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HILBERT SERIES OF MODULES OVER
POSITIVELY GRADED POLYNOMIAL RINGS

LUKAS KATTHAN, JULIO JOSE MOYANO-FERNANDEZ, AND JAN ULICZKA

ABSTRACT. In this note, we give examples of formal power series satigf certain
conditions that cannot be realized as Hilbert series ofdlipigenerated modules. This
answers to the negative a question raised in a recent abofjclee second and the third
author. On the other hand, we show that the answer is poaitigemultiplication with a
scalar.

1. INTRODUCTION

Let K be a field, and leR = K[Xy, ..., X] be the positivelyZ-graded polynomial ring
with degX; =d; > 1 for everyi =1,...,n. Consider a finitely generated gradeemodule
M = @M overR. The graded componenidy of M are finitely dimensionak-vector
spaces, and, sind¢eis positively gradedMy = 0 for k < 0. The formal Laurent series

Hu(t) == 3 (dim M)t € Z[t] [t
keZ

is called the Hilbert series &fl. Obviously every coefficient of this series is nonnegative.
Moreover, it is well-known thalHy (t) can be written as a rational function with denomi-
nator (1 —t%)...(1—t%). In fact, in the standard graded case (idg.= --- = dn = 1)
these two properties characterize the Hilbert series défingenerate@®-modules among
the formal Laurent serie&[[t]][t Y], cf. Uliczka [4, Cor. 2.3].

In the non-standard graded case, the situation is morevieslolA characterization of
Hilbert series was obtained by the second and third authi@j:in

Theorem 1.1 (Moyano-Uliczka) Let P(t) € Z[[t])[t ] be a formal Laurent series which is
rational with denominatof1 —t%)...(1—t%). Then P can be realized as Hilbert series
of some finitely generated R-module if and only if it can betamiin the form

P(t) = Qi(t)

- S L A 1.1
icif oy Mier (1-t9) (-4

with nonnegative Q¢ Z[t,t1].
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However, it remained an open question[ih [2, Remark 2.3]afdbndition of the The-
orem is satisfied bgveryrational function with the given denominator and nonnegati
coefficients. In this paper we answer this question to thatiegy In Sectioil3 we provide
examples of rational functions that do not admit a decontjpos{I1.1) and are thus not
realizable as Hilbert series. On the other hand, we showdlt@nfing in Corollary[2.5
and Theorerh 216:

Theorem 1.2. Assume that the degrees, d ., d, are pairwise either coprime or equal.
Then the following holds:

(1) If n= 2, then every rational function(®) € Z[{t][t 1] with the given denominator
and nonnegative coefficients admits a decomposition &)
(2) In general, the same still holdg to multiplication with a scalar

In particular, there is a formal Laurent serie@) with integral coefficients such that
2P(t), but notP(t), is the Hilbert series of a finitely generated gra&edhodule, cf. Exam-
ple[3.1. Moreover, we will provide an example (Exaniplé 3t&weing that the conclusion
does not hold without the assumption on the degrees beingipaicoprime.

2. PROOFS OF THE MAIN RESULTS

As general references for further details about Hilbertesethe reader is referred to
Bruns and Herzod [1]. Furthermore, we are going to use sontiekwewn facts about
guasipolynomials and power series expansions of ratiamadtions. For details about
these topics, we refer the reader to Chapter 4 of Stanley [3].

We first show three lemmas before we present the proof of oun negults. The
following notation will be useful. Fod € Nand 0< j < —1 set

1 ifh=j modd
i(h):= ’
€.j() {O otherwise

Obviously, the functionss , .. . ,€5 5_1 form a basis of the space dfperiodic functions
N— Q.

Lemma2.l. Letg,...,¢ : N— Q be periodic functions of periods, ..., d, such that
their sum takes nonnegative values. Then there exist natimegoeriodic functions
€1,...,6 : N — Q of the same periods such thgifc; = 5;¢. Moreover, if the sum of
the g takes nonnegative integral values, then &hean be chosen to be integral valued.

Proof. Let us define the coefficients(i, j) by requiring

5-1
G = u(|7j>ed,
]; j

For each > 1, letm; be the minimum of theu(i,1),..., u(i, &) and choose & such that

m = p(i.k). Setfi(i,j) = p(i,j)+m for L<i<r, f(L]):=pu(lj)— yim and
definec .= z?;olﬁ(i, j)es,j- Using the relation

o-1 -1
2 1= 2 e
i= =
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which holds for alld, &’ € N, one easily sees that
r §-—1 r §-1

RS RS

By construction we havg(i, j) > 0 fori > 1 and allj, and we claim that alsg(1, j) >0
for all j. To prove this, assume for contrary that there exists anxirjgesuch that
[(1,jo) < 0. Note that by constructiofi(i,kj) = 0 for 1< i <r. By the Chinese re-
mainder theorem there exists arkth < »,%,--- & such thah = j, modd, andh = k;
modd; fori > 1. Then

r

_;Ci(m:
= [i(1, jo) + f1(2, k) + [1(3,ka) + -+ [A(r, k)
= [i(1,jo) <0,

contradicting the assumption.

Now we turn to the case thgt_, ci(h) € Z for all h € N. By the same argument as
above, for 1< j < & — 1 there exists am € N such thaty|_,ci(h) = [i(1, j), hence
[i(1,j) € Z for all j. Further, for each X i <r and each K j < § — 1, there exists an
h € N such thah= ) modd andh=k, modd, for each 1< ¢ <r, with £ #i. Thus
Si_qci(h) = fi(1, jo) + f(i, j) for somejo. It follows thatfi(i, j) € Z. We conclude that
Gi(h)yeZforall1<i<randallheN. O

-

ci(h)

Lemma2.2. Let c: N — Q be a nonnegative periodic function of peridds N. Then for
anyf € N there exists a polynomial g Q[t] with nonnegative coefficients, such that the
coefficient function of the series expansion of

q(t)
(1-to)R

is a quasipolynomial of degrg®@— 1 whose leading coefficient equals c.
Proof. Write c = ¥ cies; with ¢; € Q nonnegative. Recall that the coefficient function of

t h+B8—1\ sn.i
(1—t5)l3_z( B—1 )t '

h>0
is a quasipolynomial of degrg&— 1 with leading coefficient function

1
So the polynomiad(t) := 6F~1(B — 1)! 32 L cit’ satisfies the claim. O

Lemma2.3. Let pi, p2 be two quasipolynomials of the same period and the samee&legre
Assume moreover that the leading coefficient function;aé monnegative and greater
than or equal to the leading coefficient function @f phen there exists a&« N such that
p1(h) — p2(h—k) > Ofor all h > k.
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Proof. Let & € N be the common period gfy andpz. We only consider values ¢fthat
are multiples o, so we sek = kd. Let

L

J4
=yaln and pe(h)=y b,

Leth:=h—k3. We compute

p(h) — pa(h—k3) = py(h+kd) — pa(h)

=1/ ¢ i o - .
= (ay(h) — by (M)A + (Z (f)ﬁ‘"é“'aj(m b.(h)) R
J=I

By assumption we have thaﬁ( ) —by(h) > 0. Further, we see that all other coefficient
functions ofpl(h+k5) p2(h) are non-constant polynomlalskrwnh leading coefficient
(o 'ag(h) > 0. Therefore all coefficient functions @ (h-+ k&) — pl(h) are nonnega-
tive fork>> 0. It follows that for a sufficiently Iargb it holdsthatpl(h—i— kd) — pa(h) >0
for all h > 0, and consequentiy; (h) — p2(h—k3) > 0 for all h > k. O

Now we are ready to present and prove our main theorem. Itskitat a decomposi-
tion as in Theorern 111 is always possible if one alloatsonal coefficients.

Theorem 2.4. Let dy,...,dy be pairwise coprime or equal positive integer numbers. Let
P < Z[{t] [t~}] be a nonnegative formal Laurent series which is rationahwiénominator
(1—t%)...(1—1t%). Then it can be written in the form

Qi(t)
P(t) =
v IC{1,...,n} [iel (1_tdi)

with nonnegative Qc QJt,t1].

Let us introduce some more notation to simplify the predenteof the proof. Let
d1,...,& € N denote the different values of thig, and leta; == |{ j|dj =& } | be the
multiplicity of &. ThenP(t) is a rational function with denominat@; (1 —t%)%. From
some power of on, the coefficients dP are given by a quasipolynomial which we denote
by .4 (P) (cf. [3, Prop. 4.4.1)).

Proof. We proceed by induction ofi := deg /4" (P) + 1. If 4/ (P) =0, thenP is a poly-
nomial and there is nothing to be proven. So from now on werasshat. /" (P) # 0.
Using that the) are pairwise coprime, we compute a partial fraction decasitipn of P
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as follows:
p(t) _ p(t)
(1_t61)011...(1_t5r)dr (1_t)n|—|ir:1(2?:’01tj)ai

_opo) <« p)  polt) | < PiHEA-D)T
T A G e @ (-t

P(t) =

here, p, po, P1,...,pr € Q[t,t*l]. Expanding the last expression into a series yields a
decomposition

N (P)=0o+qr+...+0 (2.1)

of A4 (P), whereqp € Q[t] is a polynomial andy; is a quasipolynomial of period and
degree at mogt; — 1 for 1 <i <r. Note that this decomposition is not necessarily unique.

Because/ (P)(h) is nonnegative for ath > 0, its leading coefficientis a nonnegative
periodic function. There are two cases to distinguish:

(1) If B>max{a;|1<i<r}, thencis determined by the first summand n(2.1). In
particular,c is a constant function. In this case, choose numbetg30< a; for 1 <i <r
such thatB = B, +---+ B;. Then the coefficient function of the series expansion of
1/ (1—1%)B is a quasipolynomial of degrg®— 1, and its leading coefficient function is
constant. Thus there exists a nonnegativeQ such that equals the leading coefficient
of A4 (G) for

A
R T

(2) If B <max{ai|1<i<r}, thencis a sum of periodic functions of the periods
& for thosei wheref3 < a;. By Lemmal2.1l, we can write as a sum of nonnegative
functionscy, ..., ¢ : N — Q of periodsdy, ..., &, whereci = 0 if B > aj. By Lemmd 2.2,
there are nonnegative polynomiajs .”.,§, € Q[t], such that is the leading coefficient
of A4 (G) for

< G
SU= ey

In both cases, /" (P) and.#"(G) satisfy the hypotheses of Lemial2.3. Hence, there
exists ak € N, such that/'(P)(h) — .4 (G)(h—k) > 0 for all h > k. By enlargingk, we
may also assume that the coefficient'din P is given by.# (P)(h) for all h > k. On the
other hand, the coefficients Gfare given by./"(G)(h) for all h > 0.

Thus, by construction the coefficient B¥in the seried’ := P —t*G is given by the
corresponding coefficient iR for h < k and by.4"(P)(h) — .4 (G)(h—k) forh> k. In
particular, P’ has nonnegative coefficients. But deg(P’) < deg.# (P), so the claim
follows by induction. O

Corollary 2.5. Let P< Z[t]][t!] be a formal Laurent series satisfying the assumptions
of Theorenl 2]4. Then there exisha& N and a finitely generated R-module M, such that
AP is the Hilbert series of M.

Proof. This follows from Theorerh 214 and Theoréml1.1. 0
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Theorem 2.6. Assume that in the situation of Theoreml| 2.4 we haveZr Then the
numerator polynomials Qcan be chosen to have nonnegatintegral coefficients. In
particular, P can be realized as a Hilbert series of a finitggnerated graded R-module.

Proof. As a notation, we write; (P) for thei-th coefficient of.4"(P). If the degrees are
equal the problem can be reduced to the standard gradedsocabe, claim follows from

[4, Thm. 2.1]. Therefore we may assume ttat~ d,. Sincen =2, .4 (P) has degree at
most 1. If.4"(P) = 0, thenP is a polynomial, so nothing is to be proven. Next we assume
that deg /' (P) = 0. By a partial fraction decomposition Bfwe see that it can be written

in the form

t t
P(t) = 1pi(t31 ]_pi<t(32'

From this we read off thaty(P) is the sum of two periodic functions of periald resp.
d>. By Lemmd2.1l, we can choose these functions to be nonnegatiV integer valued.
In other words, there exist two polynomighs, P, € Z[t] with nonnegative coefficients
such that

co(P) = Co( pa(t) | Pa(t) ) 7

1—tdh 1t
so by subtracting a suitable shift of this rational functimom P(t) we reduce to the case

of a polynomial.
Finally we consider the case of deg(P) = 1. Let us write

p(t)
(1—1t%)(1—t%)

P(t) = (2.2)

with p(t) € Q[t,t 1. First, we show that the coefficients pft) are integers. For this, let
p(t) = yiat' and writeP(t) = 3 ;> fjt!. It follows from (2.2) that

g = fi — fi_g, — fi—a, + fi—aya, € Z.

It is not difficult to see that

t! 1
“ ((1—tdl><1—tdz>) iy

for all i, and in particular this coefficient function is constant. ths coefficients op(t)
are integers, it follows that; (P) is an integral multiple of 1d;d,. Hence there exists
A € N such that

Atk
(1—1t%)(1—t%)
satisfies deg/’(P') = 0. Moreover, LemmB&2]3 implies that the coefficients of thigese

expansion oP’ are nonnegative fde>> 0. Thus we have reduced the claim to the previous
case. 0

P'(t) :=P(t) —
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3. COUNTEREXAMPLES

The decomposition is not always possible with integral iciehts. We describe a
general construction of counterexamples. For this we dengiairwise coprime numbers
d1,...,0 € N and exponentds,...,a; € N. Consider two rational functiorfd, P, of the
form

1

Mi(1—t3)A
with 0 < B < aj. AssumeP; andP», have the following properties:

(i) deg.# (Py) = deg# (P,). Let us call this numbed.
(i) d+1>max{ay,...,a; }. This ensures that the leading coefficieaiéP;) and
cq(P) are constant.
(iii) cq(PL) > cq(P2), and the former should not be a multiple of the latter.

Under these assumptions, itis easy to see that there eXist§ such thaP =P, — AP,

is a series, so tha(P) is smaller tharcy(P>). This series may have negative coefficients.
But by Lemmd2Z.B we may instead consiffer= P, — At“P, for a sufficiently largek € N,
and this series has nonnegative coefficients.

Now assume additionally that(P>) is the minimal leading coefficient of all series
of the given type and dimension. Then it is immediate thatannot be written as a
nonnegative integral linear combination of such series gitle two explicit examples of
this behaviour.

Example 3.1. Consider the rational function

P S
T (1-t2) (115  (1-t3)(1-t5)
1 t6 t2 1+t6 112
— = (1412 )
2< + +1—t2+1—t3+1—t5+(1—t3)(1—t5))

One can read off from the first line that the leading coeffict#n 4 (P) is 1/10—1/15=
1/30, and thus smaller tharf15. So by the argument given aboft) cannot be written
as a nonnegative integral linear combination. On the othadhthe second line gives a
rational decomposition. This shows in particular that thefficients of the series &f are
nonnegative.

Example 3.2. The same phenomenon occurs in the case that there are ontftarent
degrees, say 2 and 3, bai,a, > 1. As an explicit example consider the following
rational function:

1 t2

P E A0 A-O) (-7

1701 1 t3 t4
- é <l—t3+ (l—t2)2 + (l—t3)2 + (1—t2)(1—t3)2) :
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Example 3.3. The condition that the degreés,.. ., & are pairwise coprime is essential,
as the following example shows. Consider the rational fonct
14t—t6_tl0_¢11_ 415, 420 421
- (1—t6)(1—t10)(1—t15)
- 1-t30 '
One can read off from the second line ti&t) cannot be written as a sum with positive

coefficients and the required denominator: The coefficién? & 1, but the terms®, t1°
andt!® all have coefficient zero.

P(t) :
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