Feeling Good Makes Us Stronger: How Team Resilience Mediates between Positive Emotions and Team Performance

RUNNING HEAD: Feeling Good Makes Us Stronger

Isabella Meneghel, Marisa Salanova, and Isabel M. Martínez

Isabella Meneghel
WoNT Research Team, Facultad Universitat Jaume I, Av. Vicent Sos Baynat, s/n, 12071 Castellón de la Plana (Spain). Phone: +34 964 729580. E-mail: meneghel@uji.es

Isabel M. Martínez, PhD
WoNT Research Team, Universitat Jaume I, Av. Vicent Sos Baynat, s/n, 12071 Castellón de la Plana (Spain). Phone: +34 964 729585. E-mail: imartine@uji.es

Marisa Salanova, PhD
WoNT Research Team, Universitat Jaume I, Av. Vicent Sos Baynat, s/n, 12071 Castellón de la Plana (Spain). Phone: +34 964 729583. E-mail: salanova@uji.es

Correspondence should be addressed to Isabella Meneghel, Facultad de Ciencias de la Salud, Departamento de Psicología Social, Universitat Jaume I, Avda. Sos Baynat, s/n, 12071 Castellón de la Plana (Spain). Phone: +34 964 729580. Fax: +34 964 729262. E-mail: meneghel@uji.es
Feeling good makes us stronger: how team resilience mediates between positive emotions and team performance

Introduction

Nowadays organizations are embedded in a complex global environment, and are faced with diverse risks and potentially adverse situations that threaten the prosperity of the organization and the well-being of its members (Powley, 2009). Work stress is one of the negative outcomes that people feel in that complex work world, especially in Europe. As a matter of fact, issues of safety and health at work are a major concern to managers of European companies with a share of 79% among European managers and 82% among Spanish executives (European Agency for Safety and Health at Work, 2010). It therefore follows that there is a need to implement strategies that provide organizations and their members with the necessary resources to deal with the risk of job stress, in order to achieve positive outcomes in stressful situations. In this sense, recent calls have been made to address the potential role of resilience (Kaplan et al., 2012).

Previous studies proposed that by developing employees’ resilience the organization will become more adaptive and successful over time (Youssef and Luthans, 2005). For example, resilient employees may use an adverse experience to increase performance in subsequent tasks, and may be far more valuable to the organization in terms of their adaptability in times of subsequent change or uncertainty (Hind et al., 1996). Despite teams’ relevance in the lives of organizations (Richter et al., 2006), research on resilience at work is usually carried out at the individual level of analysis, without taking into consideration the relevance of focusing on a more collective level. However, in the same way that organizations are focusing increasingly more on the performance of their teams (Gully et al., 2002), attention will also be directed toward identifying characteristics and processes that elicit positive outcomes, such as team resilience.

Although resilience is relative, emerging and changing in transaction with specific circumstances and challenges (Staudinger et al., 1993), resilience developed and displayed in a certain situation will lead to better preparation for upcoming events (Egeland et al., 1993). Therefore,
establishing which variables help the development of team resilience is essential to better prepare teams to respond to future adverse situations. A considerable amount of research confirms the importance of positive emotions for the development of resilience (i.e., Cohn et al., 2009; Loh et al., 2014), although it is commonly at the individual level and evidence at the team level is lacking. Based on the Broaden-and-Build (B&B) theory of positive emotions by Fredrickson (1998; 2001), in this study we investigated the predicting role of collective positive emotions on (team) resilience. Moreover, we examine whether the relationship between collective positive emotions and team resilience stimulated positive team outcomes, such as in- and extra-role performance. Overall the present study aims to understand more about how collective positive emotions drive the within-team experience to promote favorable reactions (i.e., resilience) among teams, in order to achieve better team performance.

The novelty of this study lies in the fact that it expands on previous research in this field in several ways. First, although earlier studies have already examined positive emotions as predictors of resilience, the analyses were at the individual level of analysis. Instead, we used aggregated scores for a team-level analysis (cf. Referent-Shift Consensus model; Chan, 1998). Second, we include the supervisors’ ratings as measures of team performance, in order to obtain a more objective evaluation of these variables and better control for method bias, thereby strengthening the validity of our results. Finally, because performance is usually considered multidimensional (Borman and Motowidlo, 1993), we include the two main components of team performance (i.e., in- and extra-role) and analyze the different impacts of team resilience on each of them.

Defining Team Resilience

Within the domain of organizational psychology and management, the concept of resilience has been used to refer to relatively ordinary adaptive processes when encountering unexpected, adverse conditions that result either from large-scale disturbances or the accumulation of several minor disruptions (Sutcliffe and Vogus, 2003). Positive psychology has embraced resilience as a prime example of what is right and good about people (Luthans et al., 2006), because the main aim of
positive psychology is to study “conditions and processes that contribute to the flourishing or optimal functioning of people, groups, and institutions” (Gable and Haidt, 2005; p. 104). The resilience approach recognizes the need for flexibility, adaptation, and improvisation in situations characterized by change and uncertainty (Youssef and Luthans, 2007). In this regard, resilience must help organizations, as well as their members and teams, to deal with adverse and stressful situations, so that they can be overcome and positive organizational outcomes can be achieved (Kaplan et al., 2012).

Resilience may be considered as much an individual characteristic as a social factor in teams or groups (Bennett et al., 2010). Consistent with social identity theory (Tajfel and Turner, 1985), individuals identify with their team and internalize its values and norms, which lead to homogeneity in attitudes and behavior. Empirical evidence gives support to show that, in a similar way to individuals acting alone, individuals performing as teams tend to display somewhat regular patterns of behavior and processes (Stewart, 2010). In order to provide a possible explanation for this, Totterdell (2000) stated that “team members could respond similarly to shared events and therefore end up feeling the same way” (p. 848) – in our case sharing the same level of team resilience. Thus, in our study we focus on team resilience, defined as “the capacity to bounce back from failure, setbacks, conflicts, or any other threat to well-being that they may experience” (West et al., 2009, p. 253).

Collective positive emotions and team resilience

The B&B theory of positive emotions by Fredrickson (1998, 2001) offers a theoretical explanation by linking accumulated experiences of positive emotions with the development of resources for long-term success and well-being. Specifically, the B&B theory assumes that positive emotions appear to broaden people’s momentary thought-action repertoires and to build their enduring personal resources, such as resilience (Fredrickson et al., 2003; Tugade and Fredrickson, 2004). The difference in positive emotions accounts for the ability to rebound from adversity and stress, and continue to grow. That is, momentary experiences of positive emotions produce patterns of thought that are particularly unusual, flexible, creative, and open to information (Isen, 2000). Over
time, these extended attitudes create lasting personal resources, ranging from physical and intellectual to social and psychological resources (Fredrickson, 2001).

A significant amount of previous research supported the B&B theory, and specifically found that recurrent experiences of positive emotions are related to individual resilience. First, it has been shown that positive emotions can boost resilience (Algoe and Fredrickson, 2011; Cohn et al., 2009) and that people who are particularly adept at self-generating positive emotions are more likely to be resilient (Tugade and Fredrickson, 2004). Furthermore, a positive reciprocal impact of positive emotions and resilience was suggested in such a way that these momentary experiences of positive emotions can build resilience and trigger gain spirals over time, which in turn may produce greater emotional well-being (Fredrickson and Joiner, 2002). These relationships were replicated in the study by Ong, Bergeman, Bisconti, and Wallace (2006). In particular, it was shown that: i) the adaptation benefits of positive emotions are greater when people are under stress, ii) positive emotions are more common among more resilient persons, and iii) over time, positive emotions serve to help resilient people in their ability to effectively recover from adversity.

In the organizational context, the importance of emotions is firmly established, and researchers have begun to turn their attention toward understanding the processes and outcomes of collective emotion (Barsade, 2002). It has been shown that common beliefs and shared emotional experiences emerge among people working together, leading to similar motivational and behavioral patterns, and shared emotions (Barsade, 2002; George, 1990). Three main mechanisms have been proposed to explain the emergence of (positive) collective emotion development, namely emotional contagion (Hatfield, Cacioppo, and Rapson, 1992), emotional comparison (Schachter, 1959), and empathy (Hoffman, 1985). Whereas emotional contagion denotes a subconscious process of aligning each other’s affective reactions, emotional comparison is a more conscious mechanism to compare one’s own feelings with those expressed by others, in order to show appropriate and congruent affective reactions (Barsade, 2002). In contrast, empathy is based on vicarious affect and team
members show similar affectivity by deliberately assuming others’ psychological points of view (Nelson et al., 2003).

In accordance with these mechanisms, affective responses and emotions within team members can converge and the team can easily achieve a collective mood. Subsequently, in the same way as individuals (Fredrickson and Losada, 2005), positive collective emotions are associated with an enhancement in the availability of team resources and resilience to adversity. This theoretical and empirical evidence allows us to go a step further in the B&B theory, in order to verify whether the relationship between positive emotions and resilience is replicated at the collective (team) level in the work context. We therefore expect that:

Hypothesis 1: Collective positive emotions in work teams are positively related to team resilience.

Team resilience and team performance

Furthermore, we assumed that team resilience has a positive relationship with team performance because, compared to less resilient teams, teams with a high level of resilience are likely to come up with more flexible and adaptive responses to adversity, and additionally they tend to use setbacks as challenges or opportunities for growth (Carmeli et al., 2013). Thus, teams which display the ability to thrive in situations of adversity, improvise and adapt to significant change or stress, or just recover from a negative experience will be less likely to experience the potentially damaging effects of threatening situations, and thus their performance will be high (West et al., 2009).

Previous evidence revealed that team resilience is positively related with team performance (Salanova et al., 2012), as well as team cohesion, cooperation, and coordination (West et al., 2009). However these results reflect self-reported measures of team outcomes, whereas the current study considers performance assessed by the immediate supervisor of each team. In the literature, performance is usually divided into in-role performance (similar to task performance), defined as fulfillment of tasks that employees are expected to carry out as part of the formal job requirements, and extra-role performance (similar to contextual performance), defined as behavior that is beneficial
to the organization and goes beyond formal job requirements (e.g., helping colleagues at work, making suggestions for improvement; Borman and Motowidlo, 1993; Goodman and Svyantek, 1999). In this study both kinds of performance are taken into account, and team resilience is expected to be related not only to in-role but also to extra-role performance. Extra-role performance is particularly relevant from a positive point of view (Avey et al., 2010). For example, extra-role behaviors often include actions that are helpful to other members of a group and enhance the flow of information between colleagues, assist in the development of interpersonal relationships, and encourage an atmosphere of teamwork and cooperation (O'Bannon and Pearce, 1999). Moreover, the integration of both indicators of performance is more likely to capture overall performance in a broader, holistic sense (Harter et al., 2003). We therefore expect that:

Hypothesis 2: Team resilience is positively associated with team performance (i.e., in- and extra-role performance).

Finally, we postulate that the relationship of positive emotions to team outcomes is fully mediated by resilience. In fact, in accordance with the B&B theory, positive emotions make it easier to build durable personal resources, and people who are particularly adept at self-generating positive emotions are more likely to be resilient. By contrast, no rationalization was given about the possible relationship between positive emotions and behavioral outcomes, such as work performance. Moreover, previous evidence about the thesis of “happy-productive workers” showed that (trait) psychological well-being was related to job performance, whereas (state) positive mood was not (Wright et al., 2004). Consequently, we proposed that team resilience fully mediates the relationship between collective positive emotions and team performance. That is, collective positive emotions help to build team resilience, which in turn increases team performance. Hence, we expect:

Hypothesis 3: Team resilience will mediate the relationship between collective positive emotions and team performance. Specifically, we expect collective positive emotions to be positively related to team resilience, which in turn is positively related with team performance.
Method

Sample and Procedure

The sample consisted of 1076 employees nested in 216 teams from 40 companies in Spain. Twenty-seven companies belonged to the service sector (66% of employees), 10 to industry (28.8% of employees), and 3 to construction (5.2% of employees). The organizational size ranged from 10 to 171 employees, with an average of 34 (SD = 30.95). The team size ranged from 2 to 38 employees, with an average of 4.99 (SD = 4.20). Sixty-one percent of the participants were male, and 91% of them had an open-ended employment contract. The average job tenure in the organization was 6.93 years (SD = 6.71).

In order to collect the data, we previously contacted the key stakeholders in each organization (i.e., CEOs, Human Resources Managers, Risk-and-Safety Prevention Managers) to explain the purpose and requirements of the study. Secondly, we explained that participation in this study was voluntary, that only aggregated data would be reported, and that all identifying information would be removed. We considered employees to be members of a team when they had the same supervisor and set of standards and principles in order to achieve common goals or purposes, although they had interdependent tasks. In order to recognize membership of the team, we included a team’s code number on the front page of the questionnaires for each employee. Finally, in accordance with McCarthy (1992), each employee who had been in the enterprise for at least six months was given a copy of the questionnaire. This is important in studying team resilience, because previous studies found that team resilience is related to important team outcomes only after teams had extensive prior interaction (West et al., 2009).

Measures

All the variables were measured with previously validated scales (Salanova et al., 2012) and use “teams” as a reference. Internal consistency (Cronbach’s alphas) for the scales reached the cut-off point of .70 (Nunnally and Bernstein, 1994).
Collective Positive Emotions. We selected and measured five collective emotions (i.e., enthusiasm, optimism, satisfaction, comfort, and relaxation) representing how the team had felt during the last year. These emotions were chosen in order to be representative of the three principal axes proposed by Warr (1990), that is: (i) displeased-pleased, (ii) anxious-contented, and (iii) depressed-enthusiastic. The respondent is asked to choose the position he or she considers the team lies in, on a Faces Scale (Kunin, 1955) between two bipolar adjectives (e.g., Unsatisfied vs. Satisfied) ranging from 7 faces (from 0- frowning to 6- smiling). The alpha of the scale was .92.

Team Resilience. We measured team resilience with a scale composed of seven items, each of them based on Mallak’s (1998) principles for implementing resilience in organizations. In contrast to previous measures of team resilience (see for example, West et al., 2009), this scale was developed specifically referring to teams in an organizational context. Items were scored on a 7-point Likert scale ranging from 0 (never) to 6 (always). A sample item could be: “In difficult situations, my team tries to look on the positive side”. The alpha of the scale was .83.

Team Performance. We used the three-item Goodman and Svanytek (1999) scales, reworded at the team level and adapted for supervisor assessment both for in-role (e.g., “The team that I supervise performs all the functions and tasks demanded by the job”) and extra-role performance (e.g., “In the team that I supervise employees perform roles that are not formally required but which improve the organizational reputation”). Items were scored on a 7-point Likert scale ranging from 0 (completely disagree) to 6 (completely agree). Alphas were .90 and .84, respectively.

Data Aggregation

All variables measured have the team as the referent and, in the case of positive emotions and resilience measures, aggregated scores were employed for a team-level analysis. According to multilevel theory, these are defined as Referent-Shift Consensus Composition (Chan, 1998), meaning that there is a shift in the referent prior to consensus assessment. To statistically demonstrate within-team agreement and between-team differences, we conducted several tests: the Average Deviation Index (AD_{MU}; Burke et al., 1999) was used to assess within-group agreement; the intraclass
correlation coefficient – ICC(1) – was used to assess reliability; and one-way analyses of variance (ANOVA) were used to test for the existence of statistically significant differences between teams. Conventionally, an ADM(J) equal to or less than 1 is considered sufficient evidence of team agreement (Burke et al., 1999), whereas values greater than .05 for ICC(1) are considered sufficient evidence to justify aggregation (Bliese, 2000). Moreover, an ANOVA F value that is statistically significant is a condition that justifies the aggregation of scores at the team level (Kenny and LaVoie, 1985). From our measurements, the ADM(J) and ICC(1) indices were found to range from .72 to .97 and from .10 to .14, respectively. One-way ANOVA F values ranged from 1.47 to 1.83 and were significant ($p < .001$) for all variables. Thus, we found empirical justification for aggregation.

The measures of performance also have the team as the referent, but these did not need to show agreement because we only have one measure for each team – that reported by the supervisor.

Fit Indices

In order to test the hypotheses, we used Structural Equation Modeling (SEM) by AMOS 21.0 (Arbuckle, 2010). Maximum likelihood estimation methods were used by computing the absolute and relative indices of goodness-of-fit (Marsh et al., 1996), i.e., the χ^2 Goodness-of-Fit Statistic and the Root Mean Square Error of Approximation ($RMSEA$), as well as the Normed Fit Index (NFI), the Incremental Fit Index (IFI), the Tucker-Lewis Index (TLI), and the Comparative Fit Index (CFI). Values below .06 for $RMSEA$ indicate a good fit. For the remaining indices, values greater than .90 indicate a good fit, whereas values greater than .95 indicate superior fit (Hu and Bentler, 1999).

Results

Descriptive analyses

Table 1 shows means, standard deviations, aggregation statistics, correlations, and Cronbach’s alphas of all the study variables. Each collective positive emotion is positively related with the other ones, and also team in- and extra-role performances are positively related. Moreover, collective positive emotions are positively related to resilience, which in turn is positively related to team performance indicators. Finally, most of the correlations between collective positive emotions
and in- and extra-role performance are significant, with the exception of the correlation between relaxation and optimism with in-role performance.

Although problems with common method bias may have been overstated (Spector, 2006), in order to mitigate the problem two procedural remedies were implemented, as suggested in Podsakoff, MacKenzie, and Podsakoff (2012). Firstly, we obtained the measures from different sources – specifically, the predictor and mediator measures from (shared perceptions of) employees and the criterion measure from direct supervisors. Secondly, we differentiated the scale properties shared by the measures of the predictor and mediator variables: collective positive emotions were scored on a “Faces Scale”, whereas team resilience was scored on a “Likert Scale”. Moreover, using AMOS 21.0, we conducted a Harman’s one-factor test (Podsakoff et al., 2003), which failed to demonstrate a single factor between collective positive emotions and team resilience. The results revealed a poor fit of the one-factor model to the data: χ² (54) = 415.87, RMSEA = .18, NFI = .76, IFI = .78, TLI = .73, CFI = .78, but a better fit of the two-factor model: χ² (53) = 178.05, RMSEA = .11, NFI = .90, IFI = .93, TLI = .91, CFI = .92 (Δχ² (1) = 287.32, p < .001).

Hypothesis testing

According to Brown (2006), in cases in which it may be necessary to use single indicators in a SEM analysis, measurement error can be readily incorporated into a dimensional indicator by fixing its unstandardized error to some non-zero value, calculated on the basis of the measure’s sample variance estimate and known psychometric information (e.g., internal consistency). Thus, we fixed the unstandardized error of the indicator of team resilience, in-role performance, and extra-role performance with the formula: variance*(1-alpha).

To compute SEM, we used the aggregated database (N = 216). Because we expected a full mediation of team resilience between collective positive emotions and team performance, we tested the full mediation research model (M1). This model tested the fully mediating effects of team resilience between collective positive emotions, on the one hand, and both indicators of team
performance on the other. The results of M1, as depicted in Table 2, show that the fully mediating model fits the data well. The path from collective positive emotions to resilience was positive and statistically significant ($\beta = .71$, $p < .001$), as was the path from resilience to team in-role performance ($\beta = .20$, $p < .01$) and extra-role performance ($\beta = .25$, $p < .01$). This finding supported our Hypotheses 1 and 2.

To assess the mediating paths, the Sobel (1988) test was used. Results from this test supported the mediating role of resilience between collective positive emotions and team in-role performance, $Z = 2.58$, $p < .01$, as well as between collective positive emotions and team extra-role performance, $Z = 3.00$, $p < .01$. Moreover, a second competitive model (M2) was developed, where the direct effects from positive emotions to in- and extra-role performance were also tested. Model 2 fitted as well as M1, but the chi-squared comparison showed that it is statistically worse than M1 (see Table 2), $\Delta \chi^2_{M1-M2}(2) = 4.03$, ns. These findings suggest a full mediation effect of team resilience between collective positive emotions and team in-role and extra-role performance. As a consequence, Model 1, which is represented graphically in Figure 1, was the best-fitting model.

It is interesting to note that in our final model, positive emotions explain 50.8% of the variance of team resilience ($R^2 = .508$), which in turn explains 4.2% of the variance of in-role performance ($R^2 = .042$) and 6.3% of the variance of extra-role performance ($R^2 = .063$). Analyses were repeated controlling all the variables for team size, and all substantive significant effects remained significant (details available on request from the authors).

Discussion

This paper contributes to the literature on positive emotions by examining the processes (i.e., team resilience) underlying the relationships between collective positive emotions and team performance. To conduct our study we relied on the B&B theory (Fredrickson, 1998; 2001), which maintains that when people experience positive emotions, they broaden their thought-action
repertoires and build resources, such as resilience, that enable them to cope and manage things effectively. Thus, and conceptualized at a collective level, the development of resilience enhanced by experiences of collective positive emotions is a fundamental psychosocial process through which a team’s optimal performance can be understood. The results supported our hypotheses, indicating that collective positive emotions (i.e., enthusiasm, optimism, satisfaction, comfort, and relaxation) were positively related to team resilience (confirming Hypothesis 1), and that team resilience was positively related to team in- and extra-role performance (confirming Hypothesis 2). Moreover, our study demonstrated significant mediation paths through resilience. Specifically, it was revealed that team resilience fully mediates the effects of collective positive emotions on team performance (confirming Hypothesis 3).

Theoretical contributions

The findings from the study provide evidence that team resilience fully accounts for the relationship between collective positive emotions and team performance. We extend prior research on positive emotions in the workplace by moving beyond an individual depiction of this phenomenon and its consequences to explore the process that is generated from group members’ shared positive emotions. Furthermore, we contribute to the emerging field of Positive Organizational Behavior by revealing how positive emotions are disseminated among work group members and by outlining the positive outcomes that such a process generates.

Firstly, this suggests that experiences of collective positive emotions are particularly useful for building team resilience. This finding is in accordance with the results found at the employee level (Algoe and Fredrickson, 2011; Cohn et al., 2009; Fredrickson and Joiner, 2002; Ong et al., 2006; Tugade and Fredrickson, 2004), and also extend them. In fact, it was shown that through a mechanism of affective sharing (i.e., emotional contagion and comparison, and empathy) people easily shared positive emotional experiences and attained a collective positive emotional state (Walter and Bruch, 2008). Our argument is that, as proposed by the B&B theory at the individual level, collective positive emotions allow teams to broaden the scope of both thinking and action, as well as to reinterpret
stressful situations and develop positive meaning amidst adversity. This result is in line with previous studies which gave evidence that, when team members share emotion, they are more likely to be motivated and engaged in the process of facing the challenge (Edmondson et al., 2001). Thus, the first finding helps to shed light on the processes underlying the relationships between collective positive emotions and team resilience, thereby providing support for the premises of the B&B theory, and expanding it to the team level of analysis.

Secondly, the present study also suggests that, in the work context and at a collective level, the main process assumed by B&B theory leads to positive team outcomes, like performance. Accordingly, collective positive emotions shared within the team context support good team performance through the development of resilience. This result highlights the fact that experiences of collective positive emotions do not directly account for behavioral outcomes, which contrasts slightly with the proposal of “happy-productive workers”. However, team resilience is illustrated as the fundamental process that links emotional states and behavioral outcomes. This suggests that teams that are surrounded by collective positive emotions are more likely to experience a greater ability to cope with setbacks and obstacles encountered in the work context, which in turn allow them overcome adversity and maintain or enhance positive outcomes. Notably, our results revealed that resilience developed by experiences of collective positive emotions support both in-role and extra-role performance, with a slight additional variance explained by the extra-role measure. This result is in line with the proposal that the specific characteristics of the positive psychological capital – namely: efficacy, hope, optimism, and resilience – lead to more frequent engagement in extra-role behaviors (Avey et al., 2010).

Practical implications

The results of this study suggest a promising direction for interventions to increase team resilience and improve performance in the work context. In fact, both of these aspects have been associated with the presence of collective positive emotions, and thus HRM has the opportunity to shape them by proactively influencing the affective state within their teams.
We suggest that it would be useful to provide individuals with ample opportunities to exhibit their positive emotion within the team context. Group members should therefore be able to easily recognize each other’s positive affective expressions on a conscious or non-conscious basis, thereby facilitating processes of emotional contagion, emotional comparison, and empathy (Bartel and Saavedra, 2000). Moreover, it was shown that high-quality group relationships should strengthen affective sharing over time, and consequently team members may display a stronger tendency to develop homogenous positive moods and emotions (Walter and Bruch, 2008). In this sense, creating and maintaining group bonds, establishing close ties between group members, and enhancing group processes and relationship quality are crucial for HRM.

We also proposed that HRM can try to elicit positive emotions by consistently reminding people to think positively and to find a positive meaning when negative events occur (Luthans et al., 2006). Though organizational members may have been trained to do this, they will still look to their leaders for reassurance or reminders to think positively during times of adversity (Fredrickson, 2001). In this sense, managers’ leadership behavior could constitute a powerful resource, and development of transformational leadership seems crucial (Moss et al., 2009).

HRM strategies could also be used to proactively build positive emotional experiences for organizational members. For instance, an organization that allows its employees to gain meaning and satisfaction from their work may be providing another vehicle in which positive feelings can be created around ordinary events (Coutu, 2002). Furthermore, training emotional intelligence at work (both individually and collectively) could be an interesting area of intervention to increase levels of positive emotions (Salanova et al., 2011).

Limitations and future research

Some limitations of our study should be noted. One limitation is the use of self-reports for the first part of our hypothesized model, since this implies a risk of common method variance. However, our findings were in line with theoretical predictions and with earlier findings, while Harman’s one-factor test suggests that common method variance should not be a serious threat in our study.
Moreover, the use of supervisor ratings of performance is a strong point of this study that adds to the robustness of our findings.

Another limitation of the present study is that data are cross-sectional. Although SEM analysis gives some information about the possible direction of the relationships, cross-sectional study designs do not allow one to draw firm conclusions regarding the causal ordering among the variables studied. Thus, longitudinal research is encouraged to examine the causal relationships between collective positive emotions, team resilience, and team performance. For instance, previous data at the individual level revealed clear evidence for an upward spiral in the sense that individuals who experienced more positive emotions than others became more resilient to adversity over time and, in turn, these enhanced coping skills predicted increased positive emotions over time (Fredrickson and Joiner, 2002). Accordingly, future research is needed to investigate the dynamic interplay of collective positive emotions and team resilience in the form of a self-reinforcing spiral. Reasonably, this spiraling process will manifest in a continuous upward movement toward greater collective positive emotions and toward increasing team resilience within work groups over time.

A final limitation concerns the restricted set of collective emotions and outcomes measured. Although the emotions selected are representative of the main category of the most widely used taxonomy (Warr, 1990), taking into account a greater number of emotions would make it possible to investigate whether there is a category (or combination of categories) that provides a greater explanation of the development of resilience. For instance, the recent debate about the utility of discrete emotions calls for more attention to be paid to the role of discrete emotions in predicting different outcomes across particular organizational contexts (Lindebaum and Jordan, 2012). Regarding the outcomes measured, we focused on just two indicators of performance but, for example, Whitman, Van Rooy, and Viswesvaran (2010) argued that results-oriented criteria like customer satisfaction and productivity should also be the focus of organizational research.

Final note
The findings of this study offer important implications and provide support for the B&B theory of positive emotions as an effective theoretical framework to explain how collective positive emotions influence team resilience in the work context. In addition, the results show the existence of a positive relationship between team resilience and performance, both in- and extra-role, while also offering evidence of the importance of positive emotions and resilience in order to improve performance. Furthermore, this study makes an interesting contribution to the resilience literature by providing evidence for its applicability at the team level within the organizational context.
Acknowledgments

This research was supported by a grant from the Spanish Ministry of Economy and Competitiveness (#PSI2011-22400).
References

Barsade, 2002

Figure Captions

Fig. 1 The final model with standardized path coefficients ($N = 216$)
Figure 1

Collective Positive Emotions

Enthusiasm
Optimism
Satisfaction
Comfort
Relaxation

Team in-role performance
Team extra-role performance

Teams rates
Supervisor rates

In-role
Extra-role

Supervisor rates

Teams rates
Table 1

Means, standard deviations, aggregation indices, reliability, and correlations for the study variables

<table>
<thead>
<tr>
<th></th>
<th>M (SD)</th>
<th>ICC(I)</th>
<th>AD(1)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Collective enthusiasm</td>
<td>3.61 (.99)</td>
<td>.12</td>
<td>.93</td>
<td>-</td>
<td>.70**</td>
<td>.68**</td>
<td>.73**</td>
<td>.66**</td>
<td>.40**</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2. Collective optimism</td>
<td>3.97 (1.01)</td>
<td>.14</td>
<td>.94</td>
<td>.76**</td>
<td>-</td>
<td>.71**</td>
<td>.72**</td>
<td>.55**</td>
<td>.43**</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3. Collective satisfaction</td>
<td>3.92 (1.03)</td>
<td>.12</td>
<td>.97</td>
<td>.70**</td>
<td>.75**</td>
<td>-</td>
<td>.74**</td>
<td>.55**</td>
<td>.43**</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4. Collective comfort</td>
<td>4.09 (.97)</td>
<td>.10</td>
<td>.94</td>
<td>.78**</td>
<td>.75**</td>
<td>.77**</td>
<td>-</td>
<td>.61**</td>
<td>.42**</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5. Collective relaxation</td>
<td>3.09 (1.11)</td>
<td>.14</td>
<td>.95</td>
<td>.68**</td>
<td>.56**</td>
<td>.57**</td>
<td>.64**</td>
<td>-</td>
<td>.29**</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6. Team resilience</td>
<td>4.46 (.58)</td>
<td>.12</td>
<td>.72</td>
<td>.59**</td>
<td>.59**</td>
<td>.56**</td>
<td>.58**</td>
<td>.41**</td>
<td>(.85)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7. In-role performance</td>
<td>4.64 (.93)</td>
<td>-</td>
<td>-</td>
<td>.17*</td>
<td>.13</td>
<td>.17*</td>
<td>.20**</td>
<td>.07</td>
<td>.17*</td>
<td>(.86)</td>
<td>-</td>
</tr>
<tr>
<td>8. Extra-role performance</td>
<td>4.55 (1.00)</td>
<td>-</td>
<td>-</td>
<td>.26**</td>
<td>.15*</td>
<td>.21**</td>
<td>.26**</td>
<td>.16*</td>
<td>.19**</td>
<td>.72**</td>
<td>(.79)</td>
</tr>
</tbody>
</table>

Notes: Correlations are presented at the individual-level (N = 1076, above the diagonal) and at the team-level (N = 216, below the diagonal). Coefficient alpha reliability estimates are listed in the diagonal in parentheses.

*p < .05; **p < .01
Table 2

Results of SEM analyses (N = 216 Teams)

<table>
<thead>
<tr>
<th>Model</th>
<th>χ^2</th>
<th>df</th>
<th>RMSEA</th>
<th>NFI</th>
<th>IFI</th>
<th>TLI</th>
<th>CFI</th>
<th>$\Delta\chi^2$ (Δdf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>39.82</td>
<td>19</td>
<td>.07</td>
<td>.96</td>
<td>.98</td>
<td>.97</td>
<td>.98</td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td>35.79</td>
<td>17</td>
<td>.07</td>
<td>.96</td>
<td>.98</td>
<td>.97</td>
<td>.98</td>
<td>M1-M2 (2) = 4.03, ns</td>
</tr>
</tbody>
</table>

Note. χ^2 = Chi-square; df = Degree of freedom; RMSEA = Root Mean Square Error of Approximation; NFI = Normed Fit Index; IFI = Incremental Fit Index; TLI = Tucker-Lewis Index; CFI = Comparative Fit Index