Supporting the Refinement of Clinical Process Models to

Computer-Interpretable Guideline Models

Begofia Martinez-Salvador and Mar Marcos

Cite this article as:
Martinez-Salvador, B. & Marcos, M. Bus Inf Syst Eng (2016) 58: 355.

doi:10.1007/s12599-016-0443-3

NOTICE: This is the author's version of a work that was accepted
for publication in Business & Information Systems Engineering
Journal. Changes resulting from the publishing process, such as
peer review, editing, corrections, structural formatting, and other
guality control mechanisms may not be reflected in this document.
Changes may have been made to this work since it was submitted
for publication. A definitive version was subsequently published in
Business & Information Systems Engineering (BISE) journal Volume
58, Issue 5, October 2016, pages 355-366. DOI information
10.1007/s12599-016-0443-3. The final publication is avaliable at
Springer via http://dx.doi.org/10.1007/s12599-016-0443-3

Corresponding author: Begofia Martinez-Salvador, Department of Computer Engineering and

ScienceUniversitat Jaume I, Castellon, Spain. E-mail: begona.martinez@uji.es

http://link.springer.com/article/10.1007/s12599-016-0443-3

Business & Information Systems Engineering manuscript No.
(will be inserted by the editor)

Supporting the Refinement of Clinical Process Models
to Computer-Interpretable Guideline Models

Begona Martinez-Salvador, Ph.D. -
Mar Marcos, Ph.D.

Received: date / Accepted: date

Abstract Clinical guidelines contain recommendations on the appropriate
management of patients with specific clinical conditions. A prerequisite
for using clinical guidelines in information systems is to encode them in a
Computer-Interpretable Guideline (CIG) language. However, this is a difficult
and demanding task, usually done by IT staff. Our goal is to facilitate the
encoding of clinical guidelines in CIG languages, while increasing the involvement
of clinicians. To achieve this we propose to support the refinement of guideline
processes from a preliminary specification in a business process language to a
detailed implementation in one of the available CIG languages. Our approach
relies on the use of the Business Process Modelling and Notation (BPMN) for
the specification level, a CIG language for the implementation level, and on
algorithms to semi-automatically transform guideline models in BPMN into
the CIG language of choice. As a first step towards the implementation of our
approach, in this work we have implemented algorithms to transform a BPMN
specification of clinical processes into the PROforma CIG language, and we have
successfully applied them to several clinical guidelines.

Keywords Clinical guideline representation - BPMN - PROforma - Transforma-
tion between process languages

1 Introduction

Clinical guidelines are defined as “systematically developed statements to assist
practitioners and patient decisions about appropriate health care for specific cir-
cumstances” [Field & Lohr, 1990]. Guidelines contain evidence-based recommen-
dations for the best management of patients with a particular clinical condition.
Clinical guidelines improve the process and the outcome of healthcare. For exam-
ple, they support evidence-based medicine, reduce variability in the application of

B. Martinez-Salvador - M. Marcos

Dpt. of Computer Engineering and Science, Universitat Jaume I
Av. de Vicent Sos Baynat s/n, 12071, Castell6n, Spain.

E-mail: begona.martinezQuji.es, marcosQuji.es

2 Begona Martinez-Salvador, Ph.D., Mar Marcos, Ph.D.

the procedures and also decrease the possibility of errors [Boxwala et al., 2001].
Clinical guidelines are usually text documents, sometimes augmented with more
structured information like flowcharts to specify some recommendation steps.

The best way to translate the clinical guideline to the point of decision-making,
when the patient-clinician encounter occurs, is by implementing an alert-based sys-
tem or a more complex decision-support system. A prerequisite for implementing
such systems is to transform the textual guideline into a computer-interpretable
format, that is, into a Computer-Interpretable Guideline (CIG). For this rea-
son, in the Medical Informatics area, several languages for modelling CIGs have
been developed. The most important languages for CIGs are [Peleg et al., 2003],
[de Clercq et al., 2004]: Arden Syntax, Asbru, EON, GLIF, GLIDE, Prodigy and
PROforma. These languages are tailored to the singularities of the medical do-
main. They share many features, although each one has its own characteristic
elements. Although there have been some attempts, no CIG language has become
a standard.

In practice, it turns out that encoding the recommendations of a clinical guide-
line (mainly, its clinical processes) in a CIG language is a demanding task that
requires both clinical and IT skills. On one hand, clinical knowledge is required for
a proper understanding of most of the recommendations in clinical guidelines. On
the other hand, IT skills are required to analyse the clinical processes they contain
and to describe them in terms of a CIG language. This is because CIG languages
are not always accessible for clinicians. Our goal is to facilitate the encoding of
clinical guidelines in CIG languages, while increasing the involvement of clinicians
in the process. To achieve this we propose to support the refinement of clinical pro-
cesses in guidelines from a preliminary specification in a business process language
to a detailed implementation in one of the available CIG languages.

Concretely, our approach relies on the use of the Business Process Modelling
and Notation (BPMN) for the specification level, a CIG language for the implemen-
tation level, and on algorithms to semi-automatically transform guideline models
in BPMN into the CIG language of choice. Because of the latter, we designate our
approach as transformation-based refinement. Compared to the direct encoding in
the CIG language, our approach supposes an initial BPMN modelling step plus a
semi-automatic transformation step. An important advantage of the initial mod-
elling lies in its potential to increase the involvement of clinicians. As a matter
of fact, we envisage that this step will be mainly performed by clinicians, with
the assistance of IT staff. Another advantage is that the effort to model a clinical
process in BPMN can be leveraged by the implementation of models in several
CIG languages, provided that appropriate transformation methods are developed.

Clinical processes can be represented using a standard process modelling lan-
guage, such as BPMN. Because the last BPMN specification [OMG, 2011] pro-
vides some execution semantics in terms of BPEL, in general BPEL is mistaken
as an executable expression of BPMN. However, the full equivalence of BPMN
cannot be expressed in BPEL [Dugan & Palmer, 2012]. For this reason we do
not regard BPMN as implementation language, but rather as an initial specifica-
tion that can be used as a basis for a later implementation. BPMN has rapidly
earned wide acceptance, becoming a de facto standard for graphical process mod-
elling [Recker, 2010]. To date most users have employed BPMN to describe op-
erations in a simple and graphical way. The situation is similar in the medical
domain. Some works have used BPMN for the collaborative modelling of clini-

Supporting the Refinement of Clinical Process Models 3

cal pathways [Kirchner et al., 2014], [Scheuerlein et al., 2012], resulting in higher
quality models which are better understood and accepted by domain experts. All
this supports the use of BPMN as an instrument for the preliminary specification
of processes in clinical guidelines.

As implementation language, any of the aforementioned CIG languages may
be chosen. In this work we target PROforma, primarily due to our previous mod-
elling experience with this language. PROforma is one of the most important
languages for CIGs, and is actively supported by OpenClinical.org, a commu-
nity of healthcare professionals, and medical informatics and computer science
researchers. Moreover, there are several software tools available to work with PRO-
forma guidelines, such as a graphical editor, a tester and a web-enactment suite.

As a first step towards the implementation of our transformation-based re-
finement approach, in this article we describe the algorithms that we have im-
plemented for the transformation of guideline models specified in BPMN into
the PROforma language. A preliminary description of the algorithms was in-
troduced in [Martinez-Salvador et al., 2014]. The transformation algorithms have
been tested with different guidelines. As an illustration, some results obtained with
a guideline for the diagnosis and treatment of prostate cancer [Mohler et al., 2012]
are presented.

The rest of the article is structured as follows. Section 2 presents an overview of
BPMN, PROforma, and the methods. Section 3 is devoted to the implementation
of the transformation algorithms. In Section 4 some experimental results with a
prostate cancer guideline are presented. Finally Section 5 concludes and outlines
some future work.

2 MATERIAL AND METHODS
2.1 BPMN

The Object Management Group (OMG) has developed the BPMN notation, that
provides a standard graphical notation for specifying business processes. The latest
published specification is BPMN 2.0 [OMG, 2011].

In recent literature we can find several works using BPMN in the medical
domain. Some works report experiences in modelling processes for patients with
a particular condition [Rojo et al., 2008], [Rolén et al., 2008], [Parra et al., 2012].
Others use BPMN for modelling clinical pathways [Svagard & Farshchian, 2009],
[Scheuerlein et al., 2012], [Hashemian & Abidi, 2012], [Kirchner et al., 2014].
Most of the works agree in emphasizing that BPMN is easy to use and understand
by all stakeholders. In one of the works BPMN is used to model the anatomic
pathology processes in a Spanish hospital [Rojo et al., 2008]. The modelling team
comprised external IT experts and hospital staff, including health experts and
people responsible for administrative and quality issues. The authors conclude
that the resulting model is understandable for involved health professionals,
and that it improves communication. There are also works that describe the
experiences in collaborative modelling of clinical pathways by health professionals
assisted by IT staff. They report that familiarization with BPMN is relatively
quick and intuitive [Scheuerlein et al., 2012], and that the fact that health

4 Begona Martinez-Salvador, Ph.D., Mar Marcos, Ph.D.

experts have a better understanding of clinical pathways facilitates modifications
and updates of the model [Kirchner et al., 2014].

A BPMN process describes a flow of activities in an organization with the ob-
jective of carrying out a task. It is depicted as a Business Process Diagram (BPD).
BPMN is a complex language with many graphical elements. However, a study
conducted by zur Muehlen et al. [zur Muehlen & Recker, 2008] showed that the
average BPMN model uses less than 20% of the available elements. In the rest of
the section, we restrict our discussion to a subset of BPMN elements: events, gate-
ways, tasks, sub-processes and sequence flows. These elements roughly include the
BPMN common core and extended core defined by Recker [Recker, 2010], except
for the pool and lane elements. With this subset, it is possible to specify real-world
clinical guidelines as the one used in this paper (see Section 4).

BPMN flow objects are the main elements for defining the behaviour of a busi-
ness process. There are three types of flow objects: activities, events and gateways.
BPMN also has connecting objects which are used to connect flow objects to each
other or to data objects. The main type of connecting object are sequence flows.

An event is something that “happens” during the course of a process. The
start event indicates where a particular process will start. Similarly, the end event
indicates where a particular process will finish.

Gateways control branching and merging of flows in a process. The gatewayDi-
rection might be set to converging or diverging. If it is set to converging, then the
gateway must have multiple incoming flows and only one outgoing flow. Recipro-
cally, if it is set to diverging, the gateway cannot have multiple incoming flows but
must have multiple outgoing flows. There are different types of gateways to control
the flow behaviour. A diverging exclusive gateway (split XOR-gateway) is used to
create alternative paths within a process flow. A diverging inclusive gateway (split
OR-gateway) is used to create alternative paths where more than one of them can
be followed. A diverging parallel gateway (split AND-gateway) is used to create
parallel flows. We will refer to converging gateways as join gateways, e.g. a join
XOR-gateway.

Activities are points in the process where work is performed. There are two
types of activities: tasks and sub-processes. A task is an atomic activity. It repre-
sents an action that is not further refined. BPMN specifies three types of markers
for tasks. In the domain of clinical guidelines, we have used the loop marker which
indicates that the task may be repeated. The number of iterations depends on a
condition that is evaluated for each iteration.

A sub-process is an activity whose internal details have been modelled in an-
other BPD. The nested elements are represented collectively as a single activity
in the diagram. Sub-processes are used to hide the complexity of a diagram or to
define a special way of execution for the activities within it. Ad-hoc sub-processes,
a special type of sub-processes, have an ordering attribute whose value can be set
to sequential or to parallel. If it is set to sequential, the inner processes will be ex-
ecuted in any possible sequential arrangement. If it is set to parallel, it is possible
to have several processes or activities enacted at the same time. Sub-processes, as
tasks, may also have a loop marker.

Sequence Flows indicate the order in which activities will be performed. Each
sequence flow must have exactly one source and one target flow object. Sequence
flows coming out from split gateways optionally define a condition expression to
be evaluated before deciding whether or not follow that flow. In the case of split

Supporting the Refinement of Clinical Process Models 5

lfe_expectancy<=5 and
asymptomatic and not
‘ igh_ ik factors_present ’] nofutherWorkup l

life_expectancy<=5 and
conditions._ y
monitoring »| MOnitoring
S

and
R hiah risk factors present
(")pinitialDiagnosis yfinitialEvaluation specialTreatment
-/ HighRisk
[#
evalMonitoring recurrence&Ad

life_expectancy>5
B
Conditions vancedDisease
n [+]

or symptomatic
Fig. 1 Main clinical process in BPMN for the diagnosis and treatment of prostate cancer.
Events are depicted as circles. Rounded boxes are tasks, or sub-processes if they have the
mark +. Gateways are depicted as diamonds and sequence flows as arrows.

XOR and OR-gateways it is possible to define a default sequence flow, which will
indicate the path to be chosen in case all the condition expressions evaluate to
false.

Figure 1 shows the specification of the main clinical process for the diagnosis
and treatment of prostate cancer. The figure contains events, XOR-gateways, tasks
and collapsed sub-processes, which contain their own BPD.

2.2 PROforma

PROforma is an executable CIG language, tailored to capture medical
knowledge and successfully used for deploying clinical decision support systems
[Sutton & Fox, 2003]. The Tallis implementation [COSSAC, 2013b] provides
a Composer for authoring CIG-based decision support systems that might
be enacted using the Tallis Engine. There are several examples of decision
support systems implemented in PROforma such as [Bury et al., 2005],
[Coulson et al., 2001], [Emery et al., 2000] and [COSSAC, 2013a].

The building blocks of PROforma are the tasks. Tasks represent actions or
activities to be performed by an external agent (e.g. clinician, patient) or by the
Tallis engine itself. There are four types of tasks: Enquiry, Decision, Action and
Plan. Enquiries ask data from the environment, to be entered by a human user or
read from a database. Decisions are activities where a choice has to be made among
different options. Actions represent some activities that have to be performed in
the external environment (e.g. perform blood glucose level test). Finally, plans
group together any type of tasks.

Control flow is represented in PROforma by means of scheduling constraints.
Scheduling constraints are logical expressions that determine in which order the
tasks should be enacted. Graphically, scheduling constraints are represented by
directed arcs. The direction indicates that one task (the one at the head of the
arc) cannot start until another task (the one at the tail) has completed. Naturally,
a task can have more than one scheduling constraint.

Besides scheduling constraints, PROforma tasks may have a precondition,
which is a truth-valued expression that must be satisfied when the task is started,
and a trigger precondition, a truth-valued expression which will initiate a task if
it is satisfied. Tasks can be cyclical. The number of iterations can be determined
by an integer or by a truth-valued expression (cycleUntil).

6 Begona Martinez-Salvador, Ph.D., Mar Marcos, Ph.D.

no treatment
until symptoms

< J
monitoring

initial ~initial treatmen!

staging recurrent treatment monitoring recurrence
diagnosis assessment decision

workup risk decision

high-risk
treatment

Fig. 2 PROforma graphical notation of the main clinical process for the diagnosis and treat-
ment of prostate cancer. Plans are depicted as rounded boxes, actions as squares and decisions
as circles. Arcs between tasks represent scheduling constraints.

Decisions are tasks in which a choice is made among several different options,
known as candidates. Candidates have also properties of their own: zero or more
arguments, and a recommendation rule. An argument is a truth-valued expression
representing the arguments for or against a particular candidate. When a decision
is enacted, the expression and support type (for or against) of all arguments are
used to calculate the net support for the candidate. Basically, a for-argument adds
one to the net support of the candidate, and an against-argument subtracts one.
A recommendation rule is an expression that states the conditions under which
it would be appropriate to commit to the candidate, based on the calculated net
support.

Plans have additional control flow properties. A termination condition is a
truth-valued expression which represents the sufficient condition to successfully
terminate the plan. An abort condition is a truth-valued expression that aborts
the plan.

Lastly, enquiries have sources, which are data items whose value has to be
supplied. An enquiry may have several sources and each source is based on a data
definition.

Process descriptions are modelled in PROforma using the set of tasks and
logical constructors. From the initial root plan, tasks are organized hierarchically
into plans. Figure 2 shows the PROforma graphical representation of the main
clinical process of the same guideline shown in Figure 1.

2.3 Approach

The transformation of a clinical guideline specification in BPMN to a CIG can be
approached as a transformation between two different modelling languages.
There are several works which address the transformation from BPMN to
BPEL by means of algorithms [Mendling et al., 2008], [Ouyang et al., 2009]. These
papers exploit the graph-oriented paradigm of BPMN in order to implement
generic strategies for transforming graph-oriented process languages into block-

Supporting the Refinement of Clinical Process Models 7

oriented ones (such as BPEL). One of the transformation strategies is what those
authors call structure-identification strategy.

This strategy consists in, starting from certain structures of interest in the
target language, identifying in the source language structures that are equivalent to
those structures of interest. Then, each identified structure is mapped to the target
language and replaced by a single node according to the reduction rules applied in
the definition of structured process graphs [Mendling et al., 2008]. A very similar
approach is used for transforming XPDL to a Hierarchical Task Network (HTN)
[Gonzélez-Ferrer et al., 2013]. The main advantage of the structure-identification
strategy is that it produces more readable and understandable target code. This
strategy is only applicable to structured and acyclic input models.

In order to apply the structure-identification strategy, the input process
graph is segmented into proper structures. Few papers address the necessary
graph segmentation. We have studied two approaches: the token analysis
algorithm [Goétz et al., 2009] and the branch-water algorithm [Bae et al., 2004].
Both algorithms have two main phases. The first phase consists in traversing
the graph, labelling its nodes. In the second phase every structure of interest is
identified and replaced by a single node in the graph. A component is a connected
sub-graph, with at least two nodes, with a single entry point and a single exit
point, and without start and end events. Gotz et al. and Bae et al. decompose
the source graph into serial components, i.e. sequences, and parallel components.
The entry point of a parallel component is a split gateway, and the exit point
is the corresponding join gateway. Parallel components comprise OR-parallel
components, XOR-parallel components, and AND-parallel components, according
to the different types of gateways.

Although the PROforma language is not a BPM language, it has features of
graph-oriented and block-oriented paradigms. In this work, we exploit the graph-
oriented features of the input model and detect suitable structures that are then
translated to PROforma elements. Moreover, our approach is tailored to the char-
acteristics of clinical processes.

The so-called workflow patterns [van der Aalst et al., 2003] are somehow re-
lated to the above-mentioned structures of interest, as it is possible to recognize a
workflow pattern in some of them. However, these structures are determined exclu-
sively on the basis of the target language elements, which may differ considerably
from the workflow patterns (see Section 3.2). Additionally, our aim is to exploit the
graph-oriented features of BPMN, and to produce readable and understandable
target code.

3 Transformation to PROforma
3.1 The input model

In the context of clinical guidelines, our input BPMN models have several im-
portant features that have been taken into account in the implementation of the
transformation algorithms. First and very importantly, the BPMN input models
we consider are structured process models. A structured model is one in which
every split gateway has a matching join gateway of the same type, and in which
all split-join pairs are properly nested [Kiepuszewski et al., 2000]. Since clinical

8 Begona Martinez-Salvador, Ph.D., Mar Marcos, Ph.D.

_) —

additionallmageDec

Tomography

Fig. 3 XOR-parallel component with an arc that directly connects the split with the join
gateway, modelling the option “no imaging for some patients”.

guidelines are formulated in natural language, non-structuredness is not an es-
sential nor useful feature for clinical process models. This is an asset since the
structure-identification strategy is only applicable to structured graphs. More-
over, structuredness is a desirable property of BPDs according to Mendling et
al. [Mendling et al., 2010].

Moreover, our input models use the BPMN elements sub-process and ad-hoc
sub-process, for the following reasons. Communication and clarity are among the
most important purposes of BPMN, also in the case of guideline processes. How-
ever, BPMN models with a high number of elements are difficult to understand and
more error-prone. Therefore by convention we split up complex BPDs with a large
number of elements into smaller and simpler BPDs with sub-processes hiding the
internal details of certain activities (see e.g. Figure 1). This is in line with one of
the seven process modelling guidelines by Mendling et al. [Mendling et al., 2010].

Additionally, clinical guidelines may contain recommendations that can be
modelled as iterative processes. We have considered the usage of loops in tasks
or sub-processes for modelling this type of processes. However, we do not consider
arbitrary cycles in our models.

Finally, we regard a particular type of XOR-parallel components. When gate-
ways are used in BPMN models, normally at least one activity takes place in all
paths between the split and join gateway. According to our experience, clinical
guidelines frequently contain recommendations to be applied only to a subgroup
of patients. For example, the guideline for the diagnosis of prostate cancer rec-
ommends a bone scan, a tomography or a MRI for certain patients, while no
additional imaging is recommended for the rest of patients. This kind of recom-
mendations are usually modelled with a sequence flow that directly connects the
split with the join XOR-gateway, as Figure 3 shows.

3.2 The mapping to PROforma

In order to apply the structure-identification strategy, we have studied the build-
ing blocks of the target language, in this case PROforma. These comprise plans,
decisions, scheduling constraints and actions. Plans group processes but are also
used to model parallel flows. Then, it is necessary to identify AND-parallel compo-
nents in the input BPMN graph in order to transform them into PROforma plans.
The identification of an AND-parallel components is done based on the split and
join AND-gateways delimiting them. Notice that these AND-gateways need not be

Supporting the Refinement of Clinical Process Models 9

mapped since parallelism is represented in PROforma by means of a plan, which
means that PROforma is more compact in this case.

PROforma decisions model the control structures if-then, pick one, and pick
one or more. In the input model, these patterns correspond either to XOR or
OR-parallel components. Therefore, XOR and OR-parallel components must be
identified to be transformed to PROforma decisions. To facilitate the transforma-
tion, and given that between the split and join gateway of an XOR or OR-parallel
component there can be any type of elements including other components, we
have transformed every such component into a PROforma plan with a decision
task inside. A PROforma decision needs to define its candidates and the argu-
ments for/against these candidates (see Section 2.2). In general, the successor
nodes of the split XOR-gateway will give rise to the candidates, although the
transformation also works with XOR~parallel components like the one in Figure 3.
The condition expressions of the outgoing sequence flows of the split gateway will
define the arguments for each candidate. Finally, a text analysis of these condition
expressions will provide the sources (data) of the PROforma decision.

In PROforma, scheduling constraints are the way of specifying the order in
which tasks are enacted. In the case of sequences, there is a scheduling constraint
between each pair of consecutive tasks. Thus, sequences are identified in the input
process graph and are translated to appropriate scheduling constraints. A schedul-
ing constraint connects two consecutive tasks, and is graphically represented by
a directed arrow connecting those tasks. We could say that plans and decisions
represent the block-oriented features of PROforma, while scheduling constraints
are the graph-oriented ones.

Finally, every BPMN task will be translated into a PROforma action, and every
sub-process will be mapped to a PROforma plan with the aim of maintaining the
same process grouping. There are attributes, like the loop condition, that will
be mapped to a PROforma attribute. The mappings are listed in Table 1. The
correspondence between BPMN and PROforma elements is not always one-to-
one. This is because PROforma representation is more compact in some cases,
as illustrated by the case of AND-parallel components. This implies that some
BPMN elements will not be taken into account in the mapping to PROforma.
Note that the fact that the representation in PROforma is more compact in some
cases does not necessarily make the language less precise. In fact, the degree of
detail in the PROforma representation is at least the same as the degree of detail
in the BPMN one. At the other extreme, PROforma representation of decisions
(XOR and OR-parallel components) requires a considerable level of detail.

3.3 Implementation

The implementation of the approach has three steps which are: (1) storing the
BPMN model on a graph data structure; (2) segmenting the graph, which in-
cludes graph labelling, component identification and graph reduction; and finally,
(3) generating the target code. The algorithms have been implemented in Java
using the open-source Java JDOM API! for manipulating XML data.

I http://www.jdom.org/docs/apidocs/org/jdom2/input/SAXBuilder.html (last access:13-
06-13)

10 Begona Martinez-Salvador, Ph.D., Mar Marcos, Ph.D.

Table 1 Mappings between the BPMN elements and PROforma elements

BPMN

PROforma

XOR-Parallel Component

OR-Parallel Component

AND-Parallel Component

Sequential Component
ConditionExpression in SequenceFlow
Successor node of split XOR/OR-Gateways
Variable in ConditionExpression

Plan with decision
Plan with decision
Plan

Scheduling constraints
Argument in decision
Candidate in decision
Source in decision

Task Action

Parallel Ad-hoc Sub-process Plan

Sequential Ad-hoc Sub-process Plan with decision + plans
Sub-process (non ad-hoc) Plan

Loop expression cycleUntil

AND gateway -
Any join gateway -
Start event -
End event -

The first step is to build a directed graph from the BPMN specification of the
clinical procedures. Thus, every BPMN flow object is represented by a node in
the graph and every sequence flow becomes an arc in the graph. Since we deal
with sub-processes, we have a graph of graphs. In other words, we work with a
recursive data structure where every sub-process is represented as a single node in
the graph, while it contains its own graph and possibly sub-graphs.

Moreover, this data structure has been enriched with additional information
which is read from the BPMN file. This information includes the type of activity,
the type of gateway, the timing of activities and the type of condition and the
condition itself, if any. Conditions might be associated to activities or to sequence
flows.

In this step, there is a pre-processing of the graphs included in ad-hoc sub-
processes. Since the inner processes of a parallel ad-hoc sub-process can be enacted
simultaneously, we have modelled them using an AND-gateway with an arc for each
inner process. On the other hand, to mimic the behaviour of a sequential ad-hoc
sub-process, each possible sequential arrangement of the inner processes has been
modelled as an alternative after a split XOR-gateway. Note that these sequential
arrangements are not part of the initial BPMN model. In this sense, we can say that
these components have been artificially created. Considering the preprocessing, the
mapping of sequential ad-hoc sub-processes to PROforma includes a plan with a
decision and several subplans, as Table 1 shows. This mapping adds complexity
to the resulting model, but cannot be avoided because there is no equivalent in
PROforma for the BPMN sequential ad-hoc sub-process.

3.3.1 Segmenting the graph

Graph segmentation into components is a key step in the transformation algorithm.
We have adapted the branch-water algorithm to the features of our input graphs.
Therefore, in order to deal with sub-processes, we have implemented a recursive
solution.

Supporting the Refinement of Clinical Process Models 11

The algorithm first labels all the vertices of the graph. It assigns an initial
value (1.0) to the first node of the graph and propagates it through the graph. If
a node splits the flow into several branches, the value is divided by the number of
branches and propagated to the subsequent nodes. Conversely, the value of a node
with several incoming arcs is calculated as the sum of the labels of the precedent
nodes.

The labelling method has been adapted to deal with the type of sub-graphs
shown in Figure 3. We define the concept of valid successor node as follows: given a
node representing a split gateway, a subsequent node is said to be a valid successor
if it is not the corresponding join gateway. Reciprocally, with regard to a join
gateway, we say that a precedent node is a walid predecessor node, if it is not
the corresponding split gateway. Thus, the labels propagated through the arcs are
calculated considering only the valid successor nodes. Likewise, the label of a join
gateway is calculated from the values of the valid predecessor nodes.

Once all the nodes have been labelled, the algorithm proceeds identifying com-
ponents, that is, sequences and parallel components. Each time a component is
identified, its type and content are registered, and it is replaced by a single com-
ponent node. In the end, the graph is reduced to a trivial graph that gives rise to a
tree structure of components. In our work, we postpone the mapping to PROforma
until the tree of components is obtained. Therefore, all components are identified
first.

The branch-water algorithm always uses the minimum value of the set of labels
to find the innermost component. Each time, starting at the beginning node, the
graph is traversed until the innermost component is found. Thus, although the
size of the graph decreases at each iteration, the graph is traversed several times.

Our implementation first traverses the graph once, identifies all sequences and
replaces each one by a single node. After that, the algorithm iterates looking for
the innermost parallel component which is replaced by a single node. And then, it
looks for a possible new sequence considering the node created as a replacement
of the parallel component.

Algorithm 1 shows the pseudo-code for the main algorithm. This algorithm
calls Algorithm 2 and Algorithm 3. Algorithm 2 detects and replaces all sequences
with at least two nodes. Notice that only maximal sequences are of interest. A
maximal sequence is defined as a series of consecutive nodes with the same label,
excluding gateways and start and end events, such that it is not possible to add
a new node to the existing sequence without loosing its features. Since several
arcs merge in a join gateway, nodes are marked to avoid repeating the search of
already identified sequences following a join gateway. Finally, Algorithm 3 shows
the pseudo-code that seeks for a parallel component.

3.3.2 Generating the target code

Algorithm 1 results in a trivial graph, with just one node plus the start and end
events. From this point, the replacement of each node by its content gives rise to
a tree structure. The generation of the PROforma code is done following a top-
down traversal of this tree. We start with the single node of the trivial graph and
translate it to PROforma according to the mappings listed in Table 1. Then we
replace the node by its content and the same process is repeated for each one of
the new nodes.

12 Begona Martinez-Salvador, Ph.D., Mar Marcos, Ph.D.

Algorithm 1: ComponentIdentificationAlg

Input: Graph, Weights, GatewayNodes
Output: Trivial graph, SequenceComponents, ParallelComponents
allSequencesSearch(start node, Graph, SequenceComponents) ;
while (non trivial graph) do
parallelComponent < parallelComponentSearch(Graph, Weights, GatewayNodes,
ParallelComponents) ;
if (ParallelComponent done) then
add(ParallelComponents, parallelComponet) ;
parallelComponentNode « replace(Graph, parallelComponent) ;
serial ComponentSearch(Graph, parallelComponentNode,
SequenceComponents) ;
end
end
return Graph, SequenceComponents, ParallelComponents ;

Algorithm 2: allSequencesSearch

Input: Graph, start node, SequenceComponents
Output: Graph modified, SequenceComponents
sequence = () ;
v = start node ;
while (v is not a gatewayNode and v is not endEventNode) do
if (v is a subprocessNode) then
ComponentIdentificationAlg(v.graphmodel) ;
end
add(sequence,v);
mark(v,visited) ;
v = succ(v) ;
end
if (|sequence| > 1) then
add(SequenceComponents, sequence) ;
sequenceComponentsNode < replace(Graph,sequence);
end
sequence =) ;
if (v is a diverging gatewayNode) then
mark (v,visited) ;
for (every node w in succ(v)) do
allSequencesSearch(Graph, w, SequenceComponents) ;
end
else
(v is a converging gatewayNode) ;
if (v is not visited) then
mark (v,visited);
allSequencesSearch(Graph, succ(v), SequenceComponents);
end
end
return Graph, SequenceComponents;

The transformation to PROforma is done in two traversals of the tree. In
the first traversal, the mapping of each node to PROforma is stored in the node
itself, with the exception of the scheduling constraints. In the second traversal the
mapping is written into a file, and the scheduling constraints are defined in this
second traversal of the tree.

Supporting the Refinement of Clinical Process Models 13

Algorithm 3: parallelComponentSearch

Input: Graph, Weights, GatewayNodes
Output: Graph modified, ParallelComponents, parallelComponentNode
parallelComponent = 0 ;
min.w = minimum(Weights) ;
v = node with min_w(GatewayNodes) ;
if (found v) then
add (parallelComponent, succ(v)) ;
add (parallelComponent, join gateway) ;
add (ParallelComponents, parallelComponent) ;
parallelComponentNode < replace (Graph, parallelComponent) ;

end
return Graph, parallelComponentNode, ParallelComponents

4 Experiments with a prostate cancer guideline

We have conducted some experiments with different clinical guidelines. One of
them is the NCC Prostate Cancer Guideline [Mohler et al., 2012], which is a 69-
page text document with evidence-based recommendations for the diagnosis and
treatment of prostate cancer. Prostate cancer is one of the most important causes
of mortality and the most common cancer among males in developed countries
[Siegel et al., 2013]. We had previously modelled this guideline both in BPMN
(Figure 1) and in PROforma (Figure 2), to familiarize our clinical collaborators
with the notations for describing clinical processes, and to gather their impressions.

In this section, we discuss the results of applying the transformation algorithms
to the BPMN specification of the NCC prostate cancer guideline. On one hand, we
have manually checked that all the input model components were appropriately
translated, according to the transformations defined for the PROforma structures
of interest. On the other hand, we have executed a series of tests to ensure that
the obtained PROforma model —which we refer to as transformed model— pro-
duced the intended results. That is, we have checked that the execution of the
transformed model produces the same results that would be obtained by apply-
ing the text version of the guideline, for a series of test cases. This is the usual
procedure we use for testing our models. A formal verification of the models is
out of the scope of this work, as advanced techniques specific to some CIG lan-
guages are already available, including Asbru [Marcos et al., 2003] and PROforma
[Grando et al., 2012]. Finally, we have manually compared the transformed model
with the version we had previously modelled in PROforma —which we refer to as
direct model— to determine the equivalence of corresponding structures.

Table 2 shows, in the left-hand column, what BPMN elements the input model
includes, and in what quantities. The table also shows, in the right-hand column,
the counterpart elements in the transformed PROforma model, and their quan-
tities. The BPMN model consists of 325 nodes, of which 49 are sub-processes,
55 are split gateways, 55 are the corresponding join gateways, and 166 are tasks.
The transformed PROforma model consists of 376 elements. It has 57 plans that
include a decision, which correspond to same number of XOR and OR-parallel
components. Of the total of 74 plans, 49 correspond to the same number of BPMN
sub-processes. The rest correspond to the XOR gateways and the different alter-
natives introduced in the preprocessing of sequential ad-hoc sub-processes (see

14 Begona Martinez-Salvador, Ph.D., Mar Marcos, Ph.D.

Table 2 Comparing the input BPMN model and the transformed PROforma models

source BPMN transformed PROforma

Size 325 | Size 376
Depth 4 | Depth 8
XOR-split gateways 49 | Plans with a decision 57
OR-split gateways 6

Seq. ad-hoc sub-processes 2 | Plans 74
Paral. ad-hoc sub-processes 9

Sub-processes 38

Tasks 166 | Actions 188

Table 3 Comparing the direct and the transformed PROforma model

direct PROforma | transformed PROforma
Size 246 376
Depth 5 8
Plans 61 131
Decisions 21 57
Actions 105 188
Enquiries 59 0

Section 3.3). For the same reason, the number of PROforma actions is greater
than the number of BPMN tasks.

Apart from the number of plans and actions, the most noticeable difference is
in the depth of the models. Both BPMN and PROforma models define a hierar-
chical structure, based on sub-processes and plans, respectively. The depth of the
transformed model is 8, i.e. twice the depth of the BPMN model. This is due to
the transformation of XOR-parallel components. Another interesting observation
regards BPMN condition expressions, which can be just represented as plain text.
This is very convenient if conditions are to be used for annotation purposes, in
the specification phase. In our BPMN guideline the modeller has carefully written
these expressions, which allows the program to properly parse them and extract
the data items required for the decision tasks. However, it cannot be presupposed
that all data items can always be extracted in this way, and therefore a manual
revision of data sources will be required.

Table 3 shows the number of elements in the direct and in the transformed
PROforma models. The direct model has a total of 246 elements divided into 61
plans, 21 decisions, 105 actions and 59 enquiries. Here again, the number of plans
in the transformed model is far bigger than in the direct model. The reason is that
every XOR/OR parallel component has been mapped to a plan. This explains also
the difference in the depth of the direct and the transformed models. The difference
in the number of decisions is also remarkable. The reason is that the modeller of
the direct PROforma model used some enquiries as decisions, according to her
experience and criteria. In contrast, there are not enquiries in the transformed
PROforma model.

As mentioned before, we have manually compared the transformed model with
the direct one, to check whether corresponding structures were equivalent. As an
illustration, we analyse a decision in the transformed model and its corresponding

Supporting the Refinement of Clinical Process Models 15

Table 4 Candidates, arguments and recommendation rules for decision main_treatment_dec,
in the transformed PROforma model. HRFP stands for High Risk Factors Present

candidate arguments rule

T_no_further_workup (for) life_expectancy < 5 | netsupport(main_treatment_decision,
and asymptomatic=true | T_no_further_workup) =1
and HRFP=false

SP_staging_workup (for) life_expectancy>5 or | netsupport(main_treatment_decision,
symptomatic=true SP _staging_workup) = 1

T_special_treatment | (for) life_expectancy < 5 | netsupport(main_treatment_decision,
_for_highrisk_patienty and asymptomatic=true | T_special_treatment_for_highrisk
and HRFP=true _patients) = 1

decision in the direct one. Concretely, the clinical guideline recommends three dif-
ferent treatments for patients depending on their screening and cancer stage. This
recommendation is modelled in BPMN with an XOR-gateway with three outgoing
sequence flows, as shown in Figure 1. Likewise, a decision with three candidates has
been obtained in the transformed model. Table 4 lists these candidates, together
with the argument and the recommendation rule for each candidate. Note that
each candidate has a single argument, which corresponds to the condition of the
BPMN sequence flow. Note also that the recommendation rule of all candidates
states that the net support equals to one. This implies that a candidate will be
chosen when the condition of its only argument is satisfied.

In the direct model, the corresponding decision has also three candidates but
each candidate has multiple arguments, as shown in Table 5. Despite the differ-
ences in candidate details, the set of arguments and recommendation rules can
be regarded as semantically equivalent. For instance, the recommendation rule for
the second candidate of Table 5 requires that the net support is greater than or
equal to one, which means that at least one of the conditions of the two arguments
should be fulfilled. At the same time, the only argument of the second candidate
in Table 4 contains a disjunction of roughly the same conditions. Together with
the recommendation rule, which requires that the net support equals to one, this
candidate will be selected exactly in the same situations.

We can draw several lessons from our experiments. The results obtained show
that the implemented algorithms can successfully transform the BPMN specifi-
cation of a realistic guideline into the PROforma language. This transformation
is mostly done automatically, although a manual review of the resulting model is
required in points where the level of detail is greater than in the source (such as log-
ical expressions). In this sense, we regard the transformation as semi-automatic.
In general, a transformed model will have a higher number of elements (and a
greater depth) than a manually developed one. However, in our view the models
are always comparable. That is, we can draw a parallel between the corresponding
components, and we can see that these components are semantically equivalent.
Also as a consequence of the experiments, we have a more clear idea of how the
implemented algorithms can be applied. We envisage an initial BPMN modelling
performed mostly by clinicians, followed by the application of the algorithms and
the manual revision of the resulting model by IT engineers. In the end, a joint
review of the final model and its components can be made, if necessary using the
information on the mappings to trace back the originating components.

16 Begona Martinez-Salvador, Ph.D., Mar Marcos, Ph.D.

Table 5 Candidates, arguments and recommendation rules for decision treatment_decision,
in the direct PROforma model.

candidate arguments rule

(for) life_expectancy < 5

netsupport(treatment_decision,
No_treatment (for) symptomatol- No_Treatment) = 3

ogy=“asymptomatic”

(for) not (bulky_cancer=true and
(TNM=“T3a” or TNM=“T3b”
or TNM=4T4”))

Treatment (for) life_expectancy>5 netsupport(treatment_decision,

P I Treatment) > 1

(for) symptomato

ogy=“symptomatic”

(for) life_expectancy < 5 .
Treatment_for netsupport(treatment_decision,
_HighRisk (for) symptomatol- | Tyeatment_for_HighRisk) = 3

ogy=“asymptomatic”

(for) bulky_cancer=true and
(TNM=“T3a” or TNM=“T3b”
or TNM=%T4”)

5 Conclusions

In this paper we introduce an approach that supports the refinement of clinical
guidelines from an initial specification in a business process language to a de-
tailed and executable implementation in one of the available CIG languages. In
essence, our approach relies on a semi-automatic transformation from a BPMN
specification of a clinical guideline into an implementation in a CIG language.
The importance of our transformation-based refinement approach lies in that it
can ultimately facilitate and speed up the development process of decision-support
systems based on clinical guidelines. BPMN is a widely-adopted standard notation
for business process modelling, able to support not only organizational processes
but also clinical ones. BPMN can be easily understood by all stakeholders and
thus has the potential to empower clinicians to address the guideline modelling
task. This is crucial because the collaboration of clinical and IT staff has proven
superior for this task [Patel et al., 1998]. Accordingly, the combined use of BPMN
and a CIG language, targeting clinicians and IT engineers, respectively, is a key
feature of our approach.

In addition, in this paper we describe the algorithms that we have developed
for the transformation of guideline models in BPMN into the PROforma lan-
guage. The results obtained by applying the implemented algorithms to different
guidelines show that a transformation from BPMN to PROforma, and hence the
approach, is feasible. Moreover the resulting models are of a reasonable quality,
although a manual revision by IT engineers is always necessary due to the greater
level of detail of PROforma. One limitation is that the models resulting from the
transformation are of greater structural complexity, when compared with models
obtained fully manually by IT engineers. Despite this, we hypothesize a higher de-
gree of acceptance by clinicians, derived from a greater involvement in the initial
BPMN modelling. Additionally, the use of BPMN by clinical experts can facili-
tate modifications and updates of the guideline model, which may be needed on

Supporting the Refinement of Clinical Process Models 17

a regular basis for certain diseases. These hypotheses have yet to be validated. A
more general limitation is that a complete transformation might not be possible
due to the different expressiveness of the source and target languages. It is there-
fore important to characterize fully the transformation algorithms developed in
our approach, and to take into account these characteristics when applying the
transformations.

Our solution is tailored to the features of BPDs representing clinical pro-
cedures. Thus, it considers sub-processes and specific process structures com-
monly found in clinical guidelines. To our knowledge, the only transformation ap-
proaches in the context of clinical guidelines are the works by Gonzalez-Ferrer et al.
[Gonzélez-Ferrer et al., 2013] and by Dominguez et al. [Dominguez et al., 2010].
Gonzélez-Ferrer et al. tackle the transformation from XPDL to a HTN language,
and Dominguez et al. implement Java modules from UML state diagrams. There-
fore, none of them specifically deal with CIG languages.

An interesting aspect of our approach is that part of the algorithms can be
reused to transform BPMN to other CIG languages. Only the last step, the gen-
eration of the target code, would have to be implemented. In this line, we have
recently developed algorithms to transform BPMN guidelines to the SDA CIG
language [Martinez-Salvador et al., 2015]. Thus, from the same clinical guideline
specification, we could obtain executable models in different CIG languages.

As future work, we plan to conduct experiments to assess the effectiveness of
our approach with respect to our initial goal, which is to facilitate the encoding
of clinical guidelines and simultaneously to involve clinicians more actively in the
process. The setting for these experiments should be as realistic as possible, and
compel the joint participation of clinicians and IT engineers. Furthermore, we
plan to incorporate Model-Driven Engineering techniques into our transformation
algorithms. For this purpose, a logical continuation would be to define a model-
driven transformation for each component identified in the source model.

Acknowledgements This research has been supported by Universitat Jaume I through
project P1-1B2013-15, and by the Spanish Ministry of Economy and Competitiveness and
the EU FEDER programme through project TIN2014-53749-C2-1-R.

References

[Bae et al., 2004] Bae, Joonsoo, Hyerim Bae, Suk-Ho Kang, & Yeongho Kim 2004. Automatic
control of workflow processes using ECA rules. Knowledge and Data Engineering, IEEE
Transactions on, 16(8):1010-1023.

[Boxwala et al., 2001] Boxwala, Aziz A, Samson Tu, Mor Peleg, Qing Zeng, Omolola Ogun-
yemi, Robert A Greenes, Edward H Shortliffe, & Vimla L Patel 2001. Toward a representation
format for sharable clinical guidelines. Journal of Biomedical Informatics, 34(3):157-169.

[Bury et al., 2005] Bury, J., C. Hurt, & A. et al. Roy 2005. LISA: a web-based decision-support
system for trial management of childhood acute lymphoblastic leukaemia. British Journal
of Haematology, 129:746-754.

[COSSAC, 2013a] COSSAC 2013a. CREDO Project. http://www.cossac.org/projects/credo.
Interdisciplinary Research Collaboration in Cognitive Science & Systems Engineering (COS-
SAC).

[COSSAC, 2013b] COSSAC 2013b. Tallis Training. http://archive.cossac.org/tallis/index.html.
Interdisciplinary Research Collaboration in Cognitive Science & Systems Engineering.

[Coulson et al., 2001] Coulson, A., DW. Glasspool, J. Fox, & J. Emery 2001. RAGS: a novel
approach to computerised genetic risk assessment and decision support from pedigrees. Meth-
ods of Infor, 40:315-322.

18 Begona Martinez-Salvador, Ph.D., Mar Marcos, Ph.D.

[de Clercq et al., 2004] de Clercq, Paul A, Johannes A Blom, Hendrikus HM Korsten, Arie
Hasman, et al. 2004. Approaches for creating computer-interpretable guidelines that facilitate
decision support. Artificial Intelligence in Medicine, 31(1):1-28.

[Dominguez et al., 2010] Dominguez, E., B. Pérez, & M. Zapata 2010. Towards a trace-
able clinical guidelines application. A model-driven approach. Methods of Information in
Medicine, 49(6):571-580.

[Dugan & Palmer, 2012] Dugan, Lloyd, & Nathaniel Palmer 2012. BPMN 2.0 Handbook Sec-
ond Edition: Updated and Expanded, chapter Making a BPMN 2.0 Model Executable, pages
71-91. Future Strategies Inc., Book Division.

[Emery et al., 2000] Emery, J., R. Walton, M. Murphy, & et al. 2000. Computer support for
interpreting family histories of breast and ovarian cancer in primary care: comparative study
with simulated cases. British Medical Journal, 321:28-32.

[Field & Lohr, 1990] Field, Marilyn J., & Kathleen N. Lohr 1990. Clinical Practice Guidelines:
Directions for a New Program. The National Academies Press, Committee to Advise the
Public Health Service on Clinical Practice Guidelines, Institute of Medicine.

[Gonzdlez-Ferrer et al., 2013] Gonzélez-Ferrer, Arturo, Juan Ferndndez-Olivares, & Luis
Castillo 2013. From Business Process Models to Hierarchical Task Network Planning Do-
mains. Knowl. Eng. Rev., 28(2):175-193.

[Gotz et al., 2009] Gotz, M, Stephan Roser, Florian Lautenbacher, & Bernhard Bauer 2009.
Token analysis of graph-oriented process models. In Enterprise Distributed Object Comput-
ing Conference Workshops, 2009. EDOCW 2009. 13th, pages 15-24. IEEE, IE.

[Grando et al., 2012] Grando, M Adela, David Glasspool, & John Fox 2012. A formal approach
to the analysis of clinical computer-interpretable guideline modeling languages. Artificial
Intelligence in Medicine, 54(1):1-13.

[Hashemian & Abidi, 2012] Hashemian, Nima, & Syed Sibte Raza Abidi 2012. Modeling clini-
cal workflows using business process modeling notation. In Computer-Based Medical Systems
(CBMS), 2012 25th International Symposium on, pages 1-4. IEEE, IEEE.

[Kiepuszewski et al., 2000] Kiepuszewski, B., A. H. Maria ter Hofstede, & C. J. Bussler 2000.
On Structured Workflow Modelling. In Lecture Notes in Computer Science, number 1789,
pages 431-445. Springer-Verlag, Berlin Heidelberg. (CAiSE 2000).

[Kirchner et al., 2014] Kirchner, Kathrin, Christina Malessa, Hubert Scheuerlein, & Utz
Settmacher 2014. Experience from collaborative modeling of clinical pathways. In Hess,
M., & H. Schlieter (eds), Modellierung im Gesundheitswesen: Tagungsband des Workshops
im Rahmen der Modellierung, page 13.

[Marcos et al., 2003] Marcos, Mar, Michael Balser, Annette ten Teije, Frank van Harmelen, &
Christoph Duelli 2003. Experiences in the formalisation and verification of medical protocols.
In Artificial Intelligence in Medicine, pages 132-141. Springer.

[Martinez-Salvador et al., 2015] Martinez-Salvador, Begona, Mar Marcos, & David Riafo
2015. An Algorithm for Guideline Transformation: From BPMN to SDA. Procedia Computer
Science, 63:244-251.

[Martinez-Salvador et al., 2014] Martinez-Salvador, Begonia, Mar Marcos, & Anderson
Sanchez 2014. An algorithm for guideline transformation: from BPMN to PROforma. In
Knowledge Representation for Health Care, pages 121-132. Springer.

[Mendling et al., 2008] Mendling, Jan, Kristian Bisgaard Lassen, & Uwe Zdun 2008. On the
transformation of control flow between block-oriented and graph-oriented process modelling
languages. International Journal of Business Process Integration and Management, 3(2):96—
108.

[Mendling et al., 2010] Mendling, J., H.A. Reijers, & W.MP. van der Aalst 2010. Seven process
modeling guidelines (7TPGM). Information and Software Technology, 52:127-136.

[Mohler et al., 2012] Mohler, J.L., A.J. Amstrong, R.R. Bahnson, B. Boston, J.E Busby, A.V.
D’Amico, J.A. Eastham, C.A. Enke, T. Farrington, C.S. Higano, EM Horwitz, PW Kantoff,
MH Kawachi, 1 M Kuette, RJ Lee, GR MacVicar, AW Malcolm, D Miller, ER Plimack,
JM Pow-Sang, M 3rd Roach, E Rohren, S Rosenfeld, S Srinivas, SA Strope, J Tward, P Twar-
dowski, PC Walsh, M Ho, & DA. Sheadm 2012. Prostate cancer, Version 3.2012: featured
updates to the NCCN Guidelines. Journal of the National Comprehensive Cancer Network,
10(9):1081-1087.

[OMG, 2011] OMG 2011. Busines Process Model and Notation (BPMN) Version 2.0.

[Ouyang et al., 2009] Ouyang, Chun, Marlon Dumas, Wil MP Aalst, Arthur HM Ter Hofstede,
& Jan Mendling 2009. From business process models to process-oriented software systems.
ACM Transactions on Software Engineering and Methodology (TOSEM), 19(1):2.

Supporting the Refinement of Clinical Process Models 19

[Parra et al., 2012] Parra, Carlos, Francisco Jédar-Sédnchez, M Dolores Jiménez-Herndndez,
Eduardo Vigil, Alfredo Palomino-Garcia, Francisco Moniche—Alvarez, Francisco Javier De la
Torre-Laviana, Patricia Bonachela, Francisco José Ferndndez, Aurelio Cayuela-Dominguez,
et al. 2012. Development, implementation, and evaluation of a telemedicine service for the
treatment of acute stroke patients: teleStroke. Interactive Journal of Medical Research, 1(2).

[Patel et al., 1998] Patel, Vimla L, Vanessa G Allen, José F Arocha, & Edward H Shortliffe
1998. Representing Clinical Guidelines in GLIF Individual and Collaborative Expertise.
Journal of the American Medical Informatics Association, 5(5):467-483.

[Peleg et al., 2003] Peleg, Mor, Samson Tu, Jonathan Bury, Paolo Ciccarese, John Fox,
Robert A Greenes, Richard Hall, Peter D Johnson, Neill Jones, Anand Kumar, et al. 2003.
Comparing computer-interpretable guideline models: a case-study approach. Journal of the
American Medical Informatics Association, 10(1):52-68.

[Recker, 2010] Recker, Jan 2010. Opportunities and constraints: the current struggle with
BPMN. Business Process Management Journal, 16(1):181-201.

[Rojo et al., 2008] Rojo, Marcial Garcia, Elvira Rolén, Luis Calahorra, Félix Garcia,
Rosario Paloma Sénchez, Francisco Ruiz, Nieves Ballester, Maria Armenteros, Teresa
Rodriguez, Rafael Martin Espartero, et al. 2008. Implementation of the Business Process
Modelling Notation (BPMN) in the modelling of anatomic pathology processes. Diagnostic
Pathology, 3(Suppl 1):522.

[Rolén et al., 2008] Rolén, Elvira, Félix Garcia, Francisco Ruiz, Mario Piattini, Luis Cala-
horra, Marcial Garcia, & Rafael Martin 2008. Process modeling of the health sector using
BPMN: A case study. In Proceedings of the First International Conference on Health Infor-
matics, HEALTHINF 2008, volume 2, pages 173—-178. Diagnostic Pathology.

[Scheuerlein et al., 2012] Scheuerlein, Hubert, Falk Rauchfuss, Yves Dittmar, Riidiger Molle,
Torsten Lehmann, Nicole Pienkos, & Utz Settmacher 2012. New methods for clinical path-
ways — Business Process Modeling Notation (BPMN) and Tangible Business Process Mod-
eling (t. BPM). Langenbeck’s Archives of Surgery, 397(5):755-761.

[Siegel et al., 2013] Siegel, R., D. Naishadham, & A. Jeme 2013. Cancer Statistics. A Cancer
Journal for Clinicians, 63(1):11-30.

[Sutton & Fox, 2003] Sutton, David R, & John Fox 2003. The syntax and semantics of the
PROforma guideline modeling language. Journal of the American Medical Informatics As-
sociation, 10(5):433-443.

[Svagard & Farshchian, 2009] Svagard, Ingrid, & Babak A Farshchian 2009. Using Busi-
ness Process Modelling to Model Integrated Care Processes: Experiences from a European
Project. In Distributed Computing, Artificial Intelligence, Bioinformatics, Soft Computing,
and Ambient Assisted Living, pages 922-925. Springer.

[van der Aalst et al., 2003] van der Aalst, Wil MP, Arthur HM Ter Hofstede, Bartek Kie-
puszewski, & Alistair P Barros 2003. Workflow patterns. Distributed and Parallel Databases,
14(1):5-51.

[zur Muehlen & Recker, 2008] zur Muehlen, Michael, & Jan Recker 2008. How Much Lan-
guage is Enough? Theoretical and Practical Use of the Business Process Modeling Notation.
In 20th International Conference on Advanced Information Systems Engineering. LNCS,
Springer-Verlag.

