúa en Castellón, la zona eólica considerada es A.

Con todo esto, obtenemos en la “Tabla 2.6 Grado de exposición al viento” que el grado de exposición al viento es V2.

<table>
<thead>
<tr>
<th>Clase del entorno del edificio</th>
<th>E1</th>
<th>E0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zona eólica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zone A</td>
<td>V3</td>
<td>V2</td>
</tr>
<tr>
<td>Zone B</td>
<td>V3</td>
<td>V2</td>
</tr>
<tr>
<td>Zone C</td>
<td>V2</td>
<td>V2</td>
</tr>
</tbody>
</table>

Para edificios de más de 100 m de altura y para aquellos que están próximos a un desnivel muy pronunciado, el grado de exposición al viento debe ser estudiado según lo dispuesto en el DB-SE-AE.
La zona pluviométrica de promedios se obtiene de la “Figura 2.4 Zonas pluviométricas de promedios en función del índice pluviométrico anual”

![Figura 41. Imagen de la Tabla 2.4 zonas pluviométricas de promedios en función del índice pluviométrico anual del CTE DB-HS1](image)

Castellón se sitúa en la zona pluviométrica IV.

En la “Tabla 2.5 Grado de impermeabilidad mínimo exigido a las fachadas”, sabiendo que el grado de exposición es V2 y que la zona pluviométrica es IV:

![Figura 42. Imagen de la Tabla 2.5 Grado de impermeabilidad mínimo exigido a las fachadas dependiendo de la zona pluviométrica de promedios y el grado de exposición al viento (CTE DB-HS1)](image)

hayamos que el grado de impermeabilidad es 3
Las condiciones de las soluciones constructivas

Las condiciones exigidas a cada solución constructiva en función de la existencia o no de revestimiento exterior y del grado de impermeabilidad se obtiene en la “Tabla 2.7. Condiciones de las soluciones de fachada”

<table>
<thead>
<tr>
<th>Grado de impermeabilidad</th>
<th>Con revestimiento exterior</th>
<th>Sin revestimiento exterior</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ S1</td>
<td>R1+C1</td>
<td>C1+J1+N1</td>
</tr>
<tr>
<td>≤ S2</td>
<td>R1+C2</td>
<td>B2+C1+J1+N1</td>
</tr>
<tr>
<td>S3</td>
<td>R1+B1+C1</td>
<td>B1+C2+J1+N1</td>
</tr>
<tr>
<td>S4</td>
<td>R1+B2+C1</td>
<td>B2+C2+J1+N1</td>
</tr>
<tr>
<td>S5</td>
<td>R3+C1</td>
<td>B3+C1</td>
</tr>
</tbody>
</table>

Figura 43. Imagen tabla 2.7 Condiciones de las soluciones de fachada dependiendo del grado de impermeabilidad y el revestimiento. CTE-H51

Las condiciones de las soluciones de fachada según el CTE deben cumplir: R1+B1+C1 o R1+C2

“R1 El revestimiento exterior debe tener al menos una resistencia media a la filtración. Se considera que proporcionan esta resistencia los siguientes:

- **Revestimientos continuos de las siguientes características:**
 - Espesor comprendido entre 10 y 15 mm, salvo los acabados con una capa plástica delgada;
 - Adherencia al soporte suficiente para garantizar su estabilidad;
 - Permeabilidad al vapor suficiente para evitar su deterioro como consecuencia de una acumulación de vapor entre él y la hoja principal;
 - Adaptación a los movimientos del soporte y comportamiento aceptable frente a la fisuración;
 - Cuando se dispone en fachadas con el aislante por el exterior de la hoja principal, compatibilidad química con el aislante y disposición de una armadura constituida por una malla de fibra de vidrio o de poliéster.

- **Revestimientos discontinuos rígidos pegados de las siguientes características:**
 - De piezas menores de 300 mm de lado;
 - Fijación al soporte suficiente para garantizar su estabilidad;
 - Disposición en la cara exterior de la hoja principal de un enfoscado de mortero;
Adaptación a los movimientos del soporte.

Para la solución de fachada

R2 El revestimiento exterior debe tener al menos una resistencia alta a la filtración. Se considera que proporcionan esta resistencia los revestimientos discontinuos rígidos fijados mecánicamente dispuestos de tal manera que tengan las mismas características establecidas para los discontinuos de R1, salvo la del tamaño de las piezas.

Las condiciones C definen la composición de la hoja principal.

C1 Debe utilizarse al menos una hoja principal de espesor medio. Se considera como tal una fábrica cogida con mortero de:

- 1/2 pie de ladrillo cerámico, que debe ser perforado o macizo cuando no exista revestimiento exterior o cuando exista un revestimiento exterior discontinuo o un aislante exterior fijados mecánicamente;
- 12 cm de bloque cerámico, bloque de hormigón o piedra natural.

C2 Debe utilizarse una hoja principal de espesor alto. Se considera como tal una fábrica cogida con mortero de:

- 1 pie de ladrillo cerámico, que debe ser perforado o macizo cuando no exista revestimiento exterior o cuando exista un revestimiento exterior discontinuo o un aislante exterior fijados mecánicamente;
- 24 cm de bloque cerámico, bloque de hormigón o piedra natural.

Condiciones de los puntos singulares

Deben respetarse las condiciones de disposición de bandas de refuerzo y de terminación, así como de las continuidad o discontinuidad relativas al sistema de impermeabilización que se emplee.

En la vivienda se dispondrá la impermeabilización como la norma indica. Los puntos singulares son una de las primeras vías de entrada de fugas de agua o calor/frío. Por ello se prestará especial atención a realizarlo adecuadamente.

Juntas de dilatación

Se dispondrán juntas de dilatación coincidiendo con las juntas estructurales.

En la hoja principal del cerramiento, se dispondrá un relleno cubierto con un sellante manteniendo un espesor mínimo de 1 cm y una proporción espesores/anchura de 0,5 – 2

En la “Figura 2.6 Ejemplos de juntas de dilatación” se aprecian un par de ejemplos de cómo disponer las juntas de dilatación.
Arranque de la fachada desde la cimentación

Se cubrirá toda la fachada a más de 15 cm por encima del nivel del suelo exterior con una barrera impermeable para evitar el ascenso de agua por capilaridad o adoptarse otra solución que produzca el mismo efecto.

Encuentros de la fachada con los forjados y pilares

La solución constructiva adoptada hace que no haya interrupciones entre los forjados y fachadas o pilares y fachadas. La hoja principal de fachada será continua en toda su longitud.

Ver detalle encuentro de fachada con forjado.

La vivienda tiene todas las ventanas retranqueadas para una mayor protección frente al agua y el Sol. Se rematará mediante alféizar metálico que sobresale unos centímetros de la fachada para evacuar hacia el exterior el agua de lluvia que llegue a él y evitar que alcance la parte de la fachada inmediatamente inferior al mismo y se dispondrá un goterón en el dintel para evitar que el agua de lluvia discurra por la parte inferior del dintel hacia la carpintería.

El vierte aguas debe tener una pendiente hacia el exterior de 10° como mínimo, impermeable. El vierteaguas debe disponer de un goterón en la cara inferior del saliente, separado del paramento exterior de la fachada al menos 2 cm, y su entrega lateral en la jamba debe ser de 2 cm como mínimo.

Ver detalle carpintería.

Antepechos y remates superiores de las fachadas

En la parte superior de la fachada se rematará mediante una albardilla con una inclinación de 10° hacia el interior con su correspondiente goterón, separados de los paramentos verticales 2 cm. Las juntas entre albardillas se realizarán de tal manera que sean impermeables con un sellado adecuado.
5.2.4. CUBIERTA PLANA AJARDINADA

La pendiente de la cubierta viene definida en la “Tabla 2.9 Pendientes de cubiertas planas”. En el uso “ajardinadas” protección con tierra vegetal, la pendiente deberá estar entre 1-5 %.

<table>
<thead>
<tr>
<th>Uso</th>
<th>Protección</th>
<th>Pendiente en %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transitables</td>
<td>Peatones</td>
<td>1-5 (1)</td>
</tr>
<tr>
<td>Vehículos</td>
<td>Solado fijo</td>
<td>1-5</td>
</tr>
<tr>
<td></td>
<td>Solado flotante</td>
<td>1-5</td>
</tr>
<tr>
<td></td>
<td>Capa de rodadura</td>
<td>1-5 (1)</td>
</tr>
<tr>
<td>No transitables</td>
<td>Grava</td>
<td>1-5</td>
</tr>
<tr>
<td></td>
<td>Lápina autoprotegida</td>
<td>1-15</td>
</tr>
<tr>
<td>Ajardinadas</td>
<td>Tierra vegetal</td>
<td>1-5 (1)</td>
</tr>
</tbody>
</table>

(1) Para rampas no se aplica la limitación de pendiente máxima.

Figura 46. Imagen de la Tabla 2.9 Pendientes de cubiertas planas. CTE DB-HS1

A continuación, se recogen los datos más significativos del DB-HS1 para hallar la solución adoptada.
Parámetros según la Norma HS1

<table>
<thead>
<tr>
<th>Parámetros según la Norma HS1</th>
<th>Caso de estudio</th>
<th>Solución adoptada</th>
</tr>
</thead>
</table>
| **Suelos** | - Suelo poco permeable
- Baja presencia de agua
- Bajo coeficiente de permeabilidad KS=1
- V1: ventilación de la cámara | Suelo elevado |
| **Fachada** | - Tipo entorno E0
- Zona eólica A
- Grado de exposición al viento V2
- Zona pluviométrica IV
- Grado de impermeabilidad 3
- R1+B1+C1 o R1+C2 | Fachada de doble hoja de ladrillo cerámico de 1 pie, aislamiento térmico de 3 cm y una segunda hoja interior de ladrillo hueco sencillo, revestido por el interior y exterior. |
| **Cubierta** | -Ajardinada, pendiente 1-5% | Cubierta verde |

Tabla 8. Resumen parámetros según Norma HS1
6. ANÁLISIS ENERGÉTICO DE LAS SOLUCIONES CONSTRUCTIVAS

6.1. INTRODUCCIÓN

6.2. CTE DOCUMENTO BÁSICO HE AHorRO DE ENERGÍA

El objetivo de este Documento Básico es reducir a límites aceptables el consumo de energía y conseguir que una parte de la energía consumida provenga de energías renovables.

Para cumplir este objetivo, las edificaciones se proyectarán, construirán, mantendrán y utilizarán conforme lo establecido en las cinco secciones que componen el DB-HE:

1) HE0 Limitación del consumo energético
2) HE1 Limitación de demanda energética
3) HE2 Rendimiento de las instalaciones térmicas
4) HE3 Eficiencia energética de las instalaciones de iluminación
5) HE4 Contribución solar mínima de agua caliente sanitaria
6) HE5 Contribución fotovoltaica mínima de energía eléctrica

Se justificarán los documentos HE0, HE1 y HE4, pero al tratarse de una tipología de vivienda unifamiliar, estará excluida de las exigencias de las secciones HE3 y HE5, por lo que no se justificarán.

6.3. SECCIÓN HE0: LIMITACIÓN DE LA DEMANDA ENERGÉTICA

6.3.1. AMBITO DE APLICACIÓN

La sección HE0 limitación del consumo energético se aplica a edificios de nueva construcción y ampliaciones de edificios existentes.

6.3.2. CUANTIFICACIÓN DE LA EXIGENCIA

Según el apartado 2.2.1 del DB HE1, el consumo energético de energía primaria no renovable del edificio, no debe superar el valor límite $C_{ep, lim}$ obtenido mediante la expresión:

$$C_{ep, lim} = C_{ep, base} + \frac{F_{ep, sup}}{S}$$

Donde $C_{ep, base}$ y $F_{ep, sup}$ se obtienen de la “Tabla 2.1. valor base y factor corrector por superficie del consumo energético"
Por lo tanto, la vivienda no podrá tener un consumo de energías no renovables por metro cuadrado mayor a:

\[
C_{ep, \text{lim}} = 45 + \frac{1000}{109.56} = 9.53 \text{ KW} \cdot \frac{h}{m^2}
\]
6.4. SECCIÓN HE1: LIMITACIÓN DE LA DEMANDA ENERGÉTICA

6.4.1. AMBITO DE APLICACIÓN
Esta Sección es de aplicación en:

a) edificios de nueva construcción.

b) intervenciones en edificios existentes:
 - ampliación: aquellas en las que se incrementa la superficie o el volumen construido.
 - reforma: cualquier trabajo u obra en un edificio existente distinto del que se lleve a cabo para el exclusivo mantenimiento del edificio.
 - cambio de uso.

2 se excluyen del ámbito de aplicación:

a) los edificios históricos protegidos cuando así lo determine el órgano competente que deba dictaminar en materia de protección histórico-artística;

b) construcciones provisionales con un plazo previsto de utilización igual o inferior a dos años;

c) edificios industriales, de la defensa y agrícolas o partes de los mismos, en la parte destinada a talleres y procesos industriales, de la defensa y agrícolas no residenciales;

d) edificios aislados con una superficie útil total inferior a 50 m2;

e) las edificaciones o partes de las mismas que, por sus características de utilización, estén abiertas de forma permanente;

f) cambio del uso característico del edificio cuando este no suponga una modificación de su perfil de uso.

6.4.2. PROCEDIMIENTO DE VERIFICACIÓN
Para aplicar correctamente lo descrito en la sección 1 del DB-HE, en la fase de proyecto, se debe optar por uno de los dos procedimientos alternativos de comprobación y, en fase de ejecución, se seguirán las indicaciones del apartado “5 Construcción” de esta sección.

1) Opción simplificada, basada en el control indirecto de la demanda energética de los edificios mediante la limitación de los parámetros característicos de los cerramientos y particiones interiores que componen su envolvente térmica, comparando los valores obtenidos en el cálculo con los valores límite permitidos.

2) Opción general, basada en la evaluación de la demanda energética de los edificios comparándola con la correspondiente a un edificio de referencia que defina la propia opción. Los valores obtenidos se comparan automáticamente mediante un programa
informático. Este programa se denomina Limitación de la Demanda Energética (LIDER), y es un documento reconocido y de carácter oficial.

En este proyecto se utilizará la opción simplificada para el cálculo de la demanda energética.

6.4.3. OPCIÓN SIMPLIFICADA

El objeto de la opción simplificada es, entre otros, limitar la demanda energética de los edificios, de una manera indirecta, mediante el establecimiento de determinados valores límite de los parámetros de transmittancia térmica U y del factor solar modificado F de los componentes de la envolvente térmica.

a) La vivienda cumple que la superficie de huecos es inferior al 60% de la superficie en cada fachada.

b) La superficie de lucernarios sea inferior al 5% de la superficie total de la cubierta.

El procedimiento que se lleva a cabo para el cálculo de la opción simplificada es el siguiente:

a) Determinar zona climática.

b) Clasificar los espacios de la vivienda.

c) Definir la envolvente térmica.

d) Cálculo de los parámetros característicos de los componentes del cerramiento y particiones interiores.

e) Comprobación de transmitancias térmicas.

f) Cálculo de la media de los parámetros característicos.

g) Comprobación de que los parámetros característicos son inferiores a los valores límite.

6.4.4. DETERMINACIÓN DE LA ZONA CLIMÁTICA

La zona climática a la que pertenece Castellón, se obtiene de la "Tabla B.1. zonas climáticas de la Península Ibérica- en el Apéndice B zonas climáticas del DBHE". Dependiendo de la altitud a la que se encuentre, puede variar la zona climática dentro de un mismo municipio. Al estar emplazados en el Grao de Castellón, nuestra altitud será de 18 m.

<table>
<thead>
<tr>
<th>Capital</th>
<th>Z.C.</th>
<th>Altitud</th>
<th>A4</th>
<th>A3</th>
<th>A2</th>
<th>A1</th>
<th>B4</th>
<th>B3</th>
<th>B2</th>
<th>B1</th>
<th>C1</th>
<th>C3</th>
<th>C2</th>
<th>C1</th>
<th>D9</th>
<th>D8</th>
<th>D7</th>
<th>D6</th>
<th>D5</th>
<th>D4</th>
<th>D3</th>
<th>D2</th>
<th>D1</th>
<th>D1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albacete</td>
<td>A3</td>
<td>677</td>
<td></td>
</tr>
<tr>
<td>Alcoy/Matarramón</td>
<td>A4</td>
<td>766</td>
<td></td>
</tr>
<tr>
<td>Altea</td>
<td>A6</td>
<td>0</td>
<td>h < 100</td>
<td></td>
</tr>
<tr>
<td>Altea/Alcalà de Xivert</td>
<td>A7</td>
<td>5054</td>
<td></td>
</tr>
<tr>
<td>Altea/Alfàs</td>
<td>A8</td>
<td>314</td>
<td></td>
</tr>
<tr>
<td>Altea/Alcalà de Xivert</td>
<td>A9</td>
<td>481</td>
<td></td>
</tr>
<tr>
<td>Cullera</td>
<td>A10</td>
<td>388</td>
<td></td>
</tr>
<tr>
<td>Cullera/Cambrils</td>
<td>A11</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>Cedeira</td>
<td>B3</td>
<td>345</td>
<td></td>
</tr>
<tr>
<td>Cedeira</td>
<td>B4</td>
<td>0</td>
<td>h < 150</td>
<td></td>
</tr>
<tr>
<td>Cullera</td>
<td>B5</td>
<td>560</td>
<td></td>
</tr>
<tr>
<td>Cullera/Alcalà de Xivert</td>
<td>A7</td>
<td>5054</td>
<td></td>
</tr>
<tr>
<td>Cullera</td>
<td>B2</td>
<td>571</td>
<td></td>
</tr>
<tr>
<td>Cullera/Alcalà de Xivert</td>
<td>B3</td>
<td>441</td>
<td></td>
</tr>
</tbody>
</table>

La transmitancia térmica y permeabilidad al aire de la envolvente térmica del edificio no debe superar los valores establecidos en la “Tabla 2.3 Transmitancia térmica máxima y permeabilidad al aire de los elementos de la envolvente térmica”

<table>
<thead>
<tr>
<th>Cerramientos y particiones interiores</th>
<th>ZONAS A</th>
<th>ZONAS B</th>
<th>ZONAS C</th>
<th>ZONAS D</th>
<th>ZONAS E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muros de fachada, particiones interiores en contacto con espacios no habitables, primer metro del perímetro de sustos apoyados sobre el terreno(1) y primer metro de muros en contacto con el terreno</td>
<td>1,22</td>
<td>1,02</td>
<td>0,95</td>
<td>0,66</td>
<td>0,74</td>
</tr>
<tr>
<td>Suelos(2)</td>
<td>0,69</td>
<td>0,68</td>
<td>0,65</td>
<td>0,64</td>
<td>0,62</td>
</tr>
<tr>
<td>Cubiertas(3)</td>
<td>0,65</td>
<td>0,59</td>
<td>0,53</td>
<td>0,49</td>
<td>0,46</td>
</tr>
<tr>
<td>Vidrios y marcos</td>
<td>5,70</td>
<td>5,70</td>
<td>4,40</td>
<td>3,50</td>
<td>3,10</td>
</tr>
<tr>
<td>Medianerías</td>
<td>1,22</td>
<td>1,07</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
</tr>
</tbody>
</table>

(1) Se incluyen las losas o soleras enterradas a una profundidad no mayor de 0,5 m
(2) Las particiones interiores en contacto con espacios no habitables, como en el caso de cámaras sanitarias, se consideran como suelos
(3) Las particiones interiores en contacto con espacios no habitables, como en el caso de desvanes no habitables, se consideran como cubiertas

Figura 49. Imagen de la tabla 2.1 donde indica la transmitancia térmica máxima de la envolvente térmica. DB-HE

A continuación, en el “apéndice D Definición del edificio de referencia”, encontramos los valores límite de la envolvente del edificio dependiendo de la zona climática en la que se encuentra.

Transmitancia límite de muros de fachada y cerramientos en contacto con el terreno $U_{lim}: 0,82 \text{ W/m}^2\text{K}$

Transmitancia límite de suelos $U_{lim}: 0,62 \text{ W/m}^2\text{K}$

Transmitancia límite de cubiertas $U_{lim}: 0,45 \text{ W/m}^2\text{K}$

Factor solar modificado límite de lucernarios $F_{lim}: 0,30$

<table>
<thead>
<tr>
<th>Transmitancia límite de huecos $U_{lim} \text{ W/m}^2\text{K}$</th>
<th>Factor solar modificado límite de huecos F_{lim}</th>
</tr>
</thead>
<tbody>
<tr>
<td>% de huecos</td>
<td>Baja carga interna</td>
</tr>
<tr>
<td>de 0 a 10</td>
<td>E/O S SE/SO E/O S SE/SO</td>
</tr>
<tr>
<td>de 11 a 20</td>
<td>5,4 5,7 5,7 5,7 - -</td>
</tr>
<tr>
<td>de 21 a 30</td>
<td>3,3 4,3 5,7 5,7 - -</td>
</tr>
<tr>
<td>de 31 a 40</td>
<td>3,0 4,0 5,6 5,6 - -</td>
</tr>
<tr>
<td>de 41 a 50</td>
<td>2,8 3,7 5,4 5,4 0,53 0,69</td>
</tr>
<tr>
<td>de 51 a 60</td>
<td>2,7 3,6 5,2 5,2 0,46 0,52</td>
</tr>
</tbody>
</table>

Figura 50. Imagen de la tabla D.2.7 zona climática B3, donde se indica la transmitancia límite en los diferentes elementos constructivos. CTE DB-HE
6.4.5. CLASIFICACIÓN DE LOS ESPACIOS

La distribución de espacios según la cantidad de calor disipado en su interior, derivado de la actividad realizada y el periodo de utilización de cada espacio se pueden categorizar según el CTE como:

- Espacios con carga interna baja: Aquellos espacios en los que se disipa poco calor, destinados a residir en ellos permanentemente o eventualmente.
- Espacios con carga interna alta: Aquellos espacios donde se genera gran cantidad de calor.

A efectos de cálculo de comprobación de limitación de condensaciones, la vivienda tendrá clase higrometría 3, ya que está en el grupo de edificios residenciales y no está comprendido en los grupos anteriores.

6.4.6. DEFINICIÓN DE LA ENVOLVENTE TÉRMICA

“La envolvente térmica del edificio está compuesta por todos los cerramientos que delimitan los espacios habitables con el aire exterior, el terreno o otro edificio, y por todas las particiones interiores que delimitan los espacios habitables con espacios no habitables en contacto con el ambiente exterior.” (5.2.1. definición de envolvente térmica, DB HE)

La envolvente térmica de la vivienda diseñada se puede ver detallada en los siguientes alzados:

Figura 52. Alzados de la vivienda donde se indica la envolvente térmica.

Y en la siguiente planta:

Figura 53. Planta de la vivienda donde se indica la envolvente térmica.
No se toma en consideración la caja de la escalera como envolvente térmica del edificio ya que no tiene está aislada térmicamente.

Según la situación en la que estén dispuestos los cerramientos y particiones, se clasifican de la siguiente manera:

a) **Cubiertas**: Cerramientos en contacto con el aire con inclinación inferior a 60º respecto a la horizontal.

b) **Suelos**: Cerramiento en contacto con el aire, terreno o espacio no habitable, horizontales o ligeramente inclinados.

c) **Fachadas**: Cerramientos exteriores verticales en contacto con el aire, con una inclinación superior a 60º con la horizontal. Se pueden agrupar según la orientación “**Figura A.1. Orientaciones de las fachadas**”

Figura 54. Planta de la vivienda donde se puede ver la orientación de la fachada respecto a los puntos cardinales.

Figura 55. Imagen de la tabla A.1 Orientaciones de las Fachadas, donde se escoge la orientación de la fachada dependiendo del ángulo en el que se encuentra.
Las fachadas están orientadas al norte, sur, este y oeste, desplazadas 16º. De esta forma la orientación es óptima para la ventilación en verano de la vivienda ya que los huecos más grandes quedan orientados favorablemente hacia el SE, sin perder la ganancia solar en cada fachada.

Particiones interiores: elementos constructivos horizontales o verticales que separan el interior de la vivienda en diferentes espacios. Estas particiones no forman parte de la envolvente térmica a no ser que estén en contacto con zonas no habitables.

6.4.7. TRANSMITANCIA TÉRMICA Y CONDENSACIONES

Los cálculos realizados a continuación serán de aplicación a las partes opacas de todos los elementos de la envolvente térmica:

- **Cerramientos en contacto con el exterior:**
 - Fachadas
 - Cubierta ajardinada

- **Cerramientos en contacto con el terreno:**
 - Suelos en contacto con cámara sanitaria

- **Huecos:**
 - Ventanas y puertas acristaladas
 - Puertas de acceso

Factor solar modificado
Cerramientos en contacto con el exterior

Fachada

<table>
<thead>
<tr>
<th>Sección</th>
<th>Elementos</th>
<th>Espesor “e” (m)</th>
<th>Conductividad térmica “λ” (W/mK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revestimiento exterior</td>
<td>de mortero de cemento</td>
<td>0,015</td>
<td>1,30</td>
</tr>
<tr>
<td>Ladrillo perforado 1 pie</td>
<td></td>
<td>0,240</td>
<td>0,35</td>
</tr>
<tr>
<td>Mortero bastardo</td>
<td></td>
<td>0,010</td>
<td>0,8</td>
</tr>
<tr>
<td>Aislamiento Térmico</td>
<td>“THERMOFLOC”</td>
<td>0,080</td>
<td>0,039</td>
</tr>
<tr>
<td>Ladrillo hueco sencillo</td>
<td></td>
<td>0,050</td>
<td>0,320</td>
</tr>
<tr>
<td>Enlucido de yeso</td>
<td></td>
<td>0,010</td>
<td>0,18</td>
</tr>
</tbody>
</table>

Tabla 9. Sección de fachada indicando cada material, espesor y conductividad de cada elemento.

La transmitancia térmica viene dada por la siguiente expresión:

\[U \frac{1}{R_T} \]

Donde \(R_T \) es la resistencia térmica total del elemento constructivo calculado mediante la expresión:

\[R_T = R_{si} + R_1 + ... + R_n + R_{se} \]

\(R_{si} \) y \(R_{se} \) viene dado en la “tabla E.1 resistencias térmicas superficiales de cerramientos en contacto con el aire exterior en m²K/W” del Apéndice E. Para el caso de fachadas con sentido de flujo de calor horizontal, se toman los valores \(R_{se} = 0,04 \) y \(R_{si} = 0,13 \).

La resistencia térmica \(R_n \) de cada capa se obtiene de la expresión:

\[R = \frac{e}{\lambda} \]

Siendo \(e \) el espesor del elemento (m) y \(\lambda \) la conductividad térmica del material (W/mK)
Figura 56. Imagen de la tabla E.1 Resistencias térmicas superficiales de cerramientos en contacto con el aire exterior en m2K/W. Para fachada se elige un sentido de flujo horizontal.

Para el cálculo de condensaciones se utilizará el factor de temperatura de la superficie interior mínimo $F_{Rsi,min}$ viene indicado en la tabla 3.2 del DB HE1

<table>
<thead>
<tr>
<th>Categoría del espacio</th>
<th>ZONAS A</th>
<th>ZONAS B</th>
<th>ZONAS C</th>
<th>ZONAS D</th>
<th>ZONAS E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clase de higrorrea 5</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
<td>0.90</td>
<td>0.90</td>
</tr>
<tr>
<td>Clase de higrorrea 4</td>
<td>0.86</td>
<td>0.86</td>
<td>0.89</td>
<td>0.75</td>
<td>0.78</td>
</tr>
<tr>
<td>Clase de higrorrea 3 o inferior a 3</td>
<td>0.50</td>
<td>0.52</td>
<td>0.56</td>
<td>0.61</td>
<td>0.64</td>
</tr>
</tbody>
</table>

Figura 57. Imagen de la Tabla 3.2. Factor de temperatura de la superficie interior mínimo $F_{Rsi,min}$. CTE DB-HE
La temperatura media exterior se extrae de la siguiente tabla para el mes de enero.

\[T_{med} = 10,1 \text{ y } HR_{med} = 68\% \]

<table>
<thead>
<tr>
<th>Localidad</th>
<th>Ene</th>
<th>Feb</th>
<th>Mar</th>
<th>Abr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Ago</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albacete</td>
<td>1,5</td>
<td>6,3</td>
<td>8,6</td>
<td>10,9</td>
<td>15,3</td>
<td>20,7</td>
<td>24,0</td>
<td>23,7</td>
<td>20,0</td>
<td>14,1</td>
<td>8,5</td>
<td>5,3</td>
</tr>
<tr>
<td>Alicante</td>
<td>11,6</td>
<td>12,4</td>
<td>13,8</td>
<td>15,7</td>
<td>18,6</td>
<td>22,2</td>
<td>25,0</td>
<td>25,5</td>
<td>23,2</td>
<td>19,1</td>
<td>15,0</td>
<td>12,1</td>
</tr>
<tr>
<td>Almería</td>
<td>12,0</td>
<td>13,0</td>
<td>14,4</td>
<td>16,1</td>
<td>18,7</td>
<td>23,3</td>
<td>25,5</td>
<td>26,0</td>
<td>24,1</td>
<td>20,1</td>
<td>16,2</td>
<td>13,3</td>
</tr>
<tr>
<td>Ávila</td>
<td>3,1</td>
<td>4,0</td>
<td>5,6</td>
<td>7,6</td>
<td>11,5</td>
<td>16,0</td>
<td>19,9</td>
<td>19,4</td>
<td>16,5</td>
<td>11,2</td>
<td>6,0</td>
<td>3,4</td>
</tr>
<tr>
<td>Badajoz</td>
<td>8,7</td>
<td>10,1</td>
<td>12,0</td>
<td>14,2</td>
<td>17,9</td>
<td>23,3</td>
<td>25,3</td>
<td>25,0</td>
<td>22,6</td>
<td>17,4</td>
<td>12,1</td>
<td>9,0</td>
</tr>
<tr>
<td>Barcelona</td>
<td>10,1</td>
<td>9,5</td>
<td>11,1</td>
<td>12,8</td>
<td>16,0</td>
<td>19,7</td>
<td>22,9</td>
<td>23,0</td>
<td>21,0</td>
<td>17,1</td>
<td>12,5</td>
<td>9,6</td>
</tr>
<tr>
<td>Bilbao</td>
<td>8,9</td>
<td>9,6</td>
<td>10,4</td>
<td>11,8</td>
<td>14,6</td>
<td>17,4</td>
<td>19,7</td>
<td>19,8</td>
<td>18,8</td>
<td>16,0</td>
<td>11,8</td>
<td>9,5</td>
</tr>
<tr>
<td>Burgos</td>
<td>7,3</td>
<td>7,7</td>
<td>8,6</td>
<td>9,7</td>
<td>11,2</td>
<td>14,3</td>
<td>17,4</td>
<td>19,7</td>
<td>18,8</td>
<td>16,0</td>
<td>11,8</td>
<td>9,5</td>
</tr>
<tr>
<td>Caceres</td>
<td>2,6</td>
<td>3,9</td>
<td>5,7</td>
<td>7,6</td>
<td>11,2</td>
<td>15,0</td>
<td>18,4</td>
<td>18,3</td>
<td>15,8</td>
<td>11,1</td>
<td>5,8</td>
<td>3,2</td>
</tr>
<tr>
<td>Cádiz</td>
<td>7,8</td>
<td>9,3</td>
<td>11,7</td>
<td>13,0</td>
<td>16,5</td>
<td>22,3</td>
<td>26,1</td>
<td>25,4</td>
<td>23,6</td>
<td>17,4</td>
<td>12,0</td>
<td>8,8</td>
</tr>
<tr>
<td>Castellón</td>
<td>12,8</td>
<td>13,5</td>
<td>14,7</td>
<td>16,2</td>
<td>18,7</td>
<td>21,5</td>
<td>24,0</td>
<td>24,5</td>
<td>23,5</td>
<td>20,1</td>
<td>16,1</td>
<td>13,3</td>
</tr>
<tr>
<td>Ceuta</td>
<td>12,8</td>
<td>13,5</td>
<td>14,7</td>
<td>16,2</td>
<td>18,7</td>
<td>21,5</td>
<td>24,0</td>
<td>24,5</td>
<td>23,5</td>
<td>20,1</td>
<td>16,1</td>
<td>13,3</td>
</tr>
<tr>
<td>Ciudad Real</td>
<td>5,7</td>
<td>7,0</td>
<td>9,6</td>
<td>11,9</td>
<td>16,0</td>
<td>20,8</td>
<td>23,9</td>
<td>24,7</td>
<td>21,0</td>
<td>14,8</td>
<td>9,1</td>
<td>5,9</td>
</tr>
</tbody>
</table>

Figura 58. Imagen de la Temperatura media y Humedad media en las distintas localidades de España. Se escoge Castellón. CTE DB-HE

Con todos los datos agrupados, en la siguiente tabla Excel se calcula la resistencia térmica de la fachada además de las condensaciones superficiales e intersticiales de acuerdo a los valores máximos y límites establecidos en el CTE.
De la tabla se extraen los siguientes resultados:

- La Resistencia Total de la cubierta es 1,861 m²K/W.

- Se puede ver en la tabla que la fachada cumple las condensaciones superficiales, \(f_{\text{Rsi}} (0,93) \) es mayor que \(f_{\text{Rsi,min}} (0,52) \).

- La transmitancia (U) de la fachada (0,298 W/m²K) cumple, ya que está por debajo de la \(U_{\text{MAX}} (1,07 \text{ W/m}^2\text{K}) \) y \(U_{\text{LIM}} (0,82 \text{ W/m}^2\text{K}) \).

En la siguiente imagen se aprecia como el punto la presión de vapor no supera en ningún punto a la presión de saturación, por lo que no se producirán condensaciones intersticiales.
Figura 60. Imagen del gráfico obtenido de la tabla Excel, donde se observa que se cumple con las condensaciones.
cubierta

<table>
<thead>
<tr>
<th>Sección</th>
<th>Elementos</th>
<th>Espesor “e” (m)</th>
<th>Conductividad térmica “λ” (W/mK)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Capa vegetal</td>
<td>0,15-0,20</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Drenaje</td>
<td>0,01</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Geotextil</td>
<td>0,005</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>Aislamiento Térmico THERMOFLOC</td>
<td>0,06</td>
<td>0,039</td>
</tr>
<tr>
<td></td>
<td>Impermeabilización THERMOFLOC</td>
<td>0,01</td>
<td>0,19</td>
</tr>
<tr>
<td></td>
<td>Formación de pendientes a base de</td>
<td>0,040</td>
<td>0,09</td>
</tr>
<tr>
<td></td>
<td>hormigón celular sin árido</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Forjado Alveolar</td>
<td>0,3</td>
<td>1,2</td>
</tr>
<tr>
<td></td>
<td>Cámara de aire</td>
<td>0,1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Falso techo de escayola continuo</td>
<td>0,01</td>
<td>0,18</td>
</tr>
</tbody>
</table>

Tabla 10. Sección de cubierta ajardinada indicando material, espesor y conductividad de cada elemento.
La transmitancia térmica viene dada por la siguiente expresión:

\[U = \frac{1}{R_T} \]

Donde \(R_T \) es la resistencia térmica total del elemento constructivo calculado mediante la expresión:

\[R_T = R_{Si} + R_1 + \ldots + R_n + R_{se} \]

\(R_{si} \) y \(R_{se} \) viene dado en la “tabla E.1 resistencias térmicas superficiales de cerramientos en contacto con el aire exterior en m²K/W” del Apéndice E. Para el caso de cubiertas con sentido de flujo de calor vertical ascendente, se toman los valores \(R_{se} = 0,04 \) y \(R_{si} = 0,10 \)

La resistencia térmica \(R_n \) de cada capa se obtiene de la expresión:

\[R = \frac{e}{\lambda} \]

Siendo \(e \) el espesor del elemento (m) y \(\lambda \) la conductividad térmica del material (W/mK)

Figura 61. Imagen de la tabla E.1 Resistencias térmicas superficiales de cerramientos en contacto con el aire exterior en m²K/W. Para cubierta se elige un sentido de flujo vertical ascendente.

Con todos los datos agrupados, en la siguiente tabla Excel se calcula la resistencia térmica de la cubierta ajardinada además de las condensaciones superficiales e intersticiales de acuerdo a los valores máximos y límites establecidos en el CTE.
De la tabla se extraen los siguientes resultados:

- La Resistencia Total de la cubierta es 2,831 m²K/W.

- Se puede ver en la tabla que la fachada cumple las condensaciones superficiales, $f_{R_{si}}$ (0,91) es mayor que $f_{R_{si,min}}$ (0,52).

- La transmitancia (U) de la cubierta (0,353 W/m²K) cumple, ya que está por debajo de la U_{MAX} (0,59 W/m²K) y U_{MIN} (0,45 W/m²K).

En la siguiente imagen se aprecia como el punto de saturación máxima aceptable en la superficie obtenida, es mayor a la presión de vapor en cada capa del cerramiento.
La primera opción para la cubierta era una cubierta ajardinada convencional. Al realizar los cálculos de condensaciones, se obtuvieron valores al límite de lo aceptable por lo que se decidió intercambiar las capas de aislamiento térmico por la de impermeabilización, y así, solucionar el problema.
Particiones interiores en contacto con cámaras sanitarias

El DA DB-HE1, establece las condiciones que debe cumplir una cámara sanitaria para que sea de aplicación los descrito en el apartado 2.1.3.2.:

- que tenga una altura “h” inferior o igual a 1m;
- que tenga una profundidad “z” respecto al nivel del terreno inferior o igual a 0,5 m.

En el caso de estudio se cumplen las dos condiciones dadas.

La solución optada de suelo para la vivienda será homogénea en todas las zonas de la casa, y estará compuesta por las capas que figuran en la siguiente tabla.
Tabla 11. Capas del suelo con sus espesores y conductividad térmica.

La transmitancia térmica del suelo sanitario U_s se obtiene de la “Tabla E.9 Transmitancia térmica U_s en W/m²K, del DA DB HE1” y depende de la longitud característica B' del suelo en contacto con la cámara, y de la resistencia térmica R_0, calculada de igual forma que la fachada y la cubierta, pero despreciando la resistencia térmica superficial interior y exterior.

$$RT = RSi + R1 + ... + Rn + Rse$$

La resistencia térmica R_n de cada capa se obtiene de la expresión:

$$R = \frac{e}{\lambda}$$

Siendo e el espesor del elemento (m) y λ la conductividad térmica del material (W/mK)

Con todos los datos agrupados, en la siguiente tabla Excel se calcula la resistencia térmica del suelo. Siendo la $RT = 2,441$ m²K/W.
Figura 65. Cálculo mediante hoja Excel de la R_t del Suelo (2,441 m²K/W). En este caso la transmitancia se calcula de diferente manera a la usada en el caso de fachada y cubierta.

La longitud característica B' se obtiene de la expresión:

$$B' = \frac{A}{\frac{1}{2} \cdot P}$$

Donde A es el área del suelo y P el perímetro del mismo.

$$B' = \frac{68,88}{\frac{1}{2} \cdot 33,2} = 4,15$$

Usamos el valor de B' (4,15) y la R_t (2,441 m²K/W) en la “Tabla E.9 Transmitancia térmica Us en W/m² K”:

![Tabla E.9 Transmitancia térmica Us en W/m² K](image)
Interpolando entre ambos valores \(B' \) y \(R_i \) obtenemos la transmitancia térmica del suelo.

<table>
<thead>
<tr>
<th>(R)</th>
<th>(B')</th>
<th>(R_1)</th>
<th>(R_2)</th>
<th>(B'_1)</th>
<th>(B'_2)</th>
<th>(U_{11})</th>
<th>(U_{12})</th>
<th>(U_{21})</th>
<th>(U_{22})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,441</td>
<td>4,15</td>
<td>2,0</td>
<td>2,5</td>
<td>4</td>
<td>5</td>
<td>0,43</td>
<td>0,42</td>
<td>0,35</td>
<td>0,35</td>
</tr>
</tbody>
</table>

\[
U = \frac{U_{11}(R_2 - R) \cdot (B'_2 - B') + U_{21}(R - R_1) \cdot (B'_2 - B') + U_{12}(R_2 - R) \cdot (B' - B'_1) + U_{22}(R - R_1) \cdot (B' - B'_1)}{(R_2 - R_1) \cdot (B'_2 - B'_1)}
\]

\[
U = \frac{0,179}{0,5} = 0,358 \text{ W/m}^2 \text{ K}
\]

Puentes térmicos

En la opción simplificada, sólo se consideran los puentes térmicos integrados en la fachada cuya superficie supere los 0,5 m2.

No se consideran frentes de forjado, esquinas o puertas cuyo porcentaje de marco sea mayor de 50%.

En este proyecto sólo será necesario calcular los contornos de huecos.

Contorno de huecos

Con nuestra solución constructiva el aislamiento térmico se extiende hasta la altura de la carpintería en las tres zonas más críticas de los huecos, evitando de ese modo el puente térmico.

Ver plano detalle carpintería

Huecos y lucernarios

La transmitancia térmica de los huecos \(U_h \) (W/m2 K) se determinará mediante la expresión siguiente:

\[
U_h = (1 - F_M) \cdot U_{H,v} + F_M \cdot U_{H,m}
\]

Donde:
- \(U_{H,v} \) es la transmitancia térmica de la parte semitransparente (W/m²K);
- \(U_{H,m} \) es la transmitancia térmica del marco de la ventana (W/m²K);
- \(F_M \) es la fracción del hueco ocupada por el marco.
Obtenemos los datos de la parte semitransparente del catálogo de elementos constructivos del CTE, la del marco de las fichas técnicas de la empresa elegida que nos aportará las ventanas.

<table>
<thead>
<tr>
<th>Composición</th>
<th>Vidrios normales</th>
<th>1 Vidrio normal + 1 vidrio de baja emisividad (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(U_{HV})</td>
<td>(U_{LV})</td>
</tr>
<tr>
<td></td>
<td>Horizonte (m²K)</td>
<td>Vert. (m²K)</td>
</tr>
<tr>
<td>Vidrio sencillo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2.85</td>
<td>1.7</td>
</tr>
<tr>
<td>6</td>
<td>2.83</td>
<td>1.6</td>
</tr>
<tr>
<td>8</td>
<td>2.80</td>
<td>1.5</td>
</tr>
<tr>
<td>10</td>
<td>2.78</td>
<td>1.4</td>
</tr>
<tr>
<td>12</td>
<td>2.76</td>
<td>1.3</td>
</tr>
<tr>
<td>Vidrio Laminar (g)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3+3</td>
<td>0.80</td>
<td>0.8</td>
</tr>
<tr>
<td>4+4</td>
<td>0.77</td>
<td>0.7</td>
</tr>
<tr>
<td>5+5</td>
<td>0.75</td>
<td>0.6</td>
</tr>
<tr>
<td>6+6</td>
<td>0.74</td>
<td>0.5</td>
</tr>
<tr>
<td>8+8</td>
<td>0.70</td>
<td>0.3</td>
</tr>
<tr>
<td>10+10</td>
<td>0.70</td>
<td>0.2</td>
</tr>
<tr>
<td>Unidades de vidrio aislante</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-6 (4...10)</td>
<td>3.6</td>
<td>3.3</td>
</tr>
<tr>
<td>4-9 (4...10)</td>
<td>3.4</td>
<td>3.0</td>
</tr>
<tr>
<td>4-12 (4...10)</td>
<td>3.4</td>
<td>2.8</td>
</tr>
<tr>
<td>4-15 (4...10)</td>
<td>3.3</td>
<td>2.7</td>
</tr>
<tr>
<td>4-20 (4...10)</td>
<td>3.3</td>
<td>2.7</td>
</tr>
<tr>
<td>Unidades de vidrio aislante con vidrio laminar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-6 (3+3...10)</td>
<td>3.6</td>
<td>3.2</td>
</tr>
<tr>
<td>4-9 (3+3...10)</td>
<td>3.4</td>
<td>3.0</td>
</tr>
<tr>
<td>4-12 (3+3...10)</td>
<td>3.4</td>
<td>2.8</td>
</tr>
<tr>
<td>4-15 (3+3...10)</td>
<td>3.3</td>
<td>2.7</td>
</tr>
<tr>
<td>4-20 (3+3...10)</td>
<td>3.3</td>
<td>2.7</td>
</tr>
</tbody>
</table>

Figura 67. Tabla 3.15.2 acristalamientos incoloros del CTE
Figura 68. U_{km} de la ventana escogida.
Una vez escogido el tipo de ventana que usaremos en la vivienda, calculamos la transmitancia térmica de los huecos. Para ello nos apoyaremos en la siguiente tabla:

<table>
<thead>
<tr>
<th>Hueco</th>
<th>Dimensiones (m)</th>
<th>FM</th>
<th>$U_{H,v}$</th>
<th>$U_{H,m}$</th>
<th>U_H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fachada Este</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V1 planta 1</td>
<td>3,6 x 2,6</td>
<td>15%</td>
<td>1,6</td>
<td>1,17</td>
<td>1,535</td>
</tr>
<tr>
<td>V2 planta baja</td>
<td>3,6 x 2,6</td>
<td>10,25%</td>
<td>1,6</td>
<td>1,17</td>
<td>1,560</td>
</tr>
<tr>
<td>Fachada Sur</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V1 planta 1</td>
<td>2,1 x 2,6</td>
<td>20%</td>
<td>1,6</td>
<td>1,17</td>
<td>1,514</td>
</tr>
<tr>
<td>V2 planta baja</td>
<td>2,1 x 2,6</td>
<td>16%</td>
<td>1,6</td>
<td>1,17</td>
<td>1,578</td>
</tr>
<tr>
<td>V3 planta 1</td>
<td>1 x 2,6</td>
<td>17%</td>
<td>1,6</td>
<td>1,17</td>
<td>1,527</td>
</tr>
<tr>
<td>V4 planta baja</td>
<td>1 x 2,6</td>
<td>17%</td>
<td>1,6</td>
<td>1,17</td>
<td>1,527</td>
</tr>
<tr>
<td>Fachada oeste</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V1 baño planta baja</td>
<td>0,64 x 0,84</td>
<td>27%</td>
<td>1,6</td>
<td>1,17</td>
<td>1,483</td>
</tr>
<tr>
<td>V2 galería</td>
<td>0,64 x 0,84</td>
<td>27%</td>
<td>1,6</td>
<td>1,17</td>
<td>1,483</td>
</tr>
<tr>
<td>V3 venta habitación 1</td>
<td>1 x 0,84</td>
<td>21,60%</td>
<td>1,6</td>
<td>1,17</td>
<td>1,506</td>
</tr>
<tr>
<td>V4 ventana habitación de doble</td>
<td>1 x 0,84</td>
<td>21,60%</td>
<td>1,6</td>
<td>1,17</td>
<td>1,506</td>
</tr>
<tr>
<td>V5 puerta balcón</td>
<td>1,2 x 2,1</td>
<td>18,75%</td>
<td>1,6</td>
<td>1,17</td>
<td>1,520</td>
</tr>
</tbody>
</table>

Tabla 12. Cálculo transmitancia térmica de huecos
6.4.8. FACTOR SOLAR MODIFICADO DE HUECOS Y LUCERNARIOS

El Factor solar modificado de huecos y lucernarios se define por medio de la expresión:

\[F = F_S \cdot [(1 - FM) \cdot g \perp + FM \cdot U_m \cdot \alpha] \]

Donde:

- \(F_S \): Factor de sombra. Es la fracción de radiación incidente en un hueco que no es bloqueada por la presencia de obstáculos de fachada tales como retranqueos, voladizos, toldos, salientes laterales y otros. Se obtiene de las tablas E.11 a E.15 en función del dispositivo de sombra o mediante simulación.

- \(F_M \): Factor de retranqueo.

En la imagen siguiente escogemos los valores de nuestra fachada con voladizo. Estas son, la sur y la este. Los datos \(H \), \(D \) y \(L \) serán los mismos para ambas fachadas siendo:

- \(H= 2,6 \) m
- \(D= 0,25 \) m
- \(L= 1,35 \) m

![Tabla 12 Factor de sombra para obstáculos de fachada: Voladizo. CTE DA DB-HE-1](image)

En la siguiente tabla se obtiene el factor de retranqueo siguiendo el mismo método anteriormente descrito.
El último obstáculo que encontramos para protegernos del sol son las lamas. Todas las lamas están orientadas de la misma forma. Ángulo de inclinación 0 respecto a la horizontal y paralelas a la fachada.

En la “tabla 14. Factor de sombra para obstáculos de fachada: Lamas horizontales” escogemos los siguientes datos.

FM: Es la fracción del hueco ocupada por el marco en el caso de ventanas o la fracción de parte maciza en el caso de puertas.

g⊥: Factor solar. Es el cociente entre la radiación solar a incidencia normal que se introduce en el edificio a través del acristalamiento y la que se introduciría si el acristalamiento se sustituyese por un hueco perfectamente transparente. Se obtendrá de la tabla “3.15.2 Acristalamientos incoloros” del Catálogo de elementos constructivos del CTE:
Um: *Es la transmitancia térmica del marco del hueco o lucernario [W/ m2 K].*

α: *Es la absorptividad del marco obtenida de la “Tabla 11 Absortividad del marco para radiación solar α” en función de su color:*

En el diseño de la vivienda se ha elegido un color gris medio para el marco de las ventanas.
En la siguiente tabla se calculan los porcentajes de huecos de cada fachada. Vemos que las fachadas con mayor superficie de huecos son la Este, debido a la vista a la playa y la dirección del viento preferente durante el año, y la Sur, debido a que es la fachada más caliente de la casa se ha intentado racionar las aperturas para no tener un exceso de calor en el interior durante la época de verano.

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Superficie (m²)</th>
<th>Superficie de huecos (m²)</th>
<th>Porcentaje de huecos (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fachada Norte</td>
<td>54,94</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fachada Sur</td>
<td>54,94</td>
<td>16,12</td>
<td>29,34</td>
</tr>
<tr>
<td>Fachada Este</td>
<td>54,94</td>
<td>16,56</td>
<td>30,14</td>
</tr>
<tr>
<td>Fachada Oeste</td>
<td>54,94</td>
<td>5,27</td>
<td>9,59</td>
</tr>
<tr>
<td>TOTAL</td>
<td>219,76</td>
<td>37,95</td>
<td>17,26</td>
</tr>
</tbody>
</table>

Tabla 13. Porcentaje de huecos de cada fachada.

En este caso, el porcentaje de huecos es menor al 40%. Esto, según la Tabla 2.2 Valores límite de los parámetros característicos medios” para la zona climática B3 y carga interna baja, no establece ningún valor límite para el factor solar modificado.
6.4.9. PERMEABILIDAD DE LAS CARPINTERÍAS

La permeabilidad al aire se define como:

“capacidad de una ventana o puerta de dejar pasar el aire cuando se encuentra sometida a una diferencia de presión y se expresa en m³/h·m².

La limitación dependerá de la zona climática, en nuestro caso B, según la “Tabla D.1. Zonas climáticas”.

- Zona climática A y B: 50 m³/h m²

Por lo tanto, la permeabilidad al aire de las carpinterías no debe superar 50 m³/h m².

Se consideran válidos los huecos clasificados según la norma UNE EN 12 207:2000 y ensayados según la norma UNE EN 1 026:2000 en la zona climática B:

- Zona climática A y B: Huecos de clase 1,2,3 y 4.

La norma clasifica las carpinterías de 0 a 4, siendo 4 la más estanca. Los valores se pueden ver en la siguiente tabla:
Clase	Permeabilidad al aire a 100 Pa (46 Km/h) (m³/hm²)	Presión máxima de ensayo Pa (km/h)
0 | Sin ensayar | Sin ensayar
1 | ≤ 50 | 150 (56 km/h)
2 | ≤ 27 | 300 (80 km/h)
3 | ≤ 9 | 600 (113 km/h)
4 | ≤ 3 | 600 (113 km/h)

Tabla 14. Valores de permeabilidad al aire y presión máxima de la carpintería según norma UNE.

En nuestro caso no tenemos ningún problema de permeabilidad al aire ya que hemos escogido una carpintería (marca Deceuninck, modelo Zendow, suministrada por Incercos) que cuenta como clase 4 de permeabilidad por lo que cumple por encima de lo que exige.

Ver anexo carpintería.

Ver certificado carpintería.

6.4.10 FICHAS JUSTIFICATIVAS DE LA OPCIÓN SIMPLIFICADA.

En la siguiente tabla se resumen las transmitancias calculadas anteriormente, de los elementos constructivos de la envolvente térmica de la vivienda.

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Transmitancia “U” (W/m²K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fachada</td>
<td>0,298 W/m²K</td>
</tr>
<tr>
<td>Cubierta</td>
<td>0,353 W/m²K</td>
</tr>
<tr>
<td>Suelo</td>
<td>0,358 W/m²K</td>
</tr>
</tbody>
</table>

Tabla 15. Resumen transmitancias de los elementos de la envolvente térmica.

Para finalizar el DB HE, se deben rellenar tres fichas que justifican la opción simplificada calculada anteriormente. La primera ficha detalla los parámetros característicos medios de cada elemento. La segunda compara los valores límite y máximos con los valores de la primera ficha y la tercera comprueba que no se produzcan condensaciones.

Ver anexo fichas justificativas del DB HE
7. CONTRIBUCIÓN ENERGÍAS RENOVABLES

7.1. INTRODUCCIÓN

En este apartado se analiza la contribución solar mínima de agua caliente sanitaria en la vivienda diseñada. En nuestro caso, una parte de esta demanda se cubrirá como indica el DB HE-4, a través de sistemas de captación, almacenamiento, utilización y transformación de energía solar.

7.2. SECCIÓN HE4: CONTRIBUCIÓN SOLAR MÍNIMA DE AGUA CALIENTE SANITARIA

7.2.1. AMBITO DE APLICACIÓN

Según el HE-4, esta sección es de aplicación a:

"edificios de nueva construcción o a edificios existentes en que se reforme íntegramente el edificio en sí o la instalación térmica, o en los que se produzca un cambio de uso característico del mismo, en los que exista una demanda de agua caliente sanitaria (ACS) superior a 50 l/d”

Las condiciones y requisitos descritos en la cuarta sección del DB HE-4 nos afecta al tratarse de una obra de nueva construcción.

7.2.2. PROCEDIMIENTO DE VERIFICACIÓN

Para la aplicación de esta sección se seguirá la siguiente secuencia:

a. Obtención de la contribución solar mínima
b. Cumplimiento de las condiciones de diseño y dimensionado
c. Cumplimiento de las condiciones de mantenimiento

7.2.3. CÁLCULO DE LA CONTRIBUCIÓN SOLAR MÍNIMA

El porcentaje de demanda que debe suplir la instalación dependerá de la zona climática en la que se encuentra y de la demanda de ACS (l/día) de la vivienda. La fuente energética de apoyo es una caldera de gas natural.

Demandas de ACS

De la “Tabla 4.1 Demanda de referencia a 60° C”, obtenemos la demanda en Litros ACS/día dependiendo del criterio de demanda. En nuestro caso, es una vivienda unifamiliar con una ocupación estimada de 3 personas según la “Tabla 4.2 Valores mínimos de ocupación de cálculo en uso residencial privado”.

<table>
<thead>
<tr>
<th>Número de dormitorios</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>≥6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número de Personas</td>
<td>1.5</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

Figura 75. Tabla 4.2 Valores mínimos de ocupación de cálculo en uso residencial. La vivienda tiene 2 dormitorios por lo que la ocupación es de 3 personas.
Criterio de demanda

<table>
<thead>
<tr>
<th>Criterio de demanda</th>
<th>Litros/día-unidad</th>
<th>unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vivienda</td>
<td>28</td>
<td>Por persona</td>
</tr>
<tr>
<td>Hospitales y clínicas</td>
<td>55</td>
<td>Por persona</td>
</tr>
<tr>
<td>Ambulatorio y centro de salud</td>
<td>41</td>
<td>Por persona</td>
</tr>
<tr>
<td>Hotel *****</td>
<td>69</td>
<td>Por persona</td>
</tr>
<tr>
<td>Hotel ****</td>
<td>55</td>
<td>Por persona</td>
</tr>
<tr>
<td>Hotel ***</td>
<td>41</td>
<td>Por persona</td>
</tr>
<tr>
<td>Hotel/hostal **</td>
<td>34</td>
<td>Por persona</td>
</tr>
<tr>
<td>Camping</td>
<td>21</td>
<td>Por persona</td>
</tr>
<tr>
<td>Hostal/pensión *</td>
<td>28</td>
<td>Por persona</td>
</tr>
<tr>
<td>Residencia</td>
<td>41</td>
<td>Por persona</td>
</tr>
<tr>
<td>Centro penitenciario</td>
<td>28</td>
<td>Por persona</td>
</tr>
<tr>
<td>Albergue</td>
<td>24</td>
<td>Por persona</td>
</tr>
<tr>
<td>Vestuarios/Duchas colectivas</td>
<td>21</td>
<td>Por persona</td>
</tr>
<tr>
<td>Escuela sin ducha</td>
<td>4</td>
<td>Por persona</td>
</tr>
<tr>
<td>Escuela con ducha</td>
<td>21</td>
<td>Por persona</td>
</tr>
<tr>
<td>Cuarteles</td>
<td>28</td>
<td>Por persona</td>
</tr>
<tr>
<td>Fábricas y talleres</td>
<td>21</td>
<td>Por persona</td>
</tr>
<tr>
<td>Oficinas</td>
<td>2</td>
<td>Por persona</td>
</tr>
<tr>
<td>Gimnasios</td>
<td>21</td>
<td>Por persona</td>
</tr>
<tr>
<td>Restaurantes</td>
<td>8</td>
<td>Por persona</td>
</tr>
<tr>
<td>Cafeterías</td>
<td>1</td>
<td>Por persona</td>
</tr>
</tbody>
</table>

Figura 76. Imagen de la Tabla 4.1 Demanda de referencia a 60o C. Para vivienda 28 litros por persona.

Por lo tanto, la vivienda diseñada para 3 personas, con un consumo diario por persona de 28 litros de ACS, tendrá una demanda diaria de:

\[
3 \times 28 = 84 \text{ litros de agua a } 60^\circ / \text{día.}
\]

84 litros x 365 días = **30,660** litros de agua a 60° /año
Zona climática

Las zonas climáticas se recogen en las tablas del “Atlas de radiación solar en España utilizando datos del SAF de Clima de EUMETSAT” que mostramos a continuación:

<table>
<thead>
<tr>
<th>Zona climática</th>
<th>kWh·m⁻²·día⁻¹</th>
<th>Medias</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Glob.</td>
</tr>
<tr>
<td>A Coruña</td>
<td>3.86</td>
<td>2.25</td>
</tr>
<tr>
<td>Albacete</td>
<td>4.98</td>
<td>3.39</td>
</tr>
<tr>
<td>Alicante</td>
<td>5.05</td>
<td>3.44</td>
</tr>
<tr>
<td>Almería</td>
<td>5.29</td>
<td>3.71</td>
</tr>
<tr>
<td>Ávila</td>
<td>4.63</td>
<td>3.05</td>
</tr>
<tr>
<td>Badajoz</td>
<td>5.02</td>
<td>3.54</td>
</tr>
<tr>
<td>Barcelona</td>
<td>4.56</td>
<td>2.99</td>
</tr>
<tr>
<td>Bilbao</td>
<td>3.54</td>
<td>1.98</td>
</tr>
<tr>
<td>Burgos</td>
<td>4.31</td>
<td>2.72</td>
</tr>
<tr>
<td>Cáceres</td>
<td>4.99</td>
<td>3.50</td>
</tr>
<tr>
<td>Cádiz</td>
<td>5.28</td>
<td>3.71</td>
</tr>
<tr>
<td>Castellón</td>
<td>4.76</td>
<td>3.19</td>
</tr>
<tr>
<td>Ceuta</td>
<td>4.91</td>
<td>3.21</td>
</tr>
<tr>
<td>Ciudad Real</td>
<td>5.03</td>
<td>3.46</td>
</tr>
<tr>
<td>Córdoba</td>
<td>5.12</td>
<td>3.59</td>
</tr>
<tr>
<td>Cuenca</td>
<td>4.73</td>
<td>3.14</td>
</tr>
<tr>
<td>Girona</td>
<td>4.36</td>
<td>2.79</td>
</tr>
<tr>
<td>Granada</td>
<td>5.20</td>
<td>3.63</td>
</tr>
<tr>
<td>Guadalajara</td>
<td>4.82</td>
<td>3.31</td>
</tr>
<tr>
<td>Huelva</td>
<td>5.22</td>
<td>3.70</td>
</tr>
<tr>
<td>Huesca</td>
<td>4.76</td>
<td>3.25</td>
</tr>
<tr>
<td>Jaén</td>
<td>5.18</td>
<td>3.58</td>
</tr>
<tr>
<td>Las Palmas</td>
<td>5.06</td>
<td>2.85</td>
</tr>
<tr>
<td>León</td>
<td>4.49</td>
<td>2.96</td>
</tr>
<tr>
<td>Lérida</td>
<td>4.79</td>
<td>3.29</td>
</tr>
</tbody>
</table>

Figura 77. Radiación solar media de las provincias de España. Castellón 4.76 KWh·m². Fuente: Atlas de radiación solar en España

Con ello, en la “tabla 4.4 Radiación solar global media diaria anual”, tomaremos el intervalo que contenga el valor de 4.76 KW·h/m².

<table>
<thead>
<tr>
<th>Zona climática</th>
<th>MJ/m²</th>
<th>kWh/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>H < 13,7</td>
<td>H < 3,8</td>
</tr>
<tr>
<td>II</td>
<td>13,7 ≤ H < 15,1</td>
<td>3,8 ≤ H < 4,2</td>
</tr>
<tr>
<td>III</td>
<td>15,1 ≤ H < 16,6</td>
<td>4,2 ≤ H < 4,6</td>
</tr>
<tr>
<td>IV</td>
<td>16,6 ≤ H < 18,0</td>
<td>4,6 ≤ H < 5,0</td>
</tr>
<tr>
<td>V</td>
<td>H ≥ 18,0</td>
<td>H ≥ 5,0</td>
</tr>
</tbody>
</table>

Figura 78. Tabla 4.4 Radiación solar global media diaria anual dependiendo de la zona climática.
Estando en la zona climática IV y una radiación de 4.76 KWh/m2, el intervalo que nos marca la tabla 4.4 es:

$$4,6 \leq H < 5 \text{ KWh/m}^2$$

Contribución solar mínima

En la tabla 2.1 se establece, “para cada zona climática y diferentes niveles de demanda de ACS a una temperatura de referencia de 60ºC, la contribución solar mínima anual exigida para cubrir las necesidades de ACS.”

<table>
<thead>
<tr>
<th>Demanda total de ACS del edificio (l/d)</th>
<th>Zona climática</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
</tr>
<tr>
<td>50 – 5.000</td>
<td>30</td>
</tr>
<tr>
<td>5.000 – 10.000</td>
<td>30</td>
</tr>
<tr>
<td>> 10.000</td>
<td>30</td>
</tr>
</tbody>
</table>

Figura 79. Tabla 2.1 contribución solar mínima anual para ACS en %. CTE DB HE-4

Según la tabla 2.1. La contribución solar mínima de ACS debe ser un **50%** de la demanda.

Cumplimiento de las condiciones de mantenimiento

El apartado 5 del DB HE definen dos escalones complementarios de actuación:

a) plan de vigilancia;

b) plan de mantenimiento preventivo.

Plan de vigilancia

El plan de vigilancia se refiere básicamente a las operaciones que permiten asegurar que los valores operacionales de la instalación sean correctos. Es un plan de observación simple de los parámetros funcionales principales, para verificar el correcto funcionamiento de la instalación. **Tendrá el alcance descrito en la tabla 5.1:**
Plan de mantenimiento

Según el apartado 5.2 del DB HE el plan de mantenimiento viene definido por los siguientes 5 puntos:

1 - Son operaciones de inspección visual, verificación de actuaciones y otros, que aplicados a la instalación deben permitir mantener dentro de límites aceptables las condiciones de funcionamiento, prestaciones, protección y durabilidad de la instalación.

2 - El mantenimiento implicará, como mínimo, una revisión anual de la instalación para instalaciones con superficie de captación inferior a 20 m² y una revisión cada seis meses para instalaciones con superficie de captación superior a 20 m².

3 - El plan de mantenimiento debe realizarse por personal técnico competente que conozca la tecnología solar térmica y las instalaciones mecánicas en general. La instalación tendrá un libro de mantenimiento en el que se reflejen todas las operaciones realizadas, así como el mantenimiento correctivo.

4 - El mantenimiento ha de incluir todas las operaciones de mantenimiento y sustitución de elementos fungibles o desgastados por el uso, necesarias para asegurar que el sistema funcione correctamente durante su vida útil. Documento Básico HE Ahorro de energía 57

5 - A continuación, se desarrollan de forma detallada las operaciones de mantenimiento que deben realizarse en las instalaciones de energía solar térmica para producción de agua caliente, la periodicidad mínima establecida (en meses) y observaciones en relación con las prevenciones a observar.
A continuación, se muestran las tablas de mantenimiento para cada elemento de la instalación.

Figura 81. Tabla 5.2 Plan de mantenimiento. Sistema de captación.

<table>
<thead>
<tr>
<th>Equipo</th>
<th>Frecuencia (meses)</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Captadores</td>
<td>6</td>
<td>IV diferencias sobre original</td>
</tr>
<tr>
<td>Cristales</td>
<td>6</td>
<td>IV diferencias entre captadores</td>
</tr>
<tr>
<td>Juntas</td>
<td>6</td>
<td>IV condensaciones y suciedad</td>
</tr>
<tr>
<td>Absorbedor</td>
<td>6</td>
<td>IV agrietamientos, deformaciones</td>
</tr>
<tr>
<td>Carcasa</td>
<td>6</td>
<td>IV corrosión, deformaciones</td>
</tr>
<tr>
<td>Conexiones</td>
<td>6</td>
<td>IV deformación, oscilaciones, ventanas de respiración</td>
</tr>
<tr>
<td>Estructura</td>
<td>6</td>
<td>IV aparición de fugas</td>
</tr>
<tr>
<td>Captadores*</td>
<td>6</td>
<td>IV degradación, indicios de corrosión, y apriete de tornillos</td>
</tr>
<tr>
<td>Captadores*</td>
<td>12</td>
<td>Tapado parcial del campo de captadores</td>
</tr>
<tr>
<td>Captadores*</td>
<td>12</td>
<td>Destapado parcial del campo de captadores</td>
</tr>
<tr>
<td>Captadores*</td>
<td>12</td>
<td>Vaciado parcial del campo de captadores</td>
</tr>
<tr>
<td>Captadores*</td>
<td>12</td>
<td>Llenado parcial del campo de captadores</td>
</tr>
</tbody>
</table>

* Operaciones a realizar en el caso de optar por las medidas b) o c) del apartado 2.2.2 párrafo 2.
IV: inspección visual

Figura 82. Tabla 5.3 Plan de mantenimiento. Sistema de acumulación.

<table>
<thead>
<tr>
<th>Equipo</th>
<th>Frecuencia (meses)</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depósito</td>
<td>12</td>
<td>Presencia de moldes en fondo</td>
</tr>
<tr>
<td>Ñodos sacrificio</td>
<td>12</td>
<td>Comprobación de desgaste</td>
</tr>
<tr>
<td>Ñodos de corriente impresa</td>
<td>12</td>
<td>Comprobación del buen funcionamiento</td>
</tr>
<tr>
<td>Aislamiento</td>
<td>12</td>
<td>Comprobar que no hay humedad</td>
</tr>
</tbody>
</table>

IV: inspección visual

Figura 83. Tabla 5.4 Plan de mantenimiento. Sistema de intercambio.

<table>
<thead>
<tr>
<th>Equipo</th>
<th>Frecuencia (meses)</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercambiador de placas</td>
<td>12</td>
<td>CF eficiencia y prestaciones</td>
</tr>
<tr>
<td>Intercambiador de serpentín</td>
<td>12</td>
<td>Limpieza</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>CF eficiencia y prestaciones</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Limpieza</td>
</tr>
</tbody>
</table>

CF: control de funcionamiento
<table>
<thead>
<tr>
<th>Equipo</th>
<th>Frecuencia (meses)</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluido refrigerante</td>
<td>12</td>
<td>Comprobar su densidad y pH</td>
</tr>
<tr>
<td>Estanqueidad</td>
<td>24</td>
<td>Efectuar prueba de presión</td>
</tr>
<tr>
<td>Aislamiento al exterior</td>
<td>6</td>
<td>IV degradacion protección uniones y ausencia de humedad</td>
</tr>
<tr>
<td>Aislamiento al interior</td>
<td>12</td>
<td>IV uniones y ausencia de humedad</td>
</tr>
<tr>
<td>Purgador automático</td>
<td>12</td>
<td>CF y limpieza</td>
</tr>
<tr>
<td>Purgador manual</td>
<td>6</td>
<td>Vaciad el aire del botellín</td>
</tr>
<tr>
<td>Bomba</td>
<td>12</td>
<td>Estanqueidad</td>
</tr>
<tr>
<td>Vaso de expansión cerrado</td>
<td>6</td>
<td>Comprobación de la presión</td>
</tr>
<tr>
<td>Vaso de expansión abierto</td>
<td>6</td>
<td>Comprobación del nivel</td>
</tr>
<tr>
<td>Sistema de llenado</td>
<td>6</td>
<td>CF actuación</td>
</tr>
<tr>
<td>Válvula de corte</td>
<td>12</td>
<td>CF actuaciones (abrir y cerrar) para evitar agarrotamiento</td>
</tr>
<tr>
<td>Válvula de seguridad</td>
<td>12</td>
<td>CF actuación</td>
</tr>
</tbody>
</table>

IV: inspección visual
CF: control de funcionamiento

Figura 84. Tabla 5.5 Plan de mantenimiento. Sistema de captación.

<table>
<thead>
<tr>
<th>Equipo</th>
<th>Frecuencia (meses)</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cuadro eléctrico</td>
<td>12</td>
<td>Comprobar que está siempre bien cerrado para que no entre polvo</td>
</tr>
<tr>
<td>Control diferencial</td>
<td>12</td>
<td>CF actuación</td>
</tr>
<tr>
<td>Termostato</td>
<td>12</td>
<td>CF actuación</td>
</tr>
<tr>
<td>Verificación del sistema de medida</td>
<td>12</td>
<td>CF actuación</td>
</tr>
</tbody>
</table>

CF: control de funcionamiento

Figura 85. Tabla 5.6 Plan de mantenimiento. Sistema eléctrico y de control.

<table>
<thead>
<tr>
<th>Equipo</th>
<th>Frecuencia (meses)</th>
<th>Descripción</th>
<th>CF: control de funcionamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sistema auxiliar</td>
<td>12</td>
<td>CF actuación</td>
<td></td>
</tr>
<tr>
<td>Sondas de temperatura</td>
<td>12</td>
<td>CF actuación</td>
<td></td>
</tr>
</tbody>
</table>

Figura 86. Tabla 5.7 Plan de mantenimiento. Sistema de energía auxiliar.
7.2.4. DEMANDA DE ENERGÍA TÉRMICA.

La temperatura diaria media del agua de la red en Castellón se ha extraído de la base de datos de CENSOLAR (Centro de Estudios de la Energía Solar).

<table>
<thead>
<tr>
<th>N. días/mes</th>
<th>Temp. agua fría ºC</th>
<th>Demanda kWh/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enero</td>
<td>31</td>
<td>8</td>
</tr>
<tr>
<td>Febrero</td>
<td>28</td>
<td>9</td>
</tr>
<tr>
<td>Marzo</td>
<td>31</td>
<td>11</td>
</tr>
<tr>
<td>Abril</td>
<td>30</td>
<td>13</td>
</tr>
<tr>
<td>Mayo</td>
<td>31</td>
<td>14</td>
</tr>
<tr>
<td>Junio</td>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>Julio</td>
<td>31</td>
<td>16</td>
</tr>
<tr>
<td>Agosto</td>
<td>31</td>
<td>15</td>
</tr>
<tr>
<td>Septiembre</td>
<td>30</td>
<td>14</td>
</tr>
<tr>
<td>Octubre</td>
<td>31</td>
<td>13</td>
</tr>
<tr>
<td>Noviembre</td>
<td>30</td>
<td>11</td>
</tr>
<tr>
<td>Diciembre</td>
<td>31</td>
<td>8</td>
</tr>
</tbody>
</table>

Figura 87. Demanda de energía térmica. CENSOLAR

La demanda energética para la producción de agua caliente sanitaria del edificio es de 1698 Kwh/año.

Energía térmica aportada

La producción energética solar por m² se ha calculado con las tablas de la base de datos de GAS NATURAL.

<table>
<thead>
<tr>
<th>Radiación solar incidente superf. inclinada E₁mes kWh/m²</th>
<th>Fracción solar mensual f</th>
<th>Energía útil aportada por captadores EU₁mes kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enero</td>
<td>95,76</td>
<td>66%</td>
</tr>
<tr>
<td>Febrero</td>
<td>122,41</td>
<td>89%</td>
</tr>
<tr>
<td>Marzo</td>
<td>164,83</td>
<td>99%</td>
</tr>
<tr>
<td>Abril</td>
<td>160,80</td>
<td>102%</td>
</tr>
<tr>
<td>Mayo</td>
<td>168,52</td>
<td>108%</td>
</tr>
<tr>
<td>Junio</td>
<td>164,07</td>
<td>111%</td>
</tr>
<tr>
<td>Julio</td>
<td>195,52</td>
<td>120%</td>
</tr>
<tr>
<td>Agosto</td>
<td>176,31</td>
<td>114%</td>
</tr>
<tr>
<td>Septiembre</td>
<td>167,38</td>
<td>112%</td>
</tr>
<tr>
<td>Octubre</td>
<td>166,80</td>
<td>104%</td>
</tr>
<tr>
<td>Noviembre</td>
<td>107,50</td>
<td>78%</td>
</tr>
<tr>
<td>Diciembre</td>
<td>93,03</td>
<td>65%</td>
</tr>
</tbody>
</table>

Figura 88. Tabla energía térmica aportada. CENSOLAR

Al total de energía (1.543 kWh/m²) se le debería restar el porcentaje de perdidas debidas a sombras orientación e inclinación. Como en nuestro caso es nulo, no lo tendremos en cuenta.
7.2.5. CÁLCULO DE LA SUPERFICIE DE LOS CAPTADORES (MÉTODO F-CHART)

Para el cálculo de la superficie de los captadores, se usará el método f-Chart. Se aplicará el caso práctico a la hoja Excel elaborada por Gas natural con el nombre HSolGas v1.0 el desarrollo de este cálculo se detalla en el siguiente anexo.

Ver: Anexo 12 - Cálculo f-Chart

Según la aplicación, la superficie mínima de captación son 1,7 m2, sin embargo, la placa elegida para el cálculo tiene 2,4 m2 de superficie de captación. El volumen de acumulación de ACS elegido es de 200 litros.

7.2.6. CUMPLIMIENTO DE LA INSTALACIÓN

Las condiciones para el cumplimiento de la instalación son las siguientes:

1. La contribución solar mínima que debe aportar la instalación a la producción de ACS debe ser, según la “Tabla 2.1. Contribución solar mínima en %. Caso general”, del 50% (l/día).

2. En ningún mes del año la contribución superará el 110 % de la demanda energética.

3. En no más de tres meses seguidos será del 100 %.

Conocidas las restricciones que establece el DB-HE4, y como se observa en el gráfico, la instalación propuesta cumple con los puntos arriba mencionados.

Figura 89. Balance energético de la vivienda. CENSOLAR

Siendo:

- EU_{mes}: Energía útil aportada por captadores EU_{mes}

En la Figura 88 se aprecia como la demanda de ACS no es suplida 100% por las placas fotovoltaicas durante los meses más fríos (de noviembre a marzo), sin embargo, durante el resto del año la
energía útil aportada por los captadores es suficiente para cubrir la demanda total de la vivienda. Además, la energía producida es siempre mayor a la exigida mínima.

7.2.7. COLECTORES PLANOS

En la cubierta se instalarán colectores planos de la casa FAGOR. La estructura soporte de los colectores se han elegido de la casa ZinCO, este sistema apoya sobre la lámina drenante, y el sustrato hace de lastre sin necesidad de realizar perforaciones para su anclaje.

Los colectores se instalan con la finalidad de proporcionar luz y agua caliente sanitaria (ACS) a los propietarios de la vivienda.

Ver anexo colectores planos.

Ver anexo estructura ZinCO

Figura 90. Captador solar 2.2 AL de FAGOR. Recubrimiento selectivo ecológico.
7.2.8. ACUMULADOR

El acumulador es utilizado para acumular el agua y se calienta. Estos acumuladores se conectan con la fuente de calor externa, que en nuestro caso son los paneles solares. El acumulador calienta el agua a través de un serpentín en su interior.

El modelo elegido ha sido un inter-acumulador de 200 litros de la casa FAGOR, modelo ISF-200 SR.

Ver anexo acumulador
7.2.9. REGULADOR TÉRMICO

El regulador térmico te permite conocer el estado de la instalación de energía solar térmica, dándote información acerca del estado de funcionamiento del mismo.

Se ha escogido un regulador diferencial de la casa FAGOR modelo TR 0603.

![Figura 93. Imagen del regulador térmico FAGOR escogido.](image)

Ver anexo regulador térmico.

7.2.10. FUENTE ENERGÉTICA DE APOYO

En el caso de que la instalación solar no pudiera abastecer la demanda generada, una instalación complementaria de agua caliente daría soporte a la vivienda. Esta es la utilidad de la fuente energética de apoyo. En este caso, se dispondrá una caldera estanca de gas natural.

La marca elegida es de la casa FAGOR modelo FEE-24 NOX. Puede producir 14,04 l/min de agua caliente sanitaria.
Figura 94. Imagen de la caldera seleccionada para la vivienda. Marca FAGOR.

Ver anexo caldera.

7.2.11. LUGAR DE INSTALACIÓN DE LOS COMPONENTES

Como lugar de instalación se proponen 2 opciones. La primera de ellas sería utilizar la galería para como cuarto de instalaciones, en el que se emplazarán todos los elementos que componen la instalación de generación solar de ACS (excepto el colector).

Figura 95. Lugar de instalación de la caldera y el acumulador. Opción 1.

La segunda posible opción sería instalar un colector solar termosifónico en el mismo lugar del colector estándar. De esta forma evitamos la instalación de un acumulador dentro de la vivienda.
7.2.12. ESQUEMA DE LA INSTALACIÓN SOLAR DE ACS.

8. DISEÑO

8.1. CONCEPTUALIZACIÓN DE LA VIVIENDA

El diseño de la vivienda de este proyecto no es un fruto del azar, a pesar de las múltiples soluciones que se pueden realizar, esta vivienda está diseñada con el propósito de ahorra por medio del uso de energía renovable y elementos pasivos.

Se empezó diseñando la vivienda a partir del soleamiento. Como la idea era ahorrar en electricidad, necesitábamos tener un buen soleamiento y unos elementos que creen sombras. Además del soleamiento, se tuvo en cuenta casi al mismo nivel de importancia el viento y la vista. La vivienda se encuentra en un emplazamiento privilegiado, ya que, al este, a unos metros está la playa sin ningún obstáculo que tape la visión. Al norte se encuentra la montaña y al oeste montañas y el pinar. Para poder acercar estos lugares a nuestro emplazamiento, se ha recurrido a utilizar plantas que estuvieran en estas orientaciones. El pinar ha sido una pieza clave a la hora de jugar con las sombras ya que se han utilizado solo pinos de diferentes especies para la zona oeste de la casa, así, desde las ventanas con orientación oeste, se verán pinos y al fondo el pinar. Lo mismo pasa con la orientación este, se han utilizado palmeras para cuando estés mirando hacia la playa, te sientas que estás “ya” en ella, sin haberte movido de casa. Para poder recrearse de estas magníficas vistas, se han diseñado grandes ventanas retranqueados, aprovechando que el viento medio anual de la zona proviene del sureste, protegidos por lamas y voladizos. La piscina se ha situado en la orientación sur para poder disfrutar el máximo de horas de ella y para sacarle partido a la luz que refleja el sol dentro de la casa.

La forma de la vivienda es un cubo. Esto tiene una lógica, ya que un cubo tiene el máximo de volumen con el mínimo de superficie. Esto quiere decir, que se obtiene la mayor superficie interior, con la mínima superficie de fachada. Lo cual es bueno, ya que, a mayor superficie, mayores pérdidas de energía.

Un elemento importante de la casa, ha sido la escalera. Se crearon varios diseños con la escalera dentro de la vivienda, pero ninguna convenció ya que perdíamos mucha visibilidad, sol o espacio que se creía que era importante. Por lo que se optó por adosarla en la fachada norte, pues, al no tener huecos, y no dar el sol, no había ningún impedimento.

Por último, se ha proyectado el espacio interior dependiendo del programa de necesidades de los usuarios (apartado 4.7).
8.2. PROPUESTA ARQUITECTÓNICA EN LA ZONA CLIMÁTICA B3

8.2.1. PLANOS VALORIZADOS

A continuación, se muestran los planos valorizados de los alzados, plantas y secciones de la vivienda. Estos tipos de planos sirven para hacerte una mejor del diseño que se ha realizado mediante el software AutoCAD.

Figura 98. Alzado norte valorizado. Software Photoshop.

Figura 100. Alzado sur valorizado. Software Photoshop.
Figura 102. Sección realizada a partir del software SketchUp. Valorizada con el software Photoshop. En esta sección se aprecia como el conducto de la chimenea de la planta baja, tiene rejillas en la primera planta para calentar las habitaciones.

Figura 103. Sección realizada a partir del software SketchUp. Valorizada con el software Photoshop
Figura 104. Plano planta baja realizado por medio del software AutoCAD. Valorizado con el software Photoshop.
Figura 105. Plano planta primera realizado por medio del software AutoCAD. Valorizado con el software Photoshop.
Figura 106. Plano planta cubierta realizado por medio del software AutoCAD. Valorizado con el software Photoshop.
8.2.2. RENDER

Una vez realizadas las valorizaciones y aceptado el diseño, se pasa a la fase de diseño de interior. Por lo que mi experiencia me ha enseñado, no todo el mundo que quiere hacerse una casa, o una reforma, cuando les enseñas un plano de AutoCAD o un dibujo no llegan a visualizar como va a quedar en realidad el proyecto. Por lo tanto, hay proyectos que se quedan estancados y se pierde tiempo en convencer al cliente. Por ello, usaremos las herramientas que están al alcance de todos hoy en día como los softwares de modelado y renderizado 3D. En este caso, se ha utilizado el software Cinema4D.

A) Renders de exteriores

Figura 108. Imagen aérea de la parcela a modo esquemático. Software cinema 4D+Photoshop.
Figura 109. Entrada principal a la vivienda. Fachada oeste. En la imagen se aprecia el sistema rotativo de apertura de la puerta. Renderizado con el software Cinema4D
Figura 110. Imagen de la fachada norte y este. Renderizado con el software Cinema4D

Figura 111. Imagen de la fachada este y sur. A la izquierda se aprecia la zona de la barbacoa. Renderizado con el software Cinema4D
Figura 112. Imagen de las fachadas norte y oeste. Renderizado con el software Cinema4D. Vemos los distintos tipos de árboles emplazados en la parcela. Este (playa), palmeras. Oeste (pinar), pinos.

Figura 113. ambientación nocturna de la figura 111. Renderizado con el software Cinema4D.
Figura 114. Imagen fachada sur ambientada por la noche. Renderizado con el software Cinema4D.
B) Renders de interiores

Figura 115. Imagen del salón-comedor. Renderizado con el software Cinema4D
Figura 116. Imagen de la cocina. Renderizado con el software Cinema4D.
Figura 117. En la imagen se aprecia a la izquierda la escalera y a la derecha el salón al fondo. Renderizado con el software Cinema4D.
Figura 118. Imagen desde la primera planta. Se aprecia el detalle del cristal en el techo de la escalera. A través de él, se puede ver la vegetación de la casa y el paisaje de fondo. Renderizado con el software Cinema4D.
Figura 119. Entrada de la primera planta donde se encuentra una zona de descanso al principio y enfrente el escritorio de la oficina y una red para disfrutar de las vistas de la playa y la montaña. Renderizado con el software Cinema4D.
Figura 120. Imagen desde la red. Escritorio enfrente y al fondo la sala. Renderizado con el software Cinema4D.
Figura 121. Imagen desde arriba. Se aprecia el detalle de la red y la conexión con el piso de planta baja. Renderizado con el software Cinema4D.
Figura 122. Imagen de la habitación de matrimonio. A la izquierda: Ventanal para salir a la terraza privada de la fachada oeste. A la derecha: Marco que sobre sale de la ventana en forma de repisa. Renderizado con el software Cinema4D.
Figura 123. Imagen de la terraza privada de la habitación de matrimonio. Se aprecian los elementos de protección solar como toldos y lamas. Se diseña una escalera en la pared para subir a realizar las tareas de mantenimiento. Renderizado con el software Cinema4D
Figura 124. Imagen del baño privado de la habitación de matrimonio. Renderizado con el software Cinema4D.
9. CONCLUSIONES

Como resultado del estudio realizado para el diseño de la vivienda, sobre la arquitectura bioclimática, casas pasivas y casas ecológicas, es posible concluir que, para diseñar una vivienda respetuosa con el medio ambiente, se debe realizar un estudio del clima de la zona, ya que para cada zona puede cambiar totalmente la forma constructiva de la vivienda. No es lo mismo diseñar en una zona fría que en una zona cálida. La primera tendrá grandes aperturas para captar el mayor Sol posible, mientras que la otra, tratará de diseñar elementos como voladizos que impidan que la radiación entre directamente a través de los huecos. Una vez conocido que condiciones climáticas hay en la zona, la vivienda toma forma. Una de las maneras de beneficiarte al máximo del sol, es mediante las estrategias bioclimáticas y la utilización de calefacción y refrigeración mediante energías renovables o ecológicas.

Por un lado, cuando se diseña con una idea ecológica, se debe pensar bien los materiales que se van a utilizar, y siempre teniendo en cuenta que existen sellos de calidad, que como se ha explicado en el proyecto, garantiza que vienen de lugares donde se tiene en consideración el ecosistema. El material más abundante en el proyecto son ladrillos cerámicos, utilizados para construir la fachada de 40 cm de espesor de la vivienda. Aunque no son ecológicos, si son muy abundantes en la provincia de Castellón, famosa por su cerámica. Al tener acceso a este material en la localidad, los costes se reducen ya que no existe una gran distancia de traslado del material y esto reduce las emisiones de CO2. Un ejemplo claro de cuando un material ecológico deja de serlo, puede ser la utilización de bambú que ha viajado miles de kilómetros para llegar a su destino. En cuanto a la solución constructiva de la vivienda, se han utilizado grandes espesores de muros de ladrillo cerámico y de aislamiento térmico de celulosa. Esto ayuda a minimizar las pérdidas de calor a través del cerramiento. Las carpinterías se han elegido de buena calidad ya que los huecos en las fachadas son puntos críticos de intercambio de temperatura con el exterior. Para la cubierta se ha optado por la ajardinada, ya que tiene propiedades muy beneficiosas para los usuarios y para el medio ambiente.

Por otro lado, el utilizar energías renovables ayudan doblemente al usuario, esto es debido a que además de colaborar con el ecosistema, ahorran en las facturas. En este proyecto se ha recurrido al uso de paneles solares para calentamiento de agua caliente sanitaria. La razón es muy sencilla, la instalación es simple, el coste es bajo, necesitan menor mantenimiento y tienen una mejor eficiencia. La instalación de un generador de energía eólica es una propuesta que se ha dejado abierta y que se puede combinar con las placas solares. Al situarse en frente de la playa, la actividad del viento es bastante elevada por lo que se podría generar más energía limpia. Para la calefacción, se ha utilizado una chimenea. La posición de esta ha sido una pieza fundamental en el diseño ya que se ha querido situar, en la medida de lo posible, en un punto donde llegue a todas las partes de la casa.
Como resultado de la utilización de estos sistemas constructivos, la procedencia de las energías y los diseños pasivos, la casa ha obtenido una calificación de A mediante el programa Ce3X. Realizando el certificado se ha podido observar como las instalaciones son el punto más fuerte donde conseguir mejores resultados energéticos. El mismo programa, una vez realizada la certificación energética, te sugiere cambios para mejorar el proyecto.

Para concluir, se ha podido observar que el programa tiene muchos datos por defecto y otros que no se pueden incluir, como por ejemplo la aerotermia, que es una tecnología que está pegando fuerte últimamente y lo que hace es transformar en energía la temperatura del aire obteniendo un ahorro del 70% de la factura de la luz. En un futuro no muy lejano, será una de las formas más usadas para calefacción y aire acondicionado.
10. BIBLIOGRAFÍA

10.1. PUBLICACIONES

- Sue roaf con Manuel Fuentes y Stephanie Thomas-Rees, 2013. Ecohouse, Tercera edición.

- Publicación ED951, UJI

- Ruá, M.J. y Braulio, M., 2015, publicación nº 400, Rehabilitación energética en edificación ED951, UJI

- Código Técnico de la Edificación, documento básico HS salubridad

- Código Técnico de la Edificación, documento básico ahorro de energía
10.2. DIRECCIONES WEB

URL 2: Real Academia Española, 2016 http://dle.rae.es/?id=7IsKMtR [accedido 25.10.2016 15:33]

URL 3: Real Academia Española, 2016 http://dle.rae.es/?id=EKzKpe8 [accedido 01.11.2016 16:52]

URL 10: http://www.accionaa.es/energias-renovables/energia-eolica/?gclid=COoXxPWHxs8CFUKfGwodz0AGcw [accedido 07.10.2016 10:25]

10.3 PROGRAMAS UTILIZADOS

- AutoCAD
- SketchUP
- Cinema4D
- Photoshop
11. ANEXOS PLANOS
12. DOCUMENTACIÓN GRÁFICA
ALZADO FACHADA OESTE

AUTOR: Manuel Cano Gómez
PROYECTO: Vivienda unifamiliar TFG
SITUACIÓN: El Grao de Castellón
PLANO: Alzado oeste
ESCALA: 1/50
FECHA: 10/11/2016
ALZADO FACHADA ESTE
ALZADO FACHADA ESTE

ALZADO FACHADA SUR

ALZADO FACHADA ESTE

ALZADO FACHADA SUR

AUTOR: Manuel Cano Gómez
PROYECTO: Vivienda unifamiliar TFG
SITUACIÓN: El Grao de Castellón
PLANO: Movimiento de lamas alzados sur y este
ESCALA: 1/100
FECHA: 10/11/2016

Nº PLANO: 6
PLANTA 1ª

Espacio	Sup útil (m²)
Planta 1ª | 54,46 m²
Habitación | 10,84
Habitación doble | 11,74
Baño | 4,28
Oficina | 20,32
Escalera | 7,28

AUTOR: Manuel Cano Gómez
PROYECTO: Vivienda unifamiliar TFG
SITUACIÓN: El Grao de Castellón
PLANO: Sección planta 1ª con superficies
ESCALA: 1/100
FECHA: 10/11/2016

Universitat Jaume I
AUTOR: Manuel Cano Gómez
PROYECTO: Vivienda unifamiliar TFG
SITUACIÓN: El Grao de Castellón
PLANO: Sección A-A' escalera
ESCALA: 1/100
FECHA: 10/11/2016

SECCIÓN A-A'
AUTOR: Manuel Cano Gómez
PROYECTO: Vivienda unifamiliar TFG
SITUACIÓN: El Grao de Castellón
PLANO: Respiradero forjado sanitario
ESCALA: 1/50 planta; 1/10 detalle
FECHA: 10/11/2016
Nº PLANO: 11
SECCIÓN B-B'

AUTOR: Manuel Cano Gómez

PROYECTO: Vivienda unifamiliar

SITUACIÓN: El Grao de Castellón

PLANO: Detalle arranque de fechada

ESCALA: 1/10

FECHA: 10/11/2016
SECCIÓN B-B'

AUTOR: Manuel Cano Gómez

PROYECTO: Vivienda unifamiliar

SITUACIÓN: El Grao de Castellón

PLANO: detalle estructura placa solar

ESCALA: 1/10

FECHA: 10/11/2016
CARPINTERÍA EXTERIOR FACHADA SUR

v1 - v2

v3

v4

ALZADO FACHADA SUR

CARPINTERÍA EXTERIOR FACHADA OESTE

v7-v8

v9-v10

v11

Puerta principal

ALZADO FACHADA OESTE

Nº PLANO: 16

PROMOTOR: Manuel Cano Gómez

PROYECTO: Vivienda unifamiliar

SITUACIÓN: El Grao de Castellón

PLANO: Carpintería exterior fachada sur y oeste

ESCALA: 1/50 Carpintería, 1/100 Alzados

FECHA: 10/11/2016

DESCRIPCIÓN: 1/50 Carpintería. 1/100 Alzados.
CARPINTERÍA EXTERIOR FACHADA ESTE

ALZADO FACHADA ESTE

CARPINTERÍA EXTERIOR FACHADA NORTE

ventilación

Puerta secundaria

ALZADO FACHADA NORTE
LEYENDA DE FONTANERÍA

- Caldera gas apoyo generación ACS
- Toma de agua fría
- Toma de ACS
- Llave de paso de agua fría
- Llave de paso de agua caliente
- Válvula antirretorno
- Contador
- Canalización de agua fría UPONOR PEX
- Canalización de agua caliente UPONOR PEX
- Calorifugación (*)

(*) Calorifugado espesor 30mm y conductividad térmica 0.04 W/m·K o equivalente según art. 8 del IT1.2.4.2.1.2

AUTOR: Manuel Cano Gómez
PROYECTO: Vivienda unifamiliar TFG
SITUACIÓN: El Grao de Castellón
PLANO: Instalación de fontanería
ESCALA: 1/50
FECHA: 10/11/2016

PLANTA BAJA
PLANTA 1ª

ducha
lavabo
inodoro
llave de paso oculta en el falso techo
conducto de instalaciones

Caldera gas apoyo generación ACS
Toma de agua fría
Toma de ACS
Llave de paso de agua fría
Llave de paso de agua caliente
Válvula antirretorno
Contador
Canalización de agua fría UPONOR PEX
calorifugada (*)
Canalización de agua caliente UPONOR PEX
calorifugada (*)

LEYENDA DE FONTANERÍA
(* Calorifugado espesor 30mm y conductividad térmica 0,04 W/m·K o equivalente según art. 8 del IT1.2.4.2.1.2

AUTOR: Manuel Cano Gómez
PROYECTO: Vivienda unifamiliar TFG
SITUACIÓN: El Grao de Castellón
PLANO: Instalación de fontanería
ESCALA: 1/50
FECHA: 10/11/2016

UNIVERSITAT JAUME I
CERTIFICADO DE EFICIENCIA ENERGÉTICA DE EDIFICIOS

IDENTIFICACIÓN DEL EDIFICIO O DE LA PARTE QUE SE CERTIFICA:

<table>
<thead>
<tr>
<th>Nombre del edificio</th>
<th>Vivienda unifamiliar de consumo casi nulo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dirección</td>
<td>C/ Ondarreta 5</td>
</tr>
<tr>
<td>Municipio</td>
<td>Castellón de la Plana</td>
</tr>
<tr>
<td>Código Postal</td>
<td>1210</td>
</tr>
<tr>
<td>Provincia</td>
<td>Castellón</td>
</tr>
<tr>
<td>Comunidad Autónoma</td>
<td>Comunidad Valenciana</td>
</tr>
<tr>
<td>Zona climática</td>
<td>B3</td>
</tr>
<tr>
<td>Año construcción</td>
<td>2016</td>
</tr>
<tr>
<td>Referencia/s catastral/es</td>
<td>8412901YK5381S0001WE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo de edificio o parte del edificio que se certifica:</th>
</tr>
</thead>
<tbody>
<tr>
<td>○ Edificio de nueva construcción</td>
</tr>
<tr>
<td>● Edificio Existente</td>
</tr>
<tr>
<td>○ Terciario</td>
</tr>
<tr>
<td>○ Edificio completo</td>
</tr>
<tr>
<td>○ Local</td>
</tr>
<tr>
<td>○ Vivienda</td>
</tr>
<tr>
<td>● Unifamiliar</td>
</tr>
<tr>
<td>○ Bloque</td>
</tr>
<tr>
<td>○ Bloque completo</td>
</tr>
<tr>
<td>○ Vivienda individual</td>
</tr>
<tr>
<td>○ Edificio completo</td>
</tr>
<tr>
<td>○ Local</td>
</tr>
<tr>
<td>○ Bloque</td>
</tr>
<tr>
<td>○ Vivienda individual</td>
</tr>
</tbody>
</table>

DATOS DEL TÉCNICO CERTIFICADOR:

<table>
<thead>
<tr>
<th>Nombre y Apellidos</th>
<th>Manuel Cano Gómez</th>
<th>NIF(NIE)</th>
<th>20473822</th>
</tr>
</thead>
<tbody>
<tr>
<td>Razón social</td>
<td>Manuel Cano</td>
<td>NIF</td>
<td>20473822</td>
</tr>
<tr>
<td>Domicilio</td>
<td>C/Barrachina 29</td>
<td>Código Postal</td>
<td>12006</td>
</tr>
<tr>
<td>Municipio</td>
<td>Castellón</td>
<td>Código Postal</td>
<td>12006</td>
</tr>
<tr>
<td>Provincia</td>
<td>Castellón</td>
<td>Comunidad Autónoma</td>
<td>Comunidad Valenciana</td>
</tr>
<tr>
<td>e-mail:</td>
<td>a117737@uji.es</td>
<td>Teléfono</td>
<td>605055583</td>
</tr>
<tr>
<td>Titulación habilitante según normativa vigente</td>
<td>Arquitecto Técnico</td>
<td>CEXv2.3</td>
<td></td>
</tr>
<tr>
<td>Procedimiento reconocido de calificación energética utilizado y versión:</td>
<td>CEXv2.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CALIFICACIÓN ENERGÉTICA OBTENIDA:

<table>
<thead>
<tr>
<th>CONSUMO DE ENERGÍA PRIMARIA NO RENOVABLE [kWh/m² año]</th>
<th>EMISIONES DE DIÓXIDO DE CARBONO [kgCO2/ m² año]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 25.0-35.2</td>
<td>17.5 A</td>
</tr>
<tr>
<td>B 20.0-24.9</td>
<td>11.5 A</td>
</tr>
<tr>
<td>C 15.1-19.9</td>
<td>7.5 A</td>
</tr>
<tr>
<td>D 10.0-15.0</td>
<td>3.5 A</td>
</tr>
<tr>
<td>E 5.1-10.0</td>
<td>1.0 A</td>
</tr>
<tr>
<td>F 0.1-5.0</td>
<td>0.2 A</td>
</tr>
<tr>
<td>G 0.0</td>
<td>0.0 A</td>
</tr>
</tbody>
</table>

El técnico abajo firmante declara responsablemente que ha realizado la certificación energética del edificio o de la parte que se certifica de acuerdo con el procedimiento establecido por la normativa vigente y que son ciertos los datos que figuran en el presente documento, y sus anexos:

Fecha: 08/11/2016

Firma del técnico certificador

Anexo I. Descripción de las características energéticas del edificio.

Anexo II. Calificación energética del edificio.

Anexo III. Recomendaciones para la mejora de la eficiencia energética.

Anexo IV. Pruebas, comprobaciones e inspecciones realizadas por el técnico certificador.

Registro del Órgano Territorial Competente:
ANEXO I
DESCRIPCIÓN DE LAS CARACTERÍSTICAS ENERGÉTICAS DEL EDIFICIO

En este apartado se describen las características energéticas del edificio, envolvente térmica, instalaciones, condiciones de funcionamiento y ocupación y demás datos utilizados para obtener la calificación energética del edificio.

1. SUPERFICIE, IMAGEN Y SITUACIÓN

<table>
<thead>
<tr>
<th>Superficie habitable [m²]</th>
<th>109.56</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Imagen del edificio</th>
<th>Plano de situación</th>
</tr>
</thead>
</table>

2. ENVOLVENTE TÉRMICA

Cerramientos opacos

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Tipo</th>
<th>Superficie [m²]</th>
<th>Transmitancia [W/m²·K]</th>
<th>Modo de obtención</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cubierta ajardinada</td>
<td>Cubierta</td>
<td>56.25</td>
<td>0.27</td>
<td>Estimadas</td>
</tr>
<tr>
<td>Muro de fachada Norte</td>
<td>Fachada</td>
<td>54.9</td>
<td>0.27</td>
<td>Estimadas</td>
</tr>
<tr>
<td>Muro de fachada este</td>
<td>Fachada</td>
<td>36.18</td>
<td>0.27</td>
<td>Estimadas</td>
</tr>
<tr>
<td>Muro de fachada sur</td>
<td>Fachada</td>
<td>38.78</td>
<td>0.27</td>
<td>Estimadas</td>
</tr>
<tr>
<td>Muro de fachada oeste</td>
<td>Fachada</td>
<td>49.62</td>
<td>0.27</td>
<td>Estimadas</td>
</tr>
<tr>
<td>Forjado sanitario</td>
<td>Partición Interior</td>
<td>68.89</td>
<td>0.35</td>
<td>Estimadas</td>
</tr>
</tbody>
</table>

Huecos y lucernarios

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Tipo</th>
<th>Superficie [m²]</th>
<th>Transmitancia [W/m²·K]</th>
<th>Factor solar</th>
<th>Modo de obtención. Transmitancia</th>
<th>Modo de obtención. Factor solar</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1 este p1</td>
<td>Hueco</td>
<td>9.36</td>
<td>1.54</td>
<td>0.20</td>
<td>Conocido</td>
<td>Conocido</td>
</tr>
<tr>
<td>V1 este PB</td>
<td>Hueco</td>
<td>9.36</td>
<td>1.56</td>
<td>0.28</td>
<td>Conocido</td>
<td>Conocido</td>
</tr>
<tr>
<td>V1 sur P1</td>
<td>Hueco</td>
<td>5.46</td>
<td>1.51</td>
<td>0.03</td>
<td>Conocido</td>
<td>Conocido</td>
</tr>
<tr>
<td>V1 sur PB</td>
<td>Hueco</td>
<td>5.46</td>
<td>1.53</td>
<td>0.18</td>
<td>Conocido</td>
<td>Conocido</td>
</tr>
<tr>
<td>V3 sur P1</td>
<td>Hueco</td>
<td>5.2</td>
<td>1.53</td>
<td>0.14</td>
<td>Conocido</td>
<td>Conocido</td>
</tr>
<tr>
<td>V1 Oeste Pb</td>
<td>Hueco</td>
<td>1.08</td>
<td>1.48</td>
<td>0.17</td>
<td>Conocido</td>
<td>Conocido</td>
</tr>
<tr>
<td>V2 Oeste P1</td>
<td>Hueco</td>
<td>1.68</td>
<td>1.51</td>
<td>0.05</td>
<td>Conocido</td>
<td>Conocido</td>
</tr>
<tr>
<td>V3 Oeste P1</td>
<td>Hueco</td>
<td>2.52</td>
<td>1.52</td>
<td>0.06</td>
<td>Conocido</td>
<td>Conocido</td>
</tr>
</tbody>
</table>
3. INSTALACIONES TÉRMICAS

Generadores de calefacción

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Tipo</th>
<th>Potencia nominal [kW]</th>
<th>Rendimiento Estacional [%]</th>
<th>Tipo de Energía</th>
<th>Modo de obtención</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sólo calefacción</td>
<td>Caldera Baja Temperatura</td>
<td>24.0</td>
<td>72.2</td>
<td>Biomasa densificada (pelets)</td>
<td>Estimado</td>
</tr>
<tr>
<td>TOTALES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Generadores de refrigeración

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Tipo</th>
<th>Potencia nominal [kW]</th>
<th>Rendimiento Estacional [%]</th>
<th>Tipo de Energía</th>
<th>Modo de obtención</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sólo refrigeración</td>
<td>Máquina frigorífica - Caudal Ref. Variable</td>
<td>168.3</td>
<td></td>
<td>Biomasa densificada (pelets)</td>
<td>Estimado</td>
</tr>
<tr>
<td>TOTALES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Instalaciones de Agua Caliente Sanitaria

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Consumo de Energía Final, cubierto en función del servicio asociado [%]</th>
<th>Demanda de ACS cubierta [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Calefacción</td>
<td>Refrigeración</td>
</tr>
<tr>
<td>Equipo ACS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTALES</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. ENERGÍAS RENOVABLES

Térmica

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Consumo de Energía Final, cubierto en función del servicio asociado [%]</th>
<th>Demanda de ACS cubierta [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Calefacción</td>
<td>Refrigeración</td>
</tr>
<tr>
<td>Contribuciones energéticas</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
ANEXO II
CALIFICACIÓN ENERGÉTICA DEL EDIFICIO

<table>
<thead>
<tr>
<th>Zona climática</th>
<th>B3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uso</td>
<td>Residencial</td>
</tr>
</tbody>
</table>

1. CALIFICACIÓN ENERGÉTICA DEL EDIFICIO EN EMISIONES

<table>
<thead>
<tr>
<th>INDICADOR GLOBAL</th>
<th>CALEFACCIÓN</th>
<th>ACS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7 A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Emisiones globales [kgCO2/m² año]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>Emisiones ACS [kgCO2/m² año]</td>
</tr>
<tr>
<td>1.70</td>
</tr>
<tr>
<td>1.88</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REFRIGERACIÓN</th>
<th>ILUMINACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Emisiones refrigeración [kgCO2/m² año]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>Emisiones iluminación [kgCO2/m² año]</td>
</tr>
<tr>
<td>-</td>
</tr>
</tbody>
</table>

La calificación global del edificio se expresa en términos de dióxido de carbono liberado a la atmósfera como consecuencia del consumo energético del mismo.

<table>
<thead>
<tr>
<th>Emisiones CO2 por consumo eléctrico</th>
<th>kgCO2/m² año</th>
<th>kgCO2/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emisiones CO2 por otros combustibles</td>
<td>3.72</td>
<td>407.17</td>
</tr>
</tbody>
</table>

2. CALIFICACIÓN ENERGÉTICA DEL EDIFICIO EN CONSUMO DE ENERGÍA PRIMARIA NO RENOVABLE

Por energía primaria no renovable se entiende la energía consumida por el edificio procedente de fuentes no renovables que no ha sufrido ningún proceso de conversión o transformación.

<table>
<thead>
<tr>
<th>INDICADOR GLOBAL</th>
<th>CALEFACCIÓN</th>
<th>ACS</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.5 A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Consumo global de energía primaria no renovable [kWh/m² año]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>Energía primaria ACS [kWh/m² año]</td>
</tr>
<tr>
<td>8.02</td>
</tr>
<tr>
<td>8.89</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REFRIGERACIÓN</th>
<th>ILUMINACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Energía primaria refrigeración [kWh/m² año]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>Energía primaria iluminación [kWh/m² año]</td>
</tr>
<tr>
<td>0.65</td>
</tr>
<tr>
<td>-</td>
</tr>
</tbody>
</table>

3. CALIFICACIÓN PARCIAL DE LA DEMANDA ENERGÉTICA DE CALEFACCIÓN Y REFRIGERACIÓN

La demanda energética de calefacción y refrigeración es la energía necesaria para mantener las condiciones internas de confort del edificio.

<table>
<thead>
<tr>
<th>DEMANDA DE CALEFACCIÓN</th>
<th>DEMANDA DE REFRIGERACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 9.7</td>
<td>< 10.0</td>
</tr>
<tr>
<td>9.7-18.4</td>
<td>10.0-14.3</td>
</tr>
<tr>
<td>18.5-31.1</td>
<td>14.3-20.4</td>
</tr>
<tr>
<td>31.1-45.3</td>
<td>20.5-28.7</td>
</tr>
<tr>
<td>45.9-83.6</td>
<td>28.9-36.7</td>
</tr>
<tr>
<td>83.6-102.8</td>
<td>36.7-45.1</td>
</tr>
<tr>
<td>≥ 102.8</td>
<td>≥ 45.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Demanda de calefacción [kWh/m² año]</th>
</tr>
</thead>
<tbody>
<tr>
<td>68.1 E</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Demanda de refrigeración [kWh/m² año]</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.8 B</td>
</tr>
</tbody>
</table>

El indicador global es resultado de la suma de los indicadores parciales más el valor del indicador para consumos auxiliares, si los hubiera (sólo ed. terciarios, ventilación, bombeo, etc…). La energía eléctrica autoconsumida se descuenta únicamente del indicador global, no así de los valores parciales.
ANEXO III
RECOMENDACIONES PARA LA MEJORA DE LA EFICIENCIA ENERGÉTICA

CALIFICACIÓN ENERGÉTICA GLOBAL

<table>
<thead>
<tr>
<th>CONSUMO DE ENERGÍA PRIMARIA NO RENOVABLE [kWh/m² año]</th>
<th>EMISIONES DE DIÓXIDO DE CARBONO [kgCO2/ m² año]</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 23.8 A</td>
<td>8.7 A</td>
</tr>
<tr>
<td>23.8-45.1 B</td>
<td></td>
</tr>
<tr>
<td>45.1-76.2 C</td>
<td></td>
</tr>
<tr>
<td>76.2-122.1 D</td>
<td></td>
</tr>
<tr>
<td>123.1-239.6 E</td>
<td></td>
</tr>
<tr>
<td>239.6-269.6 F</td>
<td></td>
</tr>
<tr>
<td>269.6-∞ G</td>
<td></td>
</tr>
</tbody>
</table>

CALIFICACIONES ENERGÉTICAS PARCIALES

<table>
<thead>
<tr>
<th>DEMANDA DE CALEFACCIÓN [kWh/m² año]</th>
<th>DEMANDA DE REFRIGERACIÓN [kWh/m² año]</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 9.7 A</td>
<td>68.1 E</td>
</tr>
<tr>
<td>9.7-18.4 B</td>
<td></td>
</tr>
<tr>
<td>18.4-31.1 C</td>
<td></td>
</tr>
<tr>
<td>31.1-49.9 D</td>
<td></td>
</tr>
<tr>
<td>49.9-83.6 E</td>
<td></td>
</tr>
<tr>
<td>83.6-102.8 F</td>
<td></td>
</tr>
<tr>
<td>≥ 102.8 G</td>
<td></td>
</tr>
</tbody>
</table>

ANÁLISIS TÉCNICO

<table>
<thead>
<tr>
<th>Indicador</th>
<th>Calefacción</th>
<th>Refrigeración</th>
<th>ACS</th>
<th>Iluminación</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Valor</td>
<td>ahorro</td>
<td>Valor</td>
<td>ahorro</td>
<td>Valor</td>
</tr>
<tr>
<td></td>
<td>ahorro a la</td>
<td>respecto a la</td>
<td></td>
<td>ahorro a la</td>
<td></td>
</tr>
<tr>
<td></td>
<td>situación</td>
<td>situación</td>
<td></td>
<td>situación</td>
<td></td>
</tr>
<tr>
<td></td>
<td>original</td>
<td>original</td>
<td></td>
<td>original</td>
<td></td>
</tr>
<tr>
<td>Consumo Energía final [kWh/m² año]</td>
<td>94.33</td>
<td>0.0%</td>
<td>7.59</td>
<td>0.0%</td>
<td>0.00</td>
</tr>
<tr>
<td>Consumo Energía primaria no renovable [kWh/m² año]</td>
<td>8.02 A</td>
<td>0.0%</td>
<td>0.65</td>
<td>A 0.0%</td>
<td>0.00</td>
</tr>
<tr>
<td>Emisiones de CO2 [kgCO2/m² año]</td>
<td>1.70 A</td>
<td>0.0%</td>
<td>0.14</td>
<td>A 0.0%</td>
<td>0.00</td>
</tr>
<tr>
<td>Demanda [kWh/m² año]</td>
<td>68.11 E</td>
<td>0.0%</td>
<td>12.78</td>
<td>B 0.0%</td>
<td></td>
</tr>
</tbody>
</table>

Nota: Los indicadores energéticos anteriores están calculados en base a coeficientes estándar de operación y funcionamiento del edificio, por lo que solo son válidos a efectos de su calificación energética. Para el análisis económico de las medidas de ahorro y eficiencia energética, el técnico certificador deberá utilizar las condiciones reales y datos históricos de consumo del edificio.

DESCRIPCIÓN DE LA MEDIDA DE MEJORA

Características de la medida (modelo de equipos, materiales, parámetros característicos)

Coste estimado de la medida

Otros datos de interés
ANEXO IV
PRUEBAS, COMPROBACIONES E INSPECCIONES REALIZADAS POR EL TÉCNICO CERTIFICADOR

Se describen a continuación las pruebas, comprobaciones e inspecciones llevadas a cabo por el técnico certificador durante el proceso de toma de datos y de calificación de la eficiencia energética del edificio, con la finalidad de establecer la conformidad de la información de partida contenida en el certificado de eficiencia energética.

<table>
<thead>
<tr>
<th>Fecha de realización de la visita del técnico certificador</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

COMENTARIOS DEL TÉCNICO CERTIFICADOR
Informe descriptivo de la medida de mejora

DENOMINACIÓN DE LA MEDIDA DE MEJORA

mejora 1

DESCRIPCIÓN DE LA MEDIDA DE MEJORA

Características de la medida (modelo de equipos, materiales, parámetros característicos)

Coste estimado de la medida

Otros datos de interés

CALIFICACIÓN ENERGÉTICA GLOBAL

<table>
<thead>
<tr>
<th>CONSUMO DE ENERGÍA PRIMARIA NO RENOVABLE [kWh/m² año]</th>
<th>EMISIONES DE DIÓXIDO DE CARBONO [kgCO₂/ m² año]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[A] < 22.4</td>
<td>[A] < 3.5</td>
</tr>
<tr>
<td>[B] 22.4-45.1</td>
<td>[B] 3.5-6.4</td>
</tr>
<tr>
<td>[C] 45.2-70.2</td>
<td>[C] 6.5-11.5</td>
</tr>
<tr>
<td>[D] 70.3-121.5</td>
<td>[D] 11.6-20</td>
</tr>
<tr>
<td>[E] 121.6-208.6</td>
<td>[E] 20.1-33</td>
</tr>
<tr>
<td>[F] 208.7-308.6</td>
<td>[F] 33.2-53</td>
</tr>
<tr>
<td>[G] ≥ 308.7</td>
<td>[G] ≥ 53.4</td>
</tr>
</tbody>
</table>

CALIFICACIONES ENERGÉTICAS PARciaLES

<table>
<thead>
<tr>
<th>DEMANDA DE CALEFACCIÓN [kWh/ m² año]</th>
<th>DEMANDA DE REFRIGERACIÓN [kWh/m² año]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[A] < 9.7</td>
<td>[A] < 18.0</td>
</tr>
<tr>
<td>[C] 14.7-23.7</td>
<td>[C] 29.8-54.1</td>
</tr>
<tr>
<td>[D] 23.8-34.8</td>
<td>[D] 54.2-109.7</td>
</tr>
<tr>
<td>[E] 34.9-55.9</td>
<td>[E] 109.8-173.7</td>
</tr>
<tr>
<td>[F] 56.0-83.8</td>
<td>[F] 173.8-252.3</td>
</tr>
<tr>
<td>[G] ≥ 83.9</td>
<td>[G] ≥ 253.4</td>
</tr>
</tbody>
</table>
ANÁLISIS TÉCNICO

<table>
<thead>
<tr>
<th>Indicador</th>
<th>Calefacción</th>
<th>Refrigeración</th>
<th>ACS</th>
<th>Iluminación</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Valor</td>
<td>Valor</td>
<td>Valor</td>
<td>Valor</td>
<td>Valor</td>
</tr>
<tr>
<td></td>
<td>ahorro</td>
<td>ahorro</td>
<td>ahorro</td>
<td>ahorro</td>
<td>ahorro</td>
</tr>
<tr>
<td></td>
<td>respecto a la situación original</td>
</tr>
<tr>
<td>Consumo Energía final [kWh/m² año]</td>
<td>94.33</td>
<td>7.59</td>
<td>0.00</td>
<td>100.00</td>
<td>-101.92</td>
</tr>
<tr>
<td>Consumo Energía primaria no renovable [kWh/m² año]</td>
<td>8.02 A</td>
<td>0.65 A</td>
<td>0.00</td>
<td>100.00</td>
<td>-8.66 A</td>
</tr>
<tr>
<td>Emisiones de CO2 [kgCO2/m² año]</td>
<td>1.70 A</td>
<td>0.14 A</td>
<td>0.00</td>
<td>100.00</td>
<td>-1.83 A</td>
</tr>
<tr>
<td>Demanda [kWh/m² año]</td>
<td>68.11 E</td>
<td>12.78 B</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ENVOLVENTE TÉRMICA

Cerramientos opacos

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Tipo</th>
<th>Superficie actual [m²]</th>
<th>Transmitancia actual [W/m² K]</th>
<th>Superficie post mejora [m²]</th>
<th>Transmitancia post mejora [W/m² K]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cubierta ajardinada</td>
<td>Cubierta</td>
<td>56.25</td>
<td>0.27</td>
<td>56.25</td>
<td>0.27</td>
</tr>
<tr>
<td>Muro de fachada Norte</td>
<td>Fachada</td>
<td>54.90</td>
<td>0.27</td>
<td>54.90</td>
<td>0.27</td>
</tr>
<tr>
<td>Muro de fachada este</td>
<td>Fachada</td>
<td>36.18</td>
<td>0.27</td>
<td>36.18</td>
<td>0.27</td>
</tr>
<tr>
<td>Muro de fachada sur</td>
<td>Fachada</td>
<td>38.78</td>
<td>0.27</td>
<td>38.78</td>
<td>0.27</td>
</tr>
<tr>
<td>Muro de fachada oeste</td>
<td>Fachada</td>
<td>49.62</td>
<td>0.27</td>
<td>49.62</td>
<td>0.27</td>
</tr>
<tr>
<td>Forjado sanitario</td>
<td>Partición Interior</td>
<td>68.89</td>
<td>0.35</td>
<td>68.89</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Huecos y lucernarios

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>V1 este P1</td>
<td>Hueco</td>
<td>9.36</td>
<td>1.54</td>
<td>1.60</td>
<td>9.36</td>
<td>1.54</td>
<td>1.60</td>
</tr>
<tr>
<td>V1 este PB</td>
<td>Hueco</td>
<td>9.36</td>
<td>1.56</td>
<td>1.60</td>
<td>9.36</td>
<td>1.56</td>
<td>1.60</td>
</tr>
<tr>
<td>V1 sur P1</td>
<td>Hueco</td>
<td>5.46</td>
<td>1.51</td>
<td>1.60</td>
<td>5.46</td>
<td>1.51</td>
<td>1.60</td>
</tr>
<tr>
<td>V1 sur PB</td>
<td>Hueco</td>
<td>5.46</td>
<td>1.53</td>
<td>1.60</td>
<td>5.46</td>
<td>1.53</td>
<td>1.60</td>
</tr>
<tr>
<td>V3 sur P1</td>
<td>Hueco</td>
<td>5.20</td>
<td>1.53</td>
<td>1.60</td>
<td>5.20</td>
<td>1.53</td>
<td>1.60</td>
</tr>
<tr>
<td>V1 Oeste Pb</td>
<td>Hueco</td>
<td>1.08</td>
<td>1.48</td>
<td>1.60</td>
<td>1.08</td>
<td>1.48</td>
<td>1.60</td>
</tr>
<tr>
<td>V2 Oeste P1</td>
<td>Hueco</td>
<td>1.68</td>
<td>1.51</td>
<td>1.60</td>
<td>1.68</td>
<td>1.51</td>
<td>1.60</td>
</tr>
<tr>
<td>V3 Oeste P1</td>
<td>Hueco</td>
<td>2.52</td>
<td>1.52</td>
<td>1.60</td>
<td>2.52</td>
<td>1.52</td>
<td>1.60</td>
</tr>
</tbody>
</table>
INSTALACIONES TÉRMICAS

Generadores de calefacción

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>[kW]</td>
<td>[%]</td>
<td>[kWh/m²/año]</td>
<td></td>
<td>[kW]</td>
<td>[%]</td>
<td>[kWh/m²/año]</td>
<td></td>
</tr>
<tr>
<td>Sólo calefacción</td>
<td>Caldera Baja Temperatura</td>
<td>24.0</td>
<td>72.2%</td>
<td>-</td>
<td>Caldera Baja Temperatura</td>
<td>24.0</td>
<td>72.2%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOTALES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Generadores de refrigeración

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>[kW]</td>
<td>[%]</td>
<td>[kWh/m²/año]</td>
<td></td>
<td>[kW]</td>
<td>[%]</td>
<td>[kWh/m²/año]</td>
<td></td>
</tr>
<tr>
<td>Sólo refrigeración</td>
<td>Máquina frigorífica - Caudal Ref. Variable</td>
<td>168.3%</td>
<td>-</td>
<td>-</td>
<td>Máquina frigorífica - Caudal Ref. Variable</td>
<td>168.3%</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>TOTALES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Instalaciones de Agua Caliente Sanitaria

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>[kW]</td>
<td>[%]</td>
<td>[kWh/m²/año]</td>
<td></td>
<td>[kW]</td>
<td>[%]</td>
<td>[kWh/m²/año]</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Equipo ACS</td>
<td>Caldera Estándar</td>
<td>24.0</td>
<td>56.8%</td>
<td>-</td>
<td>Caldera Estándar</td>
<td>24.0</td>
<td>56.8%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOTALES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ENERGÍAS RENOVABLES

Térmica

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Calefacción</th>
<th>Refrigeración</th>
<th>ACS</th>
<th>Consumo de Energía Final, cubierto en función del servicio asociado [%]</th>
<th>Demanda de ACS cubierta [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contraídas energéticas</td>
<td>-</td>
<td>-</td>
<td>75</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOTALES</td>
<td>-</td>
<td>-</td>
<td>75.0</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
IDENTIFICACIÓN

<table>
<thead>
<tr>
<th>Id. Mejora</th>
<th>Programa y versión</th>
<th>Versión informe asociado</th>
<th>Fecha</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CEXv2.3</td>
<td>08/11/2016</td>
</tr>
</tbody>
</table>

Post mejora

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Consumo de Energía Final, cubierto en función del servicio asociado [%]</th>
<th>Demanda de ACS cubierta [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Calefacción</td>
<td>Refrigeración</td>
</tr>
<tr>
<td>Contribuciones energéticas</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Incorporación de sistema de energía solar térmica para ACS</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOTALES</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
FICHA 1 Cálculo de los parámetros característicos medios

ZONA CLIMÁTICA

SUELOS (U₁₀)

<table>
<thead>
<tr>
<th>Tipo</th>
<th>A (m²)</th>
<th>U (W/m² K)</th>
<th>A-U (W/K)</th>
<th>Resultados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>14,78</td>
<td>0,238</td>
<td>10,32</td>
<td></td>
</tr>
<tr>
<td>U₁₀</td>
<td>14,78</td>
<td>0,238</td>
<td>10,32</td>
<td></td>
</tr>
<tr>
<td>U₂₀</td>
<td>14,78</td>
<td>0,238</td>
<td>10,32</td>
<td></td>
</tr>
<tr>
<td>U₃₀</td>
<td>14,78</td>
<td>0,238</td>
<td>10,32</td>
<td></td>
</tr>
<tr>
<td>U₄₀</td>
<td>14,78</td>
<td>0,238</td>
<td>10,32</td>
<td></td>
</tr>
<tr>
<td>U₅₀</td>
<td>14,78</td>
<td>0,238</td>
<td>10,32</td>
<td></td>
</tr>
<tr>
<td>U₆₀</td>
<td>14,78</td>
<td>0,238</td>
<td>10,32</td>
<td></td>
</tr>
<tr>
<td>U₇₀</td>
<td>14,78</td>
<td>0,238</td>
<td>10,32</td>
<td></td>
</tr>
<tr>
<td>U₈₀</td>
<td>14,78</td>
<td>0,238</td>
<td>10,32</td>
<td></td>
</tr>
<tr>
<td>U₉₀</td>
<td>14,78</td>
<td>0,238</td>
<td>10,32</td>
<td></td>
</tr>
<tr>
<td>U₁₀₀</td>
<td>14,78</td>
<td>0,238</td>
<td>10,32</td>
<td></td>
</tr>
</tbody>
</table>

SUELOS (U₃₀)

<table>
<thead>
<tr>
<th>Tipo</th>
<th>A (m²)</th>
<th>F (A.F/m²)</th>
<th>Resultados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>14,78</td>
<td>0,238</td>
<td></td>
</tr>
<tr>
<td>U₁₀</td>
<td>14,78</td>
<td>0,238</td>
<td></td>
</tr>
<tr>
<td>U₂₀</td>
<td>14,78</td>
<td>0,238</td>
<td></td>
</tr>
<tr>
<td>U₃₀</td>
<td>14,78</td>
<td>0,238</td>
<td></td>
</tr>
<tr>
<td>U₄₀</td>
<td>14,78</td>
<td>0,238</td>
<td></td>
</tr>
<tr>
<td>U₅₀</td>
<td>14,78</td>
<td>0,238</td>
<td></td>
</tr>
<tr>
<td>U₆₀</td>
<td>14,78</td>
<td>0,238</td>
<td></td>
</tr>
<tr>
<td>U₇₀</td>
<td>14,78</td>
<td>0,238</td>
<td></td>
</tr>
<tr>
<td>U₈₀</td>
<td>14,78</td>
<td>0,238</td>
<td></td>
</tr>
<tr>
<td>U₉₀</td>
<td>14,78</td>
<td>0,238</td>
<td></td>
</tr>
<tr>
<td>U₁₀₀</td>
<td>14,78</td>
<td>0,238</td>
<td></td>
</tr>
</tbody>
</table>

ZONA CLIMÁTICA

SUELOS (U₃₀)

<table>
<thead>
<tr>
<th>Tipo</th>
<th>A (m²)</th>
<th>U (W/m² K)</th>
<th>A-U (W/K)</th>
<th>Resultados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>14,78</td>
<td>0,238</td>
<td>10,32</td>
<td></td>
</tr>
<tr>
<td>U₁₀</td>
<td>14,78</td>
<td>0,238</td>
<td>10,32</td>
<td></td>
</tr>
<tr>
<td>U₂₀</td>
<td>14,78</td>
<td>0,238</td>
<td>10,32</td>
<td></td>
</tr>
<tr>
<td>U₃₀</td>
<td>14,78</td>
<td>0,238</td>
<td>10,32</td>
<td></td>
</tr>
<tr>
<td>U₄₀</td>
<td>14,78</td>
<td>0,238</td>
<td>10,32</td>
<td></td>
</tr>
<tr>
<td>U₅₀</td>
<td>14,78</td>
<td>0,238</td>
<td>10,32</td>
<td></td>
</tr>
<tr>
<td>U₆₀</td>
<td>14,78</td>
<td>0,238</td>
<td>10,32</td>
<td></td>
</tr>
<tr>
<td>U₇₀</td>
<td>14,78</td>
<td>0,238</td>
<td>10,32</td>
<td></td>
</tr>
<tr>
<td>U₈₀</td>
<td>14,78</td>
<td>0,238</td>
<td>10,32</td>
<td></td>
</tr>
<tr>
<td>U₉₀</td>
<td>14,78</td>
<td>0,238</td>
<td>10,32</td>
<td></td>
</tr>
<tr>
<td>U₁₀₀</td>
<td>14,78</td>
<td>0,238</td>
<td>10,32</td>
<td></td>
</tr>
</tbody>
</table>

ZONA CLIMÁTICA

Zona de alta carga interna

<table>
<thead>
<tr>
<th>Tipo</th>
<th>A (m²)</th>
<th>U (W/m² K)</th>
<th>A-U (W/K)</th>
<th>Resultados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>14,78</td>
<td>0,238</td>
<td>10,32</td>
<td></td>
</tr>
<tr>
<td>U₁₀</td>
<td>14,78</td>
<td>0,238</td>
<td>10,32</td>
<td></td>
</tr>
<tr>
<td>U₂₀</td>
<td>14,78</td>
<td>0,238</td>
<td>10,32</td>
<td></td>
</tr>
<tr>
<td>U₃₀</td>
<td>14,78</td>
<td>0,238</td>
<td>10,32</td>
<td></td>
</tr>
<tr>
<td>U₄₀</td>
<td>14,78</td>
<td>0,238</td>
<td>10,32</td>
<td></td>
</tr>
<tr>
<td>U₅₀</td>
<td>14,78</td>
<td>0,238</td>
<td>10,32</td>
<td></td>
</tr>
<tr>
<td>U₆₀</td>
<td>14,78</td>
<td>0,238</td>
<td>10,32</td>
<td></td>
</tr>
<tr>
<td>U₇₀</td>
<td>14,78</td>
<td>0,238</td>
<td>10,32</td>
<td></td>
</tr>
<tr>
<td>U₈₀</td>
<td>14,78</td>
<td>0,238</td>
<td>10,32</td>
<td></td>
</tr>
<tr>
<td>U₉₀</td>
<td>14,78</td>
<td>0,238</td>
<td>10,32</td>
<td></td>
</tr>
<tr>
<td>U₁₀₀</td>
<td>14,78</td>
<td>0,238</td>
<td>10,32</td>
<td></td>
</tr>
</tbody>
</table>

ZONA CLIMÁTICA

Zona de alta carga interna

<table>
<thead>
<tr>
<th>Tipo</th>
<th>A (m²)</th>
<th>U (W/m² K)</th>
<th>A-U (W/K)</th>
<th>Resultados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>14,78</td>
<td>0,238</td>
<td>10,32</td>
<td></td>
</tr>
<tr>
<td>U₁₀</td>
<td>14,78</td>
<td>0,238</td>
<td>10,32</td>
<td></td>
</tr>
<tr>
<td>U₂₀</td>
<td>14,78</td>
<td>0,238</td>
<td>10,32</td>
<td></td>
</tr>
<tr>
<td>U₃₀</td>
<td>14,78</td>
<td>0,238</td>
<td>10,32</td>
<td></td>
</tr>
<tr>
<td>U₄₀</td>
<td>14,78</td>
<td>0,238</td>
<td>10,32</td>
<td></td>
</tr>
<tr>
<td>U₅₀</td>
<td>14,78</td>
<td>0,238</td>
<td>10,32</td>
<td></td>
</tr>
<tr>
<td>U₆₀</td>
<td>14,78</td>
<td>0,238</td>
<td>10,32</td>
<td></td>
</tr>
<tr>
<td>U₇₀</td>
<td>14,78</td>
<td>0,238</td>
<td>10,32</td>
<td></td>
</tr>
<tr>
<td>U₈₀</td>
<td>14,78</td>
<td>0,238</td>
<td>10,32</td>
<td></td>
</tr>
<tr>
<td>U₉₀</td>
<td>14,78</td>
<td>0,238</td>
<td>10,32</td>
<td></td>
</tr>
<tr>
<td>U₁₀₀</td>
<td>14,78</td>
<td>0,238</td>
<td>10,32</td>
<td></td>
</tr>
</tbody>
</table>
FICHA 2 CONFORMIDAD - Demanda energética

ZONA CLIMATICA

- B3: Zona de baja carga interna
- : Zona de alta carga interna

Cerramientos y particiones interiores de la envolvente térmica

<table>
<thead>
<tr>
<th></th>
<th>$U_{max(proyecto)}$</th>
<th>U_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muros de fachada</td>
<td>0,30</td>
<td></td>
</tr>
<tr>
<td>Primer metro del perímetro de suelos apoyados y muros en contacto con el terreno</td>
<td>0,36 ≤ 1,07</td>
<td></td>
</tr>
<tr>
<td>Particiones interiores en contacto con espacios no habitables</td>
<td>0,00</td>
<td></td>
</tr>
<tr>
<td>Suelos</td>
<td>0,36 ≤ 0,68</td>
<td></td>
</tr>
<tr>
<td>Cubiertas</td>
<td>0,35 ≤ 0,59</td>
<td></td>
</tr>
<tr>
<td>Vidrios de huecos y lucernarios</td>
<td>1,58 ≤ 5,7</td>
<td></td>
</tr>
<tr>
<td>Marcos de huecos y lucernarios</td>
<td>1,60 ≤ 5,7</td>
<td></td>
</tr>
<tr>
<td>Medianerías</td>
<td>0,00 ≤ 1,07</td>
<td></td>
</tr>
</tbody>
</table>

Particiones interiores (edificios de viviendas)

- $0,00 ≤ 1,2$

MUROS DE FACHADA

<table>
<thead>
<tr>
<th></th>
<th>U_{Min}</th>
<th>U_{Mlim}</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>0,30</td>
<td>≤ 0,36</td>
</tr>
<tr>
<td>E</td>
<td>0,30</td>
<td>≤ 0,36</td>
</tr>
<tr>
<td>O</td>
<td>0,30</td>
<td>≤ 0,36</td>
</tr>
<tr>
<td>S</td>
<td>0,30</td>
<td>0,30</td>
</tr>
<tr>
<td>SE</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>SO</td>
<td>0,00</td>
<td>0,00</td>
</tr>
</tbody>
</table>

HUECOS Y LUCERNARIOS

<table>
<thead>
<tr>
<th></th>
<th>U_{Min}</th>
<th>U_{Mlim}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hm</td>
<td>0,00</td>
<td>≤ 0,00</td>
</tr>
<tr>
<td></td>
<td>1,55 ≤ 5,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,51 ≤ 5,7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,54 ≤ 5,7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,00</td>
<td>0,00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>F_{Mlim}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hm</td>
<td>≤ 1</td>
</tr>
</tbody>
</table>

CERR. CONTACTO TERRENO

<table>
<thead>
<tr>
<th></th>
<th>U_{TM}</th>
<th>U_{Mlim}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,00</td>
<td>≤ 0,36</td>
</tr>
</tbody>
</table>

SUELOS

<table>
<thead>
<tr>
<th></th>
<th>U_{Sm}</th>
<th>U_{Slim}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,36</td>
<td>≤ 0,52</td>
</tr>
</tbody>
</table>

CUBIERTAS

<table>
<thead>
<tr>
<th></th>
<th>U_{Cm}</th>
<th>U_{Clim}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,35</td>
<td>≤ 0,45</td>
</tr>
</tbody>
</table>

LUCERNARIOS

<table>
<thead>
<tr>
<th></th>
<th>F_{Lm}</th>
<th>F_{Llim}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,00</td>
<td>≤ 0,30</td>
</tr>
</tbody>
</table>
FICHA 3 CONFORMIDAD CONDENSACIONES

CERRAMIENTOS, PARTICIONES INTERIORES, PUENTES TERMICOS

<table>
<thead>
<tr>
<th>TIPOS</th>
<th>Condensaciones Superficiales</th>
<th>Condensaciones Intersciales (*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fachada</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_{\text{Rsi}})</td>
<td>0,93</td>
<td>(P_{\text{Rsi}})</td>
</tr>
<tr>
<td>(f_{\text{Rsmin}})</td>
<td>0,52</td>
<td>(P_{\text{Rsmin}})</td>
</tr>
<tr>
<td>Cubierta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_{\text{Rsi}})</td>
<td>0,93</td>
<td>(P_{\text{Rsi}})</td>
</tr>
<tr>
<td>(f_{\text{Rsmin}})</td>
<td>0,52</td>
<td>(P_{\text{Rsmin}})</td>
</tr>
</tbody>
</table>

(*) Sólo en caso de que no se disponga barrera de vapor en la cara caliente del aislante

<table>
<thead>
<tr>
<th>Capa</th>
<th>(R_{\text{si}})</th>
<th>(P_{\text{Rsi}})</th>
<th>(P_{\text{Rsmin}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>839,5</td>
<td>1235</td>
<td>1235</td>
</tr>
<tr>
<td>2</td>
<td>839,5</td>
<td>1244</td>
<td>1247</td>
</tr>
<tr>
<td>3</td>
<td>839,5</td>
<td>1247</td>
<td>1426</td>
</tr>
<tr>
<td>4</td>
<td>859,5</td>
<td>1426</td>
<td>2105</td>
</tr>
<tr>
<td>5</td>
<td>1181</td>
<td>2105</td>
<td>2167</td>
</tr>
<tr>
<td>6</td>
<td>1190,8</td>
<td>2167</td>
<td>2280</td>
</tr>
<tr>
<td>7</td>
<td>1257,6</td>
<td>2280</td>
<td>2280</td>
</tr>
<tr>
<td>8</td>
<td>1284,3</td>
<td>2280</td>
<td>2335</td>
</tr>
</tbody>
</table>

(*) Sólo en caso de que no se disponga barrera de vapor en la cara caliente del aislante
Cálculo de captadores de energía solar térmica para ACS en viviendas de nueva construcción

Datos del proyecto

Nombre del proyecto: Diseño de vivienda unifamiliar
Autor: Manuel Cano Gómez
Fecha: 31/12/2004
Localización del proyecto: CASTELLON
Localización (datos climáticos y radiación solar): Datos climáticos y de radiación solar

Demanda energética de ACS

Número total de viviendas: 1
Número total de personas: 3
Caudal mínimo de agua calentada: 84 litros/día

Temperatura de ACS: 60ºC
Factor simultaneidad (en función de la Ordenanza Solar): 1
Si no se ha de usar, introducir un 1

Caudal ACS demandado por edificio:

<table>
<thead>
<tr>
<th>Mes</th>
<th>Días</th>
<th>Temp. agua fría</th>
<th>Demanda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enero</td>
<td>31</td>
<td>6</td>
<td>75</td>
</tr>
<tr>
<td>Febrero</td>
<td>28</td>
<td>9</td>
<td>139</td>
</tr>
<tr>
<td>Marzo</td>
<td>31</td>
<td>13</td>
<td>148</td>
</tr>
<tr>
<td>Abril</td>
<td>30</td>
<td>13</td>
<td>137</td>
</tr>
<tr>
<td>Mayo</td>
<td>31</td>
<td>14</td>
<td>159</td>
</tr>
<tr>
<td>Junio</td>
<td>30</td>
<td>15</td>
<td>132</td>
</tr>
<tr>
<td>Julio</td>
<td>31</td>
<td>16</td>
<td>133</td>
</tr>
<tr>
<td>Agosto</td>
<td>31</td>
<td>15</td>
<td>136</td>
</tr>
<tr>
<td>Septiembre</td>
<td>30</td>
<td>14</td>
<td>134</td>
</tr>
<tr>
<td>Octubre</td>
<td>31</td>
<td>13</td>
<td>142</td>
</tr>
<tr>
<td>Noviembre</td>
<td>30</td>
<td>11</td>
<td>143</td>
</tr>
<tr>
<td>Diciembre</td>
<td>31</td>
<td>8</td>
<td>157</td>
</tr>
</tbody>
</table>

ANUAL: 365 días, 1.698 kWh

Determinación de la superficie de captadores solares y acumulación de ACS

Características de los captadores

Modelo de captador: Solaria-2.3 AL S8
Superficie captador: 2,4 m²/captador
Fr Tau (factor óptico): 0,72
FrU (pérdidas térmicas): 2,51 W/(m²·K)
Altura captador: 1,09 m
Inclinación: 40º
Latitud: 40º

Configuración de sistema solar: Edif. Unifamiliar: Equipo PREFABRICADO por termosifón
Relación V/Sc (hipótesis inicial): 50% - 100%
Valor recomendado: entre 50 y 100 l/m²

Número de captadores calculado: 0,4
Superficie de captación calculada: 0,9 m²

Volumen de acumulación ACS calculado: 70 litros

Número de captadores sugerido: 1
Superficie de captación sugerida: 2,4 m²
Volumen de acumulación ACS sugerido: 3.000 litros

Número de captadores seleccionado: 1
Superficie de captación resultante: 2,4 m²
Volumen de acumulación ACS seleccionado: 40 litros

Distancia mínima entre filas de captadores: 1 m
Altura de obstáculo (p.ej. murete): 0,2 m
Distancia mín. entre 1ª fila y el obstáculo: 0,29 m

Cálculo de la superficie de captadores (Método f-Chart)

Número de captadores calculado: 0,4
Superficie de captación calculada: 0,9 m²
Volumen de acumulación ACS calculado: 70 litros

Número de captadores sugerido: 1
Superficie de captación sugerida: 2,4 m²
Volumen de acumulación ACS sugerido: 3.000 litros

Número de captadores seleccionado: 1
Superficie de captación resultante: 2,4 m²
Volumen de acumulación ACS seleccionado: 40 litros

Cálculo de la radiación solar incidente (EU)

<table>
<thead>
<tr>
<th>Mes</th>
<th>EU (W/m²)</th>
<th>Fracción solar por captadores (EU)</th>
<th>Energía útil aportada por captadores (EU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enero</td>
<td>95,76</td>
<td>0,69</td>
<td>104</td>
</tr>
<tr>
<td>Febrero</td>
<td>122,41</td>
<td>0,89</td>
<td>124</td>
</tr>
<tr>
<td>Marzo</td>
<td>154,83</td>
<td>0,99</td>
<td>147</td>
</tr>
<tr>
<td>Abril</td>
<td>150,80</td>
<td>1,02</td>
<td>137</td>
</tr>
<tr>
<td>Mayo</td>
<td>168,52</td>
<td>1,08</td>
<td>139</td>
</tr>
<tr>
<td>Junio</td>
<td>164,07</td>
<td>1,11</td>
<td>132</td>
</tr>
<tr>
<td>Julio</td>
<td>195,52</td>
<td>1,20</td>
<td>133</td>
</tr>
<tr>
<td>Agosto</td>
<td>176,31</td>
<td>1,14</td>
<td>136</td>
</tr>
<tr>
<td>Septiembre</td>
<td>167,38</td>
<td>1,12</td>
<td>134</td>
</tr>
<tr>
<td>Octubre</td>
<td>156,89</td>
<td>1,04</td>
<td>142</td>
</tr>
<tr>
<td>Noviembre</td>
<td>107,50</td>
<td>0,78</td>
<td>112</td>
</tr>
<tr>
<td>Diciembre</td>
<td>93,03</td>
<td>0,65</td>
<td>102</td>
</tr>
</tbody>
</table>

ANUAL: 1,543 kWh

Gas Natural, s.a. - Dirección de Tecnología y Medio Ambiente

Diseño de vivienda unifamiliar
CASTELLON
FI CHA DE CARACTERÍSTICAS TÉCNICAS (SEGÚN EHE–08) DEL
FORJADO CON LOSAS ALVEOLARES PRETENSADAS H–200A
(Rec 20)

FABRICANTE:
Nombre: PREFABRICADOS LECRÍN S.A.

FABRICA:
Dirección: Cra. Granada–Motril Km 449 – 18640 PADÚL
(Granada)

TECNICO AUTOR DE LA MEMORIA
Nombre: ENRIQUE CABRERA LUQUE
 Ingeniero de Caminos, Canales y Puertos

HOJA 1 de 8

1. REPRESENTACION GRAFICA.

SECCION TRANSVERSAL

![Diagrama de sección transversal]

Escala 1:10

DETALLES

![Diagrama de detalles]

Escala 1:5

OBSERVACIONES:
(1) El recubrimiento inferior corresponde a las Clases de Exposición I, Ila y IIb considerando una vida útil de proyecto de 50 años. En otros casos deberá completarse con revestimiento en obra, de acuerdo con el Artículo 37.2.4.1, el Artículo 2 del Anejo 9 y las Tablas 37.2.4.1.a, 37.2.4.1.b y 37.2.4.1.c de la EHE–08.
2. FORJADO

SECCION TRANSVERSAL

![Diagrama de sección transversal]

<table>
<thead>
<tr>
<th>FORJADO</th>
<th>PESO (kN/m²)</th>
<th>FORJADO</th>
<th>PESO (kN/m²)</th>
<th>FORJADO</th>
<th>PESO (kN/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>h+c (cm)</td>
<td>3,02</td>
<td>h+c (cm)</td>
<td>4,27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOSA AISLADA</td>
<td>20 + 5</td>
<td>PÉS PARA ALINEAR</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>REFUERZO SUPERIOR</td>
<td>1.15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. MATERIALES

<table>
<thead>
<tr>
<th>ACERO</th>
<th>DESIGNACION</th>
<th>f_{max} (N/mm²)</th>
<th>f_y (N/mm²)</th>
<th>ε_r(%)</th>
<th>γ_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARMADURA ACTIVA</td>
<td>Y-1860 C</td>
<td>1860</td>
<td>1581</td>
<td>3.5</td>
<td>1.15</td>
</tr>
<tr>
<td>ARMADURA PASIVA</td>
<td>B-400S</td>
<td>---</td>
<td>400</td>
<td>14</td>
<td>1.15</td>
</tr>
<tr>
<td></td>
<td>B-500S</td>
<td>---</td>
<td>500</td>
<td>12</td>
<td>1.15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HORMIGON</th>
<th>LOSA IN SITU (Según Clase de Exposición, Tabla 37.3.2.b de EHE-08) (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESIGNACION</td>
<td>HP-45/S/12</td>
</tr>
<tr>
<td>fck (N/mm²)</td>
<td>45</td>
</tr>
<tr>
<td>γ_0 (2)</td>
<td>1.50</td>
</tr>
</tbody>
</table>

OBSERVACIONES:

(1) Estos valores sólo tienen carácter ORIENTATIVO de acuerdo con las aclaraciones al pie de dicha tabla siendo OBLIGATORIO el cumplimiento de los parámetros de dosificación de la Tabla 37.3.2.a de EHE-08.

(2) Corresponde a un control de producción según EHE-08 certificado por un organismo competente.
4. ARMADO DE LA LOMA

<table>
<thead>
<tr>
<th>DE LOSA</th>
<th></th>
<th>X</th>
<th></th>
<th>Y</th>
<th></th>
<th>Z</th>
<th></th>
<th>V</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>n*</td>
<td>Ø</td>
<td>TENSIÓN INICIAL (N/mm²)</td>
<td>n*</td>
<td>Ø</td>
<td>TENSIÓN INICIAL (N/mm²)</td>
<td>n*</td>
<td>Ø</td>
<td>TENSIÓN INICIAL (N/mm²)</td>
<td>PERDIDAS FINALES A PLAZO INFINITO (%) (c.d.g.)</td>
</tr>
<tr>
<td>H-200A-12/5</td>
<td>12</td>
<td>5 A 1300</td>
<td>4</td>
<td>5 A 1300</td>
<td>17,90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-200A-14/5</td>
<td>14</td>
<td>5 A 1300</td>
<td>4</td>
<td>5 A 1300</td>
<td>18,34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-200A-16/5</td>
<td>16</td>
<td>5 A 1300</td>
<td>4</td>
<td>5 A 1300</td>
<td>18,79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-200A-18/5</td>
<td>18</td>
<td>5 A 1300</td>
<td>4</td>
<td>5 A 1300</td>
<td>19,25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-200A-20/5</td>
<td>20</td>
<td>5 A 1300</td>
<td>4</td>
<td>5 A 1300</td>
<td>19,71</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-200A-22/5</td>
<td>22</td>
<td>5 A 1300</td>
<td>6</td>
<td>5 A 1300</td>
<td>20,23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-200A-24/5</td>
<td>24</td>
<td>5 A 1300</td>
<td>6</td>
<td>5 A 1300</td>
<td>20,67</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-200A-26/5</td>
<td>26</td>
<td>5 A 1300</td>
<td>6</td>
<td>5 A 1300</td>
<td>21,10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-200A-28/5</td>
<td>28</td>
<td>5 A 1300</td>
<td>6</td>
<td>5 A 1300</td>
<td>21,54</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-200A-30/5</td>
<td>30</td>
<td>5 A 1300</td>
<td>6</td>
<td>5 A 1300</td>
<td>21,98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-200A-32/5</td>
<td>30</td>
<td>5 A 1300</td>
<td>2</td>
<td>5 A 1300</td>
<td>22,35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-200A-34/5</td>
<td>30</td>
<td>5 A 1300</td>
<td>4</td>
<td>5 A 1300</td>
<td>22,79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-200A-36/5</td>
<td>30</td>
<td>5 A 1300</td>
<td>6</td>
<td>5 A 1300</td>
<td>23,15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-200A-38/5</td>
<td>30</td>
<td>5 A 1300</td>
<td>8</td>
<td>5 A 1300</td>
<td>23,50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-200A-40/5</td>
<td>30</td>
<td>5 A 1300</td>
<td>10</td>
<td>5 A 1300</td>
<td>23,86</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBSERVACIONES:

(1) Alambres = A
(2) Cordones = C
FICHA DE CARACTERISTICAS TECNICAS (SEGON EHE–08) DEL FORJADO CON LOSAS ALVEOLARES PRETENSADAS H–300
(Rec 20)

FABRICANTE:
PREFABRICADOS LECRIN S.A.

FABRICA:
Drescitán : Cra. Granada–Motril Km 449 – 18640 PADOL (Granada)

TECNICO AUTOR DE LA MEMORIA
ENRIQUE CABRERA LUQUE
Ingeniero de Caminos, Canales y Puertos

HOJA 1 de 11

1. REPRESENTACION GRAFICA.

SECCION TRANSVERSAL

Escala 1:10

DETALLES

Escala 1:5

OBSERVACIONES:
(1) El recubrimiento inferior corresponde a las Clases de Exposición I, IIa y IIb considerando una vida útil de proyecto de 50 años. En otros casos deberá completarse con revestimiento en obra, de acuerdo con el Artículo 37.2.4.1, el Artículo 2 del Anexo 9 y las Tablas 37.2.4.1.a, 37.2.4.1.b y 37.2.4.1.c de la EHE–08.
2. FORJADO

SECCION TRANSVERCAL

ARMADURA DE REPARTO (Artículos 42.3.5 y 59.2.2 de EHE-08)

REFUERZO SUPERIOR

<table>
<thead>
<tr>
<th>FORJADO</th>
<th>PESO</th>
<th>FORJADO</th>
<th>PESO</th>
<th>FORJADO</th>
<th>PESO</th>
</tr>
</thead>
<tbody>
<tr>
<td>h+c</td>
<td>(kN/m²)</td>
<td>h+c</td>
<td>(kN/m²)</td>
<td>h+c</td>
<td>(kN/m²)</td>
</tr>
<tr>
<td>(cm)</td>
<td></td>
<td>(cm)</td>
<td></td>
<td>(cm)</td>
<td></td>
</tr>
<tr>
<td>LOSA AISLADA</td>
<td>4,15</td>
<td>30 + 5</td>
<td>5,40</td>
<td>30 + 10</td>
<td>6,65</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. MATERIALES

<table>
<thead>
<tr>
<th>ACERO</th>
<th>DESIGNACION</th>
<th>$f_{max} (N/mm^2)$</th>
<th>$f_y (N/mm^2)$</th>
<th>$\varepsilon_f (%)$</th>
<th>γ_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARMADURA ACTIVA</td>
<td>Y-1860 C</td>
<td>1860</td>
<td>1581</td>
<td>3.5</td>
<td>1.15</td>
</tr>
<tr>
<td>ARMADURA PASIVA</td>
<td>B-400S</td>
<td>---</td>
<td>400</td>
<td>14</td>
<td>1.15</td>
</tr>
<tr>
<td></td>
<td>B-500S</td>
<td>---</td>
<td>500</td>
<td>12</td>
<td>1.15</td>
</tr>
<tr>
<td>HORMIGON</td>
<td>LOSA</td>
<td>IN SITU (Según Clase de Exposición. Tabla 37.3.2.b de EHE-08) (1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>l − lla</td>
<td>IIb−lla−IIIb−IV</td>
<td>Qa−Qb−H−F−E</td>
<td>IIIc − Qc</td>
</tr>
<tr>
<td>DESIGNACION</td>
<td>HP-45/S/12</td>
<td>HA-25/B/20</td>
<td>HA-30/B/20</td>
<td>HA-30/B/20</td>
<td>HA-35/B/20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45</td>
<td>25</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>γ_c (2)</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
</tbody>
</table>

OBSERVACIONES:

(1) Estos valores sólo tienen carácter ORIENTATIVO de acuerdo con las aclaraciones al pie de dicha tabla siendo OBLIGATORIO el cumplimiento de los parámetros de dosificación de la Tabla 37.3.2.a de EHE-08.

(2) Corresponde a un control de producción según EHE-08 certificado por un organismo competente.
Información general

<table>
<thead>
<tr>
<th>Fabricante:</th>
<th>HEREDEROS CERÁMICA SAMPEDRO S.A.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dirección:</td>
<td>AVDA. ENTRENA 38 - 26140 LARDERO - LA RIOJA</td>
</tr>
<tr>
<td>Modelo:</td>
<td>PIEZA DE ARCILLA COCIDA ALIGERADA LD CAT I R-15 de 245 x 110 x 100</td>
</tr>
<tr>
<td>Número comercial:</td>
<td>PERFORADO DE 10 (45dBA)</td>
</tr>
<tr>
<td>Uso previsto:</td>
<td>FÁBRICA PROTEGIDA</td>
</tr>
<tr>
<td>Nº identificación Organismo Notificado:</td>
<td>0099</td>
</tr>
</tbody>
</table>

Declaración de prestaciones Nº: 02/HCS/13

CARACTERÍSTICAS TÉCNICAS DE LA PIEZA

<table>
<thead>
<tr>
<th>Característica</th>
<th>Método de comprobación</th>
<th>Valor garantizado por el fabricante</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspecto y estructura</td>
<td>Visual sobre 6 piezas</td>
<td>Ninguna pieza exfoliada / laminada</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≤ 1 pieza desconchada</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dimensión media de los desconchados en caras no perforadas < 15 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≤ 2 piezas fisuradas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≤ 1 pieza desconchada</td>
</tr>
<tr>
<td>Tolerancias dimensionales (mm)</td>
<td>UNE 67039 Ex</td>
<td>T1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ancho (a) ≤ 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>alto (l) ≤ 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>grueso (h) ≤ 3</td>
</tr>
<tr>
<td>Tolerancias dimensionales (mm)</td>
<td>UNE 772-16</td>
<td>R1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ancho (a) ≤ 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>alto (l) ≤ 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>grueso (h) ≤ 9</td>
</tr>
<tr>
<td>Espesor de pared (mm)</td>
<td>pared exterior no vista</td>
<td>≤ 5,0</td>
</tr>
<tr>
<td></td>
<td>pared interior</td>
<td>≤ 3,0</td>
</tr>
<tr>
<td>Paralelismo de caras (Ortogonalidad) (mm)</td>
<td>UNE-EN 772-20</td>
<td>Parámetro no exigible</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≤ 4,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≤ 4,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≤ 4,0</td>
</tr>
<tr>
<td>Paralelismo de caras (Ortogonalidad) (mm)</td>
<td>UNE-EN 772-3</td>
<td>52 ± 10%</td>
</tr>
<tr>
<td>Planeidad de las caras (mm)</td>
<td>UNE-EN 772-20</td>
<td>≤ 12,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≤ 4,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≤ 4,0</td>
</tr>
<tr>
<td>Porcentaje de huecos (%)</td>
<td>UNE-EN 772-20</td>
<td>20</td>
</tr>
<tr>
<td>Volumen del mayor hueco (% del bruto)</td>
<td>UNE-EN 772-3/39/16</td>
<td>≤ 12,5</td>
</tr>
<tr>
<td>Absorción en piezas barrera anticapilaridad (%)</td>
<td>UNE-EN 772-1</td>
<td>Parámetro no exigible</td>
</tr>
<tr>
<td>Succión (Kg / (m x min))</td>
<td>UNE-EN 772-11</td>
<td>≤ 15</td>
</tr>
<tr>
<td>Resistencia normalizada característica (N/mm²)</td>
<td>UNE-EN 772-1</td>
<td>Cara de apoyo: Tabla</td>
</tr>
<tr>
<td>Densidad</td>
<td>UNE-EN 772-13</td>
<td>1,725</td>
</tr>
<tr>
<td></td>
<td></td>
<td>800</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D1 (10%)</td>
</tr>
<tr>
<td>Masa (g)</td>
<td>Anexo D RP 34.14</td>
<td>Valor mínimo garantizado por grueso: 2,000</td>
</tr>
<tr>
<td>Aislamiento acústico (dBA)</td>
<td>UNE EN ISO 140-3:1995</td>
<td>45dBA</td>
</tr>
<tr>
<td>Dureabilidad (Resistencia a la helada)</td>
<td>UNE 67028 EX</td>
<td>No heladizo</td>
</tr>
<tr>
<td>Propiedades térmicas (Método)</td>
<td>UNE 67028 EX</td>
<td>Catálogo CTE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Valores tabulados del Catálogo de Elementos Constructivos</td>
</tr>
<tr>
<td></td>
<td>A, (W/m x K)</td>
<td>0,350</td>
</tr>
<tr>
<td></td>
<td>R, (m² x K/W)</td>
<td>0,230</td>
</tr>
<tr>
<td>Permeabilidad al vapor de agua (m)</td>
<td>Catálogo CTE</td>
<td>10</td>
</tr>
<tr>
<td>Contenido en sales solubles activas</td>
<td>UNE 67028-5</td>
<td>50 sin necesidad de ensayo</td>
</tr>
<tr>
<td>Expansión por humedad (mm/mm)</td>
<td>UNE 67036</td>
<td>≤ 0,31</td>
</tr>
<tr>
<td>Reacción al fuego</td>
<td>UNE-EN 13801-1</td>
<td>A1 sin necesidad de ensayo</td>
</tr>
<tr>
<td>Adherencia (N/mm²)</td>
<td>Anexo C UNE EN 998-2</td>
<td>0,15</td>
</tr>
<tr>
<td>Piezas especiales</td>
<td>-----</td>
<td>NO</td>
</tr>
</tbody>
</table>

Observaciones:

(1) Resultado de ensayo realizado en Labein, según informe Nº 91.2398.0-IN-CT-10/32II.

Fecha de emisión: 9-10-2015

Anula y sustituye a la de fecha 4-6-2015
CARACTERÍSTICAS TÉCNICAS DE LA PIEZA

<table>
<thead>
<tr>
<th>Característica</th>
<th>Método de comprobación</th>
<th>Valor garantizado por el fabricante</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspecto y estructura</td>
<td>Exfoliaciones / laminaciones</td>
<td>Ninguna pieza exfoliada / laminada</td>
</tr>
<tr>
<td></td>
<td>Piezas fisuradas</td>
<td>≤ 2 piezas fisuradas</td>
</tr>
<tr>
<td></td>
<td>Piezas desconchadas</td>
<td>< 1 pieza desconchada</td>
</tr>
<tr>
<td></td>
<td>Visual sobre 6 piezas</td>
<td></td>
</tr>
<tr>
<td>Tolerancias dimensionales</td>
<td>largo (l)</td>
<td>T1</td>
</tr>
<tr>
<td>(mm)</td>
<td>ancho (a)</td>
<td>≤ 7</td>
</tr>
<tr>
<td></td>
<td>grueso (g)</td>
<td>≤ 3</td>
</tr>
<tr>
<td>Recorrido</td>
<td>largo (l)</td>
<td>R1</td>
</tr>
<tr>
<td></td>
<td>ancho (a)</td>
<td>≤ 10</td>
</tr>
<tr>
<td></td>
<td>grueso (g)</td>
<td>≤ 4</td>
</tr>
<tr>
<td>Espesor de pared</td>
<td>pared exterior no vista</td>
<td>≤ 5.0</td>
</tr>
<tr>
<td></td>
<td>pared interior</td>
<td>≥ 3.0</td>
</tr>
<tr>
<td>Paralelismo de caras</td>
<td>i > 300 mm</td>
<td>Parámetro no exigible</td>
</tr>
<tr>
<td>Diagonales</td>
<td>300 ≥ 1 ≥ 250 mm</td>
<td>≤ 4.0</td>
</tr>
<tr>
<td></td>
<td>1 ≤ 250 mm</td>
<td>≤ 4.0</td>
</tr>
<tr>
<td>Planeidad de las caras (mm)</td>
<td>UNE-EN 772-20</td>
<td></td>
</tr>
<tr>
<td>Volumen del mayor hueco (mm)</td>
<td>UNE-EN 772-3</td>
<td>≤ 70</td>
</tr>
<tr>
<td>(%)</td>
<td>UNE-EN 772-3/9/16</td>
<td>≤ 12.5</td>
</tr>
<tr>
<td>Espesor combinado de tabaquillos</td>
<td>UNE-EN 772-16</td>
<td>≥ 20</td>
</tr>
<tr>
<td>(%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absorción en piezas</td>
<td>Anexo D RP 34.14</td>
<td>Value mínimo garantizado por grueso:</td>
</tr>
<tr>
<td>barrera anticapilaridad (%)</td>
<td></td>
<td>1.455</td>
</tr>
<tr>
<td>(%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Succión (Kg / (m²x min))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistencia normalizada</td>
<td>UNE-EN 772-1</td>
<td>≥ 2.5</td>
</tr>
<tr>
<td>característica (N/mm²)</td>
<td></td>
<td>Cara de apoyo: Canto</td>
</tr>
<tr>
<td>(%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Densidad</td>
<td>Absoluta (Kg/m³)</td>
<td>1.725</td>
</tr>
<tr>
<td>(Kg/m³)</td>
<td>Aparente (Kg/m³)</td>
<td>860</td>
</tr>
<tr>
<td>(Kg/m³)</td>
<td>Tolerancia (%)</td>
<td>D1 (±10%)</td>
</tr>
<tr>
<td>(%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Masa (g)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durabilidad (Resistencia a la helada)</td>
<td>UNE 67028 EX</td>
<td>F0 sin necesidad de ensayo</td>
</tr>
<tr>
<td>(%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propiedades térmicas (Método)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Análisis (W/m x K)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(W/m² x K/W)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permeabilidad al vapor de agua</td>
<td></td>
<td>Parámetro no exigible</td>
</tr>
<tr>
<td>(%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contenido en sales solubles</td>
<td></td>
<td>Parámetro no exigible</td>
</tr>
<tr>
<td>(%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expansión por humedad (mm/m)</td>
<td></td>
<td>Parámetro no exigible</td>
</tr>
<tr>
<td>(%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reacción al fuego</td>
<td></td>
<td>AT sin necesidad de ensayo</td>
</tr>
<tr>
<td>(%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adherencia (N/mm²)</td>
<td></td>
<td>Parámetro no exigible</td>
</tr>
<tr>
<td>(%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piezas especiales</td>
<td></td>
<td>NO</td>
</tr>
<tr>
<td>(%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observaciones:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CARACTERÍSTICAS TÉCNICAS DE LA PIEZA

<table>
<thead>
<tr>
<th>Característica</th>
<th>Método de comprobación</th>
<th>Valor garantizado por el fabricante</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspecto y estructura</td>
<td>exfoliaciones / laminaciones</td>
<td>Visual sobre 6 piezas</td>
</tr>
<tr>
<td></td>
<td>piezas fisuradas</td>
<td>UNE 67039 EX</td>
</tr>
<tr>
<td></td>
<td>piezas desconchadas</td>
<td>Dimension media de los desconchados en caras no perforadas < 15 mm</td>
</tr>
<tr>
<td>Tolerancias dimensionales (mm)</td>
<td>largo (l)</td>
<td>T1</td>
</tr>
<tr>
<td></td>
<td>ancho (a)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>grueso (g)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>largo (l)</td>
<td>R1</td>
</tr>
<tr>
<td></td>
<td>ancho (a)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>grueso (g)</td>
<td></td>
</tr>
<tr>
<td>Espesor de pared (mm)</td>
<td>pared exterior no vista</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pared interior</td>
<td></td>
</tr>
<tr>
<td>Paralelismo de caras (Ortogonalidad) (mm)</td>
<td>Diagonales</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 300 mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>300 ≤ 1 ≤ 250 mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 250 mm</td>
<td></td>
</tr>
<tr>
<td>Porcentaje de huecos (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volumen del mayor hueco (% del bruto)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Espesor combinado de tabiquillos (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absorción en piezas barrera anticapilaridad (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Succión (Kg / (m²·min))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistencia normalizada característica (N/mm²)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Densidad</td>
<td>Absoluta (Kg/m³)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aparente (Kg/m²)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tolerancia (%)</td>
<td></td>
</tr>
<tr>
<td>Masa (g)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durabilidad (Resistencia a la helada)</td>
<td>Anexo D RP 34,14</td>
<td></td>
</tr>
<tr>
<td>Propiedades térmicas (Método)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Catálogo CTE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hᵣₛₑₑ (m²·K/W)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hₑₑₑₑ (m²·K/W)</td>
<td></td>
</tr>
<tr>
<td>Permeabilidad al vapor de agua - μ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contenido en sales solubles activas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expansión por humedad (mm/m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reacción al fuego</td>
<td>% materia orgánica < 1 %</td>
<td></td>
</tr>
<tr>
<td>Adherencia (N/mm²)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piezas especiales</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observaciones:
GEOTEXTILES

DANOFELT PY 150

Geotextil no tejido, fabricado a base de fibra corta de poliéster de 150 (+10%-20%) g/m², ligado mecánicamente mediante agujeteado sin aplicación de ligantes químicos, presiones o calor.

DATOS TÉCNICOS

<table>
<thead>
<tr>
<th>PROPIEDADES FÍSICAS</th>
<th>VALOR</th>
<th>UNIDAD</th>
<th>NORMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masa media</td>
<td>150 (+10%-20%)</td>
<td>g/m²</td>
<td>UNE EN 965</td>
</tr>
<tr>
<td>Espesor a 2kPa</td>
<td>1.90, ±0.20</td>
<td>mm</td>
<td>UNE EN 964</td>
</tr>
<tr>
<td>Resistencia a la tracción longitudinal</td>
<td>1.2, - 0.3</td>
<td>KN/m²</td>
<td>UNE EN ISO 10319</td>
</tr>
<tr>
<td>Resistencia a la tracción transversal</td>
<td>1.2, -0.3</td>
<td>KN/m²</td>
<td>UNE EN ISO 10319</td>
</tr>
<tr>
<td>Elongación longitudinal a la rotura</td>
<td>90, ±30</td>
<td>%</td>
<td>UNE EN ISO 10319</td>
</tr>
<tr>
<td>Elongación transversal a la rotura</td>
<td>80, ±30</td>
<td>%</td>
<td>UNE EN ISO 10319</td>
</tr>
<tr>
<td>Punzonamiento estático (CBR)</td>
<td>0.3, -0.1</td>
<td>KN</td>
<td>UNE EN ISO 12236</td>
</tr>
<tr>
<td>Perforación dinámica (caída cono)</td>
<td>40, +5</td>
<td>mm</td>
<td>UNE EN 918</td>
</tr>
<tr>
<td>Permeabilidad al agua</td>
<td>0.04468, -0.005</td>
<td>m/s</td>
<td>UNE EN ISO 11058</td>
</tr>
<tr>
<td>Capacidad del flujo de agua en el plano</td>
<td>2.7 Exp-7, -0.2 Exp-7</td>
<td>m²/s</td>
<td>UNE EN ISO 12958</td>
</tr>
<tr>
<td>Medida de abertura</td>
<td>100, ±20</td>
<td>µm</td>
<td>UNE EN ISO 12956</td>
</tr>
<tr>
<td>Eficacia de la protección</td>
<td>9.0 Exp3, -0.3 Exp3</td>
<td>KN/m²</td>
<td>PrEN 13719</td>
</tr>
</tbody>
</table>

DATOS TÉCNICOS ADICIONALES

<table>
<thead>
<tr>
<th>DATOS TÉCNICOS ADICIONALES</th>
<th>VALOR</th>
<th>UNIDAD</th>
<th>NORMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Espesor a 20 kPa</td>
<td>1.0, ±0.20</td>
<td>mm</td>
<td>UNE EN 964</td>
</tr>
<tr>
<td>Espesor a 200 kPa</td>
<td>0.5, ±0.20</td>
<td>mm</td>
<td>UNE EN 964</td>
</tr>
</tbody>
</table>

NORMATIVA Y CERTIFICACIÓN

Cumple con las exigencias del Código Técnico de la Edificación.
Cumple con los requisitos del Marcado CE.

CAMPO DE APLICACIÓN

Uso Recomendado:
- Como capa separadora para evitar el contacto directo de materiales incompatibles en cubiertas planas transitables y no transitables.

Otros usos:
- Rehabilitación de impermeabilizaciones deterioradas, actuando como capa separadora entre el antiguo material impermeabilizante y la nueva lámina.
- Se puede utilizar para trabajos de bricolaje y jardinería en chalets, residencias unifamiliares, etc, como por ejemplo en:
 - refuerzo de la estructura de terrazas, canchas de tenis, evitando la aparición de baches y fisuras
 - protector de la impermeabilización en piscinas, pequeñas balsas, etc
 - para aumentar la durabilidad de obras enterradas, tales como tuberías de drenaje en jardines, fosas sépticas, etc
 - para evitar la mezcla de materiales en trabajos de plantación, almacenaje de materiales, leña, etc
- para facilitar el asentamiento de terrenos en jardines.

PRESENTACIÓN

<table>
<thead>
<tr>
<th>PRESENTACIÓN</th>
<th>VALOR</th>
<th>UNIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud</td>
<td>160</td>
<td>m</td>
</tr>
<tr>
<td>Ancho</td>
<td>4.4</td>
<td>m</td>
</tr>
<tr>
<td>Superficie por rollo</td>
<td>704</td>
<td>m²</td>
</tr>
<tr>
<td>Código de Producto</td>
<td>710421</td>
<td>-</td>
</tr>
</tbody>
</table>
VENTAJAS Y BENEFICIOS

VENTAJAS
· Evita agresiones o adherencias entre dos materiales distintos.
· Resistente a las sustancias activas del suelo y a las inclemencias climáticas
· Facilidad de instalación, permitiendo su adaptación a todo tipo de soportes, sin necesidad de equipos demasiado complejos ni personal especialmente cualificado.

BENEFICIOS
· Mantiene intactas las propiedades mecánicas e hidráulicas de los materiales que separa.
· Gran durabilidad
· Acorta la duración de la obra y su coste.

MODO DE EMPLEO

Preparación del soporte:
· La superficie del soporte base deberá ser resistente, uniforme, compacta y seca.
· Los puntos singulares deben estar igualmente preparados antes de empezar la colocación del geotextil: chaflanes o escocías en encuentros con paramentos verticales, refuerzos, juntas y demás puntos singulares.

Colocación del geotextil
· Una vez nivelado el terreno o el soporte, se extiende el rollo de DANOFELT PY 150. A continuación se monta el segundo rollo dejando un solape mínimo de 20cm. Dependiendo de su aplicación final, se recomienda fijar la unión mediante cosido o grapado.
· El vertido de los materiales debe realizarse sin dañar el geotextil. Del mismo modo el extendido de las diferentes capas se realizará de tal forma que los equipos de extensión y compactación no circulen en ningún momento sobre la superficie del geotextil, y siempre de modo que el sentido de avance de la maquinaria de extensión de la capa superior se realice de tal forma que no afecte al solape de las capas geotextil.

INDICACIONES IMPORTANTES Y RECOMENDACIONES
· Se recomienda preservar el material en su embalaje y protegido de la intemperie hasta su uso.
· La circulación de maquinaria y vehículos de obra sobre el geotextil, estará totalmente prohibida para evitar daños mecánicos o pliegues en el mismo, que impedirían el correcto funcionamiento para el que ha sido diseñado.
· No utilizar en ningún caso en sistemas con fijación mecánica debido a que las fibras pueden generar problemas de tipo mecánico en el proceso de instalación de la fijación al soporte.
· No exponer al contacto directo con hormigón fresco.
· Proteger de la lluvia, tanto en su almacenaje como una vez colocado en obra.
· Cuando el geotextil tenga que estar en contacto con láminas sintéticas de PVC para impermeabilización, se utilizará DANOFELT PY 300 o superior.
· DANOFELT PY 150 es sensible a los rayos UV, por lo que es preciso recubrirlo lo antes posible (tiempo máximo de exposición al sol 1 semana).
· Según ensayos expuestos en la consecución del marcado CE de este producto, DANOFELT PY 150 tiene una durabilidad mínima de 25 años, cubierto e instalado en suelos con un ph entre 4 y 9 a una temperatura de suelo < 25ºC.
· Este producto normalmente forma parte de un sistema de impermeabilización, por lo que se deberá tener en cuenta todos los documentos a los que se haga referencia en el Manual de Soluciones de Danosa, así como toda normativa y legislación de obligado cumplimiento al respecto.
· Se deberá prestar especial atención a la ejecución de los puntos singulares, como pueden ser petos (encuentros con elementos verticales y emergentes), desagües, juntas de dilatación, etc...

NOTA: Para mayor información sobre los sistemas Danosa en que interviene DANOFELT PY 150, rogamos ver los documentos “Soluciones de Impermeabilización”.
MANIPULACIÓN, ALMACENAJE Y CONSERVACIÓN

- Con el fin de garantizar una adecuada calidad del producto, DANOFELT PY 150 se almacenará en lugares lisos, secos, limpios y libres de objetos cortantes y punzantes. En todo caso se garantizará una especial protección frente a la acción directa de los rayos solares, mediante techado o tapado con lonas.
- El producto se almacenará en posición horizontal.
- El producto se utilizará por orden de llegada a la obra.
- Los geotextiles DANOFELT son fáciles de cortar para adaptar las dimensiones a la obra.
- En todos los casos, deberán tenerse en cuenta las normas de Seguridad e Higiene en el trabajo, así como las normas de buena práctica de la construcción.
- Danosa recomienda consultar la ficha de seguridad de este producto que está disponible permanentemente en www.danosa.com, o bien puede solicitarse por escrito a nuestro Departamento Técnico.
- Para cualquier aclaración adicional, rogamos consulten con nuestro Departamento Técnico.

AVISO

La información que aparece en la presente documentación en lo referido a modo de empleo y usos de los productos o sistemas Danosa, se basa en los conocimientos adquiridos por danosa hasta el momento actual y siempre y cuando los productos hayan sido almacenados y utilizados de forma correcta. No obstante, el funcionamiento adecuado de los productos dependerá de la calidad de la aplicación, de factores meteorológicos y de otros factores fuera del alcance de danosa. Así, la garantía ofrecida pues, se limita a la calidad intrínseca del producto suministrado. Danosa se reserva el derecho de modificar, sin previo aviso, los datos reflejados en la presente documentación.

Los valores que aparecen en la ficha técnica son resultados de los ensayos de autocontrol realizados en nuestro laboratorio y en laboratorios independientes. Septiembre 2006.

Página web: www.danosa.com E-mail: info@danosa.com Teléfono: 902 42 24 52
DANODREN JARDÍN

El DANODREN JARDÍN es una lámina de nodulos, fabricada en polietileno de alta densidad (PEAD) de color verde, unida por termofusión a un geotextil no tejido de polipropileno.

DATOS TÉCNICOS

<table>
<thead>
<tr>
<th>PROPIEDADES FÍSICAS</th>
<th>VALOR</th>
<th>UNIDAD</th>
<th>NORMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>N° de nódulos</td>
<td>1907</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Resistencia a la compresión</td>
<td>200 ± 20%</td>
<td>KN/m²</td>
<td>UNE EN ISO 604</td>
</tr>
<tr>
<td>Resistencia a la tracción, aprox</td>
<td>> 700</td>
<td>N/60mm</td>
<td>UNE EN 12311-1</td>
</tr>
<tr>
<td>Alargamiento a la rotura, aprox.</td>
<td>> 25</td>
<td>%</td>
<td>UNE EN 12311-1</td>
</tr>
<tr>
<td>Módulo de elasticidad</td>
<td>1500</td>
<td>N/mm²</td>
<td>ISO 178</td>
</tr>
<tr>
<td>Absorción de agua</td>
<td>1</td>
<td>mg/4d</td>
<td>DIN 53495</td>
</tr>
<tr>
<td>Capacidad de drenaje, aprox</td>
<td>5</td>
<td>l/s.m</td>
<td>-</td>
</tr>
<tr>
<td>Resistencia de temperaturas</td>
<td>-30 a 80</td>
<td>ºC</td>
<td>-</td>
</tr>
<tr>
<td>Volumen de aire entre nódulos, aprox</td>
<td>5.9</td>
<td>l/m²</td>
<td>-</td>
</tr>
</tbody>
</table>

PROPIEDADES DEL GEOTEXTIL

<table>
<thead>
<tr>
<th>PROPIEDADES FÍSICAS</th>
<th>VALOR</th>
<th>UNIDAD</th>
<th>NORMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punzonamiento estático (CBR)</td>
<td>1.36, -0.08</td>
<td>KN</td>
<td>UNE EN ISO 12236</td>
</tr>
<tr>
<td>Resistencia a la tracción longitudinal</td>
<td>7.63, -0.32</td>
<td>KN/m</td>
<td>UNE EN ISO 10319</td>
</tr>
<tr>
<td>Elongación longitudinal a la rotura</td>
<td>60±30</td>
<td>%</td>
<td>UNE EN ISO 10319</td>
</tr>
<tr>
<td>Medida de abertura</td>
<td>160±24</td>
<td>µm</td>
<td>UNE EN ISO 12956</td>
</tr>
<tr>
<td>Permeabilidad al agua</td>
<td>120 -10</td>
<td>mm/s</td>
<td>UNE EN ISO 11058</td>
</tr>
</tbody>
</table>

NORMATIVA Y CERTIFICACIÓN

Certificado de conformidad CE de geotextiles y productos relacionados. Cumple con los requisitos del Código Técnico de la Edificación (C.T.E.).

CAMPO DE APLICACIÓN

Uso recomendado:
- Se utiliza como parte del sistema de impermeabilización y drenaje de cubiertas ajardinadas intensivas en todo tipo de edificios

Otros usos:
- Ideal para garantizar el drenaje del agua en sentido horizontal, particularmente en zonas ajardinadas en sustitución de la grava.
PRESENTACIÓN

<table>
<thead>
<tr>
<th>PRESENTACIÓN</th>
<th>VALOR</th>
<th>UNIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud</td>
<td>20</td>
<td>m</td>
</tr>
<tr>
<td>Ancho</td>
<td>2.10</td>
<td>m</td>
</tr>
<tr>
<td>Altura del nódulo</td>
<td>7,3 ± 0,2</td>
<td>mm</td>
</tr>
<tr>
<td>Superficie por rollo</td>
<td>42</td>
<td>m²</td>
</tr>
<tr>
<td>Rollos por palet</td>
<td>6</td>
<td>rollos</td>
</tr>
<tr>
<td>Código de Producto</td>
<td>314076</td>
<td>-</td>
</tr>
</tbody>
</table>

LEYENDA:
1. Tierra vegetal.
2. Capa de drenaje. DANODREN JARDÍN.
3. Membrana impermeabilizante.
4. Formación de pendientes.
5. Forjado.

VENTAJAS Y BENEFICIOS

VENTAJAS
- Soluciona en espesores y cargas reducidas el problema de drenaje y retención de agua en cubiertas ajardinadas.
- Permite la transformación de superficies tradicionalmente hormigonadas o asfaltadas en espacios verdes.
- Influye positivamente en el microclima urbano, reteniendo humedad que devuelve gradualmente al ambiente.
- Imprescindible.
- El geotextil filtra los finos en contacto con el terreno evitando la colmatación del sistema de drenaje.
- Debido a la composición del geotextil (polipropileno), Danodren Jardín se puede dejar sin recubrir durante un tiempo, sin que se vean deterioradas sus propiedades mecánicas-hidráulicas.

BENEFICIOS
- Limita las sobrecargas en la cubierta con respecto a los drenajes tradicionales de grava de al menos 10 cm. de espesor.
- Integra el edificio en el entorno. Amortigua el ruido ambiental.
- Regula la carga de agua que soportan las canalizaciones urbanas.
- Durabilidad a lo largo del tiempo.
- Gran durabilidad del sistema de drenaje, conservando sus propiedades iniciales a lo largo del tiempo, lo que conlleva un ahorro en mantenimiento.
- Permite acometer otras unidades de obra sin ser, la colocación de Danodren Jardín, una etapa controlante.
MODO DE EMPLEO

Preparación del soporte:
· La superficie del soporte base deberá ser resistente, uniforme, lisa, estar limpia, seca y carecer de cuerpos extraños.
· Los puntos singulares deben estar igualmente preparados antes de empezar la colocación de la membrana: chaflanes o escocias en encuentros con paramentos verticales, refuerzos, juntas y demás puntos singulares.
· En este caso el soporte es una membrana impermeabilizante. Se deberán adoptar todas las medidas para evitar el punzonamiento de la membrana impermeabilizante durante la colocación del DANODREN JARDÍN. Al ser un producto utilizado en el drenaje de cubiertas ajardinadas, la última lámina del sistema de impermeabilización será Esterdan Plus 50 GP jardín, lámina que dispone de un tratamiento antiraíz.

Colocación de la lámina drenante:
· Se extienden los rollos de DANODREN JARDIN con el geotextil contra el terreno, ya que lo que se pretende es mantener una capa entre la solera y el terreno que permita la circulación del agua.
· El geotextil presenta un ancho de 5 cm menos para facilitar el solape de rollo con rollo. Para realizar el solape se despega el geotextil 7 cm, con lo que el rollo contiguo solapa en total 12 cm. Luego se vuelve a colocar el geotextil sobre el del rollo contiguo solapado y se fija mecánicamente la línea de solape cada 25 cm.
· Se procederá a tender los rollos de forma progresiva, para proteger la impermeabilización del tránsito de las personas y evitar daños mecánicos.
· Se procederá al extendido de la tierra vegetal. Se colocará directamente encima de la capa geotextil. El extendido se realiza bien manualmente, bien por medio de cinta transportadora.
· Se debe cuidar bien el reparto de la grava en montones separados antes de su extensión, para evitar las cargas puntuales excesivas que afecten tanto al elemento portante, como al DANODREN JARDÍN.

INDICACIONES IMPORTANTES Y RECOMENDACIONES
· La lámina DANODREN JARDIN drena y protege.
· La lámina DANODREN JARDIN no impermeabiliza.
· Su utilización no substituye en ningún caso a la impermeabilización.
· Al ser un producto utilizado en el drenaje de cubiertas ajardinadas. En el caso de utilizarse un sistema bituminoso, la última lámina del sistema de impermeabilización será un Esterdan Plus 50 GP Elast Verde Jardín lámina que dispone de un tratamiento antiraíz o lámina DANOPOL, en el caso de impermeabilización sintética.
· Se adoptarán las precauciones adecuadas para no punzonar la impermeabilización durante la colocación del DANODREN JARDÍN.
· Este producto forma parte de un sistema de impermeabilización, por lo que se deberá tener en cuenta todos los documentos a los que haga referencia el Manual de Soluciones de Danosa, así como toda normativa y legislación de obligado cumplimiento al respecto.
· Se deberá prestar especial atención a la ejecución de los puntos singulares, como pueden ser petos (encuentros con elementos verticales y emergentes), desagües, juntas de dilatación, etc...
· Para asegurar el correcto funcionamiento del producto en cubiertas ajardinadas deberá asegurarse que el sustrato utilizado cumple con las especificaciones técnicas descritas en las guías del instituto alemán FLL.

NOTA: Para mayor información sobre los sistemas Danosa en que interviene DANODREN JARDÍN, rogamos ver documento “Soluciones de impermeabilización”, especialmente las fichas IM19 e IM19M.

MANIPULACIÓN, ALMACENAJE Y CONSERVACIÓN
· Este producto no es tóxico.
· Se almacenará en un lugar seco y protegido de la lluvia, el sol, el calor y las bajas temperaturas.
· El producto se almacenará en posición vertical.
· El producto se utilizará por orden de llegada a la obra.
· No deben realizarse trabajos de impermeabilización cuando las condiciones climatológicas puedan resultar perjudiciales, en particular cuando esté nevando o haya nieve o hielo sobre la cubierta, cuando llueva o la cubierta esté mojada, humedad superficial > 8% según NTE QAT, o cuando sople viento fuerte. También deben realizarse trabajos cuando la temperatura ambiente sea menor que -5ºC para láminas de betún modificado.
· En todos los casos, deberán tenerse en cuenta las normas de Seguridad e Higiene en el trabajo, así como las normas de buena práctica de la construcción.
· Danosa recomienda consultar la ficha de seguridad de este producto que está disponible permanentemente en www.danosa.com, o bien puede solicitarse por escrito a nuestro Departamento Técnico.
· Para cualquier aclaración adicional, rogamos consulten con nuestro Departamento Técnico.
AVISO

La información que aparece en la presente documentación en lo referido a modo de empleo y usos de los productos o sistemas Danosa, se basa en los conocimientos adquiridos por Danosa hasta el momento actual y siempre y cuando los productos hayan sido almacenados y utilizados de forma correcta.

No obstante, el funcionamiento adecuado de los productos dependerá de la calidad de la aplicación, de factores meteorológicos y de otros factores fuera del alcance de Danosa. Así, la garantía ofrecida pues, se limita a la calidad intrínseca del producto suministrado. Danosa se reserva el derecho de modificar, sin previo aviso, los datos reflejados en la presente documentación.

Los valores que aparecen en la ficha técnica son resultados de los ensayos de autocontrol realizados en nuestro laboratorio y en laboratorios independientes. Marzo 2007.

Página web: www.danosa.com E-mail: info@danosa.com Teléfono: 902 42 24 52
:: Información útil para ahorrar energía.

:: ¡Un material aislante inteligente!

:: Aislamiento para tejado
:: Aislamiento para pared
:: Aislamiento para suelo

100% CELULOSA
Contenido

Material aislante THERMOFLOC

Productos THERMOFLOC
Resumen detallado 3

Material aislante insuflado THERMOFLOC 4 - 5

Material aislante insuflado THERMOFLOC
Tejado, pared, suelo 6 - 9

Relleno de suelos THERMOFLOC 10 - 11

Pellets bolitas aislantes THERMOFLOC 12 - 13

Barrera de vapor THERMOFLOC 14 - 15

Lámina impermeabilizante del tejado THERMOFLOC 16 - 17

Cintas adhesivas THERMOFLOC 18 - 19
1) Material aislante insuflado THERMOFLOC como aislamiento entre cabreros centrales del tejado

2) Material aislante insuflado THERMOFLOC soplado en abierto para el aislamiento de la cubierta

3) Material aislante insuflado THERMOFLOC como aislamiento para la pared externa

4) Pellets bolitas aislantes THERMOFLOC como asiento portante de suelo

5) Relleno de suelo THERMOFLOC como aislamiento de cavidades en entreplanta

6) Material aislante insuflado THERMOFLOC aplicado por pulverización en el techo del sótano

7) Lámina impermeabilizante del tejado THERMOFLOC

8) Barrera de vapor THERMOFLOC

- para un verano fresco y un invierno cálido.
CAMPOS DE APLICACIÓN MÁS IMPORTANTES
- en el tejado (tejado inclinado, tejado de una sola o varias aguas, azotea),
- en la pared externa e interna y
- en la cubierta
El material aislante insuflado THERMOFLOC viene dando buenos resultados desde hace décadas tanto para construcciones nuevas como en la rehabilitación de construcciones antiguas.

UN CAMPO ESPECIAL DE APLICACIÓN
- la pulverización del material aislante desde el interior en los muros (también mampostería u hormigón), techos (p. ej. techo del sótano) y tejados. Normalmente se pulveriza una capa de 30 a 60 mm.
El material aislante insuflado THERMOFLOC de fibras de celulosa cuenta con numerosas propiedades esenciales que hacen posible un aislamiento eficiente para reducir los costes de energía teniendo en cuenta criterios ecológicos. Una característica básica del material aislante para insuflar, fabricado con papeles de periódico, es que aísla de forma óptima tanto del calor como del frío y reduce así considerablemente los costes de energía para calefacción en invierno y aire acondicionado en verano. En más de 12 países europeos se realizan continuamente proyectos de construcción con fibras naturales THERMOFLOC y el número de propietarios convencidos de las ventajas que ofrece un sistema de aislamiento THERMOFLOC aumenta diariamente.

Información de los expertos en aislamiento: www.thermofloc.com
La colocación de THERMOFLOC se realiza mediante máquinas especiales de soplado. El material aislante es bombeado por unos tubos mediante presión neumática a las cavidades de los elementos constructivos y, una vez allí, se comprime de acuerdo con las directrices de procesamiento de modo que se consiga una capa aislante continua y sin juntas. La técnica especial de procesamiento tiene importantes ventajas tanto para el instalador como para el propietario. El propietario se beneficia de una capa aislante sin juntas ni puentes térmicos. Los tejados anteriormente realizados pueden aislar posteriormente sin necesidad de desmontar las tejas. Gracias a la creación de una capa aislante abierta a la difusión, el propietario disfruta de un ambiente agradable y libre de sustancias contaminantes.
Con un solo producto, el instalador puede producir grosor de aislamiento de entre 20 y 500 mm, con lo cual ya no es necesario el almacenamiento de distintas dimensiones de material aislante (como en el caso de planchas y fieltros aislantes). La densidad del material aislante se encuentra, según la aplicación, entre 25 kg/m³ y 65 kg/m³.

Prácticamente no se originan desperdicios ya que siempre se insufla la cantidad exacta de material aislante necesaria para cada construcción. Asimismo, la logística en la obra es más sencilla puesto que ya no es necesario transportar a mano los materiales constructivos del edificio.

Gracias a la técnica de insuflado es posible rellenar sin problemas todos los elementos constructivos (incluso en edificaciones de varias plantas) comenzando desde el suelo hacia arriba. Esto ahorra tiempo y acelera el desarrollo del proyecto.

<table>
<thead>
<tr>
<th>Material aislante insuflado THERMOFLOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certificados</td>
</tr>
<tr>
<td>Componentes</td>
</tr>
<tr>
<td>Coeficiente de conductividad térmica</td>
</tr>
<tr>
<td>Coeficiente de resistencia a la difusión de vapor de agua</td>
</tr>
<tr>
<td>Absorción de agua</td>
</tr>
<tr>
<td>Impedancia acústica</td>
</tr>
<tr>
<td>Clase de comportamiento al fuego según la EN 13501-1</td>
</tr>
<tr>
<td>Resistencia a la formación de mozos</td>
</tr>
<tr>
<td>Corrosión del metal</td>
</tr>
<tr>
<td>Inocuidad para la salud</td>
</tr>
</tbody>
</table>
Aplicaciones de THERMOFLOC

Material aislante insuflado

Estructura del tejado D1
1. Tejas
2. Rastrel
3. Contra-rastrel
4. Lámina impermeabilizante del tejado THERMOFLOC
5. Encofrado de tejado
6. Cabrios/Material aislante insuflado THERMOFLOC
7. Barrera de vapor THERMOFLOC
8. Listones
9. Plancha de yeso

Estructura del tejado D5
1. Tejas
2. Rastrel
3. Contra-rastrel
4. Lámina impermeabilizante del tejado THERMOFLOC
5. Encofrado de tejado
6. Cabrios/Material aislante insuflado THERMOFLOC
7. Barrera de vapor THERMOFLOC
8. Encofrado de protección contra fuego
9. Vigas vistas

Estructura del tejado D2
1. Tejas
2. Rastrel
3. Contra-rastrel
4. Lámina impermeabilizante del tejado THERMOFLOC
5. Cabrios/Material aislante insuflado THERMOFLOC
6. Listones 2-6 cm
7. Barrera de vapor THERMOFLOC
8. Listones superficie de instalación
9. Plancha de yeso

Estructura del tejado D7
1. Tejas
2. Rastrel 4/5
3. Contra-rastrel 5/8
4. Plancha de fibra de madera impermeable
5. Soporte de nervios doble/Material aislante insuflado
6. Entablado/OSB
7. Plancha de yeso
Sistema de aislamiento THERMOFLOC

Mejor aislamiento punto por punto

- **Aislamiento para tejado**
- **Aislamiento para pared**
- **Aislamiento para suelo**

Muro W1

- 1. Entablado
- 2. Listones
- 3. Plancha aislante de fibra de madera
- 4. Travesaños/Material aislante insuflado THERMOFLOC
- 5. Encofrado de tablas separadas
- 6. Barrera de vapor THERMOFLOC
- 7. Listones (superficie de instalación)
- 8. Plancha de yeso

Muro W13

- 1. Bloque termoarcilla
- 2. Material aislante insuflado THERMOFLOC
- 3. Bloque termoarcilla
- 4. Revoque interior

Muro W15

- 1. Plancha de fibra de yeso
- 2. Plancha de fibra de yeso
- 3. Plancha de fibra blanda de madera
- 4. Travesaños/Material aislante insuflado THERMOFLOC
- 5. Madera de OSB
- 6. Listones/Material aislante insuflado THERMOFLOC
- 7. Plancha de fibra de yeso

Grosor del material aislante y valores U

<table>
<thead>
<tr>
<th>Estructura del muro</th>
<th>Grosor del material aislante</th>
<th>Valor U</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1</td>
<td>140-300 mm</td>
<td>0,23-0,12 W/mK</td>
</tr>
<tr>
<td>W13</td>
<td>140-300 mm</td>
<td>0,23-0,12 W/mK</td>
</tr>
<tr>
<td>W13</td>
<td>60-220 mm</td>
<td>0,37-0,17 W/mK</td>
</tr>
<tr>
<td>W15</td>
<td>140-300 mm</td>
<td>0,23-0,12 W/mK</td>
</tr>
<tr>
<td>W10</td>
<td>140-300 mm</td>
<td>0,23-0,12 W/mK</td>
</tr>
</tbody>
</table>
El relleno de suelos THERMOFLOC se coloca, al contrario que en el caso del material aislante insuflado, de forma manual y se emplea exclusivamente como aislamiento sin capacidad de soportar presión en el plano horizontal (en la cubierta, en la entreplanta de una construcción de varios pisos). Para garantizar un mejor procesamiento manual, el material aislante sufre una menor compresión dentro del embalaje. El relleno de suelos THERMOFLOC se suministra en sacos de 12 kg; 24 sacos por palet. Sólo hay que verter el relleno regularmente en el grosor deseado y nivelarlo a continuación. Aproximadamente se gastan unos 35 kg/m³.

Los datos técnicos son idénticos a los del material aislante insuflado.
TH THERMOFLOC crea ambientes cálidos en toda la casa
:: Aislamiento para pared
:: Aislamiento para suelo

Estructura del suelo DB1
1. Plancha de fibra de madera
2. Falso piso
3. Solera doble/Material aislante THERMOFLOC
4. Encofrado de tablas separadas
5. Plancha de yeso

Estructura del suelo DB3
1. OSB
2. Vigas/Material aislante insuflado THERMOFLOC
3. Barrera de vapor THERMOFLOC
4. Perfiles
5. Planchas de yeso de 2 capas

Aislamiento de la cubierta
1. Vigas/Material aislante insuflado THERMOFLOC
2. Barrera de vapor THERMOFLOC
3. Techo de hormigón

Relleno de suelos THERMOFLOC
Certificados: ETA-05/0186, marca CE
Componentes: Papeles de periódico y boratos para la conservación
Coeficiente de conductividad térmica: λ = 0,039 W/mK
Coeficiente de resistencia a la difusión de vapor de agua: μ = 1
Absorción de agua: 14,5/35,19 kg/m
Impedancia acústica: 6,1 kPa s/m²
Clase de comportamiento al fuego según la EN 13501-1: B-s2,d0
Resistencia a la formación de mojos: Clase 0
Corrosión del metal: Sin potencial de corrosión del metal
Inocuidad para la salud: Libre de sustancias perniciosas conforme a ETA-05/0186

THERMOFLOC – LA PELÍCULA
Puede solicitar la película con información sobre producción, colocación y aplicación práctica en 6 idiomas distintos a la empresa Peter Seppele Ges.m.b.H o descargárla directamente de www.thermofloc.com
Las pellets bolitas aislantes THERMOFLOC son un granulado de fibras de celulosa que se emplea en la construcción del suelo. El granulado, con un diámetro de bolita de 3-8 mm, se vierte simplemente hasta la altura deseada y se nivela a continuación. De este modo es posible construir entresuelos con una altura de 30-80 mm. Debido al elevado peso de llenado (500 kg/m³), las pellets bolitas aislantes THERMOFLOC resultan apropiadas sobre todo para la construcción de capas aislantes de soporte que cuentan con unos excelentes valores de aislamiento acústico. Ya se trate de techos de hormigón o de techos de vigas de madera, con las pellets bolitas aislantes THERMOFLOC es posible mejorar notablemente las propiedades aislantes de ambos tipos de construcción.
Pellets bolitas aislantes THERMOFLOC

- Diámetro de bolita: 3-8 mm
- Densidad: 500 kg/m³
- Altura de vertido: Máx. 80 mm por capa
- Clase de comportamiento al fuego: B2
- Conductividad térmica: \(\lambda = 0.07 \)
- Resistencia de compresión: 6,320 kg con 10 % de recalcado
- Difusión de vapor de agua: \(\mu = 1 \)
- Gasto de material: 40 l por m² (altura de vertido 40 mm), 60 l por m² (altura de vertido 60 mm)

Forma de entrega: Sacos de 40 litros/36 sacos por palet/1,44 m³
La barrera de vapor THERMOFLOC consiste en una capa impermeable al vapor y al aire que protege la construcción de humedades.
Puede utilizarse para construcciones de muro y de tejado por la zona interior. Gracias a la armadura reforzada, tiene una mayor resistencia al desgarro y permite perfectamente su combinación con el material aislante insuflado THERMOFLOC.

Art. nº 5150 (Ancho 150 cm)

Art. nº 5160 (Ancho 280 cm)

<table>
<thead>
<tr>
<th>Barrera de vapor THERMOFLOC</th>
<th>DATOS TÉCNICOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composición</td>
<td>Vellón de polipropileno armado</td>
</tr>
<tr>
<td>Resistencia a la rotura por tracción</td>
<td>100 N / 5 cm, con armadura reforzada</td>
</tr>
<tr>
<td>Peso por m²</td>
<td>Aprox. 50-60 g/m²</td>
</tr>
<tr>
<td>Alargamiento de rotura</td>
<td>> 25 %</td>
</tr>
<tr>
<td>Valor SD</td>
<td>10 m</td>
</tr>
<tr>
<td>Clase de comportamiento al fuego</td>
<td>Característica B2; utilización por la parte interior para tejados y muros</td>
</tr>
<tr>
<td>Ancho de rollo</td>
<td>150 cm o 280 cm</td>
</tr>
<tr>
<td>Largo de rollo</td>
<td>50 m lineales</td>
</tr>
<tr>
<td>m² por rollo</td>
<td>75 m² o 140 m²</td>
</tr>
</tbody>
</table>
Campo de aplicación:
La barrera de vapor THERMOFLOC se emplea por la parte interior en construcciones de tejado con y sin ventilación y en el muro de edificaciones con travesaños de madera. Gracias a la barrera de vapor THERMOFLOC se evitan puntos débiles en la construcción debidos a corrientes de aire y, con ello, la penetración de humedad en el aislamiento térmico.

Instrucciones para su colocación:
La barrera de vapor THERMOFLOC se fija a la estructura mediante grapado o encolado. Debe colocarse de forma que el lado de la hoja plástica quede orientado hacia la habitación, es decir, el lado del velón hacia el aislamiento térmico. Con materiales aislantes insuflados THERMOFLOC se recomienda una colocación longitudinal de la barrera de vapor. Si fuera necesario colocar la barrera transversalmente, los puntos de la cinta adhesiva deberán cubrirse con un listón continuo para evitar que la cinta adhesiva THERMOFLOC se desprenda a causa de la presión de insuflado. Las superficies a pegar deben estar secas y libres de grasa, polvo y silicona.
Las láminas impermeabilizantes de tejado THERMOFLOC protegen la construcción contra lluvia fuerte y evitan la penetración de humedad en la construcción del tejado o de la pared. Las láminas impermeabilizantes son estables bajo exposición a rayos UV, muy resistentes al desgarro y altamente abiertas a la difusión.

Las LÁMINAS IMPERMEABILIZANTES DE TEJADO se colocan solapadas por fuera del tejado y por debajo de las tejas para asegurar una estanqueidad óptima contra el viento y la lluvia.

A las láminas impermeabilizantes de tejado se clavan o grapan rastreles que quedan así al mismo tiempo fijados. Las láminas impermeabilizantes de tejado de THERMOFLOC tienen 10 años de garantía. Unos elementos de sistema adaptados entre sí consiguen un aislamiento óptimo.
Datos técnicos de la lámina impermeabilizante de tejado gris

<table>
<thead>
<tr>
<th>Característica</th>
<th>Datos técnicos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composición</td>
<td>Vellón de polipropileno de tres capas</td>
</tr>
<tr>
<td>Resistencia a la rotura por tracción</td>
<td>215 N / 5 cm</td>
</tr>
<tr>
<td>Peso por m²</td>
<td>120 g/m²</td>
</tr>
<tr>
<td>Alargamiento de rotura</td>
<td>> 60 %</td>
</tr>
<tr>
<td>Valor SD</td>
<td>0,02 m, altamente abierta a la difusión</td>
</tr>
<tr>
<td>Clase de comportamiento al fuego</td>
<td>B2</td>
</tr>
<tr>
<td>Prueba de corrosión en condiciones ambientales naturales</td>
<td>Máx. 2 meses</td>
</tr>
<tr>
<td>Fuerza de desgarre de clavo</td>
<td>220 N</td>
</tr>
<tr>
<td>Ancho de rollo</td>
<td>150 cm</td>
</tr>
<tr>
<td>Largo de rollo</td>
<td>50 m lineales</td>
</tr>
<tr>
<td>30 rollos por palet / 2.250 m²</td>
<td></td>
</tr>
</tbody>
</table>

Datos técnicos de la lámina impermeabilizante de tejado verde

<table>
<thead>
<tr>
<th>Característica</th>
<th>Datos técnicos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composición</td>
<td>Vellón de polipropileno de tres capas</td>
</tr>
<tr>
<td>Resistencia a la rotura por tracción</td>
<td>250 N / 5 cm</td>
</tr>
<tr>
<td>Peso por m²</td>
<td>135 g/m²</td>
</tr>
<tr>
<td>Alargamiento de rotura</td>
<td>> 60 %</td>
</tr>
<tr>
<td>Valor SD</td>
<td>0,02 m, altamente abierta a la difusión</td>
</tr>
<tr>
<td>Clase de comportamiento al fuego</td>
<td>B2</td>
</tr>
<tr>
<td>Prueba de corrosión en condiciones ambientales naturales</td>
<td>Máx. 4 meses</td>
</tr>
<tr>
<td>Fuerza de desgarre de clavo</td>
<td>250 N</td>
</tr>
<tr>
<td>Ancho de rollo</td>
<td>150 cm</td>
</tr>
<tr>
<td>Largo de rollo</td>
<td>50 m lineales</td>
</tr>
<tr>
<td>24 rollos por palet / 1.800 m²</td>
<td></td>
</tr>
</tbody>
</table>

Datos técnicos de la lámina impermeabilizante de tejado azul

<table>
<thead>
<tr>
<th>Característica</th>
<th>Datos técnicos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composición</td>
<td>Vellón de polipropileno de tres capas</td>
</tr>
<tr>
<td>Resistencia a la rotura por tracción</td>
<td>380 N / 5 cm</td>
</tr>
<tr>
<td>Peso por m²</td>
<td>160 g/m²</td>
</tr>
<tr>
<td>Alargamiento de rotura</td>
<td>> 60 %</td>
</tr>
<tr>
<td>Valor SD</td>
<td>0,02 m, altamente abierta a la difusión</td>
</tr>
<tr>
<td>Clase de comportamiento al fuego</td>
<td>B2</td>
</tr>
<tr>
<td>Prueba de corrosión en condiciones ambientales naturales</td>
<td>Máx. 4 meses</td>
</tr>
<tr>
<td>Fuerza de desgarre de clavo</td>
<td>290 N</td>
</tr>
<tr>
<td>Ancho de rollo</td>
<td>150 cm</td>
</tr>
<tr>
<td>Largo de rollo</td>
<td>50 m lineales</td>
</tr>
<tr>
<td>24 rollos por palet / 1.800 m²</td>
<td></td>
</tr>
</tbody>
</table>

Datos técnicos de la lámina impermeabilizante de tejado negro

<table>
<thead>
<tr>
<th>Característica</th>
<th>Datos técnicos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composición</td>
<td>Vellón de polipropileno de tres capas</td>
</tr>
<tr>
<td>Resistencia a la rotura por tracción</td>
<td>Longitudinal 400 N / transversal 310 N / 5 cm</td>
</tr>
<tr>
<td>Peso por m²</td>
<td>260 g/m²</td>
</tr>
<tr>
<td>Alargamiento de rotura</td>
<td>> longitudinal 40 % / transversal 50 %</td>
</tr>
<tr>
<td>Valor SD</td>
<td>0,10 m, altamente abierta a la difusión</td>
</tr>
<tr>
<td>Clase de comportamiento al fuego</td>
<td>B2</td>
</tr>
<tr>
<td>Prueba de corrosión en condiciones ambientales naturales</td>
<td>Máx. 4 meses / 5.000 mm</td>
</tr>
<tr>
<td>Fuerza de desgarre de clavo</td>
<td>200 / 170 N</td>
</tr>
<tr>
<td>Ancho de rollo</td>
<td>150 cm</td>
</tr>
<tr>
<td>Largo de rollo</td>
<td>50 m lineales</td>
</tr>
<tr>
<td>24 rollos por palet / 1.800 m²</td>
<td></td>
</tr>
</tbody>
</table>
Nuestras cintas adhesivas están adaptadas especialmente a nuestros productos THERMOFLOC y forman, junto con la barrera de vapor y las láminas impermeabilizantes de tejado, un sistema completo de aislamiento térmico. Las cintas adhesivas se utilizan para pegar de forma estanca al aire el vellón barrera de vapor THERMOFLOC y las láminas impermeabilizantes de tejado. También pueden pegarse con ellas las juntas sobre planchas de derivados de la madera (p.ej. planchas OSB, planchas de madera de cabriole, etc.).

Art.nº 5151

<table>
<thead>
<tr>
<th>Cinta adhesiva verde</th>
<th>Datos técnicos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composición</td>
<td>Cinta adhesiva de polietileno</td>
</tr>
<tr>
<td>Ancho de rollo</td>
<td>5 cm</td>
</tr>
<tr>
<td>Largo de rollo</td>
<td>25 m lineales</td>
</tr>
<tr>
<td>Caja</td>
<td>12 ud.</td>
</tr>
<tr>
<td>Palet</td>
<td>60 cajas</td>
</tr>
</tbody>
</table>

La película adhesiva es de acrilato libre de disolventes y plastificantes.

Cinta adhesiva de polietileno armada verde con pegamento de acrilato para obturar de forma estanca al aire posibles penetraciones y solapamientos de las barreras de vapor THERMOFLOC.

Art.nº 5156

<table>
<thead>
<tr>
<th>Cinta adhesiva blanca</th>
<th>Datos técnicos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composición</td>
<td>Cinta adhesiva de polietileno</td>
</tr>
<tr>
<td>Ancho de rollo</td>
<td>20 cm</td>
</tr>
<tr>
<td>Largo de rollo</td>
<td>20 m lineales</td>
</tr>
<tr>
<td>Caja</td>
<td>1 ud.</td>
</tr>
<tr>
<td>Palet</td>
<td>112 cajas</td>
</tr>
</tbody>
</table>

La película adhesiva es de acrilato libre de disolventes y plastificantes.

Cinta adhesiva universal blanca para cerrar los orificios de insuflado.
Art. nº 5157

Cinta adhesiva negra	Datos técnicos
Composición | Cinta adhesiva de polietileno
Ancho de rollo | 14,6 cm
Largo de rollo | 25 m lineales
Caja | 4 ud.
Palet | 80 cajas

La película adhesiva es de acrilato libre de disolventes y plastificantes.

Cinta adhesiva universal negra con base de polietileno, refuerzo de soporte y papel antiadhesivo con hendiduras para cerrar los orificios de insuflado.

Art. nº 5166

Cinta adhesiva doble cara azul	Datos técnicos
Composición | Cinta adhesiva de polietileno
Ancho de rollo | 2 cm
Largo de rollo | 20 m lineales
Caja | 30 ud.
Palet | 80 cajas

La película adhesiva es de acrilato libre de disolventes y plastificantes.

Cinta adhesiva de doble cara azul para pegar el vellón y las láminas impermeabilizantes de tejado.
Su socio THERMOFLOC:

Anaca Diseminado, N° 13 – 1ª Oficina A
20301 IRUN (Gipuzkoa)
Tel.: 943 660 257 – Fax: 943 660 256
Email: comercial@biomatiberica.com
www.biomatiberica.com

Peter Seppele Ges.m.b.H. | Bahnhofstraße 79 | A-9710 Feistritz/Drau | Tel: +43(0)4245-6201 | Fax: +43(0)4245-6336

office@thermofloc.com | Información de los expertos en aislamiento: www.thermofloc.com
:: Información útil para ahorrar energía.

:: ¡Un material aislante inteligente!

:: Aislamiento para tejado

:: Aislamiento para pared

:: Aislamiento para suelo

100% CELULOSA
Zendow
Ventanas practicables y oscilobatientes

Construyendo un hogar sostenible

Ahorran energía
Aíslan del ruido
Dan seguridad
Son aislantes

www.deceuninck.es
Zendow
Las ventanas practicables oscilobatientes Zendow son la forma más eficiente de mejorar su vivienda.

Ahorran energía. La tecnología de las ventanas de PVC Deceuninck, unida a un vidrio adecuado, pueden suponer un ahorro de hasta el 68%.

Aíslan el ruido. Silencio es confort. Con ventanas Deceuninck unidas a vidrios adecuados, puede reducir el ruido exterior hasta en 32 veces (50dB) la sensación de ruido del exterior.

Dan seguridad. Una ventana de PVC Deceuninck está dotada de refuerzos y herrajes de primeras marcas, lo que la convierten en una ventana muy segura.

Son aislantes. Nos protegen del calor, del frío, de la lluvia y del viento. Estaremos confortables en nuestro hogar, independientemente de la climatología exterior.

A través de las modernas termografías, se puede ver por las distintas tonalidades las pérdidas de calor de los edificios, distinguiendo así los puntos débiles de la fachada y los puntos a renovar. Estos puntos son precisamente las ventanas.

La inversión realizada en la renovación de las ventanas utilizando ventanas Deceuninck y vidrios aislantes, se amortizan en corto espacio de tiempo, a partir del cual tendrá muchos años de ahorro y confort.

Ahorro energético
En el cuadro adjunto, puede ver según el IDAE, los ahorros en energía que existen en función del material de su ventana actual, cambiando a otra solución más aislante.

<table>
<thead>
<tr>
<th>Material de la ventana</th>
<th>Vidrio</th>
<th>Pérdida energía</th>
<th>Ahorro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminio sin RPT</td>
<td>4-6-4</td>
<td>100%</td>
<td>0%</td>
</tr>
<tr>
<td>Aluminio sin RPT</td>
<td>4-12-4</td>
<td>93%</td>
<td>8%</td>
</tr>
<tr>
<td>Aluminio con RPT</td>
<td>4-6-4</td>
<td>88%</td>
<td>13%</td>
</tr>
<tr>
<td>Aluminio sin RPT</td>
<td>4-6-4be</td>
<td>88%</td>
<td>13%</td>
</tr>
<tr>
<td>Aluminio con RPT</td>
<td>4-12-4</td>
<td>80%</td>
<td>20%</td>
</tr>
<tr>
<td>Aluminio con RPT</td>
<td>4-6-4be</td>
<td>75%</td>
<td>25%</td>
</tr>
<tr>
<td>Aluminio sin RPT</td>
<td>4-12-4be</td>
<td>73%</td>
<td>28%</td>
</tr>
<tr>
<td>PVC</td>
<td>4-12-4</td>
<td>63%</td>
<td>38%</td>
</tr>
<tr>
<td>Aluminio con RPT</td>
<td>4-12-4be</td>
<td>60%</td>
<td>40%</td>
</tr>
<tr>
<td>PVC</td>
<td>4-12-4be</td>
<td>43%</td>
<td>58%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Norma UNE</th>
<th>Valores</th>
<th>Ug W/m²·K</th>
<th>Tipo de vidrio</th>
<th>Uw W/m²·K</th>
<th>dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 14351-1</td>
<td></td>
<td>2,7</td>
<td>4 / 16 / 4</td>
<td>1,99</td>
<td>33(-1,-4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,7</td>
<td>6 / 16 / 4</td>
<td>1,99</td>
<td>36(-1,-3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,7</td>
<td>44.2 / 20 / 66.2</td>
<td>1,99</td>
<td>45(-1,-3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,4</td>
<td>4 / 4 / 4/4be</td>
<td>1,29</td>
<td>33(-1,4)</td>
</tr>
</tbody>
</table>

Ensayos realizados con ventana Zendow de 2 hojas de 1600x2100 + Cajón de persiana Protex.

RPT: rotura del puente térmico, el estudio toma roturas de entre 4 y 12mm de longitud.

PVC: el estudio está realizado con perfiles de PVC de 3 cámaras y refuerzo metálico.

En el cuadro adjunto, puede ver según el IDAE, los ahorros en energía que existen en función del material de su ventana actual, cambiando a otra solución más aislante.

<table>
<thead>
<tr>
<th>Material de la ventana</th>
<th>Vidrio</th>
<th>Pérdida energía</th>
<th>Ahorro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminio sin RPT</td>
<td>4-6-4</td>
<td>100%</td>
<td>0%</td>
</tr>
<tr>
<td>Aluminio sin RPT</td>
<td>4-12-4</td>
<td>93%</td>
<td>8%</td>
</tr>
<tr>
<td>Aluminio con RPT</td>
<td>4-6-4</td>
<td>88%</td>
<td>13%</td>
</tr>
<tr>
<td>Aluminio sin RPT</td>
<td>4-6-4be</td>
<td>88%</td>
<td>13%</td>
</tr>
<tr>
<td>Aluminio con RPT</td>
<td>4-12-4</td>
<td>80%</td>
<td>20%</td>
</tr>
<tr>
<td>Aluminio con RPT</td>
<td>4-6-4be</td>
<td>75%</td>
<td>25%</td>
</tr>
<tr>
<td>Aluminio sin RPT</td>
<td>4-12-4be</td>
<td>73%</td>
<td>28%</td>
</tr>
<tr>
<td>PVC</td>
<td>4-12-4</td>
<td>63%</td>
<td>38%</td>
</tr>
<tr>
<td>Aluminio con RPT</td>
<td>4-12-4be</td>
<td>60%</td>
<td>40%</td>
</tr>
<tr>
<td>PVC</td>
<td>4-12-4be</td>
<td>43%</td>
<td>58%</td>
</tr>
</tbody>
</table>

La inversión realizada en la renovación de las ventanas utilizando ventanas Deceuninck y vidrios aislantes, se amortizan en corto espacio de tiempo, a partir del cual tendrá muchos años de ahorro y confort.
Drain Pack Modelos

<table>
<thead>
<tr>
<th>MODELO</th>
<th>COMPONENTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain Pack 150 TP</td>
<td>1 Captador Solaria 2.2 AL + Depósito 150 Litros + Montaje Cubierta Plana</td>
</tr>
<tr>
<td>Drain Pack 150 TI</td>
<td>1 Captador Solaria 2.2 AL + Depósito 150 Litros + Montaje Tejado Inclinado</td>
</tr>
<tr>
<td>Drain Pack 150 IN</td>
<td>1 Captador Solaria 2.2 AL + Depósito 150 Litros + Montaje Integrado en Tejado</td>
</tr>
<tr>
<td>Drain Pack 200 TP</td>
<td>2 Captadores Solaria 2.2 AL + Depósito 200 Litros + Montaje Cubierta Plana</td>
</tr>
<tr>
<td>Drain Pack 200 TI</td>
<td>2 Captadores Solaria 2.2 AL + Depósito 200 Litros + Montaje Tejado Inclinado</td>
</tr>
<tr>
<td>Drain Pack 200 IN</td>
<td>2 Captadores Solaria 2.2 AL + Depósito 200 Litros + Montaje Integrado en Tejado</td>
</tr>
<tr>
<td>Drain Pack 300 TP*</td>
<td>2 Captadores Solaria 2.2 AL + Depósito 300 Litros + Montaje Cubierta Plana</td>
</tr>
<tr>
<td>Drain Pack 300 TI*</td>
<td>2 Captador Solaria 2.2 AL + Depósito 300 Litros + Montaje Tejado Inclinado</td>
</tr>
<tr>
<td>Drain Pack 300 IN*</td>
<td>2 Captador Solaria 2.2 AL + Depósito 300 Litros + Montaje Integrado en Tejado</td>
</tr>
</tbody>
</table>

* PRÓXIMO LANZAMIENTO

COMPONENTES

CAPTADOR SOLARIA 2.2 AL
COD.: 942011144 EAN: 8413880176765
- Captador solar alto rendimiento y marco aluminio
- Tomas laterales de fácil conexión
- Recubrimiento selectivo ecológico
- Superficie de absorción y tuberías de cobre
- Vidrio templado de 4 mm. de espesor

DIMENSIONES
- Largo total (mm): 1.930
- Ancho total (mm): 1.160
- Fondo total (mm): 90
- Área total (m²): 2.34
- Área total absorbecedor (m²): 2.01
- Peso en vacío (kg): 40
- Capacidad de fluido (l): 1.25

PRESESIONES Y RESISTENCIA TÉRMICA
- Presión máxima servicio (bares): 10
- Presión máxima de prueba (bares): 20
- Resistencia térmica máxima (°C): 199

CURVAS DE RENDIMIENTO INSTANTÁNEO Y REGISTRO
- Rendimiento óptico ig: 79,1%
- K1: 3,78 W/(m²K)
- K2: 0,0155 W/(m²K²)

Curva de rendimiento instantáneo del captador

![Curva de rendimiento instantáneo del captador](Image)
ACUMULADORES SOLARIS

- Acumulador vertical de acero S235JR con intercambiador térmico de tubo liso.
- Esmaltado inferior conforme a la Norma DIN 4753.3, exterior a capa.
- Protección con anodo de magensio de 1 1/4”.
- Opcionalmente protección catódica (Ref: 979011627)
- Vaina sensor incluido.
- Todas las conexiones podrán ser conectadas en la parte superior ó trasera.
- Conexión preparada para circulación.
- Aislante poliuretano rígido sin CFC de 50 mm de espesor con revestimiento eska y de colores conforme DIN 4753.8, Color RAL 9010.
- Presión de trabajo 10 bar.

<table>
<thead>
<tr>
<th>Intercambiadores de suelo con un serpentin</th>
<th>ISF-150 SR</th>
<th>ISF-200 SR</th>
<th>ISF-300 SR</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARACTERÍSTICAS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacidad de A.C.S.</td>
<td>L</td>
<td>150</td>
<td>200</td>
</tr>
<tr>
<td>Temperatura máxima depósito de A.C.S.</td>
<td>ºC</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>Presión máxima depósito de A.C.S.</td>
<td>bar</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Temperatura máxima circuito de calentamiento</td>
<td>ºC</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>Presión máxima circuito de calentamiento</td>
<td>bar</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Superficie de intercambio circuito de calentamiento</td>
<td>m²</td>
<td>1.3</td>
<td>1.2</td>
</tr>
<tr>
<td>Volumen del serpentín</td>
<td>l</td>
<td>8,2</td>
<td>7,5</td>
</tr>
<tr>
<td>Peso en vacío</td>
<td>kg</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Pressión de carga de intercambiador</td>
<td>mbar</td>
<td>120</td>
<td>70</td>
</tr>
<tr>
<td>CONEXIONES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAC (Salida Agua Caliente Sanitaria)</td>
<td>GAS/M</td>
<td>3/4”</td>
<td>3/4”</td>
</tr>
<tr>
<td>SAS (Entrada Agua Caliente Sanitaria)</td>
<td>GAS/M</td>
<td>3/4”</td>
<td>3/4”</td>
</tr>
<tr>
<td>RS (Ida y Regreso de captadores)</td>
<td>GAS/H</td>
<td>3/4”</td>
<td>3/4”</td>
</tr>
<tr>
<td>DIMENSIONES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diametro exterior</td>
<td>mm</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>Asentamiento</td>
<td>mm</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Longitud total</td>
<td>mm</td>
<td>1.200</td>
<td>1.500</td>
</tr>
<tr>
<td>Anchura total</td>
<td>mm</td>
<td>620</td>
<td>620</td>
</tr>
<tr>
<td>Profundidad total</td>
<td>mm</td>
<td>690</td>
<td>690</td>
</tr>
<tr>
<td>Diametro nominal boca hombre</td>
<td></td>
<td>UN 140</td>
<td>UN 140</td>
</tr>
<tr>
<td>Entradas sensor/regulador</td>
<td></td>
<td>vaina para fijar D=12 mm</td>
<td>vaina para fijar D=12 mm</td>
</tr>
<tr>
<td>CÓDIGO</td>
<td></td>
<td>942011117</td>
<td>942011126</td>
</tr>
<tr>
<td>EAN-13</td>
<td></td>
<td>8413880176734</td>
<td>8413880176741</td>
</tr>
</tbody>
</table>
Technical Data

Solar Base SB 200

Complete assembly of sub-structure, for e.g. the Solar Base Frame SGR, made of recycled hard plastic with aluminium profile underneath the plastic element.

Material: ABS
Height: ca. 40 mm
Weight, incl. aluminium profile: ca. 7 kg
Filling volume: ca. 16 l/m²

In-plane water flow capacity
(EN ISO 12958):
- roof slope 1%: ca. 1.6 l/(s·m)
- roof slope 2%: ca. 2.4 l/(s·m)
- roof slope 3%: ca. 3.0 l/(s·m)

Dimensions: ca. 1.00 x 2.00 m

Stainless steel fixing elements, thread M 10.

Load bearing capacity of Solar Base: > 300 kg

Notice: Material temperature for installation: > 5°

Features

- no penetration of waterproofing
- even load distribution, no high point loads
- no transport of heavy parts
- no obstruction of drainage due to channel system on underside
- green roof build-up provides necessary load
- complete assembly for immediate installation

Application Example

"PV-facilities on green roof"

Solar Panel
Solar Base Frame SGR
Vegetation Substrate
ZinCo Solar Base SB 200
Protection layer

Specification Suggestion

Solar Base of recycled hard plastic (ABS); dimensions ca. 1 m x 2 m; height ca. 40 mm; water storage cells and multidirectional drainage channels; incl. integrated aluminium profiles and structurally tested for combination with Solar Base Frame; in-plane water flow capacity tested according to EN ISO 12958; delivery and installation according to manufacturer's instructions.

Make: ZinCo Solar Base SB 200
Enquiries: ZinCo GmbH, Phone: +49/7022/6003-0
Soar Base Frame made of aluminium, especially designed for use on green roofs.

Technical Data

Solar Base Frame SGR Alu 35/90

Structurally tested aluminium frame, one single piece; adjusted to ZinCo Solar Base SB 200; inclination of base frame: 40° as standard.

- **Material:** ALMG III
- **Colour:** aluminium
- **Weight:** ca. 2.7 kg/piece

Dimensions:
- **Length:** ca. 950 mm
- **Heights:** ca. 350 / 900 mm

Customized versions in terms of height/inclination on request.

Accessories:

Wind Bracing

Order No. 9710

Two aluminium profiles for crosswise stabilization of two Solar Base Frames (distance: 1.0 m); incl. stainless steel screws.

Features

- consists of one piece, no pre-assembly required
- no small parts, which means a quick and easy installation
- low weight
- combination with most common panels possible
- structurally tested
- adjusted to ZinCo Solar Base SB 200
- frame height avoids shade from plants or snow

Application Example

"Photovoltaic plant"

Specification Suggestion

Structurally tested frame made of aluminium for fixing PV or solar thermal panels; length 950 mm; heights 350/900 mm; inclination 30°; pre-perforated for fixing panels; delivery and installation on the Solar Base SB 200 according to manufacturer's instructions.

Make: Solar Base Frame SGR Alu 35/90

Enquiries: ZinCo GmbH, Phone: +49/7022/6003-0

Subject to technical alterations and printing errors; First edition 04/03; Revised 06/10
Regulador térmico diferencial

TR 0603

- **Tensión del sistema**: 230 V (± 15 %), 50 Hz
 [Opcional 115 V (± 15 %), 60 Hz]
- **Consumo característico máximo**: ≤ 3 W
- **Entradas (6)**: 5 x registro de temperatura (Pt1000)
 1 x registro de temperatura o impulsos
- **Salidas (4)**: 1 x relé máx. 800 W (230 V)
 2 x Triac para la regulación de grises de la bomba
- **Nº sondas incluidas**: 3
- **Número de los esquemas hidráulicos predeterminados**: 15
- **Interfaces**: PB232, IL-Bus
- **Temperatura ambiental permitida**: 0 °C...+45 °C
- **Display de cristal líquido**: LCD gráfico animada con iluminación de fondo
- **Clase de protección**: IP 20 / DIN 40050
- **Dimensiones largo x ancho x alto**: 170 x 170 x 46 mm
- **CÓDIGO**: 979010806
- **EAN-13**: 8413880157030
- **PRECIO**: 480€

* Precio sin I.V.A.

TR 0704

- **Tensión del sistema**: 230 V (± 15 %), 50 Hz
 [Opcional 115 V (± 15 %), 60 Hz]
- **Consumo característico máximo**: ≤ 3 W
- **Entradas (7)**: 5 x registro de temperatura (Pt1000)
 1 x registro de temperatura o impulsos
- **Salidas (3)**: 1 x relé máx. 800 W [230 V]
 2 x Triac para la regulación de giros de la bomba
- **Nº sondas incluidas**: 3
- **Número de los esquemas hidráulicos predeterminados**: 15
- **Interfaces**: RS232, IL-Bus
- **Diferencia de temperatura de conexión**: 4...17 K
- **Diferencia de temperatura de desconexión**: 2...15 K
- **Temperatura ambiental permitida**: 0°C...+45 °C
- **Pantalla**: Display gráfico
- **Clase de protección**: IP 20 / DIN 40050
- **Peso**: 570 g
- **Dimensiones largo x ancho x alto**: 150 x 215 x 44 mm
- **CÓDIGO**: 979010771
- **EAN-13**: 8413880154961
- **PRECIO**: 820€

* Precio sin I.V.A.
CALDERAS
Gamas ISOCOMFORT y COMFORT de bajo NOx
FEE-24NOX novedad

- Potencia de calefacción y A.C.S.: 21.066 kcal/h.
- Producción A.C.S. Δ 25°C: 14.04 l/min.
- Peso: 30 kg.
- Rendimiento energético (Directiva 92/42/CEE): ★★★
- Clase NOx (EN483): 5
- Touch control LCD
- Microacumulación Isocomfort
- Encendido electrónico automático
- Fácil integración e instalación
- Código de fallos
- Grifo de llenado automático IFS (Intelligent Filling System)
- Función RTC (Remote Tap Control)
- Máximas posibilidades de evacuación
- Menú instalador
- Índice de protección IP-44
- Sistema de protección anti-heladas A.C.S. y calefacción
- Dimensiones: 690 x 390 x 260 mm.

Componentes principales

1. Armazón
2. Toma de Aire / Salida Humos
3. Ventilador
4. Presostato Aire
5. NTC Ida Calefacción
6. Termostato de seguridad
7. Intercambiador principal
8. Cámara de combustión
9. Bujía ionización
10. Bujía encendido
11. Distribuidor
12. Válvula de gas
13. Válvula de 3 vías
14. Sensor de Presión
15. Válvula de llenado automático
16. Circuito electrónico
17. Mando Control Touch
18. Bomba
19. NTC Retroceso Calefacción
20. Vaso de expansión

Esquema hidráulico

1. Vaso de expansión
2. Sensor de presión
3. Termostato de seguridad
4. Intercambiador principal
5. Termostancia
6. Ventilador
7. Presostato de aire
8. Ventury
9. Cámara estanca
10. Cámara de combustión
11. Bujías de encendido
12. Quemador
13. Bujía de ionización
14. Fluxostato
15. Válvula de llenado automático
16. By-pass automático
17. Válvula de 3 vías
18. Intercambiador de placas
19. Válvula de gas
20. Bomba de circulación
21. Válvula sobrepresión

Set Caldera kit de Evacuación Regleta de Conexiones Precio (sin IVA)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FEE-24NOX N</td>
<td>912010033</td>
<td>8413880192635</td>
<td>912010034</td>
<td>8413880192642</td>
<td>988010237</td>
<td>8413880043036</td>
<td>988010898</td>
<td>8413880111612</td>
<td>1.598</td>
</tr>
<tr>
<td>FEE-24NOX B</td>
<td>912010035</td>
<td>8413880192659</td>
<td>912010036</td>
<td>8413880192666</td>
<td>988010237</td>
<td>8413880043036</td>
<td>988010898</td>
<td>8413880111612</td>
<td>1.598</td>
</tr>
</tbody>
</table>
Diagrama de la bomba

Diagrama funcionamiento de A.C.S.

Características

<table>
<thead>
<tr>
<th>Categoría</th>
<th>FEE-24NOX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo</td>
<td>Ci, Ci, Cc, Cc, Cc, Cc, Bo</td>
</tr>
<tr>
<td>Potencia útil Calentación y A.C.S.</td>
<td>kcal/h 24,5</td>
</tr>
<tr>
<td>Potencia mínima Calentación y A.C.S.</td>
<td>kcal/h 7,7</td>
</tr>
<tr>
<td>Consumo calorífico nominal máx. (P.C.I.) en Calentación y A.C.S.</td>
<td>Qn. máximo kW 25,5</td>
</tr>
<tr>
<td>Rendimiento PC, Caudal en carga y temperatura del agua</td>
<td>30 % Potencia nominal, °C media: 70 °C</td>
</tr>
<tr>
<td>Rendimiento energético (Directiva 92/42/CEE)</td>
<td>★★★</td>
</tr>
<tr>
<td>Producción A.C.S. ≤ 25ºC</td>
<td>l/min 14,04</td>
</tr>
<tr>
<td>Caudal Nominal A.C.S. (5,30 PC)</td>
<td>l/min 10</td>
</tr>
<tr>
<td>Presión de servicio</td>
<td>Máxima Calentación bar 3</td>
</tr>
<tr>
<td></td>
<td>Máxima A.C.S. bar 10</td>
</tr>
<tr>
<td></td>
<td>Minima Encendido A.C.S. bar 0,3</td>
</tr>
<tr>
<td>Vaso de expansión (1)</td>
<td>7</td>
</tr>
<tr>
<td>Regulación de Temperatura</td>
<td>Circuito de Calefacción °C 65-95</td>
</tr>
<tr>
<td></td>
<td>Circuito de Calefacción suele radiante °C 45-60</td>
</tr>
<tr>
<td></td>
<td>Circuito de A.C.S. °C 35-60</td>
</tr>
<tr>
<td>Presión del Gas</td>
<td>Natural G-20 mbar 20</td>
</tr>
<tr>
<td></td>
<td>Propano G-31 mbar 37</td>
</tr>
<tr>
<td></td>
<td>Butano G-30 mbar 28</td>
</tr>
<tr>
<td>Consumo de Gas (P.C.I.)</td>
<td>Natural G-20 m³/h 2,69</td>
</tr>
<tr>
<td></td>
<td>Propano G-31 kg/h 2,03</td>
</tr>
<tr>
<td></td>
<td>Butano G-30 kg/h 2,03</td>
</tr>
<tr>
<td>Alimentación Eléctrica</td>
<td>V/Hz 220-230-50</td>
</tr>
<tr>
<td>Potencia máxima Absorvida</td>
<td>120 W</td>
</tr>
<tr>
<td>Diámetro salida de gases quemados</td>
<td>mm 60-100</td>
</tr>
<tr>
<td>Tipo de evacuación/admisión</td>
<td>C12 coaxial horizontal Diámetro mm 60-100/90-125</td>
</tr>
<tr>
<td></td>
<td>Longt. máx. m 4/10</td>
</tr>
<tr>
<td></td>
<td>C32 coaxial vertical Diámetro mm 80-125</td>
</tr>
<tr>
<td></td>
<td>Longt. máx. m 10</td>
</tr>
<tr>
<td></td>
<td>C42 coaxial colectiva Diámetro mm 60-100</td>
</tr>
<tr>
<td></td>
<td>Longt. máx. m 4</td>
</tr>
<tr>
<td></td>
<td>C52 conductos separados Diámetro mm 2 x 80</td>
</tr>
<tr>
<td></td>
<td>Longt. máx. (suma ambos conductos) m 40</td>
</tr>
<tr>
<td>Temperatura salida de humos</td>
<td>°C 100</td>
</tr>
<tr>
<td>Conexiones / a interior</td>
<td>Entrada de gas mm 3/4"/18</td>
</tr>
<tr>
<td></td>
<td>Entrada Agua Fría Sanitaria mm 1/2"/15</td>
</tr>
<tr>
<td></td>
<td>Salida Agua Caliente Sanitaria mm 1/2"/15</td>
</tr>
<tr>
<td></td>
<td>Ida Calentación mm 3/4"/22</td>
</tr>
<tr>
<td></td>
<td>Retorno Calefacción mm 3/4"/22</td>
</tr>
<tr>
<td>Dimensiones</td>
<td>Alto mm 690</td>
</tr>
<tr>
<td></td>
<td>Ancho mm 390</td>
</tr>
<tr>
<td></td>
<td>Fondo mm 260</td>
</tr>
<tr>
<td>Peso Neto</td>
<td>kg 30</td>
</tr>
<tr>
<td>Tipo de gas</td>
<td>Natural G-20 •</td>
</tr>
<tr>
<td></td>
<td>Propano G-31 •</td>
</tr>
<tr>
<td></td>
<td>Butano G-30 •</td>
</tr>
<tr>
<td>Certificado de examen C de tipo</td>
<td>0099BU901</td>
</tr>
<tr>
<td>Clase NOx (EN 483)</td>
<td>5</td>
</tr>
<tr>
<td>Grado de protección</td>
<td>IP-44</td>
</tr>
</tbody>
</table>

Capacidad agua instalación

Esquemas y dimensiones de instalación

1. Retorno de calefacción 3/4" BSP
2. Cable de alimentación eléctrica
3. Entrada agua fría sanitaria 1/2" BSP
4. Entrada de gas 3/4" BSP
5. Salida agua caliente sanitaria 1/2" BSP
6. Ida calefacción 3/4" BSP
7. Válvula de llenado del circuito calefacción
8. Salida válvula de seguridad de sobrepresión
9. Salida válvula de vaciado caldera
10. Tapa conexión termostato ambiente
FE-24NOX

- Potencia de calefacción y A.C.S.: 21.066 kcal/h.
- Producción A.C.S. Δ 25°C: 14,04 l/min.
- Peso: 30 kg.
- Rendimiento energético (Directiva 92/42/CEE):★★★
- Clase NOx (EN483): 5
- Touch control LCD
- Encendido electrónico automático
- Fácil integración e instalación
- Código de fallos
- Grupo hidráulico compacto
- Mayor producción de A.C.S.
- Máximas posibilidades de evacuación
- Índice de protección IP-44
- Sistema de protección anti-heladas A.C.S. y calefacción
- Dimensiones: 690 x 390 x 260 mm.

Componentes principales

1. Armazón
2. Toma de Aire / Salida Humos
3. Ventilador
4. Presostato Aire
5. NTC Ida Calefacción
6. Termostato de seguridad
7. Intercambiador principal
8. Cámara de combustión
9. Bujía ionización
10. Bujía encendido
11. Distribuidor
12. Válvula de gas
13. Válvula de 3 vias
14. Sensor de presión
15. Grifo de llenado
16. Circuito electrónico
17. Mando Control Touch
18. Bomba
19. NTC Retorno Calefacción
20. Vaso de expansión

Esquema hidráulico

1. Vaso de expansión
2. Sensor de presión
3. Termostato de seguridad
4. Intercambiador principal
5. Termostancia
6. Ventilador
7. Presostato de aire
8. Ventury
9. Cámara estanca
10. Cámara de combustión
11. Bujías de encendido
12. Quemador
13. Bujía de ionización
14. Fluxostato
15. Grifo de llenado
16. By-pass automático
17. Válvula de 3 vias
18. Intercambiador de placas
19. Válvula de gas
20. Bomba de circulación
21. Válvula sobrepresión

Gama Comfort

- **24 kW** calderas murales a gas, estancias mixtas instantáneas de alto rendimiento y bajo NOx
Características

| FE-24NOX |
| --- | --- |
| Categoría | II2H3P / II2H3+ |
| Tipo | C12, C32, C42, C52, C82, B22 |

Capacidad agua instalación

<table>
<thead>
<tr>
<th></th>
<th>kW</th>
<th>kcal/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potencia útil</td>
<td>24,5</td>
<td>21.066</td>
</tr>
<tr>
<td>Calefacción y A.C.S.</td>
<td>7,7</td>
<td>6.621</td>
</tr>
</tbody>
</table>

Consumo calorífico nominal máx. (P.C.I.) en Calefacción y A.C.S.

<table>
<thead>
<tr>
<th></th>
<th>kW</th>
<th>kcal/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qn. máximo</td>
<td>25,5</td>
<td>21.066</td>
</tr>
<tr>
<td>Qn. mínimo</td>
<td>8,2</td>
<td>6.621</td>
</tr>
</tbody>
</table>

Rendimiento energético (Directiva 92/42/CEE)

-★★★

Producción A.C.S. ∆ 25ºC l/min

- 14,04

Caudal Nominal A.C.S. (∆ 30,9ºC) l/min

- 10

Caudal Mínimo Encendido A.C.S. l/min

- 2

Presión de servicio

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Máxima Calentación</td>
<td>bar</td>
<td>3</td>
</tr>
<tr>
<td>Máxima A.C.S.</td>
<td>bar</td>
<td>10</td>
</tr>
<tr>
<td>Minima Encendido A.C.S.</td>
<td>bar</td>
<td>0,3</td>
</tr>
</tbody>
</table>

Vaso de expansión (1)

- 7

Regulación de Temperatura

<table>
<thead>
<tr>
<th></th>
<th>°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuito de Calefacción</td>
<td>60-85</td>
</tr>
<tr>
<td>Circuito de Calefacción suelo radiante</td>
<td>45-60</td>
</tr>
<tr>
<td>Circuito de A.C.S.</td>
<td>30-60</td>
</tr>
</tbody>
</table>

Presión del Gas

<table>
<thead>
<tr>
<th></th>
<th>mbar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural G-20</td>
<td>20</td>
</tr>
<tr>
<td>Propano G-31</td>
<td>37</td>
</tr>
<tr>
<td>Butano G-30</td>
<td>28</td>
</tr>
</tbody>
</table>

Consumo de Gas (P.C.I.)

<table>
<thead>
<tr>
<th></th>
<th>m³/h</th>
<th>kg/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural G-20</td>
<td>2,69</td>
<td></td>
</tr>
<tr>
<td>Propano G-31</td>
<td>2,03</td>
<td></td>
</tr>
<tr>
<td>Butano G-30</td>
<td>2,03</td>
<td></td>
</tr>
</tbody>
</table>

Alimentación Eléctrica

- 220-230~50 V/Hz
- 120 W

Diámetro salida de gases quemados

- mm 60-100

<table>
<thead>
<tr>
<th></th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>C12 coaxial horizontal</td>
<td>60-120/90-125</td>
</tr>
<tr>
<td>C32 coaxial vertical</td>
<td>80-125</td>
</tr>
<tr>
<td>C42 coaxial colectiva</td>
<td>60-100</td>
</tr>
<tr>
<td>C52 conductos separados</td>
<td>2 x 80</td>
</tr>
</tbody>
</table>

Temperatura salida de humos

- °C 100

Conexiones / ø interior

<table>
<thead>
<tr>
<th></th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrada de gas</td>
<td>3/4”/18</td>
</tr>
<tr>
<td>Entrada Agua Fría Sanitaria</td>
<td>1/2”/15</td>
</tr>
<tr>
<td>Salida Agua Caliente Sanitaria</td>
<td>1/2”/15</td>
</tr>
<tr>
<td>Ida Calefacción</td>
<td>3/4”/22</td>
</tr>
<tr>
<td>Retorno Calefacción</td>
<td>3/4”/22</td>
</tr>
</tbody>
</table>

Dimensiones

<table>
<thead>
<tr>
<th></th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alto</td>
<td>690</td>
</tr>
<tr>
<td>Ancho</td>
<td>390</td>
</tr>
<tr>
<td>Fondo</td>
<td>260</td>
</tr>
</tbody>
</table>

Peso Neto

- kg 30

Tipo de gas

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural G-20</td>
<td></td>
</tr>
<tr>
<td>Propano G-31</td>
<td></td>
</tr>
<tr>
<td>Butano G-30</td>
<td></td>
</tr>
</tbody>
</table>

Certificado de examen CE de tipo

- 009GB901

Clase NOx (EN 483)

- 5

Grado de protección

- IP-44

Diagrama de la bomba

Diagrama funcionamiento de A.C.S.