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Abstract—Indoor localization is a key topic for mobile 

computing. However, it is still very difficult for the mobile 
sensing community to compare state-of-art Indoor Positioning 
Systems due to the scarcity of publicly available databases. 
Magnetic field-based methods are becoming an important trend 
in this research field. Here, we present UJIIndoorLoc-Mag 
database, which can be used to compare magnetic field-based 
indoor localization methods. It consists of 270 continuous 
samples for training and 11 for testing. Each sample comprises a 
set of discrete captures taken along a corridor with a period of 
0.1 seconds. In total, there are 40,159 discrete captures, where 
each one contains features obtained from the magnetometer, the 
accelerometer and the orientation sensor of the device. The 
accuracy results obtained using two baseline methods are also 
presented to show the suitability of the presented database for 
further comparisons. 

Keywords—Indoor Localization; Magnetic field; Database; 
Comparison of methods 

I. INTRODUCTION 
Many real world applications need to know the localization 

of a user in the world to provide their services. Automatic user 
localization consists of estimating the position of the user by 
using an electronic device, usually a mobile phone. Outdoor 
localization problem can be solved very accurately thanks to 
the inclusion of GPS sensors into mobile devices. However, 
GPS has severe problems in indoor environments. Many 
different approaches tried to solve the problem of indoor 
positioning in the last years. They can be categorized, 
according to [1], as infrastructure-based (RFID, infrared, 
ultrasound, Bluetooth) and infrastructure-less (Wi-Fi [5], FM 
radio frequencies [12], Magnetic field [3-4]) technologies.  

The use of the Earth magnetic field for indoor localization 
is an interesting infrastructure-less method that is attracting the 
attention of many researchers in the last years. Indoor 
environments have some structures (ferrous structural 
materials, pipes, wires, etc.), which alter the Earth magnetic 
field. Even the presence of quotidian objects, such as metallic 
stoves or speakers, may alter the magnetic flux density in the 
surrounding areas [8]. Actually, the measured magnetic field 
can substantially vary between two points very close in the 
space. Thanks to that, sub-meter accuracy level can be 
theoretically achieved for indoor location. The variations in the 
magnetic field in indoor environments can be measured and 
recorded with available sensors inside smart phones [3, 7]. 

Although there are many papers in the literature trying to 
solve the indoor localization problem using a magnetic field-
based method, there still exists one important drawback in this 
field, which is the lack of a common database for comparison 
of methods. Each approach presents its estimated results using 
its own database. Under these conditions, it is not possible to 
compare different methods since the particularities of each 
experiment are hardly reproducible. In the Pattern Recognition 
and Machine Learning research fields, the common practice is 
to test the results of each proposal either using a well-known 
dataset or providing the dataset used. In this way, researchers 
are able to fairly compare different methodologies in the 
literature. The UCI Machine Learning Repository [6] is a well-
known example in this sense. In fact, there is an available 
database for comparing WLAN fingerprint-based indoor 
localization methods [2]. However, in the magnetic field-based 
indoor localization field does not exist such kind of database. 

The main contribution of this work is the creation and the 
introduction of the UJIIndoorLoc-Mag database, which is the 
first publicly available database that could be used to make 
comparisons among different methods in this field. It has been 
published on the UCI Machine Learning Repository [6]: 
http://archive.ics.uci.edu/ml/datasets/UJIIndoorLoc-Mag . 

The database consists of 281 continuous samples (270 for 
training and 11 for testing) taken in our 260m2 (15x20m 
approx.) laboratory. Each sample comprises a set of discrete 
captures taken along the 8 corridors (including intersections) of 
the laboratory with a period of 0.1 seconds. There are almost 
40,000 discrete captures obtained from the magnetometer, 
accelerometer and orientation sensor of a mobile phone.  

Two basic baselines are also presented to test the suitability 
of UJIIndoorLoc-Mag and they can be considered a simple 
starting point for further comparisons. We do not expect to 
obtain high accuracy with the baseline since we test the 
suitability of the database, we are not introducing a new indoor 
positioning system.  

The rest of the paper is organized as follows. Section II 
presents the related work. Section III shows some prior tests 
we performed on magnetic field indoor positioning. Section 
IV introduces the main elements of the database and how it 
was made. Section V is devoted to explain the two baseline 
algorithms tested and the results obtained. Finally, Section VI 
presents the most important conclusions arisen from this work. 



II. RELATED WORK 
As it has been commented before, there are many papers in 

the literature dealing with magnetic field-based methods for 
indoor localization problems. Some of them are reviewed in 
this section [3,4,7,8,9,10]. We focus on the dataset used for 
testing the proposed algorithms and we also show whether they 
are publicly available or not. 

Four experiments were done in [3] to demonstrate the 
feasibility of using the magnetic field for positioning. In the 
first one, data were collected at one specific location in six 
different environments. In the second one, data were collected 
at five overlapping corridors. In the third one, data were 
collected in the intersections of two different squared and 
regular grids. In the last one, magnetic field changes in the 
vertical direction were studied with 5 cm. of resolution. 
Although the experiments and results were detailed, some basic 
information about the databases was not commented.  

The experiment presented in [7] took place on a 
rectangular-shaped, 67x12 m2, corridor where its surroundings 
included spaces such as lab, office, and library. So they 
considered and environment of 4 lineal corridors, where the 
distance between parallel corridors was high, 12 m. and 67 m. 
Moreover, data were statically collected with 45 cm. intervals 
and 10 seconds spent in each location. Their training database 
consisted of 350 samples (approx.) with 5 features, including 
location (x,y) and magnetometer values in the three axes. 
However, information about collected data and their 
magnitudes were not described. 

In [8], the authors demonstrated that geomagnetic 
localization performs reasonably well when the three 
components of the magnetic field - X, Y, and Z axes - are 
considered. They tested their positioning system in three 
different environments: a suburban house, a city centered 

apartment and a University lab. Data were collected as the 
magnetic flux density at 1 m. spacing. Moreover, they also 
conducted a magnetic fingerprint test in a 3.5x3.5 m2 bedroom. 
However, they did not detail the number of samples. 

In [9], the authors selected a corridor of a multi-level 
building to evaluate the performance of using geomagnetic 
field information for positioning with four different devices. 
The corridor was about 36 m. in length and 2 m. wide. Samples 
were taken along the corridor at three different positions: 1) 
centered, 2) 60 cm. left to the corridor the center and 3) 60 cm. 
right to the corridor center. A total of 20 points were used for 
testing purposes. Their scenario was narrow and realistic, 
because three different parallel paths in a 2 m. wide corridor 
composed it. 

An indoor location system based on a wearable device was 
successfully introduced in [10]. The system is tested in two 
very different environments, a 187 m. corridor loop scenario 
(37200 training samples and 310 test data points), and an 
atrium scenario (40800 training samples and 408 test data 
points). They also examined the fingerprint difference between 
floors using a dataset with 60 points from each floor. They 
used a special device with four magnetometer sensors for 
sampling the magnetic fingerprints, so vectors consisted of 12 
elements. 

Table I summarizes the databases used in the previous 
reviewed works [3,7,8,9,10]. We have identified three different 
types of databases (groups 1, 2 and 3 in the table) according to 
how samples have been taken: 1) continuous samples taken in 
a lineal environment (such as a corridor), 2) discrete samples 
taken in a lineal environment, and 3) discrete samples taken in 
a two dimensional space. Please note that a single continuous 
sample corresponds to a sequence of some consecutive discrete 
samples taken in a lineal environment.  

 

 
TABLE I: MAIN CHARACTERISTICS OF THE DATA FROM SELECTED PAPERS. GROUP CORRESPONDS TO THE TYPE OF DATABASE WE HAVE IDENTIFIED, # 1D SPACES IS 
THE NUMBER OF ONE DIMENSIONAL SPACES CONSIDERED IN THE DATABASE, METERS IS THE TOTAL LINEAL METERS OF THE 1D SPACES CONSIDERED. # 2D SPACES 
AND SURFACE CORRESPOND TO THE TOTAL NUMBER OF 2D SPACES CONSIDERED IN THE DATABASE AND THE SURFACE IS M2 THEY COVER (AREA). # FEATURES IS 
THE NUMBER OF FEATURES STORES IN A SINGLE SAMPLE, TAKE NOTE THAT DISCRETE ONES HAVE A SINGLE MEASURE (OR AN AVERAGE), WHEREAS CONTINUOUS 
ONES HAVE MULTIPLE MEASURES. # SAMPLES IS THE TOTAL NUMBER OF SAMPLES INCLUDED IN THE DATABASE. 
 

Paper Group # of 1D spaces total lineal meters # of 2D spaces total area m2 # of features # of samples 
[3] Experiment 1 3 - - 6 - 3* + loc N/A 
[3] Experiment 2 1 5 N/A - - 3* x lenght + loc 5 
[3] Experiment 3 2 16 + 12 = 28 34.2+3 = 37.2 - - 3* + loc 64+36 = 100**** 
[3] Experiment 4 2 1 1 - - 3* + loc 20 
[7] 2 4 178 - - 3* + 2 ( x & y ) 350 
[8] Scenario 1 3 - - 1 14x16 3* + loc 14x16 
[8] Scenario 2 3 - - 1 9x12 3* + loc 9x12 
[8] Scenario 3 3 - - 1 6x19 3* + loc 6x19 
[8] Scenario 4 3 - - 1 3.5x3.5 3* + loc 7x7 
[9] 1 3 108 - - 3* x lenght + loc 3 
[10] Scenario 1 2 1 187 - - 3* + loc 37200 
[10] Scenario 1 3 - - 1 13.8x9.9 3* + loc 40800 
[10] Scenario 1 2 2 80 (approx.) - - 3* + loc 12000 

UJIIndoorLoc-Mag 1 26x2 650 (approx.) - - 10** x lenght  
+ 6 x m*** 

270 + 11 
 ≅40.000 discrete 

  In the group 1, continuous samples, length corresponds to the number of individual measures taken in a single continuous sample 

 * 3 components of the magnetometer 
 ** 3 components of the magnetometer + 3 components of the orientation + 3 components of the accelerometer + timestamp 
 *** m stands for the number of corridors or samples.  
  For each corridor/segment in the trajectory we store the XY coordinates of initial and final points and the indexes of the initial and final samples 
 **** The authors commented that there were 100 datasets (not samples) 



     
Fig. 1. Lab where samples were taken. In the middle: The lab’s map where desktop tables are highlighted in red, bookcases in green, and Columns in blue. Left 
and right images are photos taken in the lab to show the real scenario. Corridors are numbered from left (1) to right (2) and from bottom (3) to top (8). The vertical 
corridors start at the bottom point, whereas horizontal ones start at right point.  

Although the soundness of results and conclusions 
presented in all those contributions is high, the databases 
employed were not totally detailed and their access was 
restricted (not public) in all studied cases. For instance, the 
information about how locations are stored is not always 
provided. This information is described in some works (such as 
[7]), but it is omitted in the majority of contributions (such as 
in [3,8,9,10]). To denote that this information was not 
provided, we used loc to refer to location in Table I.  

Although the number of continuous samples used in the 
experiments seems to be low, 5 in [3] and 3 in [9], the length of 
the vectors was high enough to perform the experiments. 
However, our database contains more information than their 
ones and it includes 270 continuous samples (35,779 discrete 
samples) for training and 11 complex continuous samples 
(4,380 discrete samples) for testing. In our case we do not only 
consider corridors, but also combinations of two connected 
corridors (turns changing corridor).  

III. PRIOR TESTS 
Prior to generating the database, we performed some basic 

tests to determine the feasibility of using the Earth’s Magnetic 
Field for indoor positioning using mobile phones. Moreover, 
we also gathered information about the features to be stored. 

A. It is feasible to use the magnetic field for location? 
First, we selected two simple trajectories in our laboratory 

(see Fig. 1). The first one consists of two segments; the user 
comes into the laboratory and goes straight on until the top side 
windows, then turns right and goes straight on until arriving the 
right side windows. The second one is a simpler scenario 
where the user goes straight on through a corridor.  

The first test consisted in recording the values provided by 
the magnetometer. This first test was repeated 5 times. It is 
important to mention that the sensor provides a vector that 
corresponds to the strength and direction of the magnetic field. 
This vector is relative to the mobile device as shown in Fig. 2 
and the values are measured in microtesla (µT). The example 
vector shown in the figure means that there is a magnetic field 
of 46.669 µT strong in the direction of 45 degree to Y-axis and 
Z-axis of the device.  

The sampling frequency has been set to 10 samples per 
second. It balanced the computational costs, energy 
consumption and time series resolution.  

 
Fig. 2. Meaning of the Axis provided by the Mobile Phone sensory system.  

Fig. 3 shows the recorded magnetometer values through 
both trajectories, where top plots correspond to the first 
trajectory (two corridors) and bottom ones correspond to the 
second one (single corridor). Please note that the horizontal 
scale is different in the two trajectories. The vertical scale and 
range values are also different in the second trajectory.  

At first sight, it can be observed that the magnetometer 
values and the curves are similar for the five runs according to 
the plots of the first trajectory. But when we show the results 
with more detail (second trajectory), we can see that the 
magnetic values are not exactly the same in the five trajectory’s 
runs, but their differences are low, about 5 µT.  

However, it is not trivial to detect a user’s orientation 
change (turn) with the information provided by the 
magnetometer. Therefore, we decided to record raw data from 
the orientation sensor too. The orientation sensor provides the 
direction vector and the values are measured in degrees. This 
vector is also relative to the mobile phone (see Fig. 2). 

Fig. 4 shows the orientation of the device for the two 
trajectories. In this case, both plots also have different scales. 
Moreover, we show a simplified orientation instead the vector 
values for visualization purposes. There was a significant 
change of user’s orientation in the first trajectory (≅90º) 
according to the Fig. 4 (left) because the user did a L-turn, 
whereas the changes of user’s orientation in the second 
trajectory (see Fig. 4 right) should be considered insignificant 
(≅5º) and they may be due to user’s movement.  



   
 

   
Fig. 3. The magnetic field values (in the three axes) in two different trajectories. Note differences in x-Axis scale. 

 

 
Fig. 4. Simplified orientation sensor values for the two trajectories. Note differences in x-Axis scale. 

B. It is necessary to include accelerometer values? 
The second test consisted in storing the magnetic field 

values provided by the magnetometer along with the values 
provided by the accelerometer. The later sensor provides a 
vector with the accelerometer values expressed in m/s2. Those 
values have been processed to remove the gravity forces and 
therefore to have an estimation of user’s real movement.  

In particular, we recorded the magnetometer and processed 
accelerometer values through a corridor. We repeated this test 
with three different speed conditions. In the first one, the user 
was walking slower than usual. In the second one, the user was 
walking at a normal speed. Finally, the user was walking faster 
than usual, without getting running speed. Fig. 5 shows the 
combination of magnetic values and the processed 
accelerometer values on the Y-Axis. We found that this axis 
was representative enough to detect the user’s steps, and 
therefore estimate the speed.  

First of all, the shape of the magnetic curves in the three 
axes may be considered similar for the three different cases. 
However, the horizontal scale (time) varies significantly in the 
three configurations. In the first case, slow speed, the time 
required to capture values through the trajectory was 12 
seconds approximately (121 samples), whereas time was 
reduced to a half in the third case with the fastest speed. 

We consider that there may be two alternatives to deal with 
user’s speed in indoor positioning. The first one consists of 
resampling the training or the operational samples to allow its 
comparison. Resampling is the procedure to dilate or compress 
the sequence of discrete captures to have the same spatio-
temporal resolution. The other alternative consists of mapping 
the scenario under some different speed configuration, and 
using an advanced method to determine the speed 
configuration at operational stage. Therefore, the appropriate 
training samples from the full training/reference set could be 
selected depending on user’s speed. 

 

Magnetic X – First Trajectory Magnetic Y – First Trajectory Magnetic Z – First Trajectory 

Magnetic X – Second Trajectory Magnetic Y – Second Trajectory Magnetic Z – Second Trajectory 

Orientation Changes – First Trajectory Orientation Changes – Second Trajectory 
 



 

   
 

    
Fig. 5. The magnetic field values in XYZ axes (top) and the Accelerometer values in the Y-axis (bottom) for different speed conditions 

 
 

 
Fig. 6. Data values collected for a trajectory. Simplified orientation is shown for visualization purposed. Moreover the values of magnetic and accelerometer are 
also shown in separate plots. 

Slow - Accelerometer Y Normal - Accelerometer Y Fast - Accelerometer Y 

Slow - Magnetic XYZ Normal - Magnetic XYZ Fast - Magnetic XYZ 

Orientation changes 

Accelerometer X Accelerometer Y Accelerometer Z 

Magnetic X Magnetic Y Magnetic Z 

Magnetic XYZ Accelerometer XYZ 



C. Lessons learnt from prior tests 
After performing some prior tests, including the ones 

shown in this section, we decided that data from 
magnetometer, accelerometer and orientation sensors should be 
included in the proposed public database. Researchers may 
combine all this information in order to improve the indoor 
positioning systems. For example, the user’s speed, turns, and 
other common situations could be estimated, and this new 
information could benefit Indoor Positioning Systems’ (IPS) 
accuracy. 

Moreover, we also considered important to record the exact 
moment in which each discrete sample was taken. We detected 
that some minor delays could be introduced between two 
consecutive samples. Moreover, this timing information may 
be useful for further spatio-temporal analysis such as ‘is the 
time a factor to consider for magnetic field based indoor 
location?’. However, this kind of questions is out-of-scope.  

Fig. 6 graphically shows the information gathered when a 
trajectory inside an indoor environment was mapped. The first 
row shows the simplified orientation, the magnetometer values 
and the accelerometer values. For clarification purposes, the 
values of the magnetometer are shown in the second row in 
different plots. Similarly, the third row shows the processed 
values of the accelerometer (gravity force has been removed). 

Although the analysis of this information is complex, some 
information can be extracted by interpreting the different plots. 
For instance, the user turned to the left and then turned to the 
right, such as in the testing trajectories number 5, 7 & 10 (see 
Fig. 8). The user reduced the speed between the first and 
second turn because she/he was, maybe, avoiding and 
“obstacle” because there were some people in the middle of the 
corridor. Moreover, the two consecutive turns produced an 
abrupt change in the magnetic field for the three axes.  

Most of the situations that may occur in an indoor 
environment (e.g. the presence of people and other obstacles in 
a corridor) should be considered while mapping it. Turns, 
including L-Turns and U-Turns, should be mapped to have a 
complete reference database, because the IPS’s accuracy may 
depend on the situations recorded in the reference database. If 
turns were not considered in the mapping procedure 
(generation of the reference databases), we would be unable to 
detect them only with the magnetic data at the operational 
stage.  

Thus, the most important lesson, which we learned from 
the prior testing experiments, was that having a good reference 
dataset was essential to develop an accurate Indoor Positioning 
System based on Earth’s Magnetic Field. Therefore we planned 
to map our laboratory considering all possible natural turns 
(see Section IV). 

Here we publish a dataset in which values from time, 
magnetometer, accelerometer, and orientation sensor have been 
recorded. The procedure to map took some time to plan and 
develop it. So, our principle while collecting data was to record 
as maximum information as possible according to our current 
knowledge. The unuseful data can be removed or omitted by 
the location algorithm. 

IV. THE UJIINDOORLOC-MAG DATABASE 
This section introduced the UJIIndoorLoc-Mag database 

main features. All the samples were taken in our 260 m2 
laboratory, which is composed by 8 corridors. 

In this office, bookcases and desktop tables are the 
elements that separate the corridors as shown in Fig. 1. The 
laboratory is located in the fifth floor of the Espaitec-2 building 
at Universitat Jaume I university campus. 

A. General description 
The database contains mapping samples alongside the 8 

corridors and all the intersections between two corridors. We 
consider that mapping “intersections” could make a more 
robust reference database, so we recorded the sensors values 
when the user was turning to change the corridor where he/she 
was walking through. The 8 corridors and 19 intersections 
were mapped in two different directions with a Google's Nexus 
4 and Android 5.0.1. As a result, there were 54 different 
alternative paths. Sampling on every path was repeated 5 times, 
so the database designed for training purposes is composed by 
a total of 270 different continuous samples. 

We used Android devices since they allow full access to 
sensors and they dominate the mobile phones market with, 
approximately, 78% of share. 

Our mapping process captured the data coming from three 
different sensor sources: magnetometer, accelerometer and 
rotation sensor. The first source provided the raw data of the 
magnetometer sensor in the three axes [X, Y, and Z]. The 
second source came from the raw data of the accelerometer 
also in the three axes minus the gravity force. The last one 
represented the orientation as the angle of rotation in the three 
axes. User was moving when capturing data from a starting 
point to an ending point, and data were collected at every 0.1s. 
So continuous magnetic fingerprints were stored. Each 
continuous sample contains the coordinates of initial and end 
points, and also the coordinates of all turning points when 
capturing intersections. Moreover it contains n discrete 
captures, each one with the 9 above-mentioned features plus 
the timestamp. With the initial/turning/end positions and the 
timestamps it is possible to calculate the position of the 
discrete samples since the user’s speed was almost constant 
while capturing the magnetic field values. 

The mapping process was performed with an Android 
application that has direct access to sensors’ data. The user’s 
role in the application is to indicate in which zones is going to 
be performed the data capture process. Initially the application 
shows a map centered into the users current approximately 
location provided by the GPS sensor. Then, the user draws the 
trajectory that wants to follow to capture the data (see Fig. 7-
A). This trajectory can consist of a path in a single corridor or 
in several ones. The user needs to be placed in the starting 
point of the route and then, after clicking the “Start 
Recording” button, the app starts to collect data until the user 
reaches the ending point and clicks the “Tap-at-End” button 
(See Fig. 7-C). In case of a multi-corridor path, the user has to 
press the “Tap at Turning i” button to indicate that they are 
placed at the i-th intersection (see Fig. 7-B). 



   
A B C 

Fig. 7. Map of the Lab where samples were taken and Three screenshots of 
the Android application used to capture the data. A: Shows the path in where 
the data capture is going to be done and the “Start Recording” button. B&C: 
The current segment where the user is walking is highlighted in red, the user 
has to press the button (Turning in B or End in C) when she/he arrives to the 
1-st intersection (B) or the final destination (C). 

 
For testing purposes, 9 complex routes (see Fig. 8) along 

the laboratory were mapped. Each of these routes goes from 
different corridors and performs different trajectories. Two of 
them were mapped with two different mobile devices, the 
above-mentioned Nexus 4 and a LG G3 Smartphone with 
Android 5.0. So, a total of 11 complex continuous samples are 
available for testing purposes. 

Our approach provides a geo-magnetic database, which 
contains information about continuous recordings from one or 
two corridors (training) and multiple corridors (testing). The 
data stored in each sample is proportional to the amount of 
time needed to complete an established path, due to sampling 
period of 0.1 seconds. So, the data provided by the 
accelerometer, magnetometer and the orientation of the device 
is stored 10 times per second. E.g., if it takes 12 seconds to 
map a corridor, the corresponding continuous sample will have 
1200 values (12 s. x 10 discrete captures x 10 features). 

Please note that the 11 testing trajectories are complex and 
were taken in more than one corridor. Although the 8-th and 9-
th trajectories are placed in a single corridor scenario, they may 
also be considered multi-corridor since a U-turn (180º) is done 
on them. In those two trajectories, two different directions in 
the corridor are considered, so they cannot be considered pure 
single-corridor trajectories.  

Due to the complexity of data recorded, each training and 
testing continuous sample has been stored as an independent 
text file, whose description is detailed in Section IV-B.  

The continuous mapping we have performed may provide 
an accurate positioning. All the paths, intersections and 
turnings have been mapped with very high precision. 
Moreover, knowing that a person in normal conditions can 
cover a distance of 1.39 m. per second, our approach captures 
data approximately at every 0.139 m. that means that the 
accuracy over the path is very high. In UJIIndoorLoc-Mag, the 
users are walking at a normal speed through single and multi-
corridor trajectories without any obstacle. Although the 
research group members and researchers were present in the 
office, nobody stood in the corridor.  

   
TT01 TT02 & TT11 TT03 

   
TT04 TT05 TT06 

   
TT07 & TT10 TT08 TT09 

Fig. 8. The 11 testing trajectories (TT). Green squares are the starting point, 
blue triangle is the ending point and green circles. 

 

B. Description of database files 
The database consists of 281 continuous samples, 270 are for 
training and 11 for testing. They have been stored as 
independent text files. The training ones are grouped into two 
main categories “lines” and “curves”.  

• The “lines” group has 80 files and they stand for the 
single corridor case. The format for filename is 
“lXX_ZZ.txt” where XX stands for the number of 
corridor & orientation (n or r) and ZZ stands for 
repetition. Example: l3r_03.txt 

• The “curves” group has 190 files and they stand for 
all possible trajectories considering two connected 
corridors only. The format for that group’s filename 
is “cXXYY_ZZ.txt” where XX and YY stand for 
the number of corridor & orientation for the first and 
second corridors in the two corridors trajectory, and 
ZZ stands for repetition. Example: c5n1r_05.txt 

• The testing files’ filename format is “ttPP.txt” 
where PP stands for the complex testing trajectory 
number (see Fig. 8). Example: tt03.txt 



Data has been stored as a simple text file as follows:  
 

ts1 mx1 my1 mz1 ax1 ay1 az1 ox1 oy1 oz1 
…          

tsn mxn myn mzn axn ayn azn oxn oyn ozn 
<m>          

lat1 lon1 lat2 lon2 FS1 LS1     
…          

latm lonm latm+1 lonm+1 FSm LSm     
 

Where n is the number of samples collected in the 
trajectory at a 0.1 seconds frequency and m is the number of 
segments (corridors) in the trajectory. Each sample contains the 
timestamp ts and the values from magnetometer, 
accelerometer and orientation sensors in the three axes, which 
are denoted with mx, my, mz, ax, ay, az, ox, oy and oz. 
Finally, lati and loni corresponds to the coordinates 
(latitude & longitude in decimal degrees) of the initial, 
intermediate (intersections) and final points. A trajectory with 
m corridors has m+1 points. FSi and LSi state for the i-th 
trajectory’s first and last sample respectively in the full 
sequence of samples collected during the trajectory mapping.  

According to the previous structure, the text files are 
composed by two well-differentiated parts separated by the 
row indicating the number of segments in the trajectory: 1) the 
sequence of discrete samples taken during the trajectory 
mapping, and 2) the configuration data.  

The first part contains the timestamp (the UNIX time format 
in milliseconds) and the vector data from magnetometer 
(Android’s TYPE_MAGNETIC_FIELD), accelerometer 
(TYPE_LINEAR_ACCELERATION) and orientation 
(TYPE_ORIENTATION) sensors. The accelerometer’s values 
do not include the gravity force to have a better representation 
of user’s real movement. Two consecutive samples (vertically 
represented here) from 6-th testing trajectory are: 

ts24 1417178330528 ts25 1417178330629 
mx24  24.899292 mx25  24.719238 
my24 -10.319519 my25 -11.219788 
mz24 -49.55902 mz25 -49.319458 
ax24  -0.12917818 ax25  -0.15856716 
ay24   0.52311563 ay25   0.68318987 
az24  -0.19135952 az25  -0.15023136 
ox24 -64.537674 ox25 -62.273254 
oy24 -21.03711 oy25 -21.420563 
oz24   0.15363675 oz25   0.5122262 

 

 The second part contains the information about location of 
initial, intermediate and ending points Moreover, the samples 
can be associated to corridor segments and, moreover, 
information about turnings is also provided in all the samples. 

For instance the configuration part for the 6-th testing 
trajectory is: 
39.99389 -0.07375 39.99393 -0.07384 0 71 
39.99393 -0.07384 39.99386 -0.07389 72 159 
39.99386 -0.07389 39.99388 -0.07394 160 223 
 

Where latitude and longitude coordinates have been truncated 
to 5 decimals for representation purposes. Three segments 
compose this particular example, so the number of 
intermediate points (intersections) is four. The mapped length 
of the first and second segments is similar, and the third 
segment’s length is slightly lower. 

V. BASELINE 
 Two very simple baseline methods have been developed 
and tested to provide a starting point that any more 
sophisticated indoor localization algorithm should be able to 
overcome.  

 The first one uses a discrete method to obtain the position 
of the discrete test points obtained from the continuous test 
samples. The second one uses a continuous method that 
obtains the position of the user taking into account 5 seconds 
of data instead of simple discrete samples. Both algorithms 
only use the training samples taken on the 8 corridors and 
from the magnetometer. The 190 two-corridor continuous 
samples were not used for training purposes in the baselines. 

A.  Discrete method 
 For each continuous sample, the localization of each 
discrete capture can be easily estimated since the coordinates 
of the initial and final points of the path are known, the 
timestamps were recorded and the user velocity was almost 
constant.  

 All the discrete captures extracted from the continuous 
training samples of the corridors are used as the training 
dataset, where each element consists of 5 features: the location 
where the capture was taken [lat, lon] and the measurement 
obtained by the magnetometer in this location [mX, mY, mZ]. 
The same procedure has been performed to extract the discrete 
captures from the test paths. In total, there are 8943 samples 
for training and 4380 for testing.  

 The k-NN algorithm [11] with k = 1 has been used to 
estimate the location of each test sample, so the test current 
location would correspond to the most similar train sample. 
The location of the most similar sample in the training set is 
the one assigned to the test sample. Although other distance or 
similarity metrics could have been used [12,13], the distance 
between two samples, m1 = [mX,1, mY,1, mZ,1] and m2 = [mX,2, 
mY,2, mZ,2], corresponds to the Euclidean’s distance and it is 
estimated as follows: 
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 Table II shows the baseline results for the discrete method. 
The error in positioning corresponds to the mean distance 
between actual position and predicted position. This distance 
between two points does not correspond to the Euclidean’s 
distance between them since the points corresponds to the 
latitude (lat) & longitude (lon) coordinates in decimal degrees, 
they are not expressed in linear meters. So, the haversine 
formula, eq.2, is used instead. The standard error of the mean 
is also shown in the table. 

                             (2) 

Where R is the radius of Earth, 6373 km approximately, 
and:  

 
 

	



  
 In general, the mean error in positioning using the discrete 
method is 7.23 ± 0.38 m. This general error has been 
calculated considering the mean results in the 11 testing paths 
of Table I. 

B. Continuous method 
 For the continuous case, each continuous training sample 
is divided in several subsamples of 5 seconds each one. For 
instance, if a sample is 10 seconds long and has 100 discrete 
samples, then it is divided in 6 continuous subsamples, [1-50], 
[11-60], ..., [51-100]. Each overlapping subsample includes 
information about the location of the initial and final point of 
the sub-path, and the 50 captures of the three components of 
the magnetic field measured. 

 All the subsamples extracted from the training samples of 
the corridors are used as the training dataset. The test samples 
are also divided in subsamples of 5 seconds. All the 
subsamples extracted from the test paths are used as the test 
dataset. In total, there are 540 subsamples for training and 231 
for testing. For each test subsample, a 1NN-based method 
(similar to the one introduced for the discrete case) is 
performed to look for the more similar training subsample. 

 The distance between two continuous subsamples vm1 = 
[vmX,1, vmY,1, vmZ,1] and vm2 = [vmX,2, vmY,2, vmZ,2] is also 
based on the Euclidean’s distance, and it is given by the 
following equation: 
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where vm[i] is the i-th element of the vector vm, d corresponds 
to Euclidean’s distance (see eq.(1)), and N is the number of 
discrete captures of each continuous subsample. In our case, 
N=50 since each continuous subsample contains 50 discrete 
samples.   

 Table II also shows the baseline for the continuous method 
similarly than for the discrete method. In this case, the mean 
error in positioning (considering the 11 different testing paths) 
is lower: 6.05 ± 0.43 m.  

TABLE II: MEAN POSITIONING ERROR FOR DISCRETE AND 
CONTINUOUS METHODS IN THE 11 TESTING PATHS. 

 Discrete Method Continuous Method 
Path #samples Error #samples Error 
1 540 8.8±0.18 35 8.74±0.68 
2 356 7.1±0.21 21 7.44±0.89 
3 876 7.8±0.14 44 7.89±0.62 
4 859 7.81±0.14 41 7.21±0.69 
5 362 6.11±0.19 23 5.14±0.69 
6 224 7.5±0.21 9 6.05±1.52 
7 211 7.72±0.29 8 6.24±1.51 
8 246 9.26±0.22 16 6.58±0.88 
9 196 3.33±0.21 11 1.25±0.34 
10 223 7.46±0.3 10 5.33±1.36 
11 287 6.65±0.18 13 4.7±0.81 
mean  7.23±0.38  6.05±0.43 

C. General Discusion 
 Note that the error provided by both baselines is not low, 
7.23 ± 0.38 m. and 6.05 ± 0.43 m. respectively. The principal 
objective of this contribution is to introduce the 
UJIIndoorLoc-Mag database to the Scientific Community and 
describe how it has been created.  

 The two initial basic baselines have been performed to test 
the suitability of the database, and to establish a starting point 
for further comparisons that any more sophisticated indoor 
localization algorithm should overcome.  

 According to the results shown in Table II, the continuous 
method provides better positioning results (lower error) in 9 of 
11 paths since more information (50 discrete samples) is used 
to predict the location. We consider that better results could be 
achieved if training samples taken at intersections were 
considered in the algorithm.  

VI. CONCLUSIONS 
 This paper introduces a new database for indoor 
localization, UJIIndoorLoc-Mag, on the basis of variations on 
the magnetic field. The database description has been fully 
detailed, including the features used in the database. The 
procedure and the applications used to generate the database 
have also been described.  

 Two baseline methods have been introduced using the 
proposed database in order to show the viability of the usage 
of the magnetic database and also to encourage future 
researchers to use the database to compare their different 
approaches. 

 We consider that this contribution is useful for the research 
community. Researchers can use the presented database for 
testing their own indoor localization proposals based on 
Magnetic Field or performing data mining analysis.  

 Our further work will be focused on increasing the amount 
of samples of the database. Moreover, a more robust indoor 
positioning method will also be presented in order to show the 
viability of the indoor magnetic positioning approaches for 
navigation purposes. 
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