Gauss-Bonnet formulae and rotational integrals in constant curvature spaces

S. Barahonaa, X. Gual-Arnaub

aDepartament de Matemàtiques, Universitat Jaume I. 12071-Castelló, Spain. barahona@uji.es
bDepartament de Matemàtiques, Institute of New Imaging Technologies, Universitat Jaume I. 12071-Castelló, Spain. gual@uji.es

Abstract

We obtain generalizations of the main result in [18], and then provide geometric interpretations of linear combinations of the mean curvature integrals that appear in the Gauss-Bonnet formula for hypersurfaces in space forms M_λ^n. Then, we combine these results with classical Morse theory to obtain new rotational integral formulae for the $k-$th mean curvature integrals of a hypersurface in M_λ^n.

Keywords: Gauss-Bonnet formula, integral of mean curvature, intrinsic volume, rotational integral formulas, space form.

MSC Subject classification: 53C65.

1. Introduction

Let M_λ^n denote a simply connected Riemannian manifold of constant sectional curvature λ. Further, let L^n_r denote a $r-$plane, ($r \leq n$), namely a totally geodesic submanifold of dimension r in M_λ^n, and let dL^n_r denote the corresponding density, invariant under the group of Euclidean and non-Euclidean motions. A $r-$plane through a fixed point O in M_λ^n, and its invariant density, are denoted by $L^n_{r[0]}$ and $dL^n_{r[0]}$, respectively [16].

In [8] a new expression for the density of $r-$planes in M_λ^n has been obtained in terms of the density $dL^n_{r+1[0]}$, of the density dL^{r+1}_r of $r-$planes in $L^n_{r+1[0]}$ and the distance ρ from O to L^{r+1}_r. Thus, an invariant $r-$plane in M_λ^n may be generated by taking first an isotropic $(r+1)-$plane through a fixed point O and then an invariant $r-$plane within this $(r+1)-$plane, weighted
by a function of ρ.

This construction, called the invariator principle in M_λ^n ([19]), has opened the way to solve rotational integral equations for different quantities as the volume of a k–dimensional submanifold in M_λ^n [8], the k–th mean curvature integrals or k–th intrinsic volumes ([10] and [1], and different curvature measures ([19] for $\lambda = 0$)). The solutions of these equations allow to express these quantities as the integral of some functionals defined in sections produced by isotropic planes through a fixed point. Moreover, in [19], the authors, using classical Morse theory, rewrite the volume of compact submanifolds in \mathbb{R}^n of dimension $n - r$, in terms of critical values of the sectioned object with $(r + 1)$–planes; and in [9] related generalizations valid for submanifolds in space forms of constant curvature are obtained.

On the other hand, in [18] it is proved that the Gauss-Bonnet defect of a hypersurface in M_λ^n is the measure of planes L_{n-2} meeting it, counted with multiplicity. From this result an integral-geometric proof of the Gauss-Bonnet theorem for hypersurfaces in M_λ^n is given.

The purpose of this paper is twofold: to obtain generalizations of the main result in [18], following a completely different route; and to combine these results with classical Morse theory to obtain new rotational integral formulae for the k–th mean curvature integrals of a hypersurface in M_λ^n.

2. The Gauss-Bonnet theorem in M_λ^n

Let $Q \subset M_\lambda^n$ be a compact domain with smooth boundary $S = \partial Q$. Let V denote the volume of of Q, F the $(n - 1)$–surface area of S, $\chi(Q)$ the Euler-Poincaré characteristic of Q, and M_i the i–th integral of mean curvature of S. The Gauss-Bonnet formula for S states that [16]

$$c_{n-1}M_{n-1} + \lambda c_{n-3}M_{n-3} + \cdots + \lambda^{\frac{n-2}{2}}c_1M_1 + \lambda^\frac{n}{2}V = \frac{1}{2}O_n\chi(Q),$$

(1)

for n even, where $O_k = \text{vol}(S^k)$ (surface area of the k–dimensional unit sphere), and

$$c_{n-1}M_{n-1} + \lambda c_{n-3}M_{n-3} + \cdots + \lambda^{\frac{n-3}{2}}c_2M_2 + \lambda^\frac{n-1}{2}c_0F = \frac{1}{2}O_n\chi(Q),$$

(2)
for n odd, where
\[
c_h = \left(\frac{n-1}{h} \right) \frac{O_n}{O_h O_{n-1-h}}. \tag{3}
\]

If n is odd, we can use the equality $2\chi(Q) = \chi(S)$, and for $\lambda = 0$, in any case, we obtain $M_{n-1} = O_{n-1}\chi(Q)$.

Let L_r be the space of r–dimensional totally geodesic submanifolds of M^n_λ. Our first result is the following theorem, which is a generalization of the main result in [18].

Theorem 2.1. For n and r even, or n and r odd, we have
\[
\frac{1}{2}O_n\chi(Q) - c_{n-1}M_{n-1} - \lambda c_{n-3}M_{n-3} - \cdots - \lambda^{\frac{n-r-2}{2}} c_{r+1}M_{r+1} = \lambda^{\frac{n-r}{2}} \frac{O_r \cdots O_1}{O_{n-1} \cdots O_{n-r}} \int_{L_r} \chi(Q \cap L^n_r) dL^n_r. \tag{4}
\]

Proof. We begin assuming that n and r are both even numbers. Given a r–plane L^n_r of M^n_λ, $Q_r = L^n_r \cap Q$ is, in general, a domain of dimension r in L^n_r. Applying Eq.(1) to Q_r we obtain
\[
c'_r - c'_{r-3}M'_{r-3} + \cdots + \lambda^{\frac{r-2}{2}} c'_1 M'_{1} + \lambda^{\frac{r}{2}} V(Q_r) = \frac{1}{2} O_r \chi(Q_r), \tag{5}
\]
where M'_i is the i–th integral of mean curvature of ∂Q_r and
\[
c'_h = \left(\frac{r-1}{h} \right) \frac{O_r}{O_h O_{r-1-h}}. \tag{6}
\]

Eq.(14.69) for $q = n$ and Eq.(14.78) of [16], which are valid for M^n_λ, are
\[
\int_{L_r} V(Q_r) dL^n_r = \frac{O_{n-1} \cdots O_{n-r}}{O_{r-1} \cdots O_0} V(Q) \tag{7}
\]
and
\[
\int_{L_r} M'_i dL^n_r = \frac{O_{n-2} \cdots O_{n-r} O_{n-i}}{O_{r-2} \cdots O_0 O_{r-i}} M_i. \tag{8}
\]

Now, having the preceding equalities in mind, we integrate Eq.(5) and we obtain
\[
d_{r-1}M_{r-1} + \lambda d_{r-3}M_{r-3} + \cdots + \lambda^{\frac{r-2}{2}} d_1 M_1 + \lambda^{\frac{r}{2}} d_0 V = \frac{1}{2} O_r \int_{L_r} \chi(Q_r) dL^n_r, \tag{9}
\]
where
\[d_i = \binom{r-1}{i} \frac{O_r}{O_i O_{r-1-i}} \frac{O_{n-2} \ldots O_{n-r} O_{n-i}}{O_{r-2} \ldots O_0 O_{r-i}}; \quad i = 1, 3, \ldots, r - 1; \]
\[d_0 = \frac{O_{n-1} \ldots O_{n-r}}{O_{r-1} \ldots O_0}. \]
\[(10) \]

We multiply Eq. (9) by \(\frac{\lambda^{(n-r)/2}}{d_0} \) to obtain
\[\lambda^{\frac{n-r}{2}} k_{r-1} M_{r-1} + \lambda^{\frac{n-r+2}{2}} k_{r-3} M_{r-3} + \cdots + \lambda^{\frac{n-3}{2}} k_2 M_1 + \lambda^\frac{n}{2} V \]
\[= \frac{1}{2} \lambda^{\frac{n-r}{2}} \frac{O_r}{d_0} \int_{L_r} \chi(Q_r) dL^n, \]
\[(12) \]

where
\[k_i = \binom{r-1}{i} \frac{O_r O_{r-1-i} O_{n-i}}{O_i O_{n-1} O_{r-i} O_{r-i-1}}. \]
\[(13) \]

If we compare the constants \(k_i \) and \(c_i \) in Eq. (1), using the equality \((k-1)O_k = O_1 O_{k-2} \), we have that
\[k_i = c_i; \]
\[(14) \]
then, Eq. (12) can be written as
\[\lambda^{\frac{n-r}{2}} c_{r-1} M_{r-1} + \lambda^{\frac{n-r+2}{2}} c_{r-3} M_{r-3} + \cdots + \lambda^{\frac{n-3}{2}} c_2 M_1 + \lambda^\frac{n}{2} V \]
\[= \frac{1}{2} \lambda^{\frac{n-r}{2}} \frac{O_r}{d_0} \int_{L_r} \chi(Q_r) dL^n, \]
\[(15) \]
and, from Eq. (1) we obtain the result for the case \(n \) and \(r \) even.

If we consider that \(n \) and \(r \) are both odd numbers the proof is similar to the preceding one but considering, instead of Eq. (7), the following equality (Eq. (14.69) of [16] with \(q = n - 1 \)):
\[\int_{L_r} F(\partial Q_r) dL^n_r = \frac{O_n \ldots O_{n-r} O_{r-1}}{O_r \ldots O_0 O_{n-1}} F, \]
\[(16) \]
where \(F(\partial Q_r) \) is the \((r-1)\)-surface area of \(\partial Q \cap L^n_r = \partial (Q \cap L^n_r) \). □

Remark. For \(r = n - 2 \), Theorem 2.1 gives Theorem 1 of [18] and, as a result of Theorem 2.1, we obtain the following corollary which is equivalent to Proposition 7 of [18].
Corollary 2.2. Let Q be a compact domain in M^n_λ and $L_r \in \mathcal{L}_r$, we have

$$M_r = \frac{(n-r-1)O_r \ldots O_0}{O_{n-2} \ldots O_{n-r-2}} \int_{L_{r+1}} \chi(Q \cap L^n_{r+1})dL^n_{r+1}$$

$$- \lambda^r O_{r-2} \ldots O_0 \int_{L_{r-1}} \chi(Q \cap L^n_{r-1})dL^n_{r-1}. \quad (17)$$

Proof. When r is an even number, Eq.(15) divided by $\lambda^{\frac{n-r}{2}}$ is

$$c_{r-1}M_{r-1} + \lambda c_{r-3}M_{r-3} + \ldots + \lambda^{\frac{r-2}{2}} c_1 M_1 + \lambda^{\frac{r}{2}} V = \frac{1}{2} \frac{O_r}{d_0} \int_{L_r} \chi(Q_r) dL^n_r; \quad (18)$$

and the corresponding equation to Eq.(15) divided by $\lambda^{\frac{n-r}{2}}$ when r is an odd number is

$$c_{r-1}M_{r-1} + \lambda c_{r-3}M_{r-3} + \ldots + \lambda^{\frac{r-2}{2}} c_2 M_2 + \lambda^{\frac{r-1}{2}} c_0 F = \frac{1}{2} \frac{O_r}{d_0} \int_{L_r} \chi(Q_r) dL^n_r. \quad (19)$$

If r is odd, subtracting each part of Eq.(18), with $r \to r + 1$, minus the corresponding part of λ multiplied by Eq.(18) with $r \to r - 1$ we obtain the result. If r is even, we proceed in the same way but using Eq.(19) instead of the Eq.(18). □

Remark. For $\lambda = 0$, Eq.(17) coincides with Eq.(14.79) of [16].

3. Rotational integrals and Morse representations for M_r

From rotational integral formulae we obtain quantitative properties (as M_r) of differential manifolds in M^n_λ, from the intersection of the manifold with planes (totally geodesic submanifolds) through a fixed point O. In this context, from Eq.(17), we will find measurement functions α_r defined on $L^n_{r+2[0]} \cap Q$ with rotational average equal to M_r, that is,

$$M_r = \int_{L^n_{r+2[0]} \cap Q \neq \emptyset} \alpha_r(L^n_{r+2[0]} \cap Q)dL^n_{r+2[0]} \quad (20)$$

Theorem 3.1. Let $Q \subset M^n_\lambda$ be a compact domain with smooth boundary $S = \partial Q$. The measurement functions α_r corresponding to the r-th integral
of mean curvature of S, M_r, can be expressed as

$$\alpha_r(L^n_{r+2[0]} \cap Q) = \frac{O_{r-2} \ldots O_0}{O_{n-2} \ldots O_{n-r-2}} \left[(n-r-1)O_rO_{r-1} \int \chi((Q \cap L^n_{r+2[0]} \cap L^{r+2}_{r+1})s^{n-r-2}_\lambda(\rho)dL^{r+2}_{r+1} \right. \tag{21}$$

$$- \lambda rO_1O_0 \int \chi(((Q \cap L^n_{r+2[0]} \cap L^{r+2}_{r+1}) \cap L^{r+1}_{r+1}))s^{n-r}_\lambda(\rho)dL^{r+2}_{r+1} \right],$$

where, in both integrals, ρ is the distance from O to the planes L^n_{r+1} and L^n_{r-1}, respectively; and

$$s_\lambda(\rho) = \begin{cases}
\lambda^{-1/2} \sin(\rho \sqrt{\lambda}), & \lambda > 0 \\
\rho, & \lambda = 0 \\
|\lambda|^{-1/2} \sinh(\rho \sqrt{|\lambda|}), & \lambda < 0
\end{cases} \tag{22}$$

Proof. The idea of the proof consists in generating the planes L^n_{r+1} and L^n_{r-1}, which appear in Eq.(17), by taking first an isotropic plane through O and then an invariant plane within this isotropic plane, weighted by a function of ρ; that is, from Corollary 3.1 of [8] we have the identity

$$dL^n_{r+1} = s^{n-r-2}_\lambda(\rho)dL^{r+2}_{r+1}dL^n_{r+2[0]}, \tag{23}$$

and also

$$dL^n_{r-1}dL^n_{r+2[\alpha]} = s^{n-r}_\lambda(\rho)dL^r_{r-1}dL^n_{r+2[\alpha]}dL^n_{r[0]}, \tag{24}$$

where $dL^n_{r+2[\alpha]}$ denotes the density for $(r+2)$--planes about a about a r--plane L^n_r (see page 202 of [16]).

As justified in [16], p. 309, before Eq. (17.55), from the expressions of the densities of planes in M^n_λ it follows that some density decompositions (such as [16], Eq. (12.53)) have the same form whatever the sign of λ. Then, from Eq.(12.53) of [16], Eq.(24), can be expressed as

$$dL^n_{r-1}dL^n_{r+2[\alpha]} = s^{n-r}_\lambda(\rho)dL^r_{r-1}dL^{r+2}_{r+1}dL^n_{r+2[0]}, \tag{25}$$

Finally, substituting Eq.(23) and Eq.(25) in Eq.(17), having in mind that

$$\int dL^n_{r+2[\alpha]} = \frac{O_{n-r-1}O_{n-r-2}}{O_1O_0}, \tag{26}$$

we obtain the result. \square

Remark. For $\lambda = 0$, Eq.(21) coincides, up to a constant factor, with Eq.(18) of [10].

6
3.1. Morse representations for M_r

In this section a geometric interpretation is given of Eq.(21) in terms of the critical points of height functions. In particular, and in order to simplify, we will give a geometric interpretation of the function

$$\beta_r = \int \chi((Q \cap L_{r+1}^n) \cap L_r^{r+1}) s_{\lambda}^{n-r-1}(\rho) dL_r^{r+1}. \quad (27)$$

The density dL_r^{r+1} may be decomposed as follows,

$$dL_r^{r+1} = c_{\lambda}(\rho) d\rho d(u_r), \quad (28)$$

where $d\rho$ denotes the surface area element of the $r-$dimensional unit sphere and $c_{\lambda}(\rho) = \frac{d}{d\rho}s_{\lambda}(\rho)$. Note that $\rho \geq 0$ for the case $\lambda = 0$ (Euclidean) and $\lambda < 0$ (hyperbolic); however, for the case $\lambda > 0$ (spherical) ρ varies from 0 (which corresponds to the point O) to $\frac{\pi}{\sqrt{\lambda}}$ (which corresponds to the cut locus of O (i.e., the antipodal point of O).

Therefore, for the cases $\lambda = 0$ (Euclidean) and $\lambda < 0$ (hyperbolic), we may write,

$$\beta_r = \frac{1}{2} \int_{\mathbb{S}^r} du_r \int_{0}^{\infty} s_{\lambda}^{n-r-1}(\rho) c_{\lambda}(\rho) \chi((Q \cap L_{r+1}^n) \cap L_r^{r+1}) d\rho, \quad (29)$$

whereas, for the case $\lambda > 0$ (spherical),

$$\beta_r = \frac{1}{2} \int_{\mathbb{S}^r} du_r \int_{\sqrt{\pi}^{-\lambda}}^{\sqrt{\pi}^{\lambda}} s_{\lambda}^{n-r-1}(\rho) c_{\lambda}(\rho) \chi((Q \cap L_{r+1}^n) \cap L_r^{r+1}) d\rho, \quad (30)$$

where L_r^{r+1} is the $r-$plane expressed in terms of its distance ρ from the fixed point O, perpendicular to the geodesic defined from the direction u_r from O, and $\chi((Q \cap L_{r+1}^n) \cap L_r^{r+1}) = 0$ whenever $(Q \cap L_{r+1}^n) \cap L_r^{r+1} = \emptyset$.

Since we want to give a geometrical interpretation of β_r, based on critical points of height functions, from now on we will consider that ρ means signed distance and we will rewrite β_r as:

$$\beta_r = \frac{1}{2} \int_{\mathbb{S}^r} du_r \int_{-\infty}^{\infty} s_{\lambda}^{n-r-1}(|\rho|) c_{\lambda}(\rho) \chi((Q \cap L_{r+1}^n) \cap L_r^{r+1}) d\rho, \quad \lambda \leq 0; \quad (31)$$

$$\beta_r = \frac{1}{2} \int_{\mathbb{S}^r} du_r \int_{\sqrt{\pi}^{-\lambda}}^{\sqrt{\pi}^{\lambda}} s_{\lambda}^{n-r-1}(\rho) c_{\lambda}(\rho) \chi((Q \cap L_{r+1}^n) \cap L_r^{r+1}) d\rho \quad \lambda > 0. \quad (32)$$
Let \(u_r \) denote a unit vector in \(S^r \subset T_O L^n_{r+1[0]} \). The geodesic \(\gamma_{u_r} : \mathbb{R} \rightarrow L^n_{r+1[0]} \), with \(\gamma_{u_r}(0) = O \) and \(\gamma'(0) = u_r \) is given by \(\gamma_{u_r}(t) = c_\lambda(t)O + s_\lambda(t)u_r \), where \(c_\lambda(t) = \frac{d}{dt}s_\lambda(t) \). Given \(u_r \), let \(h_{u_r} : L^n_{r+1[0]} \rightarrow \mathbb{R} \) be the height function whose level hypersurfaces are just the \(r \)-planes \(L^r_{r+1} \) perpendicular to the geodesic \(\gamma_{u_r}(t) \). Note that in the Euclidean case \((\lambda = 0) \) this height function coincides with the standard height function considered in [19]. We suppose that the level hypersurface \(L^r_{r+1} \) is oriented in such a way that the unit vector \(\nu(p) \), perpendicular to the level set \(L^r_{r+1} \subset L^n_{r+1[0]} \) at \(p \) is given by \(\nu(p) = \frac{\text{grad}(h_{u_r})(p)}{||\text{grad}(h_{u_r})(p)||} \).

Let us denote \(Q_{r+1} = Q \cap L^n_{r+1[0]} \), which is, in general, a domain with boundary in \(L^n_{r+1[0]} \) (see Appendix A of [10]). In Section 5 (Appendix) we show that in Euclidean and hyperbolic cases; and in the spherical case, if the domain \(Q \) is contained in the hemisphere of \(M^n_\lambda \) with pole \(O \), \(h_{u_r}|_{Q_{r+1}} \) is a strong Morse function for almost all \(u_r \in S^r \), it means that all of the critical points in the direction \(u_r \) from \(O \) are non-degenerate, and no two of them lie on the same level hypersurface (i.e. they have different critical values). In particular, \(h_{u_r}|_{Q_{r+1}} \) has not critical points in \(Q_{r+1} \). Let \(p_i \in \text{Crit}(h_{u_r}|_{\partial Q_{r+1}}), \ i = 1, \ldots, m, \) be the set of critical points, and

\[
\rho_1 < \rho_2 < \cdots < \rho_m, \quad (\text{with} \quad \frac{-\pi}{2\sqrt{\lambda}} \leq \rho_1, \quad \rho_m \leq \frac{\pi}{2\sqrt{\lambda}} \quad \text{for} \quad \lambda > 0)
\]

the corresponding critical values \((h_{u_r}(p_i) = \rho_i)\). To each critical point \(p_i \), we assign an index

\[
\epsilon_i = \chi(Q_{r+1} \cap L^r_{r+1}(\rho_i - \varepsilon)) - \chi(Q_{r+1} \cap L^r_{r+1}(\rho_i + \varepsilon)), \quad (33)
\]

where \(L^r_{r+1}(\rho_i + \varepsilon) \) denotes the \(r \)-plane defined from the direction \(u_r \) at a signed distance \(\rho_i + \varepsilon \) from \(O \); and \(\varepsilon \) is small enough to ensure that there are no critical points of \(\text{Crit}(h_{u_r}|_{\partial Q_{r+1}}) \) whose height function belongs to \((\rho_i - \varepsilon, \rho_i + \varepsilon)\).

For \(r < n \in \{1, 2, \ldots \} \), define:

\[
I_{n-r-1,r}(\rho) = \int s_{\lambda}^{n-r-1}(|\rho|) \ c_\lambda^r(\rho) \ d\rho = \begin{cases}
\int s_{\lambda}^{n-r-1}(\rho) \ c_\lambda^r(\rho) \ d\rho, & \rho \geq 0, \\
(-1)^{n-r-1} \int s_{\lambda}^{n-r-1}(\rho) \ c_\lambda^r(\rho) \ d\rho, & \rho < 0.
\end{cases} \quad (34)
\]
Then, for \(\lambda = 0 \),

\[
I_{n-r-1,r}(\rho) = \int |\rho|^{n-r-1} \, d\rho = \begin{cases}
\frac{\rho^{n-r}}{n-r}, & \rho \geq 0, \\
(-1)^{n-r-1} \frac{\rho^{n-r}}{n-r}, & \rho < 0.
\end{cases}
\] (35)

For \(\lambda \neq 0 \), and for any given pair \((n,r)\), the integral \(I_{n-r-1,r}(\rho) \) may be evaluated explicitly from [13], pages 114 and 159, or with the aid of a mathematical software package such as Mathematica®.

Theorem 3.2. Let \(O \) be a point in \(M^n_\lambda \) and \(Q \subset M^n_\lambda \) a compact domain which is contained in the hemisphere of \(M^n_\lambda \) with pole \(O \) when \(\lambda > 0 \). Let \(Q_{r+1} = Q \cap L^n_{r+1[0]} \) be the domain with boundary in \(L^n_{r+1[0]} \). Then, for \(r \in \{0, 1, \ldots, n-2\} \),

\[
\beta_r = \frac{1}{2} \int_{S^r} \left(\sum_{k=1}^m \epsilon_k I_{n-r-1,r}(\rho_k) \right) \, du_r,
\] (36)

where \(m \) represents the number of points \(\text{Crit}(h_{u_r}|_{\partial Q_{r+1}}) \) corresponding to the direction \(u_r \).

Proof. The fact that \(Q_{r+1} \) will be a domain with boundary in \(L^n_{r+1[0]} \), for a generic \((r+1)-\)space \(L^n_{r+1[0]} \), follows from Theorem A.1 of [10], and the fact that \(h_{u_r}|_{Q_{r+1}} \) will in general be a strong Morse function for almost all \(u_r \in S^r \) follows from the appendix, having in mind that \(Q_{r+1} \) is contained in the hemisphere of \(L^n_{r+1[0]} \) with pole \(O \).

Then Eq.(31) and Eq.(32) may be written as follows,

\[
\beta_r = \frac{1}{2} \int_{S^r} du_r \sum_{k=1}^{m-1} \int_{\rho_k}^{\rho_{k+1}} s_\lambda^{n-r-1}(|\rho|) \epsilon_k^{e^r}(\rho) \chi((Q \cap L^n_{r+1[0]}) \cap L^{r+1}_{r+1}) \, d\rho,
\] (37)

Thus,

\[
\beta_r = \frac{1}{2} \int_{S^r} du_r \sum_{k=1}^{m-1} \left(I_{n-r-1,r}(\rho_{k+1}) - I_{n-r-1,r}(\rho_k) \right) \sum_{j=k+1}^m \epsilon_j
\]

\[
= \frac{1}{2} \int_{S^r} \left(\sum_{k=2}^m \epsilon_k I_{n-r-1,r}(\rho_k) - I_{n-r-1,r}(\rho_1) \sum_{k=2}^m \epsilon_k \right) \, du_r.
\] (38)
Finally, since $\sum_{k=1}^{m} \epsilon_k = 0$, it means $\sum_{k=2}^{m} \epsilon_k = -\epsilon_1$, and the proposed result is obtained. □

4. Applications

Let $Q \subset M^3_\lambda (\lambda \neq 0)$ be a compact domain with smooth boundary $S = \partial Q$; then, from Theorem 2.1 with $n = 3$ and $r = 1$, we have

$$2\pi \chi(S) - \int_{S} K(x)dx = \frac{2\lambda}{\pi} \int_{\mathcal{L}} \chi(Q \cap L^3) dL^3_1,$$

where $K(x)$ is the Gauss curvature of S at x, and χ denotes Euler characteristic.

Now, from Eq.(23) and the definition of β_1 (Eq.(27)), a rotational formula of the defect of the surface in $M^3(\lambda)$ is given by

$$2\pi \chi(S) - \int_{S} K(x)dx = \frac{2\lambda}{\pi} \int_{Q \cap L^3_2[0] \neq \emptyset} \beta_1(Q \cap L^3_2[0]) dL^3_2[0];$$

where, using Theorem 3.2,

$$\beta_1(Q \cap L^3_2[0]) = \frac{1}{2} \int_{S^2 \cap L^3_2[0]} \sum_{k=1}^{m} \epsilon_k I_{1,1}(\rho_k) du.$$

Example. Let S be a geodesic sphere of radius ρ centered at O in $M^3(\lambda)$; then, $\chi(S) = 2$, and $\int_{M^2} K(x)dx = 4\pi\epsilon^2_\lambda(\rho)$.

On the other hand, $S \cap L^3_2[0]$ is a geodesic circle (boundary of a geodesic ball) in $L^3_2[0]$; that is, all the points in $S \cap L^3_2[0]$ are a distance ρ apart from O. Then, for all directions $u \in S^1$, $m = 2$, $\epsilon_1 = 1$, $\epsilon_2 = -1$, $I_{1,1}(\rho_1) = I_{1,1}(\rho) = \frac{1}{2}s^2_\lambda(\rho)$ and $I_{1,1}(\rho_2) = I_{1,1}(-\rho) = -\frac{1}{2}s^2_\lambda(\rho)$, $\beta_1(S \cap L^3_2[0]) = \pi s^2_\lambda(\rho)$; and Eq.(40) is satisfied.

If we consider a domain Q in $\mathbb{R}^3 (\lambda = 0)$, Corollary 2.2, with $r = 1$ and $n = 3$, coincides with Eq.(12) of [6], Theorem 2.1 coincides with Eq.(12) of [6], and, since

$$2\chi(Q_2 \cap L^2_1) = N(\partial Q_2 \cap L^2_1),$$

10
where N denotes number, Theorem 3.2 coincides with the integrand of Eq.(50) in [6]; but now, for each axial direction $u \in [0, 2\pi)$ in the pivotal plane $L^2_{2[0]}$, the pivotal section is scanned entirely from top to bottom by a sweeping straight line parallel to the axis Ou, in search of critical points.

5. Appendix

Let X be a smooth manifold with boundary. We say that a smooth function $f : X \to \mathbb{R}$ is a strong Morse function if

1. all critical points of $f : X \to \mathbb{R}$ are non-degenerate and are contained in the interior of X,
2. all critical points of the restriction $f : \partial X \to \mathbb{R}$ are also non-degenerate,
3. if $x, y \in X$ are distinct critical points of either $f : X \to \mathbb{R}$ or $f : \partial X \to \mathbb{R}$, then $f(x) \neq f(y)$.

5.1. Preliminary results for the Euclidean case ($\lambda = 0$)

Assume now that $X \subseteq \mathbb{R}^n$ is a submanifold with boundary and for each unit vector $v \in S^{n-1}$, let us denote by $h_v : X \to \mathbb{R}$ the height function defined as $h_v(x) = \langle x, v \rangle$.

Theorem 5.1. Let $X \subseteq \mathbb{R}^n$ be a compact submanifold with boundary. For almost any $v \in S^{n-1}$, $h_v : X \to \mathbb{R}$ is a strong Morse function.

Proof. We consider $S = X$ or $S = \partial X$ which are compact spaces in \mathbb{R}^n. From Theorem 3 of [14], since $(1, p)$ is in the nice range for all $p = dim(S)$, the linear map $h_a : S \to \mathbb{R}$ given by $h_a(x) = \sum_i a_i x_i$ is stable for almost any $a \in \mathbb{R}^n \setminus \{0\}$.

Let $W \subseteq \mathbb{R}^n \setminus \{0\}$ be the set of points a such that $h_a : S \to \mathbb{R}$ is not stable. Since W is a null set in $\mathbb{R}^n \setminus \{0\}$, $p(W)$ is a null set in S^{n-1}, where $p : \mathbb{R}^n \setminus \{0\} \to S^{n-1}$ is the normalization map. Then, for any $v \in S^{n-1} \setminus p(W)$, $h_v : S \to \mathbb{R}$ is stable.

In the case of functions, it is well known that stability is equivalent to that all critical points are non-degenerate with distinct critical values (see [4]). Therefore $h_v : X \to \mathbb{R}$ and $h_v : \partial X \to \mathbb{R}$ are Morse functions with distinct critical values for almost any $v \in S^{n-1}$. Since $h_v : X \to \mathbb{R}$ has not critical points, critical values of $h_v : \partial X \to \mathbb{R}$ cannot coincide with critical values of $h_v : X \to \mathbb{R}$. Then, $h_v : X \to \mathbb{R}$ is a strong Morse function for almost any $v \in S^{n-1}$. □
Corollary 5.2. Let $Q \subset \mathbb{R}^n$ be a compact domain with boundary. For almost any $v \in S^{n-1}$, $h_v : Q \to \mathbb{R}$ is a strong Morse function.

5.2. General case M^n_λ ($\lambda \neq 0$)

Lemma 5.3. Let $X \subset M^n_\lambda$ be a submanifold and let $\psi : I \to \mathbb{R}$ be a diffeomorphism, where I is an open interval in \mathbb{R}. If $f : X \to I$ is a strong Morse function, then $g := \psi \circ f$ is a strong Morse function.

Proof. Since ψ is a diffeomorphism and f is a strong Morse function, it is deduced that g is also a strong Morse function. Note that the critical points of f coincide with the critical points of g. □

Let $Q \subset M^n_\lambda$ be a compact domain with boundary, $O \in M^n_\lambda$ and v denote a unit vector in $S^{n-1} \subset T_O Q$. The geodesic $\gamma_v : I \subset \mathbb{R} \to Q$ is given by $\gamma_v = c_\lambda(t)O + s_\lambda(t)v$, where $I = [-\frac{\pi}{\sqrt{\lambda}}, \frac{\pi}{\sqrt{\lambda}}]$ for $\lambda > 0$ and $I = \mathbb{R}$ for $\lambda < 0$.

Then, given v, let $h_v : Q \subset M^n_\lambda \to \mathbb{R}$ be the height function in M^n_λ, whose level hypersurfaces are perpendicular to the geodesic γ_v.

Theorem 5.4. Let $Q \subset M^n_\lambda$ be a compact domain with boundary which, for $\lambda > 0$, it is contained in the hemisphere of M^n_λ with pole O. Then, for almost any $v \in S^{n-1}$, $h_v : Q \to \mathbb{R}$ is a strong Morse function.

Proof. It is useful to consider the embedding of the space form M^n_λ into $(\mathbb{R}^{n+1}, \langle \cdot, \cdot \rangle_\lambda)$ as follows:

\[
\begin{cases}
 x_0 = 1, & \lambda = 0, \\
 x_0^2 + x_1^2 + \ldots + x_n^2 = \frac{1}{\lambda}, & \lambda > 0, \\
 -x_0^2 + x_1^2 + \ldots + x_n^2 = \frac{1}{\lambda}, & x_0 > 0, \lambda < 0,
\end{cases}
\]

(43)

where (x_0, x_1, \ldots, x_n) denote the coordinates of a point in \mathbb{R}^{n+1}, and $\langle \cdot, \cdot \rangle_\lambda$ is the appropriate metric to the embedding, which depends on the sign of λ.

Using this embedding, $Q \subset M^n_\lambda \subset \mathbb{R}^{n+1}$ can be considered as a compact submanifold with boundary in \mathbb{R}^{n+1}. Then, the height function of \mathbb{R}^{n+1} with respect to the direction v, restricted to Q is:
\[h^{\mathbb{R}^{n+1}}_{v,\lambda} : \quad Q \rightarrow \mathbb{R} \]
\[x \rightarrow \langle x, v \rangle_{\lambda} \quad (44) \]

From Theorem 5.1, \(h^{\mathbb{R}^{n+1}}_{v,\lambda} \) is a strong Morse function for almost any \(v \in \mathbb{S}^{n-1} \). Moreover, we note \(h^{\mathbb{R}^{n+1}}_{v,\lambda}(Q) \subset \overline{I} \).

Since \(\langle v, O \rangle_{\lambda} = 0 \), we have that,

\[h^{\mathbb{R}^{n+1}}_{v,\lambda}(\gamma_v(\rho)) = \langle \gamma_v(\rho), v \rangle_{\lambda} = s_{\lambda}(\rho) = \begin{cases} \lambda^{-1/2} \sin(\rho \sqrt{\lambda}), & \lambda > 0, \\ |\lambda|^{-1/2} \sinh(\rho \sqrt{|\lambda|}), & \lambda < 0. \end{cases} \quad (45) \]

Eq.(45) gives a relation between the height function \(h_v(\gamma_v(\rho)) = \rho \) of \(Q \) in \(M^n_{\lambda} \) and the height function \(h^{\mathbb{R}^{n+1}}_{v,\lambda} \) of \(Q \) in \(\mathbb{R}^{n+1} \). That is,

\[h_v(x) = \psi(h^{\mathbb{R}^{n+1}}_{v,\lambda}(x)) = \begin{cases} \frac{1}{\sqrt{\lambda}} \arcsin(\sqrt{\lambda} h^{\mathbb{R}^{n+1}}_{v,\lambda}(x)), & \lambda > 0, \\ \frac{1}{\sqrt{-\lambda}} \arcsinh(\sqrt{-\lambda} h^{\mathbb{R}^{n+1}}_{v,\lambda}(x)), & \lambda < 0. \end{cases} \quad (46) \]

Finally, since \(Q \) is contained in the hemisphere of \(M^n_{\lambda} \) with pole \(O \) for \(\lambda > 0 \), we have that \(\psi \) is a diffeomorphism from \(I \) to \(\mathbb{R} \) when \(I = \left[-\frac{\pi}{\sqrt{\lambda}}, \frac{\pi}{\sqrt{\lambda}} \right] \) for \(\lambda > 0 \) and when \(I = \mathbb{R} \) for \(\lambda < 0 \); therefore from Lemma 5.3 we obtain the result. \(\square \)

Acknowledgements. Work supported by the PROMETEOII/2014/062 project, the Spanish Ministry of Science and Innovation Project DPI2013-47279-C2-1-R, and the UJI project P11B2012-24.

