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Abstract

Let X1, . . . , XN be independent random vectors uniformly dis-
tributed on an isotropic convex body K ⊂ RN , and let KN be the
symmetric convex hull of Xi’s. We show that with high probability
LKN

≤ C
√

log(2N/n), where C is an absolute constant. This result
closes the gap in known estimates in the range Cn ≤ N ≤ n1+δ. Fur-
thermore, we extend our estimates to the symmetric convex hulls of
vectors y1X1, . . . , yNXN , where y = (y1, . . . , yN ) is a vector in RN .
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1 Introduction

In this paper we estimate the isotropic constant of some random polytopes
(for the definitions and notations see Section 2). It is known (see e.g. [24])
that among all the convex bodies in Rn the Euclidean ball is the one with
the smallest isotropic constant, that is LK ≥ LBn

2
≥ c, where c is an absolute

positive constant. However, it is still an open problem to determine whether
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there exists or not an absolute constant C such that for every convex body
K ⊂ Rn one has LK ≤ C. The boundness of LK by an absolute constant is
equivalent to the long standing hyperplane conjecture ([9]). The best general
upper bound known up to now is LK ≤ Cn1/4 ([18]). This estimate slightly
improves (by a logarithmic factor) the earlier Bourgain’s upper bound ([10]).

Since remarkable Gluskin’s result [14] random polytopes are known to
provide many examples of convex bodies (and related normed spaces) with
a “patologically bad” behaviour of various parameters of a linear and geo-
metric nature (we refer to the survey [23] and references therein; see also
recent examples in [15] and [17]). Not surprisingly, they were also a natural
candidate for a potential counterexample for the hyperplane conjecture. This
was resolved in [19], where it was shown that the convex hull or the sym-
metric convex hull of independent Gaussian random vectors in Rn with high
probability has the bounded isotropic constant. Some other distributions for
vertices were also considered. In all of them the vertices had independent
coordinates.

Following the ideas in [19], the problem of estimating of the isotropic
constant of random polytopes was considered in [3], for independent random
vectors distributed uniformly on the sphere Sn−1, and in [11], for independent
random vectors uniformly distributed on an isotropic unconditional convex
body. Also in these cases the isotropic constant of random polytopes gen-
erated by these vectors is bounded with high probability. One can check
that the same method works for independent random vectors uniformly dis-
tributed on a ψ2 isotropic convex body as well.

In this paper we estimate the isotropic constant of a random polytope in
an isotropic convex body (see Section 2 for the definitions). It is known (see
[5], [16] or [4]) that if KN is a polytope in Rn with N vertices then

LKN
≤ Cmin

{√
N

n
, logN

}
,

where C is an absolute constant.
In [12, 13], the authors provided a lower estimate for the volume of a

random polytope KN obtained as the convex hull of N ≤ e
√
n random points,

namely

|KN |
1
n ≥ c

√
log N

n

n
LK
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(see end of Section 2 for more precise formulation and details). On the other
hand, the proof of the estimate LKN

≤ C logN in [4] passes through showing
that if X1, . . . , XN are the vertices of KN , then for any affine transformation
T we have

LKN
≤ Cmax1≤i≤N |TXi| logN

n|TKN |
1
n

.

Consequently, taking T to be the identity operator and using the concentra-
tion of measure result proved by Paouris [26], we obtain that if KN is the
convex hull or the symmetric convex hull of n + 1 ≤ N ≤ e

√
n independent

random vectors uniformly distributed on an isotropic convex body, then with
high probability

LKN
≤ C logN√

log N
n

. (1.1)

Notice that ifN ≥ n1+δ, δ ∈ (0, 1), this estimate does not exceed (C/δ)
√

log N
n
.

However, the constant C/δ tends to infinity as δ tends to 0. On the other
hand, if N is proportional to n the isotropic constant of KN is bounded (by
an absolute constant), while the upper bound in (1.1) is not. The following
theorem closes the the gap between N ≤ cn and N ≥ n1+δ.

Theorem 1.1. There exist absolute positive constants c, C such that if n ≤
N , and X1, . . . , XN are independent random vectors uniformly distributed on
an isotropic convex body K, and KN is their symmetric convex hull, then

P

({
LKN

≤ C

√
log

2N

n

})
≥ 1− exp (−c

√
n).

Furthermore, we extend Theorem 1.1 to a much more general setting,
namely to a family of perturbations of a random polytope. To desribe our
extension we need more notations.

For a vector y = (y1, ..., yN) ∈ RN , we denote by y∗ = (y∗1, ..., y
∗
N) the

vector, whose coordinates are the decreasing rearrangement of {|yi|}i. Given
k ≤ N we consider the following norm

‖y‖k,2 :=

(
k∑
i=1

y∗2i

)1/2

= max |PEy|,
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where the maximum is taken over all coordinate subspaces E of dimension
k. The ball of radius a in this norm we denote by

B(a) :=
{
y ∈ RN : ‖y‖k,2 ≤ a

}
.

For n ≤ m ≤ N and y ∈ RN denote

αy,m :=

(
m∏

i=m−n+1

|y∗i |

) 1
n

≥ y∗m.

Let X1, . . . , XN ∈ Rn and y ∈ RN . Denote

KN,y = conv{±y1X1, . . . ,±yNXN}.

Theorem 1.2. There exist absolute positive constants c and C such that the
following holds. Let Cn ≤ N and let X1, . . . , XN be independent random
vectors uniformly distributed on an isotropic convex body K. Then for every
y ∈ RN the event

LKN,y
≤ C

‖y‖n,2√
n

inf

{
α−1
y,m

log(2N/n)√
log(2m/n)

| Cn ≤ m ≤ N

}
occurs with probability greater than 1− e−c

√
n. Moreover, for every a > 0 the

event

sup
y∈B(a)

LKN,y
≤ C

a√
n

inf

{
α−1
y,m

log(2N/n)√
log(2m/n)

| N − cN

logN
≤ m ≤ N

}
occurs with probability greater than 1− e−c

√
n.

Remark 1. Note that if n ≤ N ≤ Cn then LK ≤ C for any symmetric
polytope K generated by N vectors ([5]).

Remark 2. Clearly Theorem 1.2 applied to the vector y = (1, . . . , 1)
implies Theorem 1.1.

Finally, in the last section, we consider the case when the vector describing
the perturbation is also random. Such a setting has been recently considered
in [6]. In Theorem 4.2 we show that for the Gaussian vector y in RN , under
ceratin conditions on the ψ2 behavior of linear functionals on K, with high
probability we have

LKN ,y ≤ C

√
log

2N

n
.
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2 Preliminaries

Along the paper, the letters c, C, c1, C1, . . . will always denote absolute pos-
itive constants, whose values may change from line to line. Given two
functions f and g we say that they are equivalent and write f ≈ g if
c1f ≤ g ≤ c2f .

By |·| and 〈·, ·〉 we denote the canonical Euclidean norm and the canonical
inner product on Rn. The (unit) Euclidean ball and sphere are denoted by
Bn

2 and Sn−1. Let K be a symmetric convex body in Rn and let ‖ · ‖K be its
associated norm

‖x‖K = inf{λ > 0 : x ∈ λK}.

The support function of K is hK(y) = max
x∈K

〈x, y〉 and it is the norm associated

to the polar body of K,

K◦ = {y ∈ Rn : 〈x, y〉 ≤ 1 ∀x ∈ K}.

Given convex body K we denote by |K| its volume. We also denote by
|E| the cardinality of a finite set E. For E ⊂ {1, . . . , N} the coordinate
projection on RE is denoted by PE.

We say that a convex body K ⊆ Rn is isotropic if it has volume |K| = 1,
its center of mass is at 0 (i.e.

∫
K
xdx = 0) and for every θ ∈ Sn−1 one has∫

K

〈x, θ〉2dx = L2
K ,

where LK is a constant independent of θ. LK is called the isotropic constant
of K.

It is known that every convex body has a unique (up to an orthogo-
nal transformation) affine image that is isotropic. This allows to define the
isotropic constant of any convex body as the isotropic constant of its isotropic
image. It is also known (see e.g. [24]) that

nL2
K = inf

{
1

|TK|1+ 2
n

∫
a+TK

|x|2dx : T ∈ GL(n), a ∈ Rn

}
. (2.1)

We need two more results on the distribution of Euclidean norms of ran-
dom vectors and their sums. Let Xi, i ≤ N , be independent random vectors
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uniformly distributed in an isotropic convex body K ∈ Rn. Let A be a
random n×N matrix, whose columns are Xi’s. For m ≤ N denote

Am = sup{|Ay| | y ∈ BN
2 , |supp y| ≤ m}

(supp denotes the support of y). Theorem 3.13 in [1] (note the different
normalization) implies the following estimate.

Theorem 2.1. There is an absolute positive constant C such that for every
γ ≥ 1 and every m ≤ N

P
({

Am ≥ CLKγ
√
m log

2N

m
+ 6 max

i
|Xi|

})
≤ exp

(
−γ

√
m log

2N

m

)
.

The following theorem is a combination of Paouris’ theorem ([26], see also
[2] for a short proof) with the union bound (cf. Lemma 3.1 in [1]).

Theorem 2.2. There exists an absolute positive constant C such that for
any N ≤ exp(

√
n) and for every λ ≥ 1 one has

P
({

max
i≤N

|Xi| ≥ Cλ
√
nLK

})
≤ exp

(
−λ

√
n
)
.

Finally we need the estimate on the volume of the random polytope

KN = conv{±X1, . . . ,±XN},

where Xi, i ≤ N , are independent random vectors uniformly distributed in
an isotropic convex body K ⊂ Rn. The estimates of the following theorem
were observed in [12] (see Fact 3.2, the remarks following it, and Fact 3.3
there).

Theorem 2.3. There are absolute positive constants C, c1, c2 such that for
Cn ≤ N ≤ e

√
n,

P

({
|KN |1/n ≥ c1

√
log(N/n)

n
LK

})
≥ 1− exp(−c2

√
N).

In fact this theorem is a combination of three results. The first says that
KN contains the centroid body. Recall that for p ≥ 1 the p-centroid body
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Zp(K) was introduced in [22] (with a different normalization) as the convex
body, whose support function is

hZp(K)(θ) =

(∫
K

|〈x, θ〉|pdx
) 1

p

. (2.2)

In [13] (Theorem 1.1) the authors proved that for every parameters β ∈
(0, 1/2) and γ > 1 one has the inclusionKN ⊃ c1Zp(K) for p = c2β log(2N/n)
and N ≥ c3γn with the probability greater than

1− exp(−c4N1−βnβ)− P
({
‖A‖ > γLK

√
N
})

,

where A is the random matrix whose columns are X1, . . . , XN . The proba-
bility that norm of A (note ‖A‖ = AN) is large was estimated in [1] (combine
Theorems 2.1 and 2.2 above). Finally, from results of [20] and [26] the bound

more de-
tails?|Zp(K)|1/n ≈

√
p/nLK (2.3)

follows provided that p ≤
√
n (it improves the bound provided in [21]).

We also will need the definition of ψα norm. For a real random variable
z and α ∈ [1, 2] we define the ψα-norm by

‖z‖ψα = inf {C > 0 | E exp (|Y |/C)α ≤ 2} .

It is well known that the the condition ‖z‖ψα ≤ c1 is equivalent to the
condition

∀p > 1 : (E|z|p)1/p ≤ c2 p
1/α E|z|.

Let X be a centered random vector in Rn and α > 0. We say that X is ψα
or a ψα vector, if

‖X‖ψα := sup
y∈Sn−1

‖ 〈X, y〉 ‖ψα <∞. (2.4)

3 Proofs

In this section we prove Theorem 1.2. The proof consists of two propositions.

7



Proposition 3.1. Let n ≤ N ≤ e
√
n and X1, . . . , XN are independent ran-

dom vectors distributed uniformly on an isotropic convex body K. Let a > 0.
Then the event

sup

{
1

|KN,y|

∫
KN,y

|x|2dx | y ∈ B(a), y∗n > 0

}
≤ C

a2

n
L2
K log2 2N

n

occurs with probability greater than 1− exp(−
√
n log(2N/n)), where C is an

absolute constant.

To prove this proposition we need the following lemma.

Lemma 3.2. Let 1 ≤ n ≤ N be integers and P = conv{P1, . . . , PN} be a
non-degenerated symmetric polytope in Rn. Then

1

|P |

∫
P

|x|2dx ≤ 1

(n+ 1)(n+ 2)
sup
E

∑
i∈E

|Pi|2 +

∣∣∣∣∣∑
i∈E

Pi

∣∣∣∣∣
2
 ,

where the supremum is taken over all subsets E ⊂ {1, . . . , N} of cardinality n.

Proof. We can decompose P as a disjoint union of simplices (up to sets of
measure 0), say P = ∪`i=1Ci, where each Ci is of the form conv{0, Pi1 , . . . , Pin}
for some choice of Pij ’s. For every such Ci, denote Fi := conv{Pi1 , . . . , Pin}.
Then for any integrable function f we have∫
Ci

f(x)dx =

∫
Fi

∫ 1

0

rn−1f(ry)|〈y, ν(y)〉|dydr = d(0, Fi)

∫
Fi

∫ 1

0

rn−1f(ry)dydr,

where ν(y) is the outer normal vector to P at the point y and d(0, Fi) is the
distance from the origin to the affine subspace spanned by Fi. Thus, as in
[19], for every i ≤ ` one has

|Ci| = n−1|Fi|d(0, Fi) and

∫
Ci

|x|2 =
d(0, Fi)

n+ 2

∫
Fi

|y|2dy.

In particular,

|P | =
∑̀
i=1

|Ci| =
1

n

∑̀
i=1

|Fi|d(0, Fi).
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Therefore,

1

|P |

∫
P

|x|2dx =
1

|P |
∑̀
i=1

d(0, Fi)

n+ 2

∫
Fi

|y|2dy

≤ 1

|P |
∑̀
i=1

d(0, Fi)|Fi|
n+ 2

sup
1≤i≤`

1

|Fi|

∫
Fi

|y|2dy

≤ n

n+ 2
sup
F

1

|F |

∫
F

|y|2dy,

where the supremum is taken over all F = conv{Pi1 , . . . , Pin}. Note that
any such F can be presented as F = T∆n−1, where ∆n−1 = conv{e1, . . . , en}
denotes the regular n − 1 dimensional simplex in Rn and T is the matrix
whose columns are the vectors Pij . Since

1

|∆n−1|

∫
∆n−1

yiyjdy =
1 + δij
n(n+ 1)

,

where δij is the Kronecker delta, for every F = conv{Pi1 , . . . , Pin} we obtain

1

|F |

∫
F

|y|2dy =
1

n(n+ 1)

 n∑
j=1

|Pij |2 +

∣∣∣∣∣
n∑
j=1

Pij

∣∣∣∣∣
2
 .

This implies the desire estimate. 2

Proof of Proposition 3.1. Note that if y∗N > 0 then the cardinality of
support of y is at least n, so KN,y is not degenerated with probability one.
Therefore, with probability one KN,y is non-degenerated for any countable
dense set in B0(a) := {y ∈ B(a) | y∗n > 0}. Clearly, the supremum under
question is the same over y ∈ B0(a) and over such a dense set.

Now, by Lemma 3.2 we have that sup
y∈B0(a)

|KN,y|−1

∫
KN,y

|x|2dx is bounded

from above by

1

(n+ 1)(n+ 2)
sup

y∈B0(a)

sup
|E|=n

∑
i∈E

|yiXi|2 +

∣∣∣∣∣∑
i∈E

yiXi

∣∣∣∣∣
2


(formally, we should additionally take supremum over εi = ±1 and to have
yiεiXi in the formula under suprema, but, since B0(a) is unconditional, the
supremum over εi’s can be omitted).
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Note that ∑
i∈E

|yiXi|2 ≤ ‖y‖2
n,2 max

i≤N
|Xi|2

and ∣∣∣∣∣∑
i∈E

yiXi

∣∣∣∣∣ = |APEy| ≤ An ‖y‖n,2,

where A is the matrix whose columns are X1, . . . , XN . Therefore, applying
Theorem 2.1 and Theorem 2.2 (with m = n and λ = 2 log(2N/n)) we obtain
that

sup
y∈B0(a)

sup
|E|=n

∑
i∈E

|yiXi|2 +

∣∣∣∣∣∑
i∈E

yiXi

∣∣∣∣∣
2
 ≤ a2nL2

K log2 2N

n

with probability greater than 1− exp(−
√
n log(2N/n)). 2

Proposition 3.3. There exist absolute positive constants c1, c2, C such that
if Cn ≤ N ≤ e

√
n and X1, . . . , XN are independent random vectors distributed

uniformly on an isotropic convex body K, then for every y ∈ RN ,

P

({
∀m ≥ Cn : |KN,y|

1
n ≥ c1αy,mLK

√
log(2m/n)

n

)}
≥ 1−exp (−c2

√
n).

Moreover, the event

∀m ≥ N − c1N

logN
∀y ∈ RN |KN,y|

1
n ≥ c1αy,mLK

√
log(2m/n)

n

occurs with probability greater than 1− exp (−c2
√
N).

The probability estimates in Proposition 3.3 are based on an estimate of
corresponding probability for a fixed y and the union bound. We start with
the following lemma.

Lemma 3.4. There exist absolute positive constants c1, c2, C such that the
following holds. Let Cn ≤ m ≤ N ≤ e

√
n and X1, . . . , XN are independent

random vectors distributed uniformly on an isotropic convex body K. Then
for every y ∈ RN with y∗m > 0 there exists v = v(y) ∈ RN having 0/1
coordinates with exactly m ones such that

|KN,y| ≥ αy,m|KN,v|
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and

P

({
|KN,v|

1
n ≥ c1 LK

√
log(2m/n)

n

})
≥ 1− exp

(
−c2

√
m
)
.

Proof. Fix y ∈ RN with y∗m > 0 (i.e. |supp y| ≥ m). Let i1, . . . , im be the
indices such that yij = y∗j and let v = v(y) ∈ RN be the vector with vk = 1 if
k = ij and 0 otherwise. Decompose the polytope KN,v into a disjoint union
of simplices (up to a set of zero measure)

KN,v =
⋃̀
k=1

Ck,

where Ck = conv{0, εk1Xk1 , . . . , εknXkn} for some εkj
= ±1 and some vectors

Xkj
, given by the simplicial decomposition of the facets of KN,v. Denote

Ck,y = conv{0, εk1|yk1|Xk1 , . . . , εkn|ykn|Xkn} ⊂ KN,y.

Clearly, Ck,y’s are also disjoint up to a set of zero measure and

|Ck| = | det (εk1Xk1 , . . . , εknXkn||conv{0, e1, . . . , en}) |

≤ 1

αy,m
| det (εk1|yk1|Xk1 , . . . , εkn|ykn|Xkn) ||conv{0, e1, . . . , en}|.

This implies

|KN,v| =
∑̀
k=1

Ck ≤ α−1
y,m

∑̀
k=1

Ck,y ≤ α−1
y,m|KN,y|.

This proves the first estimate. The second one follows by Theorem 2.3, since
KN,v is a symmetric random polytope in an isotropic convex body generated
by m ≥ Cn random points. 2

Proof of Proposition 3.3. Without loss of generality we only consider
y’s satisfying y∗n > 0 (otherwise estimates are trivial).

The first estimate follows from Lemma 3.4 and the union bound, since∑
m≥Cn

e−c2
√
m ≤ e−c2

√
n, (3.1)
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provided that C is large enough.
To prove the second bound note that the set {v(y)}y∈RN (v(y) is from

Lemma 3.4) has cadinality
(
N
m

)
and that denoting k = N −m(

N

m

)
exp (−c2

√
m) ≤ exp(−c2

√
m+ k log(eN/k)) ≤ exp (−c2

√
m/2),

provided that k ≤ c
√
N/ logN . Lemma 3.4 and the union bound imply

P

({
∀y ∈ RN : |KN,v|

1
n ≥ c1 αy,m LK

√
log(2m/n)

n

})
≥ 1−exp

(
−c2

√
m/2

)
.

The result follows by the union bound and (3.1). 2

Proof of Theorem 1.2. For Cn ≤ N ≤ e
√
N Propositions 3.1 and 3.3

imply the result, since, by (2.1),

nL2
KN,y

≤ 1

|KN,y|1+
2
n

∫
KN,y

|x|2dx.

For N ≥ e
√
n the theorem follows from the general estimate LK ≤ Cn1/4 for

any n-dimensional convex body ([18]). 2

4 Random perturbations of random polytopes

Recall that a Zp body and ψα norm were defined in (2.2) and (2.4). In this
section G = (g1, . . . , gN) denotes a standard Gaussian random vector in RN ,
independent of any other random variables. We also denote

γp := (E|g1|p)1/p ≈ √
p.

Proposition 4.1. There are absolute positive constants C, c1 and c2 such
that the following holds. Let β > 2 and N ≥ C(log β)2n. Let X1, . . . , XN be
independent copies of a random vector uniformly distributed on an isotropic

convex body K. Assume that ‖X1‖ψ2 ≤ β LK

√
log N

n
. Then

PG,X1,...,XN

({
KN,G ⊇ c1

√
log

N

n
Zlog(N/n)(K)

})
≥ 1− exp (−c2

√
N).
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Proof. First note that for any p ≥ 1, i ≤ N and θ ∈ Sn−1, one has

(E|〈giXi, θ〉|p)1/p = (E|gi|p)1/p (E|〈Xi, θ〉|p)1/p ≤ c1
√
p (E|〈Xi, θ〉|p)1/p .

Thus,

sup
i≤N

sup
θ∈Sn−1

‖〈giXi, θ〉‖ψ1 ≤ c2 sup
i≤N

sup
θ∈Sn−1

‖〈Xi, θ〉‖ψ2 ≤ c3β LK

√
log

N

n
.

Denote by A the n × N random matrix whose columns are the vectors
giXi. By Theorem 3.13 in [1] (cf. Theorem 2.1),

PG,X1,...,XN

({
‖A‖ ≥ c4βLK

√
N log

N

n
+ 6 max

i≤N
|Xi|

})
≤ exp

(
−2
√
N
)
.

Together with Theorem 2.2 (applied with λ = 2
√
n), we have that

PG,X1,...,XN

({
‖A‖ ≥ c5βLK

√
N log

N

n

})
≤ e−

√
N . (4.1)

On the other hand, for every σ ⊆ {1, . . . , N}, q ≥ 1 and θ ∈ Sn−1, by
Paley-Zygmund inequality,

PG,X1,...,XN

({
max
i∈σ

|〈giXi, θ〉| ≤
1

2
(E|g1|q)

1
q (E|〈X1, θ〉|q)

1
q

})
=

∏
i∈σ

PG,X1,...,XN

({
|〈giXi, θ〉| ≤

1

2
(E|g1|q)

1
q (E|〈X1, θ〉|q)

1
q

})

≤

(
1−

(
1−

(
1

2

)q)2
(E|g1|qE|〈X1, θ〉|q)2

E|g1|2qE|〈X1, θ〉|2q

)|σ|

.

Since γp ≈
√
p, and from Borell’s lemma ([8], see also Appendix III in [25]),

E|〈X1, θ〉|2q ≤ cq6 E|〈X1, θ〉|q,

the quantity above is bounded by(
1− 1

4Cq

)|σ|

≤ exp

(
− |σ|

4Cq

)
.
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Set m = [N/n]. Let σ1, . . . , σn be a partition of {1, . . . , N} with m ≤ |σi|
for every i and ‖ · ‖0 be the norm

‖u‖0 =
1

n

n∑
i=1

max
j∈σi

|uj|.

Note that ‖ · ‖ ≤ n−1/2| · |. Since for all 1 ≤ i ≤ k and every z ∈ Rn

hKN,G
(z) = max

1≤j≤N
|〈gjXj, z〉| ≥ max

j∈σi

|〈gjXj, z〉|,

then for every z ∈ Rn

hKN,G
(z) ≥ ‖Az‖0.

Cleary, if z ∈ Rn verifies ‖Az‖0 ≤ 1
4
γq (E|〈X1, z〉|q)

1
q , then there exists a

set I ⊆ {1, . . . , k} with |I| ≥ k
2

such that

max
j∈σi

|〈gjXj, z〉| ≤
1

2
γq (E|〈X1, z〉|q)

1
q

for every i ∈ I. Thus, for every z ∈ Rn,

PG,X1,...,XN

({
‖Az‖0 ≤

1

4
γq (E|〈X1, z〉|q)

1
q

})
≤

∑
|I|=dn

2
e

PG,X1,...,XN

({
∀i ∈ I : max

j∈σi

|〈gjXj, z〉| ≤
1

2
γq (E|〈X1, z〉|q)

1
q

})
≤

∑
|I|=dn

2
e

∏
i∈I

PG,X1,...,XN

({
max
j∈σi

|〈gjXj, z〉| ≤
1

2
γq (E|〈X1, z〉|q)

1
q

})
≤

∑
|I|=dn

2
e

∏
i∈I

exp

(
− |σi|

4Cq

)
≤ 2n exp

(
− nm

4Cq

)
≤ 2n exp

(
− N

8Cq

)

≤ exp

(
−
√
Nn

16

)

provided that q := (1/2) log(N/n) and N > 125n.
Now, let

S =

{
z ∈ Rn | 1

2
γq (E|〈X1, z〉|q)

1
q = 1

}
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and let U ⊂ S be a δ-net (in metric defined by S) with cardinality |U | ≤
(

3
δ

)n
,

i.e., for every z ∈ S there is u ∈ U such that 1
2
γq (E|〈X1, z − u〉|q)

1
q ≤ δ. Then

P
({

∃u ∈ U : ‖Au‖0 ≤
1

2

})
≤ exp

(
n log

3

δ
−
√
Nn/16

)
.

By isotropicity we have that (E|〈X1, z〉|q)
1
q ≥ Lk|z| (because we have chosen

q = (1/2) log(N/n) > 2). Thus, assuming ‖A‖ ≤ c5βLK

√
N log N

n
, we have

‖Az‖0 ≤
1√
n
|Az| ≤ c5βLK

√
N

n

√
log

N

n
|z| ≤ c5β

√
N

n

√
2q (E|〈X1, z〉|q)

1
q

≤ c6β γq

√
N

n
(E|〈X1, z〉|q)

1
q .

Therefore, if u ∈ U approximates z ∈ S, that is if 1
2
γq (E|〈X1, z − u〉|q)

1
q ≤ δ,

then u also satisfies

‖Au‖0 ≤ ‖Az‖0 + c7β

√
N

n
δ.

Choosing δ =
√
n/(4βc7

√
N) and denoting the event

Ω0 :=

{
‖A‖ ≤ c5βLK

√
N log

N

n

}
we obtain

PG,X1,...,XN

({
ω ∈ Ω0 | ∃z ∈ Rn : ‖Az‖0 ≤

1

8
γq (E|〈X1, z〉|q)

1
q

})
= PG,X1,...,XN

({
ω ∈ Ω0 | ∃z ∈ S : ‖Az‖0 ≤

1

4

})
≤ PG,X1,...,XN

({
ω ∈ Ω0 | ∃u ∈ U : ‖Au‖0 ≤

1

2

})
≤ exp

(
n log

12c7 β
√
N√

n
−
√
Nn/16

)
≤ exp

(
−
√
Nn/20

)
provided N ≥ C(log β)2n for a big enough absolute constant C. Since
hKN,G

(z) = ‖Az‖∞ ≥ ‖Az‖0, this together with (4.1) and the definition (2.2),

15



implies that with probability at least 1− exp
(
−
√
N
)
− exp

(
−
√
Nn/20

)
,

KN,G ⊇
1

8
γq Zq(K) ⊇ c

√
log

N

n
Zlog(N/n)(K).

2

Proposition 4.1 implies the following theorem.

Theorem 4.2. There are absolute positive constants C, c1 and c2 such that
the following holds. Let β > 2 and N ≥ C(log β)2n. Let X1, . . . , XN be
independent copies of a random vector uniformly distributed on an isotropic

convex body and assume that ‖X1‖ψ2 ≤ β
√

log N
n
. Then

PG,X1,...,XN

({
LKN,G

≤ c1

√
log

2N

n

})
≥ 1− exp

(
−c2

√
n log

2N

n

)
.

Proof. By Proposition 3.1, the probability (with respect to Xi’s) of the
event

∀y ∈ Rn with y∗n > 0 :
1

|KN,y|

∫
KN,y

|x|2dx ≤ CL2
K

‖y‖2
n,2

n
log2 2N

n

is at least 1− exp (−
√
n log(2N/n)).

It is well know (and can be directly calculated) that for the Gaussian
vector G = (g1, . . . , gN) one has

E‖G‖n,2 ≈
√
n log

N

n
.

Using concentration (see e.g. Theorem 1.5 in [27]), we observe that for some
absolute constant C1 > 0,

PG

(
‖G‖n,2 ≥ C1

√
n log

N

n

)
≤ exp (−n log(N/n)).

Therefore, the probability (with respect to G and Xi’s) of the event

1

|KN,G|

∫
KN,G

|x|2dx ≤ CL2
K log3 N

n

16



is at least 1 − exp (−c
√
n log(N/n)). On the other hand by the previous

proposition and (2.3)

PG,X1,...,XN

({
|KN,G|1/n ≥

cLK log(N/n)√
n

})
≥ 1− exp

(
−c′

√
N
)
.

Since

nL2
KN,G

≤ 1

|KN,G|1+
2
n

∫
KN,G

|x|2dx,

we obtain the desired result. 2

Remark 4.3. Finally we would like to note that for N ≥ n2 with high proba-
bility |KN,G|1/n ≥ (cLK logN)/

√
n, even if the convex body K is not ψ2 (see

Lemma 4 in [6]). Therefore in this case, using

max
i≤N

|giXi| = max
i≤N

|gi| max
i≤N

|Xi| ≤ C1

√
logN

√
n

with high probability one has

LKN,G
≤ c

maxi≤N |giXi| logN

n|KN,G|
1
n

≤ C
√

logN.
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