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This work presents a strategy to minimize the network usage and the energy consumption of wireless
battery-powered sensors in the observer problem over networks. The sensor nodes implement a peri-
odic send-on-delta approach, sending new measurements when a measure deviates considerably from
the previous sent one. The estimator node implements a jump observer whose gains are computed
off-line and depend on the combination of available new measurements. We bound the estimator per-
formance as a function of the sending policies and then state the design procedure of the observer
under fixed sending thresholds as a semidefinite programming problem. We address this problem first
in a deterministic way and, to reduce conservativeness, in a stochastic one after obtaining bounds
on the probabilities of having new measurements and applying robust optimization problem over
the possible probabilities using sum of squares decomposition. We relate the network usage with the
sending thresholds and propose an iterative procedure for the design of those thresholds, minimizing
the network usage while guaranteeing a prescribed estimation performance. Simulation results and
experimental analysis show the validity of the proposal and the reduction of network resources that
can be achieved with the stochastic approach.

Keywords: State estimation; Networked control systems; Wireless sensor network; event-based
sampling; send-on-delta; Co-design.

1. Introduction

With the increasing use of network technologies for process control, researchers focus on the
reduction of the network data flow to increase flexibility under the addition of new devices
(see Chen et al. (2011); Nagahara et al. (2013)). The sensor nodes can help by reducing their
data transmissions with an event-based sending strategy (see Lunze and Lehmann (2010)), what
furthermore helps to decrease maintenance costs if they are wireless and self-powered, as stated
in Stark et al. (2002); Ploennigs et al. (2010). Some examples of using an energy-efficient sampling
strategy in real-world applications are Beschi et al. (2014a,b); Ruiz et al. (2014)
State estimation plays a key role in networked control systems as the state of the plant is

rarely directly measured for control purposes and because the output measurements are irregu-
larly available due to communication constraints or packet dropouts (see Chen et al. (2011); Qiu
et al. (2012)). The approaches found in the literature to address the state estimation problem
with event-based sampling can be classified depending on the sending policy, and on the commu-
nication or computational resources required on the sensor nodes. The authors in Nguyen and
Suh (2007); Suh et al. (2007) use a send-on-delta (SOD) strategy where the sensor node decides
whether to send a new measurement if the actual acquired one differs more than a given thresh-
old with respect to the last sent one. With those measurements, the estimator node implements
a modified Kalman filter that uses the last acquired data and modifies the update equation to
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account the lack of data by means of including a virtual noise. In the work Nguyen and Suh
(2008) each node uses the integral of the difference between the last acquired measurement and
the last sent one to decide whether sending a new sample (send-on-area), while the authors in Sijs
and Lazar (2012) combine SOD and time-triggered strategies in the sensor nodes. In other works
like Battistelli et al. (2012); Millán et al. (2013) the authors include an state estimator in each
sensor node to decide the sending of new data (output or state estimation), while in Wu et al.
(2013) the authors impose the sensor node to receive and process several information to decide
whether it should send the measurement.
Under the motivation of reducing the computational effort of the estimator and the sensor

nodes, we use a jump linear estimator that at each instant uses a precomputed gain that depends
on the availability of new measurements, and the nodes implement a send-on-delta strategy with
fixed thresholds. With the aim of extending the approaches found in the literature to a wider
class of disturbances, we obtain the gains that guarantee an H∞ attenuation level based on
a linear matrix inequalities (LMI) problem. With the aim of having less conservative results,
we also obtain the range of probabilities of having new measurements with the send-on-delta
mechanism. In this case we bound the H∞ attenuation level for all the possible probabilities in
the range with sum of squares (SOS) techniques Chesi (2010).
The use of a jump linear estimation instead of a time varying one, and the use of LMI for-

mulation of the problem would allow to easily extend the proposal of this work to face, for
instance, model uncertainties, models depending on time-varying parameters or sector-bounded
nonlinearities, time-delays, packet dropouts or quantization (see, for instance, Qiu et al. (2010,
2015, 2009)). The LMI formulation of the problem results in the calculation of a bound on the
state estimation error and the possibility of extending the observer design presented in this work
to the design of inferential controllers or fault diagnosis systems.
Some works have shown that there is a trade-off between communication rate and estimation

quality Wu et al. (2013). The authors in Wang and Lemmon (2009); Dai et al. (2010); Gaid et
al. (2006); Irwin et al. (2010) named the problem of optimizing the network usage while assuring
some performance measurement as co-design problem. The works Sijs and Lazar (2012); Nguyen
and Suh (2009) addressed this problem with the time-triggering condition, and Suh et al. (2007)
addressed it deciding the threshold levels of sensors implementing a SOD strategy. In the last
work the authors modeled the network usage with a Gaussian probability distribution of the
system outputs.
Motivated by extending the applicability of the co-design procedure to more general cases, we

use the bounds on the probability of having new transmissions to measure the network usage,
and to guarantee tight bounds of the achievable performance of the estimator.
We consider the value of the threshold ∆ in each sensor node as a trade-off parameter between

the network usage and the estimation performance. When the thresholds are fixed, we obtain
a set of constant estimator gains that maximizes the estimator performance following different
strategies. First, we assume that no information about the outputs is known and develop a deter-
ministic approach that guarantees poly-quadratic stability and a bound on the RMS norm of the
state estimation error. For the second strategy, we assume some information about the outputs
distribution and develop different stochastic approaches formulated in terms of the probabilities
of output transmissions, that guarantees mean square stability and a tighter bound on the RMS
norm. Then, we address a co-design strategy with an iterative optimization problem that returns
both the estimator gains and the value of ∆ that leads to the lowest data transmission for a
given bound on the RMS norm.
The main contributions of this work are that we propose three alternatives for observer design

over send-on-delta measurements that can tighten the bound on the estimation error depending
on the knowledge on the outputs distribution, and that we use those design formulations to
address the co-design problem. The use of the network can also be alleviated depending on the
assumptions that can be made for the measurable outputs. The results in this paper have the
advantage of explicitly showing several tuning parameters that can help tightening the bounds
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for the estimation error and the network requirements.
Notation : Let A and B be some matrices. A ≺ B means that matrix A−B is negative definite.

Similar applies to �. diag{A,B} is a block diagonal matrix with A and B on its diagonal. Let
x[t] ∈ Rn be a stochastic process. Expected value and probability are denoted by E{·} and P{·}.
We write ‖x[t]‖2RMS , limT→∞

∑T−1
t=0

1
T ‖x[t]‖22 for the RMS norm of x[t].

2. Problem Statement

Consider a networked control system that updates the control action synchronously with the
output measurement and the plant model

x[t+ 1] = Ax[t] +Bu u[t− 1] +Bw[t], (1a)

y[t] = C x[t] + v[t], (1b)

z[t] = Cz x[t], (1c)

where x ∈ Rn is the state, u ∈ Rnu is the known input vector, w ∈ Rnw is the unmeasur-
able state disturbance vector, y ∈ Rny is the measured output, v ∈ Rny is the measurement
noise, and z[t] ∈ Rnz the signal of interest. Throughout this work we assume that the control
input is causally available at all times. This can be achieved when the controller and estima-
tor are collocated, and the control action is transmitted through a reliable network (without
dropouts), see Fig. 1. We assume that each measurable output uses a sensor node that acquires
the measurement and decides whether to send it to the estimator node.
Let us assume that the sensor node i has sent a measured plant output to the estimation node

through the communication network at period t = tki
and we call it yi[tki

] = yi[tki
] (where ki

enumerates the sent data from sensor i). Then, a new measurement will be sent if the following
condition holds

|yi[t]− yi[tki
]| ≥ ∆i, ∆i > 0, t > tki

. (2)

In that case, the sensor sends the (ki+1)-th measurement, and yi[t] becomes yi[tki+1] for future
reference.
We assume that there is a central state estimator node that uses the received messages from

the sensor nodes to perform the estimation using the equations

x̂[t−] = A x̂[t− 1] +Bu u[t− 1], (3a)

x̂[t] = x̂[t−] + L[t](m[t]− C x̂[t−]), (3b)

ẑ[t] = Czx̂[t], (3c)

where m[t] is the estimated measured output vector, and L[t] is the observer gain. m[t] in-
cludes both the information of the received output values ( y[tki

]) and the information of the
measurement uncertainty. The i-th component of m[t] remains constant while there is no new
measurement from sensor i, i.e.,

mi[t] = yi[tki
], tki

≤ t < tki+1,

and we model its relation with the actual state as

mi[t] =

{
Ci x[t] + vi[t], t = tki

,
Ci x[t] + vi[t] + δi[t], tki

< t < tki+1,
(4)
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being Ci the i-th row of matrix C, and where δi[t] is a virtual noise fulfilling ‖δi[t]‖∞ < ∆i, as
we have |yi[t]− yi[tki

]| < ∆i for tki
< t < tki+1.

Network

u[t]
Plant

yi[t]

Sensor Node i

yi[tki
]

Sensor i

mi[t]

u[t]
State Estimator

Controller

and

Figure 1. send-on-delta based networked state estimator.

Remark 1. While t ∈ N refers to each time instant, tki
(with ki ∈ N) enumerates only the

instant when the ki-th measurement from the i-th sensor is received. For instance, if we receive
the k2-th and (k2 + 1)-th measurements from sensor 2 at instants tk2

= 8 and tk2+1 = 11, then,
instants tk2

+ 1 = 9 or tk2
+ 2 = 10 refer to instants when no measurements from sensor 2 are

received.

Let us define αi[t] as the availability factor for each sensor i, that is a binary variable that
takes a value of 1 if there is a new measurement received from the sensor node i and 0 otherwise.
We define the availability matrix as a diagonal one including the αi[t] factor of each sensor, i.e.,

α[t] = diag{α1[t], . . . , αny
[t]}.

We then model the available measurements of the outputs as

m[t] = C x[t] + v[t] + (I − α[t]) δ[t], (5)

with δ[t] = [δ1[t] · · · δny
[t]]T , δi[t] ∈ (−∆i,∆i).

Matrix α[t] can take different values depending on the measurements successful transmission
possibilities and they belong to a known set

α[t] ∈ Ξ = {η0, η1, . . . , ηq}, (6)

where ηi denotes a possible combination of available measurements at each control period. We
recall those combinations as sampling scenarios. Matrix η0 denotes the scenario with unavailable
measurements and q the number of different scenarios with available measurements. In the
general case, any combination of obtainable sensor measurements is possible, leading to q =
2ny − 1.
The first of our goals is to define a centralized observer that uses the scarcely received dis-

tributed data and the uncertainty knowledge. We propose the observer equation (3) and define
the gain observer law L[t] as

L[t] = L(α[t]), (7a)

L(α[t]) = Lj, if α[t] = ηj , (7b)

what leads to a jump observer. The gains take, in general, q+1 different values within a predefined
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set, i.e.,

L(α[t]) ∈ L = {L0, . . . , Lq}. (8)

The gains are computed off-line once, and the centralized observer chooses the applicable gain
depending on the availability of new measurements (see Smith and Seiler (2003); Dolz et al.
(2014) for other jump observers applicable on networked control systems).
With the estimator defined by (3) and (7), we obtain the state estimation error dynamics

given by

x̃[t] = A(α[t])x̃[t− 1] + B(α[t])ξ[t], (9)

ξ[t] =
[
w[t− 1]T v[t]T δ[t]T

]T
,

z̃[t] = Czx̃[t], (10)

with x̃[t] = x[t]− x̂[t], z̃[t] = z[t]− ẑ[t], and

A(α[t]) = (I − L(α[t])C)A,

B(α[t]) =
[
(I − L(α[t])C)B − L(α[t]) − L(α[t])(I − α[t])

]
.

As we restrict L(α[t]) to take q + 1 different values depending on the value of matrix α[t], we
get a jump linear system with discrete state α[t] and with a finite number of modes.

Remark 2. The only condition to find a stabilizing observer is that the system (A,CA) is
detectable. Note that if we restrict the gains to be constant (i.e., L(α[t]) = L), the dynamics of the
observer is given by the constant matrix (I−LC)A, what leads to the aforementioned condition.
The idea of using virtual measurements when the real ones are not available is to assure the
detectability of the system at each sampling instant and thus, the stability of the observer, while
the idea of adapting the gain to the sampling scenario α[t] is to avoid the propagation of the
virtual noise.

The second of our goals is to jointly design the observer gains and the thresholds ∆i that
minimize the network usage while guaranteeing a predefined estimation performance. The net-
work usage is proportional to the rate in which (2) occurs, so we achieve this goal by minimizing
a cost function related to the sending thresholds ∆i. In this work, we present alternatives to
bound the estimator performance and the network usage depending on ∆i. For each of them we
calculate the minimum probability of receiving a measurement and the maximum variance of
the resulting virtual noise δ[t].
We reformulate the main objective of this paper as the simultaneous design of the q+1 gains

Lj and the ny thresholds ∆i that minimize the network usage, at the same time that guarantee
a given bound on the estimation error.

3. Observer design

We present two jump observer design approaches for SOD policy with fixed ∆i that assure
stability and H∞ attenuation level. We propose first a deterministic strategy that does not
require any assumption on the output statistics. Then, we propose different assumptions about
the statistical information of the output, and then develop a stochastic strategy that allows us
to relax the bound on the achievable performance.
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3.1 Deterministic approach

Theorem 1. Consider that observer (3) with gain (7) estimates the state of system (1) that
sends its outputs with the SOD policy. If there exist matrices Pj , Qj, Xj (j = 0, 1, . . . , q),
and positive values γw, γvi and γδi (i = 1, . . . , ny) such that Pj = P T

j ≻ 0, and for all j, k ∈
{0, . . . , q} × {0, . . . , q}1

Φj,k =









Qj +QT
j − Pj ⋆ ⋆ ⋆ ⋆

((Qj −XjC)A)T Pk − CT
z Cz ⋆ ⋆ ⋆

((Qj −XjC)B)T 0 γw I ⋆ ⋆
−XT

j 0 0 Γv ⋆

−(I − ηj)X
T
j 0 0 0 Γδ









≻ 0, (11)

being Γv = diag{γv1 , . . . , γvny
}, Γδ = diag{γδ1 , . . . , γδny

}, then, defining the observer gains as

Lj = Q−1
j Xj (j = 0, . . . , q), the following conditions are fulfilled: under null disturbances, the

system is asymptotically stable, and, under null initial conditions, the state estimation error is
bounded by

‖z̃[t]‖2RMS < γw‖w[t]‖2RMS +

ny∑

i=1

γvi‖vi[t]‖2RMS +

ny∑

i=1

γδi‖δi[t]‖2RMS . (12)

Proof 1. If (11) holds, then Qj+QT
j −Pj ≻ 0 and Qj is a nonsingular matrix. If Pj is a positive

definite matrix, then (Pj−Qj)
TP−1

j (Pj−Qj) � 0, implying that Qj+QT
j −Pj � QT

j P
−1
j Qj. If we

replace Xj by Qj Lj, in (11), perform congruence transformation by matrix diag{Qj , I, I, I, I}
and apply Schur complements, we obtain that







Pk − CT
z Cz ⋆ ⋆ ⋆

0 γw I ⋆ ⋆
0 0 Γv ⋆
0 0 0 Γδ






−







((I − LjC)A)T

((I − LjC)B)T

−(Lj)
T

−(I − ηj) · (Lj)
T







︸ ︷︷ ︸

⋆

Pj(⋆)
T ≻ 0. (13)

Consider a Lyapunov function depending on the sampling scenario as

V [t] = V (x̃[t], α[t]) = x̃[t]TP (α[t])x̃[t],

with P (α[t]) taking values on the set {P0, . . . , Pq} depending on the value α[t] as

P (α[t]) = Pj , if α[t] = ηj , ∀ j ∈ [0, . . . , q].

Multiplying expression (13) by [x̃[t]T , w[t]t, v[t]T , δ[t]T ] on the left, and by its transpose on the
right, and assuming α[t+ 1] = j and α[t] = k, it leads

x̃[t+ 1]TPj x̃[t+ 1]− x̃[t]TPkx̃[t] + z̃[t]T z̃[t] <

< γww[t]
Tw[t] + v[t]TΓvv[t] + δ[t]TΓδδ[t] (14)

for any pair j, k in {0, . . . , q}×{0, . . . , q}. If we consider null disturbances, then V [t+1] < V [t],
demonstrating the asymptotic stability of the observer. If we assume null initial state estimation

1the symbol ⋆ refers to the required element to make the matrix symmetric.
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error (x̃[0] = 0, V [0] = 0) and we add expression (14) from t = 0 to T , we obtain

V [T + 1] +

T∑

t=0

z̃[t]T z̃[t] < (15)

<

T∑

t=0

(
γww[t]

Tw[t] + v[t]TΓvv[t] + δ[t]TΓδδ[t]
)

As V [T + 1] > 0, if we divide by T and take the limit when T tends to infinity, we obtain (12).

Remark 3. As A and C are constant matrices, the only requirement to find a stabilizing observer
is that the pair (A,AC) is detectable.

3.2 Stochastic approach

The previous theorem leads to conservative results due to the consideration of all the possible
sequences of new data reception with the same probability. For instance, it can respond satis-
factorily to the situation of acquiring just a first measurement at the start-up of the observer
and then working indefinitely with that unique measurement. If the disturbances and noises are
not negligible, we can assume that there is a small probability of acquiring new data, and that
is the key in the stochastic approach to reduce the conservativeness. The probability of having
available new data at a given sampling instant is

βi = P{αi[t] = 1} = P{|yi[t]− yi[tki
]| ≥ ∆i}, t > tki

.

The difference yi[t]−yi[tki
] depends on the achieved state x[tki

] during the last sent measurement,
the inputs, disturbances and number of elapsed periods from tki

(let us call it N) as

yi[t]− yi[tki
] = yi[tki

+N ]− yi[tki
] = (16)

Ci



ANx[tki
] +

N−1∑

j=0

AN−1−j(Buu[tki
+ j − 1] +Bw[tki

+ j])



+ v[tki
+N ]− v[tki

].

The dependency of that difference on the inputs leads us to a non stationary probability that
can change at every sampling instant, i.e.,

βi[t] = P{|yi[t]− yi[tki
]| ≥ ∆i}, t > tki

.

As the difference include the stochastic values w[t] and v[t], we assume that the probability
belongs to the set

βi[t] ∈ Si = {βi[t] : β′
i ≤ βi[t] ≤ 1}. (17)

β[t] = 1 applies when the control action or the state evolution are sufficiently high to assure a
new measurement transmission. β[t] = β′

i applies during the less excited periods (with x[tki
] = 0

and u[t] = 0 for t ≥ tki
) that leads to the less favorable scenario to acquire new data, when only

the disturbance and noise excite the send-on-delta mechanism. If we choose β′
i = 0 we face again

the deterministic approach, but choosing β′
i > 0 implies assuming that there is at least a small

probability of acquiring new data, thus reducing conservatism.

7



June 30, 2015 International Journal of Systems Science obsHinfSOD

The probability of obtaining a sampling scenario ηj (j = 1, . . . , q) is also non stationary and
is given by

pj[t] = P{α[t] = ηj} =

ny∏

i=1
∀ηj,i=0

(1− βi[t])

ny∏

i=1
∀ηj,i=1

βi[t], (18)

where ηj,i refers to the i-th diagonal entry of ηj . The probability of having no measurement
available at a control period is given by

p0[t] = P{α[t] = η0} =

ny∏

i=1

(1 − βi[t]), (19)

and the probability of sending some measurement is 1− p0[t].

Remark 4. In the stochastic approach, the probabilities βi[t] (i = 1, . . . , ny) are assumed to vary
within two bounds. We will study in Section 3.3.2 how to obtain the lower bound on βi[t] (see (29)
and (33)). The upper bound is the natural one βi[t] ≤ 1 that is achieved when the control action
is sufficiently exciting to make the outputs cross the thresholds continuously. Therefore, each
probability βi[t] is contained in the set Si defined in (17). With these bounds on βi[t] we can
derive bounds on the probabilities of the sampling scenarios pj[t] (j = 0, . . . , q).

With the probabilities of the sampling scenarios (18) we can obtain the set of gains that assure
an attenuation level for any probability within the bounds. In the following theorem we omit
the dependency on time of the probabilities for brevity.

Theorem 2. Consider that observer (7) estimates the state of system (1) that sends its outputs
with the SOD policy. Consider that there exist matrices P = P T ≻ 0, Qj, Xj (j = 0, . . . , q), and
positive values γw, γvi and γδi (i = 1, . . . , ny) such that for any {β1, . . . , βny

} ∈ S1×S2 · · · ×Sny

Ψ(β) =









M1 ⋆ ⋆ ⋆ ⋆
M2 P − CT

z Cz ⋆ ⋆ ⋆
M3 0 γw I ⋆ ⋆
M4 0 0 Γv ⋆
M5 0 0 0 Γδ









≻ 0, (20)

where

M1 = diag{p0(Q0 +QT
0 − P ), . . . , pq(Qq +QT

q − P )},

M2 = [p0ĀT
0 · · · pqĀT

q ], M3 = [p0B̄T
0 · · · pqB̄T

q ],

M4 = [−p0X
T
0 · · · − pqX

T
q ],

M5 = [−p0(I − η0)X
T
0 · · · − pq(I − ηq)X

T
q ],

Āj = (Qj −XjC)A, B̄j = (Qj −XjC)B, j = 0, . . . , q,

Γv = diag{γv1 , . . . , γvny
}, Γδ = diag{γδ1 , . . . , γδny

},

and pj is a short notation for the following expression

pj =

ny∏

i=1
∀ηj,i=0

(1− βi)

ny∏

i=1
∀ηj,i=1

βi. (21)
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Then, if the observer gains are defined as Lj = Q−1
j Xj (j = 0, . . . , q), the system is mean square

stable and, under null initial conditions, the estimation error is bounded by

‖z̃[t]‖2RMS < γw‖w[t]‖2RMS +

ny∑

i=1

γvi‖vi[t]‖2RMS +

ny∑

i=1

γδi‖δi[t]‖2RMS (22)

Proof 2. Following similar steps than those of proof 1, inequalities (20) imply

E{V [t+ 1]} − V [t] + z̃[t]T z̃[t] < γww[t]
Tw[t] + v[t]TΓvv[t] + δ[t]TΓδδ[t], (23)

where E{V [t + 1]} is the expected value of the Lyapunov function V [t] = x̃[t]TPx̃[t] at the
next period over the possible modes of the system (α[t] = {η0, . . . , ηq} in (9)). Assuming null
disturbances we obtain E{V [t + 1]} < V [t], assuring the mean square stability of the observer.
Assuming initial state estimation error (x̃[0] = 0, V [0] = 0) and adding expression (23) from
t = 0 to T , we obtain

E{V [T + 1]} +
T∑

t=0

z̃[t]T z̃[t] <

T∑

t=0

(
γww[t]

Tw[t] + v[t]TΓvv[t] + δ[t]TΓδδ[t]
)
. (24)

As E{V [T + 1]} > 0, dividing by T and taking the limit when T tends to infinity, one finally
obtains (22).

Remark 5. The only condition to find a solution for the previous LMI problem is that the system
is detectable, as one can always choose a constant L and then use the fact that

∑q
i=0 pi = 1,

what would lead to detectability condition of the pair (A,AC).

The previous problem is an infinite dimensional one that must be assured for any possible
combination of the values βi within the sets Si (i = 1, . . . ny). In order to make the problem
numerically tractable we use the sum of squares (SOS) decomposition (Chesi (2010); Peñarrocha
et al. (2013, 2014); Dolz et al. (2015)) to define sufficient conditions to accomplish with the
previous guaranteed performance. The idea is to consider the probabilities βi[t] on the previous
LMI constraint as new variables of the problem and thus transform it into a polynomial matrix
inequality (PMI). Then we express βi ∈ Si with a polynomial expression of the form πi(βi) ≥ 0.
Finally we check the positivity of the PMI for all values of βi fulfilling πi(βi) ≥ 0 using the tools
shown in the Appendix, that allow us to handle a PMI problem as a LMI one and, therefore,
can be faced with standard LMI solvers.

Theorem 3. Let us assume that there exist matrices P = P T ≻ 0, Qj, Xj (j = 0, . . . , q),
positive values γw, γvi and γδi (i = 1, . . . , ny) and SOS polynomials si(z, β) of fixed degree (with
z a vector of proper dimensions) such that

zTΨ(β)z −
ny∑

i=1

si(z, β)πi(βi) is SOS, (25)

with πi(βi) = (βi − β′
i)(1− βi) and β = [β1 · · · βny

]. Then, conditions of Theorem 2 are fulfilled.

Proof 3. First note that each of the sets Si (i = 1, . . . , ny) can be rewritten with its corresponding
polynomial πi as Si = {βi : π(βi) ≥ 0}. Then, applying Lemmas 4 and 5 in the Appendix, it
follows that the conditions on Theorem 2 are fulfilled for any βi = βi[t].

Remark 6. In the previous theorem, variables in vectors β and z are used to construct the
polynomials from which the LMI problem is derived but they are not decision variables. The
determining variables are P , Qj, Xj (j = 0, . . . , q), γw, γvi , γδi (i = 1, . . . , ny) and the scalar

9
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coefficients used to construct the ny polynomials si(z, β).

In any of the previous design approaches we can reduce the computational cost of the observer
implementation by means of imposing some restrictions on the gain matrices. We achieve the
lower computational cost when the matrices are forced to be equal, thus Li = Lj for all i, j =
1, . . . , q. This can be achieved imposing equality constraints over matrices Qj and matrices Xj

in problems (11) and (20).

3.3 Optimization design procedure

If we know the values of ‖δi[t]‖RMS , ‖vi[t]‖RMS and ‖w[t]‖RMS , the optimization problem

min γw ‖w[t]‖2RMS +

ny∑

i=1

γvi ‖vi[t]‖2RMS +

ny∑

i=1

γδi‖δi[t]‖2RMS (26)

s.t. Θ ≻ 0,

leads to the jump observer that minimizes the RMS value of the state estimation error for that
assumption, where Θ = Φj,k (11) for the deterministic approach and Θ = Ψ(β) (20) for all
βi ∈ Si for the stochastic one. If the RMS values of the disturbances are unavailable, they can
be used as tuning parameters to achieve a desired behavior.
The previous optimization procedure also applies when we can only bound the disturbances

and sensor noises by the norms ‖w[t]‖∞ and ‖vi[t]‖∞, as the RMS norm is bounded by the l∞
norm: ‖w[t]‖RMS < ‖w[t]‖∞ and ‖vi[t]‖RMS < ‖vi[t]‖∞. In this case, we substitute the RMS
norm of the previous optimization procedure by its corresponding l∞ norm.
The optimization in both approaches needs a bound for ‖δi[t]‖2RMS , while in the stochastic

approach, a lower probability bound β′
i is also needed. Furthermore, in order to proceed with

the co-design problem in the next section, we need to express both bounds as explicit functions
of ∆i. We discuss now how to obtain those bounding functions for each of the approaches.

3.3.1 Deterministic approach design procedure

In the deterministic approach, we have the bound ‖δi[t]‖RMS < ‖δi[t]‖∞ < ∆i from the definition
of the virtual noise signal. However, if a uniform distribution of δi[t] is assumed, this leads to
‖δi[t]‖RMS < ∆i/

√
3, that relaxes the optimization problem. This assumption on the virtual

noise distribution is commonly used in the literature, e.g. Suh et al. (2007).

3.3.2 Stochastic approach design procedure

In the stochastic approach, we must obtain relationships showing the increase of β′
i (in (17))

with lower values of ∆i as well as the increase of ‖δi[t]‖RMS with higher values of ∆i. In order
to obtain those bounding relationships, we first note that (from (16)) during the less excited
periods we have the difference

yi[t]− yi[tki
] = Ci

N−1∑

j=0

AN−1−jBw[tki
+ j] + v[tki

+N ]− v[tki
]. (27)

The smallest change in the output corresponds to t = tki
+ 1, and hence, to obtain a lower

bound on the probability, N = 1 is taken. Therefore, we must first obtain the probability
density function for the difference

yi[t]− yi[tki
] = CiBw[tki

] + v[tki
+ 1]− v[tki

],

10
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and use it to obtain both the lower bound of the probability of having a new sample and the
corresponding expected RMS value of the virtual noise. This probability density function is
tedious to obtain as it requires recovering the density function of the sum of several signals
with different distribution laws. For this reason, we present a simplification of its computation
that allows us to obtain tractable expressions relating β′

i and ‖δi[t]‖2RMS with ∆i by using two
different assumptions on the outputs. In order to improve the readability of this section, we have
included in the Appendix 6.1 the necessary but straightforward auxiliary results used to obtain
the expressions.

3.3.2.1 Uniform assumption. If we assume symmetrically bounded disturbances and noises,
we can bound the difference yi[t] − yi[tki

] in (16) (for N = 1 and in the lees excited scenario)
within [−ri, ri], being ri such as

ri = ‖CiBw[t]‖∞ + 2‖v[t]‖∞, (28)

where ‖CiBw[t]‖∞ (i = 1, . . . , ny) can be computed as

‖CiBw[t]‖∞ =

nw∑

j=1

(
n∑

k=1

|Ci,kBk,j|
)

‖wj [t]‖∞,

wj is the j-th element of vector w, and ‖wj [t]‖∞ and ‖v[t]‖∞ are assumed to be known. If the
outputs are uniformly distributed and fulfill yi[t]− yi[tki

] ∈ [−ri, ri] and ∆i ≤ ri, the probability
of having a new measurement is lower bounded by

β′
i =

1

r2i
(ri −∆i)

2. (29)

In this case, the RMS norm is bounded by

‖δi[t]‖2RMS < σ2
δi =

2∆3
i

r2i

(
ri
3
− ∆i

4

)

. (30)

See Lemma 1 in the Appendix for the details. If a sensor uses a threshold ∆i > ri, it will never
send a measurement during the less excited scenario, and, therefore in that case β′

i = 0 and
σ2
δi
= r2i /6.

3.3.2.2 Gaussian assumption. If the disturbances and noises are distributed with covariances
W and Vi and zero mean, in the less excited scenario we have that the difference yi[t]− yi[tki

] is
distributed with variance

σ2
i = CiBWBTCT

i + 2Vi. (31)

If our knowledge is the RMS norm of vector w and noises vi, we can bound σ2
i as

σ2
i ≤ tr(BTCT

i CiB)‖w[t]‖2RMS + 2‖vi[t]‖2RMS . (32)

Assuming that the difference between two consecutive samples follow a normal distribution with
zero mean and variance σ2

i , the probability of having a new measurement is bounded by

β′
i = 1− erf

(
∆i√
2σi

)

, (33)

11
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being erf(x) = 2√
π

∫ x
0 e−t2dt the error function. In this case, the RMS norm is bounded by

‖δi[t]‖2RMS < σ2
δi = σ2

i erf

(
∆i√
2σi

)

−
√
2∆iσi√
π

e
−∆

2
i

2σ2
i . (34)

See Lemma 2 in the Appendix for the details.

Remark 7. If the system outputs do not exactly follow the previous distributions we can use
the values ri and σi in (29)-(34) as tuning parameters. In that case, we must choose sufficiently
small values ri and σi to assure that the computed probability of having new measurements is
below the real one, and such that the computed variance for the virtual noise is higher than the
real one. With that choice, we can at least compute a less conservative upper bound of the state
estimation error than the one obtained with the deterministic approach. One of the advantages
of having those bounding relationships is that allows to face the co-design problem (explained
next), consisting on looking for the values of ∆i that fulfill some estimation error and network
usage. In that sense, one could know in advance some maximum values ∆i,max below which the
search is carried out (e.g., some fraction of the output sensor range). In that case, the lowest
values for ri and σi that assure that the co-design problem is sensitive to ∆i within all its range
are ri = ∆i,max and σi =

∆i,max

3 (following the 3σ criterion).

4. Observer co-design

Once we have developed the design procedure to minimize the estimation error for a given SOD
policy, we now address the minimization of the network usage guaranteeing a desired estimation
error. We first propose the cost indexes to measure the network usage.
For the deterministic approach, without statistical information of the outputs, we propose the

index

J(∆1:ny
) =

ny∑

i=1

gi
∆i

(35)

where gi are some free weighting factors, that can be used to account for the different range of
variation of the different sensors, and ∆1:ny

= [∆1 · · · ∆ny
].

For the stochastic approach, we propose to use as the cost index, the probability of network
usage in the lowest excitation case, that is:

J(∆1:ny
) = 1− p0 = 1−

ny∏

i=1

(1− β′
i(∆i)) (36)

where β′
i(∆i) (i = 1, . . . , ny) depends on ∆i by means of (29) or (33).

The actual probability of network usage will be close to this cost index only in the case of the
lowest excitation, i.e., when the change of the output is minimum. When it is larger (for example
when the input u changes), the probability of network usage will be higher. However, this usage
will be proportional to the cost index, and hence, minimizing the cost index results in reducing
the network usage for the desired estimation error in any case.
We then obtain the observer that assures a prescribed bound z̃rms in the estimation er-

ror, i.e. ‖z̃[t]‖2RMS ≤ z̃rms, and minimizes the network usage J(∆1:ny
) by solving the following

12
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optimization problem:

min J(∆1:ny
) (37)

s.t. Θ(∆1:ny
) ≻ 0,

γw ‖w[t]‖2RMS +

ny∑

i=1

(
γvi ‖vi[t]‖2RMS + γδiσ

2
δi(∆1:ny

)
)
≤ z̃rms.

The new decision variable ∆i appears both on the cost index and in the definition of σ2
δi
used to

bound ‖δi[t]‖2RMS . In the deterministic approach, we express J(∆1:ny
) as (35), Θ(∆1:ny

) = Φj,k

as in (11), and we use the bound σ2
δi
(∆1:ny

) = ∆2
i . Under the assumption of uniform distribution

of δi[t], we can relax the problem using the bound σ2
δi
(∆1:ny

) = ∆2
i /3.

In the stochastic approach, we express J(∆1:ny
) as (36), Θ(∆1:ny

) = Ψ(∆1:ny
) as (20), and we

express σ2
δi
(∆1:ny

) as (30) or (34), depending on the output assumption. In this case ∆i appears
in the bound of the probabilities βi for which Ψ(β) in (20) must be positive definite.

Remark 8. In the previous co-design problem, one must choose the desired bound for the es-
timation error z̃rms. This desired bound should be higher than the achievable one with standard
sampling (i.e. when ∆1:ny

= 0) in order to have a solvable problem. A reasonable option is to
express the desired bound in relative terms with respect to the achievable one for ∆1:ny

= 0, that
can be obtained with (26) and (11) with ‖δi[t]‖2RMS = 0. In that case, the set of LMIs (11) could
be simplified eliminating the last row and column matrix blocks and using just the case j = k = q
where ηj = I (standard sampling). If we call that performance index z̃0, then the desired bound
in (37) can be expressed as z̃rms = µ z̃0 with µ > 1.

The optimization problem (37) is non-linear in the variables ∆i, but reduces to a LMI problem
if we fix the values of ∆i. Some approaches to solve this non-linear optimization are brute
force with a grid approach over ∆i, greedy algorithms and heuristic optimization with genetic
algorithms. If we use the latter one and the stochastic approach, the optimization problem can
be written as

min
∆i

J(∆1:ny
) (38)

s.t. z⋆(∆1:ny
)− z̃rms ≤ 0

z⋆(∆1:ny
) =

{
min γw ‖w[t]‖2RMS +

∑ny

i=1(γvi ‖vi[t]‖2RMS + γδiσ
2
δi
(∆i))

s.t. Θ(∆1:ny
) ≻ 0

In this work, we propose a greedy algorithm as an alternative to the previous optimization
problem. A greedy algorithm is a tree search where at each step we only explore the branch that
locally optimizes the problem in the hope that this choice leads to a globally optimal solution
(see Cormen et al. (2001)). This kind of algorithm never comes back to previous solutions to
change the search path and hence, global solutions are not guaranteed. The advantage is the
lower computational cost. We propose now the following greedy algorithm to solve the previous
co-design problems.

Step 1 Take a small ǫ > 0. Take some initial small ∆i,0 & 0 (i = 1, . . . , ny) such that
‖z̃[t]‖RMS < z̃rms is achievable. Set k = 0 and ∆i,k = ∆i,0 and J0 = J(∆1:ny,0).

Step 2 Set k = k + 1 and Jk = Jk−1 − ǫ.
Step 3 For i = 1 to ny repeat:

Set ∆j = ∆j,k−1, j 6= i.
Set ∆i = ∆i,k = arg{Jk = J(∆1:ny

)}
Compute σ2

δj
= σ2

δj
(∆j), j = 1, . . . , ny.

13
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Compute2 β′
j = β′

j(∆j), j = 1, . . . , ny, and pl, l = 0, . . . , q.
Solve optimization problem (26).
Store z⋆i = γw ‖w[t]‖2RMS +

∑ny

j=1(γvj ‖vj [t]‖2RMS + γδjσ
2
δj
(∆j)).

Step 4 Set i = argmin
i

z⋆i .

If z⋆i < z̃rms, then
set ∆i,k = arg{Jk = J(∆1:ny

),∆j = ∆j,k−1, j 6= i},
∆j,k = ∆j,k−1, j = 1, . . . , ny, j 6= i,
and go to step 2.

Else, exit.

The algorithm starts considering small values of ∆i and β′
j . 1, what leads to the standard

periodic sampling case. Then it reduces iteratively the communication cost index while possible.
At each step, it calculates the ny new sets ∆1:ny

that lead to the new cost, changing one of the
∆i in each set. Then, it selects the set that led to the lowest z⋆i , i.e., the solution allowing a
larger future search before the algorithm ends. It changes only one value ∆i at each step.
The previous iterative algorithm could be run for different values of maximum allowed esti-

mation error, leading to a set of soft functions that should express the thresholds and the gains
as a function of the associated network usage. Those functions could be implemented in the
estimator node, allowing the change of the parameters (thresholds and gains) when the state of
the network requires it (for example increasing the thresholds to reduce the network usage to
avoid congestion). If the estimator node had high computing capabilities, an alternative could
be to directly compute the thresholds and gains through running the full iterative optimization
algorithm at that node when required.

5. Examples

In this section we show two different examples. In the first one we explore the achievable trade-
offs between estimation error and network usage for the approaches presented in this work and
compare them with other strategies existing in the literature. In the second example we apply
the observer design based on send-on-delta measurements to control the velocity of a real DC
motor using an inferential control approach. In both examples we aim to show the performance
of the proposed approaches when neither of the considered output distribution assumptions hold,
i.e., when the output distribution is not uniform or normal. For brevity, we will only explore the
deterministic approach and the uniform output distribution assumption one.

5.1 Simulation example

In this example we aim to show the performance of the proposed approaches. For brevity, we
will only explore the deterministic approach and the uniform output distribution assumption
one. We consider the following discrete-time process (randomly chosen)

A =





1.005 0.221 0.171
−0.031 1.008 0.136
0.049 0.038 1.028



 , B =





−0.229 0.023
0.231 0.211
−0.186 0.245



 ,

Bu =





0.658 0.919
0.342 0.584
0.481 0.845



 , C =

[
0.519 −0.233 0.095
0.569 0 0

]

, Cz = I.

2Only in the stochastic approach.
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The measurement noises are assumed Gaussian signals with zero mean and ‖vi[t]‖RMS = 0.032
(for i = 1, 2) while the disturbances are given by

w[t] =
(
0.3 + 0.2 sin(10−4π t)

)
[
1
1

]

with ‖w[t]‖RMS = 0.468. The control input is generated by a relay-based control with dead zone
such as

ui[t] =







−8, if yi[t] > 8
8, if yi[t] < −8
0, if − 8 ≤ yi[t] ≤ 8

The aim of this example is to show the performance of the co-design approach from Section 4,
i.e., minimize the network usage while guaranteeing that the estimation error is lower than a
prescribed one. For this purpose, the following four approaches are analyzed:

C1 Deterministic approach with jump observer (see Section 3.1).
C2 Deterministic approach with constant gain.
C3 Stochastic approach based on uniform distribution assumption for a jump observer (see

Section 3.3.2).
C4 Stochastic approach based on uniform distribution assumption for constant gain.

We choose the parameters ri that define the uniform distribution assumption for each output
using expression (28). The maximum value of the disturbances and noises are ‖w[t]‖∞ = [0.8 0.7]
and ‖v[t]‖∞ = [0.15 0.15]. Then, we obtain r = [0.9 0.75].
We quantify the network usage with the two cost functions presented in Section 4. For the

deterministic cases C1 and C2 we use J = r1
∆1

+ r2
∆2

(see (35)). However, when we characterize
the measurement transmission by its probability (cases C3 and C4), we use J = 1−p0 that is the
probability of having any successful data transmission in the lowest excitation case (see (36)).
We denote by z̃0 the error ‖z̃[t]‖2RMS resulting from the standard measurement transmission

(i.e. ∆ = 0), which turns to be z̃0 = 0.225. In this example we analyze the results of the co-design
procedures when fixing different values of z̃2rms in (38). We denote by µ the ratio between the

desired performance and z̃0, i.e., µ = z̃2

rms

z̃0 .
Figure 1 compares the thresholds ∆i resulting from conducting the co-design procedure (see

Section 4), by imposing a ratio in the range 1 ≤ µ ≤ 3. The deterministic approaches C1 and C2
are both conservative and lead to the lowest thresholds, while the stochastic approaches C3 and
C4 lead to the highest thresholds, and therefore, to the lowest network usage. The thresholds in
C1 and C2 remain equal, what implies that using a jump observer in the deterministic approach
does not improve the co-design with a constant gain. However, when we have some knowledge
about the probability of the different sampling scenarios (stochastic approach), the use of a jump
observer (case C3) enlarges ∆i at the expense of a higher computational complexity with respect
to C4.
Figure 2 shows the time-average probability of having a new measurement from a given sensor

βi and its virtual noise RMS norm σ2
δi
as a function of the ∆i presented in Figure 1 resulting from

a Monte Carlo simulation. It also displays the obtained results of assuming uniform distributed
outputs (see (29) and (30)) and the use of the criterion in Suh et al. (2007) (σ2

δi
= ∆2

i /3). The
choice of r = [0.9 0.75] results in lower probabilities and higher variances than in simulation.
Therefore the stochastic design will be conservative, but will guarantee the prescribed bound on
the estimation error (see Section 3.3.2). The result proposed in Suh et al. (2007) for bounding the
virtual noise RMS norm assuming it as a uniform variable (i.e. where ‖δi[t]‖2RMS < ∆2

i /3) is more
conservative than the one resulting from the difference of uniform output signals assumption that
we propose in this work.
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Fig. 2. Thresholds obtained for the co-design approach as a function of the ratio .Figure 1. Thresholds ∆i obtained for the co-design approach as a function of the ratio µ.
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Figure 2. Probability of having a new measurement β and variance (RMS norm) of the virtual noise σ2

δ
as a function of

∆; ’simulation’: time-average probability and virtual noise RMS norm obtained from simulation; ’uniform’: probability and
virtual noise variance bounds from the uniform output distribution assumption; ’∆2/3’: bound of the virtual noise RMS
norm proposed in Suh et al. (2007).

Simulating the estimation algorithm with the send-on-delta procedure for the thresholds in
Figure 1 we obtain the number of sent measurements and the performances indicated in Figures 3
and 4, respectively.
Figure 3 reasserts the conclusions extracted from Figure 1. The case C3 leads to the lowest

network consumption, while case C4 improves the usage of the deterministic approaches requiring
less computational requirements than case C3.
Figure 4 shows whether the imposed bound on the estimation error in the co-design procedure

is fulfilled in simulation. The deterministic approaches C1 and C2 are far below the maximum
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Figure 3. Number of total measurement transmission divided by the number of simulation periods as a function of the
ratio µ.

allowed estimation error. This is due to the conservativeness introduced by the virtual noise
variance estimation proposed by Suh et al. (2007). The stochastic approaches C3 and C4 are
also below the maximum allowed estimation error, but closer to it. The conservativeness in the
stochastic design is introduced by the choice of the parameter r (see Figure 2). Note that the
use of a jump observer (C1 and C3) leads to less conservative results (estimation errors closer
to the allowed one) than the use of a constant gain observer (C2 and C4). This rapprochement
to the allowed error is what allows the jump observer to reach higher thresholds and to reduce
the network usage.
In order to show the order of magnitude of the computational complexity of the design, in

this example, one LMI is solved on about 1.7 seconds in a Pentium i7-3770 computer, and a full
co-design procedure could take about 70 seconds in average.
Let us now compare the aforementioned achieved performances with the co-design method

using the modified Kalman filter from Suh et al. (2007) for the case µ = 1.2. As our disturbance
is not Gaussian, there is not a systematic way of chosing the covariance to be used in the Kalman
filter. However, in order to compare both approaches we will test this proposal for a covariance
matrix of the form W = wI, for different values of w. For a value of w = 0.1 we obtain a pair of
thresholds ∆ = [0.9 0.5] that leads to a much lower network usage than our approach. However,
the obtained performance after simulation with the indicated disturbance, is ‖z̃[t]‖2RMS = 0.4174,
thus violating the design constraint ‖z̃[t]‖2RMS < 1.2 · z̃0 = 0.267. Now we focus on the design
using a value of w = 0.02, obtained after computing the covariance of the generated disturbance
for simulation. Applying the Kalman filter for ∆ = [0.236 0.098] (the same values that the
obtained with C3 and µ = 1.2), we obtain after simulation ‖z̃[t]‖2RMS = 1.5 · z̃0, what indicates
that the performance is deteriorated with respect to the H∞ approach.
This proofs that the proposed framework guarantees robustness against a larger type of dis-

turbances and measurement noises, which are not necessarily uncorrelated Gaussian signals.
In conclusion, this example shows that if no information about the output is known, the

deterministic approach is the only option. However, making some assumption on the output
distribution, we can use a stochastic approach during the co-design procedure, that reduces
the resulting network usage. We have shown that if we use a jump observer the measurement
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transmissions can be reduced at the expense of more computational complexity, with respect
the use of a constant gain.

5.2 Experimental application example

In this example we show the behavior of the proposed observer in a real application, see Figure 5.
The process under study consists on a DC motor with an incremental encoder and an H-bridge
driver module based on a L298. The plant has three nodes connected through a CAN network (as
shown in Figure 5). Two of the nodes are Texas Instruments TMS320LF2407 microcontrollers.
One of them reads the encoder signal to compute the shaft speed and implements periodically
the send-on-delta mechanism deciding whether to send the measurement after comparing it with
the last sent. The other node receives messages with the voltage to be applied on the motor and
periodically generates accordingly a pulse width modulation signal and digital signals to apply on
the H bridge. The third node connected to the network is implemented in an industrial computer
with a CAN card running xPC from Mathworks. The computer reads the message containing
the shaft speed, uses that measurement to observe the system state and runs a speed controller
sending the resulting control action to the actuator node at each instant. The sensor, actuator
and observer/controller nodes update the required values for the velocity control each 5ms.
After performing an identification experiment, we obtain the following transfer function from

voltage to angular velocity in the motor

G(s) =
5.1e−0.01s

(1 + 0.033s)(1 + 0.0032s)

rad/s

V
.

Note that we have an additional delay of 10ms due to the network behavior (in addition to the
inherent one sample delay in digital control). A discretized PI controller with Kp = 0.25 and
Ki = 7.78 and reference weighting b = 0.7 is applied at 5ms period. The reference is generated
as an square wave between 40 and 50rad/s with a period of 1s. Our aim is to compare the
difference of applying the PI controller with the available measurements (using repeatedly the
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same measurement while no new one is available), with respect of applying a PI controller that
uses the estimated output with the proposed observer (inferential PI controller).
A zero-order-hold discrete equivalent model is obtained from the continuous model in order to

apply the methodology in this work to design the observer, giving us matrices A, B, and C, and,
as we are interested in estimating the output, we fix Cz = C. With respect the disturbances in the
system we consider the following issues: we assume a disturbance entering in the input channel
bounded by ‖w[t]‖RMS = 0.1V and a measurement noise bounded by ‖v[t]‖RMS = 0.5rad/s due
to the encoder accuracy.
We fix the desired output estimation error as z̃rms = 0.5rad/s and perform the codesign

procedure with the stochastic approach with uniform assumption taking r = 5rad/s, obtaining
both the gains of the observer and the threshold ∆ = 2rad/s for the sensor node. With these
considerations, we implement the SOD mechanism on the sensor node and the PI controller and
observer on the industrial computer.
Figure 6 shows in the left higher part the behavior of the controlled motor when applying the

PI controller directly with the received measurements (that are constant between new arrivals),
while in the right part we show the outcome when the PI uses as feedback signal the output
of the observer. We show the measurement in the sensor node with thin lines, the received one
in the controller node with circles, and with thick lines the estimated output. The lower figure
shows the resulting control actions for both approaches. We observe that using the observer
and the estimated output in the PI controller leads to a tracking error of 5%, but avoids the
limit cycle produced by the PI controller with SOD measurements observed in the left figure
(see Beschi et al. (2012) for further details in this issue). Furthermore, as an indirect effect, the
number of transmissions from the sensor node is reduced.

Actuator Node

 

SOD Sensor Node

 

H-bridge + DC Motor + Encoder

CAN Network

Controller and Observer Node

Figure 5. Experimental CAN network-based benchmark.
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Figure 6. Comparison under a SOD measurement transmission policy of an output feedback PI controller versus an infer-
ential PI one. ’ ’: estimated output; ’-’: current measurement, reference and control action; ’◦’: new measurement arrival.

6. Conclusions

In this work, we addressed an observer co-design procedure for state estimation over networks
when using event-based measurements. We used a low computational cost estimation strategy
that consists on using a simple send-on-delta strategy on the sensor nodes, and aH∞ jump linear
estimator that uses a gain within a predefined set depending on the combination of available
measurements at each instant. We included a virtual noise to update the state estimation when
new measurements are not available. We developed a strategy based on linear matrix inequal-
ities to obtain the observer gains when the thresholds of the sensor nodes are fixed. To reduce
conservativeness, we derived a lower bound on the probability of receiving a measurement and
an upper bound on the RMS norm of the resulting virtual noise. In this case, we addressed the
design of the jump observer by using optimization over polynomial techniques to include the
uncertainty on the measurement receiving probability.
We then defined two characterizations of the network usage and used them to derive the co-

design problem, consisting on finding the thresholds of the sensor nodes and the corresponding
observer gains that led to the lowest network usage allowing to reach a prescribed performance
on the state estimation error.
As future research works, we will address the co-design in inferential control and fault diagnosis

problems based on observers that use send-on-delta measurements.
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Appendix

In this appendix we present the necessary auxiliary results that gives us the probabilities and
RMS norm of the virtual noises in the stochastic approach, as well as the auxiliary tools (sum
of squares decomposition) that allow us to present the stochastic approach robust against prob-
ability uncertainties.

6.1 Probabilities and variances computation

We derive here the expressions to compute the probability of sending new measurements and
the associated variance of the virtual noise during the less excited periods.

Lemma 1. Let us assume that each measured output of sensor i is independent and uniformly
distributed within the range ȳi,min ≤ yi ≤ ȳi,max, being ri = ȳi,max − ȳi,min as given in (28), for
the periods tki

and tki
+1, thus fulfilling yi[t]− yi[tki

] ∈ [−ri, ri]. Then, the probability of having
a new measurement from sensor i at period t = tki

+ 1 with law (2) and ∆i ≤ ri is given by

βi = P{|yi[t]− yi[tki
]| ≥ ∆i} =

1

r2i
(ri −∆i)

2. (39)

The variance of the virtual noise related to this ∆i is given by

σ2
δi = V ar{δi[t]} = E{δi[t]2} =

2∆3
i

r2i

(
ri
3
− ∆i

4

)

. (40)

Proof 4. Let us call the random variable yi[tki
] as u, denoting the measurement value at tki

,
the last time it was sent from sensor to observer node. Then, the probability density function of
u is

fU (u) =

{
1
ri
, u ∈ [ȳi,min, ȳi,max]

0, otherwise

Let us also call the random variable y[t] as v, denoting the posterior measured output at t = tki
+1,

with a probability density function

fV (v) =

{
1
ri
, v ∈ [ȳi,min, ȳi,max]

0, otherwise

The probability density function of the random variable w = yi[t]− yi[tki
] = u− v is given by the

convolution

fW (w) =

∫ ∞

−∞
fU(v + w)fV (v)dv.

Since fV (v) = 1/ri if ȳi,min ≤ v ≤ ȳi,max and 0 otherwise, this becomes

fW (w) =
1

ri

∫ ȳi,max

ȳi,min

fU (v +w)dv.

The integrand is 0 unless ȳi,min ≤ v + w ≤ ȳi,max (i.e., unless ȳi,min − w ≤ v ≤ ȳi,max − w) and
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in that case, it is 1
ri
. So it leads

fW (w) =







1
ri

∫ ȳi,max

ȳi,min−w
1
ri
dv = ri+w

r2i
, −ri ≤ w ≤ 0,

1
ri

∫ ȳi,max−w
ȳi,min

1
ri
dv = ri−w

r2i
, 0 ≤ w ≤ ri,

0, w2 > ri.

The probability of having two consecutive measurements with an absolute difference greater
than ∆i is

βi = P{|yi[t]− yi[tki
]| ≥ ∆i} = 1− P{−∆i < w < ∆i}.

Using the above probability density function this can be computed by

βi = 1−
∫ ∆i

−∆i

fW (w) =
(ri −∆i)

2

r2i

The virtual noise signal can be obtained as a function of the previous random variable w as

δ[t] = g(w) =

{
w, −∆i < w < ∆i

0, otherwise

Its expected value is given by

E{δ[t]} =

∫ ∞

−∞
g(w)fW (w)dw = 0,

and the variance is given by

V ar{δ[t]} = E{δ[t]2} =

∫ ∞

−∞
g(w)2fW (w)dw

=
2∆3

i

r2i

(
ri
3
− ∆i

4

)

,

Lemma 2. Let us assume that the difference yi[t]−yi[tki
] is normally distributed with zero mean

and variance σ2
i given by (31) for t = tki

+1. Then, the probability of having a new measurement
from sensor i at each period t = tki

+ 1 with law (2) is given by

βi = P{|yi[t]− yi[tki
]| ≥ ∆i} = 1− erf

(
∆i√
2σi

)

, (41)

being erf(x) = 2√
π

∫ x
0 e−t2dt the error function. The variance of the virtual noise related to this

∆i is given by

σ2
δi = V ar{δ[t]} = E{δ[t]2} = σ2

i erf

(
∆i√
2σi

)

−
√
2∆iσi√
π

e
−∆

2
i

2σ2
i . (42)

Proof 5. The variable w = yi[t]− yi[tki
] has the density function

fW (w) =
1

σi
√
2π

e
−w2

2σ2
i .
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The probability of having a new measurement available is

βi = 1−
∫ ∆i

−∆i

fW (w)dw = 1− 2√
π

∫ ∆i

0
h′(w)e−(h(w))2dt

with h(w) = w√
2σi

and h′(w) = 1√
2σi

, and where we accounted that fW (w) is symmetric with

respect to w = 0. Applying the definition of the error function, it leads (33).
We express the virtual noise signal as a function of the previous random variable w as

δ[t] = g(w) =

{
w, −∆i < w < ∆i

0, otherwise

Its expected value is given by

E{δ[t]} =

∫ ∞

−∞
g(w)fW (w)dw = 0

and the variance is given by (with E{δ[t]2} = 0)

V ar{δ[t]} =

∫ ∞

−∞
g(w)2fW (w)dw =

∫ ∆i

−∆i

w2 1

σi
√
2π

e
−w2

2σ2
i dw.

Integrating this expression, it follows straightforwardly (34).

6.2 Optimization over polynomials

We state in this section some necessary results about optimization over polynomials that are
needed for the robust formulation of the stochastic approach against the probability uncertain-
ties.

Lemma 3. Let p(x) be a polynomial in x ∈ Rn of degree 2d. Let Z(x) be a column vector whose
entries are all monomials in x with degree ≤ d. Then f(x) is said to be SOS if and only if there
exists a positive semidefinite matrix Q such that p(x) = Z(x)TQZ(x).

We denote the SOS polynomials in variables x by f(x) ∈ Σ(x). The following results can
be derived from the called Positivstellensatz result Chesi (2010) which states that feasibility
conditions over polynomials can be dealt searching for some SOS polynomials.

Lemma 4. Let f(x) be a polynomial in x ∈ Rn, and let X = {x ∈ Rn : gj(x) ≥ 0, j =
1, . . . ,m}. Suppose there exist SOS polynomials sj(x) ∈ Σ(x) (j = 1, . . . ,m, x ∈ Rn) such that
f(x)−

∑m
j=1 sj(x) gj(x) ∈ Σ(x), then, the following condition holds: f(x) ≥ 0, ∀ x ∈ X.

Lemma 5. Let F (x) be a N × N symmetric polynomial matrix in x ∈ Rn and let X = {x ∈
Rn : gj(x) ≥ 0, j = 1, . . . ,m}, v ∈ RN . Suppose there exist SOS polynomials sj(x, v) ∈ Σ(x, v)
(j = 1, . . . ,m) such that vTF (x)v −

∑m
j=1 sj(x, v) gj(x) ∈ Σ(x, v), then, the following condition

holds: F (x) � 0, ∀ x ∈ X.

The previous Lemmas show that verifying that a polynomial matrix is non-negative over
polynomial constraints can be formulated as a LMI problem. This can be implemented with
several LMI parsers as the one in Löfberg (2009).
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