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HILBERT SERIES OF MODULES OVER
POSITIVELY GRADED POLYNOMIAL RINGS

LUKAS KATTHÄN, JULIO JOSÉ MOYANO-FERNÁNDEZ, AND JAN ULICZKA

ABSTRACT. In this note, we give examples of formal power series satisfying certain
conditions that cannot be realized as Hilbert series of finitely generated modules. This
answers to the negative a question raised in a recent articleby the second and the third
author. On the other hand, we show that the answer is positiveafter multiplication with a
scalar.

1. INTRODUCTION

Let K be a field, and letR= K[X1, . . . ,Xn] be the positivelyZ-graded polynomial ring
with degXi = di ≥ 1 for everyi = 1, . . . ,n. Consider a finitely generated gradedR–module
M =

⊕

k Mk overR. The graded componentsMk of M are finitely dimensionalK-vector
spaces, and, sinceR is positively graded,Mk = 0 for k≪ 0. The formal Laurent series

HM(t) := ∑
k∈Z

(dimK Mk)t
k ∈ Z[[t]][t−1]

is called the Hilbert series ofM. Obviously every coefficient of this series is nonnegative.
Moreover, it is well-known thatHM(t) can be written as a rational function with denomi-
nator(1− td1) · · ·(1− tdn). In fact, in the standard graded case (i.e.d1 = · · · = dn = 1)
these two properties characterize the Hilbert series of finitely generatedR-modules among
the formal Laurent seriesZ[[t]][t−1], cf. Uliczka [4, Cor. 2.3].

In the non-standard graded case, the situation is more involved. A characterization of
Hilbert series was obtained by the second and third author in[2]:

Theorem 1.1 (Moyano-Uliczka). Let P(t)∈Z[[t]][t−1] be a formal Laurent series which is
rational with denominator(1− td1) · · ·(1− tdn). Then P can be realized as Hilbert series
of some finitely generated R-module if and only if it can be written in the form

P(t) = ∑
I⊆{1,...,n}

QI (t)

∏i∈I
(

1− tdi
) (1.1)

with nonnegative QI ∈ Z[t, t−1].
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However, it remained an open question in [2, Remark 2.3] if the condition of the The-
orem is satisfied byeveryrational function with the given denominator and nonnegative
coefficients. In this paper we answer this question to the negative. In Section 3 we provide
examples of rational functions that do not admit a decomposition (1.1) and are thus not
realizable as Hilbert series. On the other hand, we show the following in Corollary 2.5
and Theorem 2.6:

Theorem 1.2. Assume that the degrees d1, . . . ,dn are pairwise either coprime or equal.
Then the following holds:

(1) If n= 2, then every rational function P(t)∈ Z[[t]][t−1] with the given denominator
and nonnegative coefficients admits a decomposition as in(1.1)

(2) In general, the same still holdsup to multiplication with a scalar.

In particular, there is a formal Laurent seriesP(t) with integral coefficients such that
2P(t), but notP(t), is the Hilbert series of a finitely generated gradedR–module, cf. Exam-
ple 3.1. Moreover, we will provide an example (Example 3.3) showing that the conclusion
does not hold without the assumption on the degrees being pairwise coprime.

2. PROOFS OF THE MAIN RESULTS

As general references for further details about Hilbert series the reader is referred to
Bruns and Herzog [1]. Furthermore, we are going to use some well-known facts about
quasipolynomials and power series expansions of rational functions. For details about
these topics, we refer the reader to Chapter 4 of Stanley [3].

We first show three lemmas before we present the proof of our main results. The
following notation will be useful. Forδ ∈ N and 0≤ j ≤ δ −1 set

eδ , j(h) :=

{

1 if h≡ j modδ ,
0 otherwise.

Obviously, the functionseδ ,0, . . . ,eδ ,δ−1 form a basis of the space ofδ -periodic functions
N→Q.

Lemma 2.1. Let c1, . . . ,cr : N→ Q be periodic functions of periodsδ1, . . . ,δr , such that
their sum takes nonnegative values. Then there exist nonnegative periodic functions
c̃1, . . . , c̃r : N → Q of the same periods such that∑i ci = ∑i c̃i . Moreover, if the sum of
the ci takes nonnegative integral values, then thec̃i can be chosen to be integral valued.

Proof. Let us define the coefficientsµ(i, j) by requiring

ci =
δi−1

∑
j=0

µ(i, j)eδi , j .

For eachi > 1, letmi be the minimum of theµ(i,1), . . . ,µ(i,δi) and choose aki such that
mi = µ(i,ki). Set µ̃(i, j) := µ(i, j)+mi for 1 < i ≤ r, µ̃(1, j) := µ(1, j)−∑i mi and
definec̃i := ∑δi−1

j=0 µ̃(i, j)eδi, j . Using the relation

δ−1

∑
j=0

eδ , j =
δ ′−1

∑
j=0

eδ ′, j ,
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which holds for allδ ,δ ′ ∈ N, one easily sees that

r

∑
i=1

ci =
r

∑
i=1

δi−1

∑
j=0

µ(i, j)eδi , j =
r

∑
i=1

δi−1

∑
j=0

µ̃(i, j)eδi , j =
r

∑
i=1

c̃i .

By construction we havẽµ(i, j)≥ 0 for i > 1 and all j, and we claim that alsõµ(1, j)≥ 0
for all j. To prove this, assume for contrary that there exists an index j0 such that
µ̃(1, j0) < 0. Note that by constructioñµ(i,ki) = 0 for 1< i ≤ r. By the Chinese re-
mainder theorem there exists an 0≤ h < δ1δ2 · · ·δr such thath≡ j0 modδ1 andh≡ ki
modδi for i > 1. Then

r

∑
i=1

ci(h) =
r

∑
i=1

c̃i(h)

= µ̃(1, j0)+ µ̃(2,k2)+ µ̃(3,k3)+ · · ·+ µ̃(r,kr)

= µ̃(1, j0)< 0,

contradicting the assumption.
Now we turn to the case that∑r

i=1ci(h) ∈ Z for all h ∈ N. By the same argument as
above, for 1≤ j ≤ δ1 − 1 there exists anh ∈ N such that∑r

i=1ci(h) = µ̃(1, j), hence
µ̃(1, j) ∈ Z for all j. Further, for each 1< i ≤ r and each 1≤ j ≤ δi −1, there exists an
h ∈ N such thath ≡ j modδi andh ≡ kℓ modδℓ for each 1≤ ℓ ≤ r, with ℓ 6= i. Thus
∑r

i=1ci(h) = µ̃(1, j0)+ µ̃(i, j) for some j0. It follows that µ̃(i, j) ∈ Z. We conclude that
c̃i(h) ∈ Z for all 1≤ i ≤ r and allh∈ N. �

Lemma 2.2. Let c: N→Q be a nonnegative periodic function of periodδ ∈N. Then for
anyβ ∈ N there exists a polynomial q∈Q[t] with nonnegative coefficients, such that the
coefficient function of the series expansion of

q(t)

(1− tδ )β

is a quasipolynomial of degreeβ −1 whose leading coefficient equals c.

Proof. Write c= ∑i cieδ ,i with ci ∈Q nonnegative. Recall that the coefficient function of

t i

(1− tδ)β = ∑
h≥0

(

h+β −1
β −1

)

tδh+i

is a quasipolynomial of degreeβ −1 with leading coefficient function

1

δ β−1(β −1)!
eδ ,i .

So the polynomialq(t) := δ β−1(β −1)! ∑δ−1
i=0 cit i satisfies the claim. �

Lemma 2.3. Let p1, p2 be two quasipolynomials of the same period and the same degree.
Assume moreover that the leading coefficient function of p1 is nonnegative and greater
than or equal to the leading coefficient function of p2. Then there exists a k∈N such that
p1(h)− p2(h−k)≥ 0 for all h ≥ k.
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Proof. Let δ ∈ N be the common period ofp1 andp2. We only consider values ofk that
are multiples ofδ , so we setk= k̃δ . Let

p1(h) =
ℓ

∑
i=0

ai(h)h
i and p2(h) =

ℓ

∑
i=0

bi(h)h
i.

Let h̃ := h− k̃δ . We compute

p1(h)− p2(h− k̃δ ) = p1(h̃+ k̃δ )− p2(h̃)

=
ℓ

∑
i=0

ai(h̃+ k̃δ )(h̃+ k̃δ )i −bi(h̃)h̃
i

=
ℓ

∑
i=0

ai(h̃)(h̃+ k̃δ )i −bi(h̃)h̃
i

= (aℓ(h̃)−bℓ(h̃))h̃
ℓ+

ℓ−1

∑
i=0

(

ℓ

∑
j=i

(

j
i

)

k̃ j−iδ j−ia j(h̃)−bi(h̃)

)

h̃i .

By assumption we have thataℓ(h̃)−bℓ(h̃) ≥ 0. Further, we see that all other coefficient
functions ofp1(h̃+ k̃δ )−p2(h̃) are non-constant polynomials ink̃ with leading coefficient
(ℓ

i

)

δ ℓ−iaℓ(h̃) > 0. Therefore all coefficient functions ofp1(h̃+ k̃δ )− p1(h̃) are nonnega-
tive for k̃≫ 0. It follows that for a sufficiently largẽk, it holds thatp1(h̃+ k̃δ )−p2(h̃)≥ 0
for all h̃≥ 0, and consequentlyp1(h)− p2(h− k̃δ )≥ 0 for all h≥ k̃δ . �

Now we are ready to present and prove our main theorem. It shows that a decomposi-
tion as in Theorem 1.1 is always possible if one allowsrational coefficients.

Theorem 2.4. Let d1, . . . ,dn be pairwise coprime or equal positive integer numbers. Let
P∈ Z[[t]][t−1] be a nonnegative formal Laurent series which is rational with denominator
(1− td1) · · ·(1− tdn). Then it can be written in the form

P(t) = ∑
I⊆{1,...,n}

QI (t)

∏i∈I
(

1− tdi
)

with nonnegative QI ∈Q[t, t−1].

Let us introduce some more notation to simplify the presentation of the proof. Let
δ1, . . . ,δr ∈ N denote the different values of thedi, and letαi := |

{

j d j = δi
}

| be the
multiplicity of δi . ThenP(t) is a rational function with denominator∏i(1− tδi)αi . From
some power oft on, the coefficients ofP are given by a quasipolynomial which we denote
by N (P) (cf. [3, Prop. 4.4.1]).

Proof. We proceed by induction onβ := degN (P)+1. If N (P) = 0, thenP is a poly-
nomial and there is nothing to be proven. So from now on we assume thatN (P) 6= 0.
Using that theδi are pairwise coprime, we compute a partial fraction decomposition of P
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as follows:

P(t) =
p(t)

(1− tδ1)α1 · · ·(1− tδr )αr
=

p(t)

(1− t)n∏r
i=1(∑

δi−1
j=0 t j)αi

=
p0(t)

(1− t)n +
r

∑
i=1

pi(t)

(∑δi−1
j=0 t j)αi

=
p0(t)

(1− t)n +
r

∑
i=1

pi(t)(1− t)αi

(1− tδi)αi
;

here, p, p0, p1, . . . , pr ∈ Q[t, t−1]. Expanding the last expression into a series yields a
decomposition

N (P) = q0+q1+ . . .+qr (2.1)

of N (P), whereq0 ∈ Q[t] is a polynomial andqi is a quasipolynomial of periodδi and
degree at mostαi −1 for 1≤ i ≤ r. Note that this decomposition is not necessarily unique.

BecauseN (P)(h) is nonnegative for allh≫ 0, its leading coefficientc is a nonnegative
periodic function. There are two cases to distinguish:

(1) If β > max{αi 1≤ i ≤ r }, thenc is determined by the first summand in (2.1). In
particular,c is a constant function. In this case, choose numbers 0≤ βi ≤ αi for 1≤ i ≤ r
such thatβ = β1 + · · ·+ βr . Then the coefficient function of the series expansion of
1/∏i(1−tδi)βi is a quasipolynomial of degreeβ −1, and its leading coefficient function is
constant. Thus there exists a nonnegativeλ ∈Q such thatc equals the leading coefficient
of N (G) for

G(t) :=
λ

∏r
i=1(1− tδi)βi

.

(2) If β ≤ max{αi 1≤ i ≤ r }, thenc is a sum of periodic functions of the periods
δi for thosei whereβ ≤ αi . By Lemma 2.1, we can writec as a sum of nonnegative
functionsc̃1, . . . , c̃r : N→Q of periodsδ1, . . . ,δr , where ˜ci = 0 if β > αi . By Lemma 2.2,
there are nonnegative polynomials ˜q1, . . . , q̃r ∈Q[t], such thatc is the leading coefficient
of N (G) for

G(t) :=
r

∑
i=1

q̃i(t)

(1− tδi)β .

In both cases,N (P) andN (G) satisfy the hypotheses of Lemma 2.3. Hence, there
exists ak∈ N, such thatN (P)(h)−N (G)(h−k) ≥ 0 for all h≥ k. By enlargingk, we
may also assume that the coefficient ofth in P is given byN (P)(h) for all h≥ k. On the
other hand, the coefficients ofG are given byN (G)(h) for all h≥ 0.

Thus, by construction the coefficient ofth in the seriesP′ := P− tkG is given by the
corresponding coefficient inP for h < k and byN (P)(h)−N (G)(h−k) for h≥ k. In
particular,P′ has nonnegative coefficients. But degN (P′) < degN (P), so the claim
follows by induction. �

Corollary 2.5. Let P∈ Z[[t]][t−1] be a formal Laurent series satisfying the assumptions
of Theorem 2.4. Then there exist aλ ∈ N and a finitely generated R-module M, such that
λP is the Hilbert series of M.

Proof. This follows from Theorem 2.4 and Theorem 1.1. �
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Theorem 2.6. Assume that in the situation of Theorem 2.4 we have n= 2. Then the
numerator polynomials QI can be chosen to have nonnegativeintegralcoefficients. In
particular, P can be realized as a Hilbert series of a finitelygenerated graded R-module.

Proof. As a notation, we writeci(P) for the i-th coefficient ofN (P). If the degrees are
equal the problem can be reduced to the standard graded case,so the claim follows from
[4, Thm. 2.1]. Therefore we may assume thatd1 6= d2. Sincen= 2, N (P) has degree at
most 1. IfN (P) = 0, thenP is a polynomial, so nothing is to be proven. Next we assume
that degN (P) = 0. By a partial fraction decomposition ofP we see that it can be written
in the form

P(t) =
p1(t)

1− td1
+

p2(t)

1− td2
.

From this we read off thatc0(P) is the sum of two periodic functions of periodd1 resp.
d2. By Lemma 2.1, we can choose these functions to be nonnegative and integer valued.
In other words, there exist two polynomials ˜p1, p̃2 ∈ Z[t] with nonnegative coefficients
such that

c0(P) = c0

(

p̃1(t)
1− td1

+
p̃2(t)

1− td2

)

,

so by subtracting a suitable shift of this rational functionfrom P(t) we reduce to the case
of a polynomial.

Finally we consider the case of degN (P) = 1. Let us write

P(t) =
p(t)

(1− td1)(1− td2)
(2.2)

with p(t) ∈Q[t, t−1]. First, we show that the coefficients ofp(t) are integers. For this, let
p(t) = ∑i ait i and writeP(t) = ∑ j≥0 f j t j . It follows from (2.2) that

ai = fi − fi−d1 − fi−d2 + fi−d1d2 ∈ Z.

It is not difficult to see that

c1

(

t i

(1− td1)(1− td2)

)

=
1

d1d2

for all i, and in particular this coefficient function is constant. Asthe coefficients ofp(t)
are integers, it follows thatc1(P) is an integral multiple of 1/d1d2. Hence there exists
λ ∈ N such that

P′(t) := P(t)−
λ tk

(1− td1)(1− td2)

satisfies degN (P′) = 0. Moreover, Lemma 2.3 implies that the coefficients of the series
expansion ofP′ are nonnegative fork≫ 0. Thus we have reduced the claim to the previous
case. �
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3. COUNTEREXAMPLES

The decomposition is not always possible with integral coefficients. We describe a
general construction of counterexamples. For this we consider pairwise coprime numbers
δ1, . . . ,δr ∈N and exponentsα1, . . . ,αr ∈ N. Consider two rational functionsP1,P2 of the
form

1

∏i(1− tδi)βi

with 0≤ βi ≤ αi . AssumeP1 andP2 have the following properties:

(i) degN (P1) = degN (P2). Let us call this numberd.
(ii) d+1 > max{α1, . . . ,αr }. This ensures that the leading coefficientscd(P1) and

cd(P2) are constant.
(iii) cd(P1)> cd(P2), and the former should not be a multiple of the latter.

Under these assumptions, it is easy to see that there exists aλ ∈N, such thatP̃ :=P1−λP2
is a series, so thatcd(P̃) is smaller thancd(P2). This series may have negative coefficients.
But by Lemma 2.3 we may instead considerP := P1−λ tkP2 for a sufficiently largek∈N,
and this series has nonnegative coefficients.

Now assume additionally thatcd(P2) is the minimal leading coefficient of all series
of the given type and dimension. Then it is immediate thatP cannot be written as a
nonnegative integral linear combination of such series. Wegive two explicit examples of
this behaviour.

Example 3.1. Consider the rational function

P(t) :=
1

(1− t2)(1− t5)
−

t4

(1− t3)(1− t5)

=
1
2

(

1+ t2+
t6

1− t2 +
t2

1− t3 +
1+ t6

1− t5 +
t12

(1− t3)(1− t5)

)

.

One can read off from the first line that the leading coefficient of N (P) is 1/10−1/15=
1/30, and thus smaller than 1/15. So by the argument given above,P(t) cannot be written
as a nonnegative integral linear combination. On the other hand, the second line gives a
rational decomposition. This shows in particular that the coefficients of the series ofP are
nonnegative.

Example 3.2. The same phenomenon occurs in the case that there are only twodifferent
degrees, say 2 and 3, butα1,α2 > 1. As an explicit example consider the following
rational function:

P :=
1

(1− t2)2(1− t3)
−

t2

(1− t2)(1− t3)2

=
1
2

(

1
1− t3 +

1
(1− t2)2 +

t3

(1− t3)2 +
t4

(1− t2)(1− t3)2

)

.
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Example 3.3. The condition that the degreesδ1, . . . ,δr are pairwise coprime is essential,
as the following example shows. Consider the rational function

P(t) :=
1+ t − t6− t10− t11− t15+ t20+ t21

(1− t6)(1− t10)(1− t15)

=
1+ t + t7+ t13+ t19+ t20

1− t30 .

One can read off from the second line thatP(t) cannot be written as a sum with positive
coefficients and the required denominator: The coefficient of t0 is 1, but the termst6, t10

andt15 all have coefficient zero.
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