A Tensor Optimization Algorithm for Bézier Shape Deformation

L.Hilarioa, A.Falcóa, N. Montésb, M.C.Morac

aDepartamento de Ciencias, Físicas, Matemáticas y de la Computación
Universidad CEU Cardenal Herrera
San Bartolomé 55, 46115 Alfara del Patriarca (Valencia), Spain.

bDepartamento de Ingeniería de la Edificación y Producción Industrial
Universidad CEU Cardenal Herrera
San Bartolomé 55 46115 Alfara del Patriarca (Valencia), Spain.

cDepartamento de Ingeniería Mecánica y Construcción
Universitat Jaume I
Avd. Vicent Sos Baynat s/n 12071 Castellón, Spain

Abstract

In this paper we propose a tensor based description of the Bézier Shape Deformation (BSD) algorithm, denoted T-BSD. The BSD algorithm is a well-known technique, based on the deformation of a Bézier curve through a field of vectors. A critical point in the use of real-time applications is the cost in computational time. Recently, the use of tensors in numerical methods has been increasing because they drastically reduce computational costs. Our formulation based in tensors T-BSD provides an efficient reformulation of the BSD algorithm. More precisely, the evolution of the execution time with respect to the number of curves of the BSD algorithm is an exponentially increasing curve. As the numerical experiments shown, the T-BSD algorithm transforms this evolution into a linear one. This fact allows to compute the deformation of a Bézier with a much lower computational cost.

Keywords: Tensor product, Bézier Curves, Parametric Curve Deformation
1. Introduction

One of the most important facts in engineering applications is the cost in computational time. A critical point appearing in this context is related to real-time processes. In consequence, one of the main goals is to develop algorithms that reduce, as much as possible, the execution time of existing real-time algorithms.

The numerical methods to solve these kind of problems are related with the classical matrix theory (see Bellman (1987)) and linear system theory (see Zadeh and Desoer (1963)). The coefficient matrices arising from the discretization of physical models are, in general, sparse; i.e., only a bounded number of entries per row or column do not vanish. To solve such linear systems is preferably the use of iterative methods, which in contrast to direct methods do not change the sparsity of the matrix during the computation. On the other hand, Krylov subspace methods requires only the ability to multiply the coefficient matrix by a given vector. However, its convergence is determined by the spectrum of the matrix and hence for some linear systems arising in physical modelling the convergence rate of Krylov subspace methods deteriorates for large \(n \). It is well-known that multiplying a linear system by a non-singular matrix improve the spectral properties of the coefficient matrix, in consequence the use of the preconditioning methods are unavoidable. However, finding appropriate pre-conditioners is not, in some cases, an easy task. The introduction of hierarchical matrices (\(H \)-matrices) by Hackbusch (1999, 2009) has paved the way to methods which have almost linear complexity and which are robust. This class of structured matrices are related with natural tensor product structure of the matrix space.

In consequence, interest in numerical methods that make use of tensors has increased because they drastically reduce computational costs. It is particularly useful for high-dimensional spaces where one must pay attention to the numerical cost (in time and storage).

A first family of applications using tensor decompositions concerns the extraction of information from complex data. It has been used in many areas such as psychometrics Tucker (1966); Carroll (1970), chemometrics Appellof (1981), analysis of turbulent flows Berkooz (1993), image analysis and pattern recognition Vasilescu (2002), data mining… Another family of applications concerns the compression of complex data (for storage or transmission), also introduced in many areas such as signal processing Lathauwer (2004) or computer vision Wang (2004). A survey of tensor decompositions in multilinear algebra and an overview of possible applications can be found in the review paper Kolda (2009). In the above applications, the aim is to compress the best as possible the information. The use of tensor product approximations is also receiving a growing interest in numerical analysis for the solution of problems defined in high-dimensional tensor spaces, such as PDEs arising in stochastic calculus Ammar (2007); Cances (2010); Falcó (2010) (e.g., Fokker-Planck equation); stochastic parametric PDEs arising in uncertainty quantification with spectral approaches Nouy (2007); Doostan (2009); Nouy (2010), and quantum chemistry (cf., e.g., Vidal (2003)). Details can be found in Hackbusch (2011).

On the other hand we recall that parametric curves are extensively used in Computer Aided Geometric Design (CAGD). The different engineering applications that exist are due to the useful mathematical properties of this kind of curves. The most common parametric curves in these applications are, among others, Bézier, B-Splines, NURBS and Rational Bézier, and every one of them has many special properties. A recently research topic in the CAGD framework is the study of shape deformations in parametric curves. There are different ways to compute these deformations depending on the parametric curve under consideration (see Piegl (1991); Au (1995); Sanchez (1997); Hu (1999, 2001); Meek (2003) for NURBS and Piegl (1989); Opfer (1988); Qingbiao ...
In particular, in Xu (2002) a deformation of a Bézier was introduced by means of a constrained optimization problem related to a discrete coefficient norm. Later in Wu (2005) a new technique to deform the shape of a Bézier curve was introduced. This technique was improved including a set of concatenated Bézier curves and more constraints to the optimization problem. This algorithm was called Bézier Shape Deformation (BSD) and this improvement was applied in the numerical simulation of Liquid Composite Moulding Processes Montés (2008) and also in the path planning problem in mobile robotics Hilario (2010, 2011).

The BSD algorithm is a new technique based on the deformation of a Bézier curve through a field of vectors. The modified Bézier is computed with a constrained optimization method (Lagrange Multipliers Theorem). A linear system is solved to achieve the result. In addition, the linear system can be solved offline if the Bézier curve order is maintained constant.

The main goal of this paper is to introduce tensor calculus in order to improve the procedure described in Montés (2008); Hilario (2010, 2011). The tensor reformulation of the BSD algorithm is called Tensor-Bézier Shape Deformation (T-BSD). As a result, the computational cost is reduced to obtain a suitable real-time performance.

This paper is organized as follows. Firstly, in Section 2 it is shown our previous work, the BSD algorithm, and two of the possible applications of this algorithm. In Section 3 we give preliminary definitions and results about tensors, also some useful properties are introduced. In Section 4 the algorithm for shape deformation using a basis of parametric curve is developed. In Section 5 the T-BSD algorithm using a set of Bézier curves concatenated is defined. In Section 6 the comparative between BSD and T-BSD algorithm is shown. Finally, in Section 7 we provide some conclusions about the present work.

2. Previous Work

The previous work developed a novel technique for obtaining the deformation of a Bézier curve: Bézier Shape Deformation (BSD).

Definition 1. A Bézier curve is defined as,

\[\alpha^n_t(u) = \sum_{i=0}^{n} P_i(t) B_{i,n}(u); u \in [0,1] \]

1. \(n\) is the order of the Bézier curve.
2. \(B_{i,n}(u) = \binom{n}{i} u^i (1-u)^{n-i}, \quad i = 0, \ldots, n\) are the Bernstein Basis.
3. \(u \in [0,1]\) is the Intrinsic Parameter.
4. \((n + 1)\) are the Control Points in each time instant \(t\), \(P_i(t)\) such that \(i = 0, 1, \ldots, n\).

Definition 2. A Modified Bézier curve is defined as,

\[\alpha^n_{t+\Delta t}(u) = \sum_{i=0}^{n} (P_i(t) + X_i(t+\Delta t)) \cdot B_{i,n}(u); u \in [0,1] \]

where, \(X_i(t+\Delta t)\) represents the displacement of every control point to obtain the deformed Bézier.
The curve deformation $\alpha^n_{t+\Delta t}(u)$ was computed based on the displacements of the control points, $X_i(t+\Delta t)$, given by a field of vectors. In order to calculate the displacements $X_i(t+\Delta t)$ a constraint optimization problem was proposed. The optimization function was defined as follows,

$$\min_{X_i(t+\Delta t)} \int_0^1 \|\alpha^n_{t+\Delta t}(u) - \alpha^n_t(u)\| du$$

(3)

This function minimizes the changes of the shape minimizing the distance between the original curve and the modified one. In order to guarantee numerical stability, two or more Bézier curves had to be concatenated because Bézier curve is numerically unstable if the Bézier curve has a large number of control points. As a consequence, the optimization function 3 was redefined as,

$$\min \sum_{i=1}^k \int_0^1 \|\alpha^n_{t+\Delta t}(u) - \alpha^n_i(u)\| du,$$

(4)

where k is the number of the curves.

This problem needs a set of constraints:

1. The Modified Bézier passes through the Target Point, T_i. In figure 1, it is shown this constraint. S_i represents the Start Points on the original Bézier.

2. Continuity and derivability is necessary to impose on the joined points of the concatenated curves to obtain a smooth curve.

3. To maintain the derivative property of the curve, derivative constraints on the start and end points of the resulting concatenated curves are imposed.

The BSD algorithm was applied in Liquid Composite Moulding (LCM) processes and Mobile Robots.

In LCM processes, see Figure 2, the resin’s flow front is an important tool to take decisions during the mould filling. This flow front was computed and updated using BSD. It was represented with a Bézier curve and updated through a field of vectors. In that case, these vectors represented the velocity vectors obtained solving the flow kinematics with Finite Element Methods (FEM),

In Mobile Robots, see Figure 3, the idea was to obtain a flexible Trajectory for a Mobile Robot free of collisions. This flexible Trajectory was based on the deformation of a Bézier curve through a field of vectors. The field of vectors, in this case forces, was computed with a recently artificial potential field method called Potential Field Projection method (PFP), see Mora (2007,o, 2008). The Initial Trajectory was modified through the field of forces in order to avoid the obstacles and guiding the robot to non-collision positions.

3. Definitions and preliminary results

First of all we introduce some of the notation used in this paper,(see Graham (1981), Magnus (2007) or Loan (2000) for more details). We denote the set of \((n \times m)\)-matrices by \(\mathbb{R}^{n \times m}\), and the transpose of a matrix \(A\) is denoted \(A^T\). By \((x, y)\) we denote the usual Euclidean inner product given by \(x^T y = y^T x\) and its corresponding 2-norm, \(\|x\|_2 = (x, x)^{1/2}\). The matrix \(I_n\) is the \((n \times n)\)-identity matrix and when the dimension is clear from the context, we simply denote it by \(I\).

Now, we recall the definition and some properties of the Kronecker product. The Kronecker product of \(A \in \mathbb{R}^{n_1 \times n_1}\) and \(B \in \mathbb{R}^{n_2 \times n_2}\), written \(A \otimes B\), is the tensor algebraic operation defined as

\[
A \otimes B = \begin{bmatrix}
 a_{11}B & a_{12}B & \cdots & a_{1n_1}B \\
 a_{21}B & a_{22}B & \cdots & a_{2n_1}B \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n_11}B & a_{n_12}B & \cdots & a_{n_1n_1}B
\end{bmatrix} \in \mathbb{R}^{n_1' \times n_1n_2},
\]

Also, the Kronecker product of two matrices \(A \in \mathbb{R}^{n_1' \times n_1}\) and \(B \in \mathbb{R}^{n_2' \times n_2}\), can be defined as \(A \otimes B \in \mathbb{R}^{n_1' \times n_1n_2}\), where

\[
(A \otimes B)_{(j_1-1)n_1'+j_2,(i_1-1)n_2'+i_2} = A_{j_1,i_1}B_{j_2,i_2}.
\]
Figure 3: Snapshots of the Trajectory (left images) obtained by the BSD+PFP algorithm in an environment with 15 obstacles. Right images show detailed views of robot Trajectory for the corresponding left images.

Finally, we list some of the well-know properties of the Kronecker product.
(T1) \(A \otimes (B \otimes C) = (A \otimes B) \otimes C. \)

(T2) \((A + B) \otimes (C + D) = (A \otimes C) + (B \otimes C) + (A \otimes D) + (B \otimes D). \)

(T3) If \(A + B \) and \(C + D \) exist, \(AB \otimes CD = (A \otimes C)(B \otimes D) \).

(T4) If \(A \) and \(B \) are non-singular, \((A \otimes B)^{-1} = A^{-1} \otimes B^{-1}. \)

(T5) If \((A \otimes B)^T = A^T \otimes B^T \).

(T6) If \(A \) and \(B \) are banded, then \(A \otimes B \) is banded.

(T7) If \(A \) and \(B \) are symmetric, then \(A \otimes B \) is symmetric.

(T8) If \(A \) and \(B \) are definite positive, then \(A \otimes B \) is definite positive.

Let \(A = [A_1 \cdots A_n] \) be an \(m \times n \) matrix where \(A_j \) is its \(j \)-th column vector. Then \(\text{vec} \ A \) is the \(mn \times 1 \) vector

\[
\text{vec} \ A = \begin{bmatrix}
A_1 \\
\vdots \\
A_n
\end{bmatrix}.
\]

Thus the vec operator transforms a matrix into a vector by stacking the columns of the matrix one underneath the other. Notice that \(\text{vec} \ A = \text{vec} \ B \) does not imply \(A = B \), unless \(A \) and \(B \) are matrices of the same order. The following properties are useful:

(V1) \(\text{vec} \ u^T = \text{vec} \ u = u \), for any column vector \(u \).

(V2) \(\text{vec} \ uv^T = v \otimes u \), for any two column vectors \(u \) and \(v \) (not necessarily of the same order).

(V3) Let \(A, B \) and \(C \) be three matrices such that the matrix product \(ABC \) is defined. Then,

\[
\text{vec} \ ABC = (C^T \otimes A) \text{vec} \ B. \tag{5}
\]

Definition 3. Let \(F : \mathbb{R}^{n \times q} \rightarrow \mathbb{R}^{m \times p} \) be a differentiable function. The Jacobian matrix of \(F \) at \(X \) is the \(mp \times nq \) matrix

\[
DF(X) = \frac{\partial \text{vec} \ F(X)}{\partial (\text{vec} \ X)^T}.
\]

Clearly, \(DF(X) \) is a straightforward matrix generalization of the traditional definition of the Jacobian matrix and all properties of Jacobian matrices are preserved. Thus, the above definition reduces the study of functions of matrices to the study of vector functions of vectors, since it allows \(F(X) \) and \(X \) only in their vectorized forms \(\text{vec} \ F \) and \(\text{vec} \ X \). The next properties will be useful (see Chapter 9 in Magnus (2007))

(P1) Assume \(y = f(X) = X \mathbf{u} \), such that \(\mathbf{u} \) is a vector of constants, here \(f : \mathbb{R}^{n \times m} \rightarrow \mathbb{R}^n \). Then the Jacobian matrix is \(D(X \mathbf{u}) = \mathbf{u}^T \otimes I \in \mathbb{R}^{n \times mn} \cong \mathbb{R}^{1 \times m} \otimes \mathbb{R}^{n \times n}. \)

(P2) Assume \(y = f(x) = x^T \mathbf{x} \), here \(f : \mathbb{R}^n \rightarrow \mathbb{R} \). then \(D(x^T \mathbf{x}) = 2x^T \in \mathbb{R}^{1 \times n}. \)
(P3) Let \(F : \mathbb{R}^{n \times m} \rightarrow \mathbb{R}^{p \times q} \) be defined as \(F(X) = AXB \) where \(A \in \mathbb{R}^{p \times n} \) and \(B \in \mathbb{R}^{m \times q} \) are matrices of constants. Then
\[
D_F(X) = B^T \otimes A. \tag{6}
\]

Theorem 1 (chain rule). Let \(S \) be a subset of \(\mathbb{R}^{n \times q} \) and assume that \(F : S \rightarrow \mathbb{R}^{m \times p} \) is differentiable at an interior point \(C \) of \(S \). Let \(T \) be a subset of \(\mathbb{R}^{m \times p} \) such that \(F(X) \in T \) for all \(X \in S \), and assume that \(G : T \rightarrow \mathbb{R}^{s \times r} \) is differentiable at an interior point \(B = F(C) \in T \). Then the composite function \(H : S \rightarrow \mathbb{R}^{s \times r} \) defined by \(H(X) = G(F(X)) \) is differentiable at \(C \), and
\[
DH(C) = (DG(B))(DF(C)).
\]

The following theorem will be useful.

Theorem 2. Let \(A \) be a \((p + q) \times (p + q)\)-matrix such that
\[
A = \begin{bmatrix}
A_{1,1} & A_{1,2} \\
-A_{1,2}^T & 0
\end{bmatrix}
\]
where \(A_{1,1} \in \mathbb{R}^{p \times p} \) and \(A_{1,2} \in \mathbb{R}^{p \times q} \).

Assume that \(A_{1,1} \) is non-singular, that is, invertible and \(\text{rank}A_{1,2} = q \). Then \(A \) is non-singular and
\[
A^{-1} = \begin{bmatrix}
X_{1,1} & X_{1,2} \\
X_{2,1} & X_{2,2}
\end{bmatrix},
\]
where \(X_{2,2} = (A_{1,2}^T A_{1,1} A_{1,2})^{-1}, X_{2,1} = X_{2,2} A_{1,2}^T A_{1,1}^{-1}, X_{1,1} = A_{1,1}^{-1} - A_{1,1}^{-1} A_{1,2} X_{1,2} \) and \(X_{1,2} = -A_{1,1}^{-1} A_{1,2} X_{2,2} \).

4. A matrix-based optimization algorithm for shape deformation using a basis of parametric curves

Now, the aim is the reduction of the cost in computational time of the BSD algorithm because this is a critical point in real-time applications and we notice that this computational cost increased exponentially if the number of the Bézier curves is increased. For that reason, the BSD algorithm is reformulated using tensors.

We will consider for each fixed \(n \geq 1 \) a finite dimensional basis \(\{B_{0,n}, \ldots, B_{n,n}\} \subset L^2[0, 1] \) (in particular, \(B_{i,n} \) are the Bernstein polynomials of degree \(n \) when the curve generated is a Bézier curve) and \(\Omega \subset \mathbb{R}^2 \) a compact and convex set. Now, assume that for each time \(t \in (0, t_{\text{end}}] \) we have a matrix of Target Points
\[
T^j(t) = \begin{bmatrix}
T^j_1(t) & \cdots & T^j_r(t)
\end{bmatrix} \in \mathbb{R}^{2 \times r}
\]
where \(T^j_i(t) \in \Omega, 1 \leq j \leq r \). Our main goal is to construct a map from \([0, t_{\text{end}}]\) to \(C^1([0, 1]; \mathbb{R}^2) \) given by
\[
t \mapsto \alpha^n_t(u) = \sum_{i=0}^n P^n_i(t) B_{i,n}(u); \quad u \in [0, 1], \tag{7}
\]
where
\[
P^n_i(t) = \begin{bmatrix}
P^n_0(t) & \cdots & P^n_r(t)
\end{bmatrix} \in \mathbb{R}^{2 \times (n+1)},
\]
for each fixed t is a finite set of control points, $P_n(0)$ is previously known and
\[\{ \mathbf{T}^i_r(t), \cdots, \mathbf{T}^r_r(t) \} \subset \alpha^n_t([0,1]), \]
for each $t \in (0, t_{\text{end}}]$. Observe that we can write (7) in an equivalent matrix form,
\[\alpha^n_t(u) = P_n(t) \mathbf{B}_n(u); u \in [0,1] \quad (8) \]
where
\[\mathbf{B}_n(u) = \begin{bmatrix} B_{0,n}(u) & \cdots & B_{n,n}(u) \end{bmatrix}^T \in \mathbb{R}^{(n+1) \times 1}. \quad (9) \]

Since $\alpha^n_t(u) \in \mathbb{R}^2$ we can write its standard euclidean norm as
\[\| \alpha^n_t(u) \|_2^2 = \mathbf{B}_n(u)^T P_n(t)^T P_n(t) \mathbf{B}_n(u), \quad (10) \]
then, for each fixed t, the energy of the u-parametrized curve α^n_t in $C([0,1], \mathbb{R}^2)$ can be given by its $L^2([0,1], \mathbb{R}^2)$-norm, that is,
\[\| \alpha^n_t \|_{\Delta^2} = \left(\int_0^1 \| \alpha^n_t(u) \|_2^2 \, du \right)^{1/2} = \left(\int_0^1 \mathbf{B}_n(u)^T P_n(t)^T P_n(t) \mathbf{B}_n(u) \, du \right)^{1/2}. \quad (11) \]

Assume that for some $t \in (0, t_{\text{end}}]$ we previously know α^n_t as $\alpha^n_t(u) = P_n(t) \mathbf{B}_n(u)$. Then it moves in a given small interval of time Δt to a parametric curve $\alpha^n_{t+\Delta t}$, by using a set of perturbations for each control point, namely
\[X_n(t+\Delta t) = \begin{bmatrix} X^n_0(t+\Delta t) & \cdots & X^n_n(t+\Delta t) \end{bmatrix} \in \mathbb{R}^{2 \times (n+1)}, \quad (12) \]
The resultant parametric curve $\alpha^n_{t+\Delta t}$ will be given by,
\[\alpha^n_{t+\Delta t}(u) = P_n(t+\Delta t) \mathbf{B}_n(u); \quad u \in [0,1]. \quad (13) \]
where
\[P_n(t+\Delta t) := P_n(t) + X_n(t+\Delta t). \quad (14) \]

To compute $X_n(t+\Delta t)$ we will use the following least action principle: the curve minimize the energy to move from α^n_t to $\alpha^n_{t+\Delta t}$ and it has to pass through the set of Target Points $\{ \mathbf{T}^i_r(t+\Delta t), \cdots, \mathbf{T}^r_r(t+\Delta t) \}$ for a given set of parameter values, namely
\[0 = u_t^1 < u_t^2 < \cdots < u_t^{r-1} < u_t^r = 1. \]

More precisely, we would like to find $\alpha^n_{t+\Delta t}$ such that
\[\min \| \alpha^n_{t+\Delta t} - \alpha^n_t \|_{\Delta^2} \quad \text{s. t. } \alpha^n_{t+\Delta t}(u_j) = \mathbf{T}^j_r(t+\Delta t) \quad \text{for } 1 \leq j \leq r \text{ and } r \leq n-1. \quad (15) \]

In order to write (15) in an equivalent matrix form we introduce the following notation. Let
\[B'_{n} = \begin{bmatrix} \mathbf{B}_n(u_t^1) & \cdots & \mathbf{B}_n(u_t^r) \end{bmatrix} \in \mathbb{R}^{(n+1) \times r}, \]
where we assume that
\[\text{rank} B'_n = r = \min\{n+1, r\}, \] (16)
holds for the set of parameter values \(\{u'_1, u'_2, \ldots, u'_{r-1}, u'_r\} \). Finally, we consider the matrix function \(\Phi_n : \mathbb{R}^{2 \times (n+1)} \to \mathbb{R} \), defined by
\[\Phi_n(X_n(t + \Delta t)) = \int_0^1 B_n(u)^T X_n(t + \Delta t)^T X_n(t + \Delta t) B_n(u) \, du. \] (17)

Then the minimization problem (15) can be written in a matrix form as:
\[\min_{X_n(t + \Delta t) \in \mathbb{R}^{2 \times (n+1)}} \Phi_n(X_n(t + \Delta t)) \] (18)
\[\text{s. t. } (P_n(t) + X_n(t + \Delta t))B'_n = T_r(t + \Delta t). \] (19)

By using the vec operator in (19) and the property V3 defined in the equation (5), we obtain a useful equivalent formulation written as
\[((B'_n)^T \otimes I_2) \text{vec} X_n(t + \Delta t) = \text{vec} T_r(t + \Delta t) - \text{vec} (P_n(t)B'_n), \] (20)

Note that the set of constraints of this problem 19 is linear where \((B'_n)^T \otimes I_2 \in \mathbb{R}^{2r \times 2(n+1)} \). In consequence, the map \(\Phi_n \) is defined over a convex set. Thus, by proving the convexity of \(\Phi_n \), each stationary point of \(\Phi_n \) over the constrained set will give us an absolute minimum. In particular, the following proposition give us the first and the second derivative of \(\Phi_n \).

Proposition 1. The following statements hold:

(a) \(D\Phi_n(X_n(t + \Delta t)) = 2 \int_0^1 (X_n(t + \Delta t) B_n(u))^T (B_n(u)^T \otimes I_2) \, du \in \mathbb{R}^{1 \times 2(n+1)}. \)

(b) \((D\Phi_n(X_n(t + \Delta t)))^T = 2 \left(\int_0^1 (B_n(u)^T \otimes B_n(u) \otimes I_2) \, du \right) \text{vec} X_n(t + \Delta t). \)

(c) \(D^2\Phi_n(X_n(t + \Delta t)) = 2 \int_0^1 (B_n(u)^T \otimes B_n(u) \otimes I_2) \, du = 2 \left(\int_0^1 B_n(u)^T \otimes B_n(u) \, du \right) \otimes I_2. \) Moreover, \(D^2\Phi_n(X_n(t + \Delta t)) \in \mathbb{R}^{2(n+1) \times 2(n+1)} \) is a definite positive symmetric matrix and hence \(\Phi_n \) is a convex function over each convex set \(\Omega \).

Proof. First, we observe that
\[D\Phi_n(X_n(t + \Delta t)) = \int_0^1 D (B_n(u)^T X_n(t + \Delta t)^T X_n(t + \Delta t) B_n(u)) \, du. \] (21)

Let us consider \(y_n = F(X_n(t + \Delta t)) = X_n(t + \Delta t) B_n(u) \) and \(G(y_n) = y_n^T y_n \). Then, \(DF(X_n(t + \Delta t)) = B_n(u)^T \otimes I_2 \) and \(DG(y_n) = 2y_n^T \). Thus, by using Theorem 1 we obtain that
\[D (B_n(u)^T X_n(t + \Delta t)^T X_n(t + \Delta t) B_n(u)) = 2y_n^T (B_n(u)^T \otimes I_2) \]
\[= 2 (X_n(t + \Delta t) B_n(u))^T (B_n(u)^T \otimes I_2). \]
and this follows statement (a). By using the fact that,

\[
(D\Phi_n(X_n(t + \Delta t)))^T = 2 \int_0^1 (X_n(t + \Delta t)B_n(u))^T (B_n(u)^T \otimes I_2) du \in \mathbb{R}^{2(n+1)\times 1}
\]

and taking the vec operator we obtain that,

\[
(D\Phi_n(X_n(t + \Delta t)))^T = 2 \left(\int_0^1 (B_n(u)^T \otimes B_n(u) \otimes I_2) du \right) \text{vec} X_n(t + \Delta t),
\]

and it follows (b). To prove (c) note that

\[
D^2 (B_n(u)^T X_n(t + \Delta t)^T X_n(t + \Delta t) B_n(u)) = 2 (B_n(u)^T \otimes I_2) (B_n(u)^T \otimes I_2).
\]

Since \((B_n(u)^T \otimes I_2)\) is definite positive, we obtain that \((D^2 \Phi_n(X_n(t + \Delta t)))\) is also definite positive for all \(X_n(t + \Delta t) \in \mathbb{R}^{2 \times (n+1)}\). \(\square\)

Moreover, we have the following lemma.

Lemma 1. The matrix \(\int_0^1 (B_n(u)^T \otimes B_n(u) \otimes I_2) du\) is invertible.

Proof. Observe that

\[
\int_0^1 (B_n(u)^T \otimes B_n(u) \otimes I_2) du =
\]

\[
= \begin{bmatrix}
\int_0^1 B_{0,n}(u)B_{0,n}(u)du & \cdots & \int_0^1 B_{0,n}(u)B_{0,n}(u)du \\
\int_0^1 B_{0,n}(u)B_{1,n}(u)du & \cdots & \int_0^1 B_{0,n}(u)B_{1,n}(u)du \\
\vdots & \ddots & \vdots \\
\int_0^1 B_{0,n}(u)B_{n,n}(u)du & \cdots & \int_0^1 B_{0,n}(u)B_{n,n}(u)du
\end{bmatrix} \otimes I_2.
\]

Since \(\int_0^1 B_{i,n}(u)B_{j,n}(u)du = \langle B_{i,n}, B_{j,n} \rangle_{L^2([0,1];\mathbb{R})}\) we have that

\[
G(B_{0,n}, \ldots, B_{n,n}) =
\]

\[
= \begin{bmatrix}
\int_0^1 B_{0,n}(u)B_{0,n}(u)du & \cdots & \int_0^1 B_{0,n}(u)B_{0,n}(u)du \\
\int_0^1 B_{0,n}(u)B_{1,n}(u)du & \cdots & \int_0^1 B_{0,n}(u)B_{1,n}(u)du \\
\vdots & \ddots & \vdots \\
\int_0^1 B_{0,n}(u)B_{n,n}(u)du & \cdots & \int_0^1 B_{0,n}(u)B_{n,n}(u)du
\end{bmatrix}
\]

is the Gramian matrix of the basis \(\{B_{0,n}, \ldots, B_{n,n}\}\). From Lemma 7.5 of Deusch (2001) we have that \(G(B_{0,n}, \ldots, B_{n,n})\) is a non-singular matrix and hence

\[
\int_0^1 (B_n(u)^T \otimes B_n(u) \otimes I_2) du = G(B_{0,n}, \ldots, B_{n,n}) \otimes I_2
\]

in invertible. \(\square\)
In order to characterize the minimum of (18) and (20) we construct the associate Lagrangian
\[\mathcal{L}(X_n(t + \Delta t), \mu) = \Phi_n(X_n(t + \Delta t)) - \mu^T [(B_n^T)^T \otimes I_2] \vec{X}_n(t + \Delta t) - \vec{X}_r(t + \Delta t) + \vec{P}_n(t)B_n^r], \]
where \(\mu = [\mu_1 \cdots \mu_{2r}]^T \in \mathbb{R}^{2r} \). The first order optimality conditions are (20) and
\[D\Phi_n(X_n(t + \Delta t)) - \mu^T [(B_n^T)^T \otimes I_2] = 0, \]
which is obtained by using Proposition 1 (a) and the property (P3) defined by the equation 6. The equation (25) is equivalent to
\[(D\Phi_n(X_n(t + \Delta t)))^T - (I_2 \otimes B_n^r)\mu = 0. \]
Proposition 1 (b) allows us to write the first order optimality conditions as:
\[2 \left(\int_0^1 \left(B_n(u)^T \otimes \vec{X}_n(u) \otimes I_2 \right) du \right) \vec{X}_n(t + \Delta t) - (I_2 \otimes B_n^r)\mu = 0 \]
\[((B_n^r)^T \otimes I_2) \vec{X}_n(t + \Delta t) = \vec{X}_r(t + \Delta t) + \vec{P}_n(t)B_n^r, \]
that we can write in matrix form as
\[Az(t + \Delta t) = f(t), \]
where
\[A = \begin{bmatrix} 2 \left(\int_0^1 \left(B_n(u)^T \otimes \vec{X}_n(u) \otimes I_2 \right) du \right) & -(I_2 \otimes B_n^r) \\ ((B_n^r)^T \otimes I_2) & 0 \end{bmatrix} \in \mathbb{R}^{(2(n+1)+2r) \times (2(n+1)+2r)}, \]
and
\[z(t + \Delta t) = \begin{bmatrix} \vec{X}_n(t + \Delta t) \\ \mu \end{bmatrix} \text{ and } f(t) = \begin{bmatrix} 0 \\ \vec{X}_r(t + \Delta t) - \vec{P}_n(t)B_n^r \end{bmatrix}, \]
which are in \(\mathbb{R}^{(2(n+1)+2r)}. \)

Proposition 2. Assume that \(\text{rank} \ B_n^r = r \). Then the matrix \(A \) is invertible.

Proof. First at all we remark that
\[A = \begin{bmatrix} A_{1,1} & A_{1,2} \\ -A_{1,2}^T & 0 \end{bmatrix} \in \mathbb{R}^{2(n+1)+2r \times 2(n+1)+2r}, \]
where
\[A_{1,1} = 2 \left(\int_0^1 \left(B_n(u)^T \otimes \vec{X}_n(u) \otimes I_2 \right) du \right) \in \mathbb{R}^{2(n+1) \times 2(n+1)}, \]
and
\[A_{1,2} = -(I_2 \otimes B_n^r) = \begin{bmatrix} -B_n^r & 0 \\ 0 & -B_n^r \end{bmatrix} \in \mathbb{R}^{2(n+1) \times 2r}. \]
From Lemma 1 we known that \(A_{1,1} \) is a non-singular matrix. Since \(\text{rank} \ A_{1,2} = 2r \) because \(\text{rank} B_n^r = r \), from Theorem 2 the proposition follows.
Now, the algorithm is the following.

1. Construct the matrix A.

2. Consider $\Delta t = \frac{t_{\text{end}}}{N-1}$ for a fixed $N \geq 2$, and write $t_j = (j-1)\Delta t$ for $1 \leq j \leq N$.

3. Obtain the initial control points $P_n(t_1)$ and a sample of Target Points $\{T_r(t_1), \ldots, T_r(t_N)\} \subset \Omega \subset \mathbb{R}^{2 \times r}$.

4. For $j = 1$ to N
 - (a) Compute $z(t_{j+1})$ as the solution of the linear system $Az(t_{j+1}) = f(t_j)$;
 - (b) Obtain $X_n(t_{j+1})$ from $z(t_{j+1})$;
 - (c) Compute the new control points $P_n(t_{j+1}) = P_n(t_j) + X_n(t_{j+1})$;

5. A matrix-based optimization algorithm for Bézier Shape Deformation

 Now, we consider that the curve $\alpha_t \in C([0, 1]; \Omega)$ is now described by a finite set of concatenated parametrized Bézier curves $\alpha_t^{n_1}, \ldots, \alpha_t^{n_k}$ constructed with basis functions of dimensions n_1, \ldots, n_k, respectively. By using Section 4, each of these curves can be written as
 \[
 \alpha_t^{n_i}(u) = P_n(t) B_{n_i}(u); \quad u \in [0, 1]; \quad 1 \leq i \leq k
 \]
 (29)

 where the matrix of the controls points is,
 \[
 P_n(t) = \begin{bmatrix} P_{0,n}(t) & \cdots & P_{n,n}(t) \end{bmatrix} \in \mathbb{R}^{2 \times (n+1)},
 \]
 (30)

 and the matrix of the Bernstein Basis is,
 \[
 B_{n_i}(u) = \begin{bmatrix} B_{0,n_i}(u) & \cdots & B_{n,n_i}(u) \end{bmatrix}^T \in \mathbb{R}^{(n+1) \times 1}.
 \]
 (31)

 We assume that
 \[
 B_{i,n}(u) = \binom{n}{i} u^i (1-u)^{n-i}, \quad i = 0, \ldots, n
 \]

 are the Bernstein basis polynomials of degree n_j for $1 \leq j \leq k$. Let us consider for $t \in (0, t_{\text{end}})$ and each $1 \leq i \leq k$ a set of r_j Target Points
 \[
 T_r(t) = \begin{bmatrix} T_{r_1}(t) & \cdots & T_{r_k}(t) \end{bmatrix} \in \mathbb{R}^{2 \times r_j},
 \]
 (32)

 where $T_{r_j}(t) \in \Omega$ for $1 \leq j \leq r_i$, and
 \[
 \{T_{r_1}(t), \ldots, T_{r_k}(t)\} \subset \alpha_t^{n_i}([0, 1])
 \]
 (33)

 for all $t \in (0, t_{\text{end}})$. Moreover, $P_n(0)$ is previously known.

 In a similar way as in Section 4, we assume that α_t, described by $\{\alpha_t^{n_i}\}_{i=1}^k$, is given. Then we would like to construct $\alpha_{t+\Delta t}$ from $\{\alpha_{t+\Delta t}^{n_i}\}_{i=1}^k$, as follows. Consider
 \[
 \alpha_{t+\Delta t}^{n_i}(u) = P_n(t + \Delta t) B_{n_i}(u); \quad u \in [0, 1]
 \]
 (34)
where,
\[
P_{ni}(t + \Delta t) := P_{ni}(t) + X_{ni}(t + \Delta t)
\] (35)
and
\[
X_{ni}(t + \Delta t) = \begin{bmatrix} X_{n_i}^0(t + \Delta t) & \cdots & X_{n_i}^{n_i}(t + \Delta t) \end{bmatrix} \in \mathbb{R}^{2 \times (n_i + 1)},
\] (36)
for each \(1 \leq i \leq k - 1\).

Since (33) holds, for each \(1 \leq i \leq k\) we will consider
\[
0 = u_1^{r_i} < u_2^{r_i} \cdots < u_{r_i}^{r_i} = 1
\]
and the matrix
\[
B_{n_i}^{r_i} = \begin{bmatrix} B_{n_i}(u_1^{r_i}) & \cdots & B_{n_i}(u_{r_i}^{r_i}) \end{bmatrix} \in \mathbb{R}^{(n_i + 1) \times r_i}.
\] (37)

Since \(\alpha_{t+\Delta t}^{n_i}(u_j^{r_i}) = T_{n_i}^j(t + \Delta t)\), for \(1 \leq j \leq r_i\) and \(1 \leq i \leq k\), we have
\[
(P_{ni}(t) + X_{ni}(t + \Delta t))B_{n_i}^{r_i} = T_{n_i}(t + \Delta t) \text{ for } 1 \leq i \leq k.
\] (38)

The continuity of \(\alpha_t\) given by \(\alpha_t^{n_i}(1^-) = \alpha_t^{n_{i+1}}(0^+)\) for \(1 \leq i \leq k - 1\), implies that
\[
P_{n_i}^n(t) = P_{n_{i+1}}^0(t)
\] (39)
holds for \(1 \leq i \leq k - 1\). Since \(\alpha_{t+\Delta t} \in \mathcal{C}([0,1];\Omega)\), from \(\alpha_t^{n_i}(1^-) = \alpha_t^{n_{i+1}}(0^+)\) we have
\[
X_{n_i}(t + \Delta t) = X_{n_{i+1}}^0(t + \Delta t),
\] (40)
for \(1 \leq i \leq k - 1\). Assume that \(\alpha_t^{n_i}(0), \alpha_t^{n_k}(1)\) belong to the boundary of \(\Omega\), denoted by \(\partial \Omega\), and that
\[
\frac{d}{du} \alpha_t^{n_i}(u) \big|_{u=0^+} = V_1(t), \quad \frac{d}{du} \alpha_t^{n_k}(u) \big|_{u=1^-} = V_k(t),
\]
are given data for all \(t\). This equality and the fact that \(B_{i,n_j}\), for \(0 \leq i \leq n_j\) and \(1 \leq j \leq k\), are Bernstein polynomials, implies
\[
n_1(P_{n_1}(t) - P_{n_1}^0(t)) = V_1(t), \quad n_k(P_{n_k}(t) - P_{n_k}^{n_k-1}(t)) = V_k(t).
\] (41)

In a similar way, since
\[
\frac{d}{du} \alpha_{t+\Delta t}^{n_i}(u) \big|_{u=0^+} = V_1(t + \Delta t), \quad \frac{d}{du} \alpha_{t+\Delta t}^{n_k}(u) \big|_{u=1^-} = V_k(t + \Delta t),
\]
and (41) hold we obtain
\[
n_1(X_{n_1}(t + \Delta t) - X_{n_1}^0(t + \Delta t)) = V_1(t + \Delta t) - V_1(t),
\] (42)
\[
n_k(X_{n_k}(t + \Delta t) - X_{n_k}^{n_k-1}(t + \Delta t)) = V_k(t + \Delta t) - V_k(t).
\] (43)

To obtain a differentiability condition, that is \(\alpha_t \in \mathcal{C}^1([0,1];\Omega)\), we assume
\[
\frac{d}{du} \alpha_t^{n_i}(u) \big|_{u=1^-} = \frac{d}{du} \alpha_t^{n_{i+1}}(u) \big|_{u=0^+}.
\] (44)
and then
\[n_i(P_n^{n_i}(t) - P_{n_i}^{n_i-1}(t)) = n_{i+1}(P_{n_i+1}^{1}(t) - P_{n_i+1}^{0}(t)) \] (45)
holds for \(1 \leq i \leq k - 1 \). In a similar way, if we assume that \(\alpha_{t+\Delta} \in \mathbb{R}^1([0,1];\Omega) \) then,
\[n_i(X_n^{n_i}(t) - X_{n_i}^{n_i-1}(t + \Delta t)) = n_{i+1}(X_{n_i+1}^{1}(t + \Delta t) - X_{n_i+1}^{0}(t + \Delta t)) \] (46)
holds for \(1 \leq i \leq k - 1 \).

To conclude, we would like to compute \(X_n(t + \Delta t) \in \mathbb{R}^{2 \times (n+1)} \) for \(1 \leq i \leq k \) satisfying
\[
\begin{align*}
\min_{(X_n^1(t+\Delta t), \ldots, X_n^n(t+\Delta t))} & \quad \sum_{i=1}^{k} \Phi_{n_i}(X_n(t + \Delta t)) \\
\text{s. t.} & \quad (P_n(t) + X_n(t + \Delta t))B_n^\alpha = T_n(t + \Delta t), 1 \leq i \leq k, \\
& \quad n_1(X_1^1(t + \Delta t) - X_1^0(t + \Delta t)) = V_1(t + \Delta t) - V_1(t), \\
& \quad n_k(X_k^1(t + \Delta t) - X_k^0(t + \Delta t)) = V_k(t + \Delta t) - V_k(t), \\
& \quad n_i(X_i^1(t + \Delta t) - X_i^0(t + \Delta t)) = n_{i+1}(X_{n_i+1}^1(t + \Delta t) - X_{n_i+1}^0(t + \Delta t)), 1 \leq i \leq k - 1,
\end{align*}
\] (47)

Introduce the matrix function
\[\Phi(X_n^1(t + \Delta t), \ldots, X_n^n(t + \Delta t)) := \sum_{i=1}^{k} \Phi_{n_i}(X_n(t + \Delta t)), \]
which is a linear combination with positive coefficients of convex functions. In consequence it is also a convex function over each convex set \(\Omega \subset \mathbb{R}^{2 \times (n+1)} \times \cdots \times \mathbb{R}^{2 \times (n+1)} \). Moreover,
\[
\begin{pmatrix}
D\Phi(X_n^1(t + \Delta t), \ldots, X_n^n(t + \Delta t))
\end{pmatrix}
= \begin{bmatrix}
D\Phi_{n_1}(X_n^1(t + \Delta t)) & \cdots & D\Phi_{n_k}(X_n^n(t + \Delta t))
\end{bmatrix},
\]
where \(D\Phi(X_n^1(t + \Delta t), \ldots, X_n^n(t + \Delta t)) \in \mathbb{R}^{1 \times \sum_{i=1}^{k} (n+1)} \) and
\[
D^2\Phi(X_n^1(t + \Delta t), \ldots, X_n^n(t + \Delta t)) = \text{diag}(D^2\Phi_{n_1}(X_n^1(t + \Delta t)), \ldots, D^2\Phi_{n_k}(X_n^n(t + \Delta t))).
\]

By using Proposition 1, we see that \(D^2\Phi(X_n^1(t + \Delta t), \ldots, X_n^n(t + \Delta t)) \) is a definite positive matrix. Now, we would like to write (47) in a more compact notation. To this end we use the following four block matrices. For \(1 \leq i \leq k \) we define
\[
R_{n_i} = \begin{bmatrix}
0 & \cdots & 0 & I_2
\end{bmatrix} \in \mathbb{R}^{2 \times (n+1)},
\]
\[
R_{n_i}^\ast = \begin{bmatrix}
0 & \cdots & 0 & -I_2 & I_2
\end{bmatrix} \in \mathbb{R}^{2 \times (n+1)},
\]
\[
L_{n_i} = \begin{bmatrix}
I_2 & 0 & \cdots & 0
\end{bmatrix} \in \mathbb{R}^{2 \times (n+1)}
\]
and
\[
L_{n_i}^\ast = \begin{bmatrix}
-I_2 & I_2 & 0 & \cdots & 0
\end{bmatrix} \in \mathbb{R}^{2 \times (n+1)}.
\]

Finally, we denote by
\[
0_{n_i} = \begin{bmatrix}
0 & 0 & \cdots & 0
\end{bmatrix} \in \mathbb{R}^{2 \times (n+1)},
\]

here and for all the above matrices 0 denotes the square matrix
\[
\begin{bmatrix}
0 & 0 \\
0 & 0
\end{bmatrix}.
\]

Then by using the above matrices and the vec operator we can write the set of constrains in (47) as

\[
\begin{align*}
((B_n^i)^T \otimes I_2) \text{vec} X_{n_i}(t + \Delta t) &= \text{vec} T_i(t) - \text{vec} (P_n(t)B_{n_i}^i), 1 \leq i \leq k, \\
R_n \text{vec} X_{n_i}(t + \Delta t) &= L_{n+1} \text{vec} X_{n_{i+1}}(t + \Delta t), 1 \leq i \leq k - 1, \\
n_1 L_{n_i}^* \text{vec} X_{n_i}(t + \Delta t) &= \mathbf{V}_1(t + \Delta t) - \mathbf{V}_1(t), \\
n_k R_{n_k}^* \text{vec} X_{n_k}(t + \Delta t) &= \mathbf{V}_k(t + \Delta t) - \mathbf{V}_k(t), \\
n_1 R_{n_1}^* \text{vec} X_{n_1}(t + \Delta t) &= n_{i+1} L_{n_{i+1}}^* \text{vec} X_{n_{i+1}}(t + \Delta t), 1 \leq i \leq k - 1.
\end{align*}
\]

Now, the Lagrangian function associated to (47) is

\[
\mathcal{L}(X_{n_1}(t + \Delta t), \ldots, X_{n_k}(t + \Delta t), \lambda_1^{i*}, \ldots, \lambda_k^{i*}, \mu_1, \ldots, \mu_{2k})
= \sum_{i=1}^{k} \Phi_n(X_{n_i}(t + \Delta t))
- \sum_{i=1}^{k} (\lambda_i^{i*})^T \left[((B_n^i)^T \otimes I_2) \text{vec} X_{n_i}(t + \Delta t) - \text{vec} T_i(t) + \text{vec} (P_n(t)B_{n_i}^i) \right]
- \sum_{i=1}^{k-1} \mu_k^{i*} \left[R_n \text{vec} X_{n_i}(t + \Delta t) - L_{n+1} \text{vec} X_{n_{i+1}}(t + \Delta t) \right]
- \mu_k^{T} \left[n_1 L_{n_i}^* \text{vec} X_{n_i}(t + \Delta t) - \mathbf{V}_1(t + \Delta t) + \mathbf{V}_1(t) \right]
- \mu_{k+1}^{T} \left[n_k R_{n_k}^* \text{vec} X_{n_k} - \mathbf{V}_k(t + \Delta t) + \mathbf{V}_k(t) \right]
- \sum_{i=1}^{k-1} \mu_{i+1+k}^{T} \left[n_i R_{n_i}^* \text{vec} X_{n_i}(t + \Delta t) - n_{i+1} L_{n_{i+1}}^* \text{vec} X_{n_{i+1}}(t + \Delta t) \right],
\]

where,

\[
\lambda_i^{i*} = \begin{bmatrix}
\lambda_i^1 \\
\vdots \\
\lambda_i^{2r_i}
\end{bmatrix} \in \mathbb{R}^{2r_i},
\]

for 1 \leq i \leq k, and

\[
\mu_j = \begin{bmatrix}
\mu_j^1 \\
\mu_j^2
\end{bmatrix} \in \mathbb{R}^2,
\]

for 1 \leq j \leq 2k. The first order optimality conditions are given by (48),

\[
D\Phi_{n_i} (X_{n_i}(t + \Delta t)) - (\lambda_i^{i*})^T ((B_n^i)^T \otimes I_2) - \mu_k^{T} R_n - \mu_k^{T} n_1 L_{n_1}^* - \mu_{k+2}^{T} n_1 R_{n_1}^* = 0,
\]

\[
D\Phi_{n_i} (X_{n_i}(t + \Delta t)) - (\lambda_i^{i*})^T ((B_n^i)^T \otimes I_2) - \mu_k^{T} R_n + \mu_{i-1}^{T} L_{n_i} - \mu_{k+1}^{T} n_i R_{n_i}^* + \mu_{k+2}^{T} n_i L_{n_i}^* = 0,
\]

for 2 \leq i \leq k - 1, and

\[
D\Phi_{n_k} (X_{n_k}(t + \Delta t)) - (\lambda_k^{i*})^T ((B_n^k)^T \otimes I_2) + \mu_{k-1}^{T} L_{n_k} - \mu_{k+1}^{T} n_k R_{n_k}^* + \mu_{2k}^{T} n_k L_{n_k}^* = 0.
\]
Thus, the first order optimality conditions with respect to the vec $X_{ni}(t + \Delta t)$-variables (52)–(54) can be written respectively as,

$$0 = 2\left(\int_0^1 (B_{n1}(u)^T \otimes B_{n1}(u) \otimes I_2) \, du\right) \text{vec} X_{ni}(t + \Delta t) - (I_2 \otimes B_{n1}^*) X_{i1}^i$$ \quad (55)$$

$$-R_{n1}^T \mu_{n1} - n_1 (L_{n1}^*)^T \mu_{k+2},$$

$$0 = 2\left(\int_0^1 (B_{nk}(u)^T \otimes B_{nk}(u) \otimes I_2) \, du\right) \text{vec} X_{nk}(t + \Delta t) - (I_2 \otimes B_{nk}^*) X_{i1}^i$$ \quad (56)$$

$$+L_{nk}^T \mu_{ni-1} - R_{nk}^T \mu_{ni} + n_i (L_{nk}^*)^T \mu_{k+i+1} - n_i (R_{nk}^*)^T \mu_{k+i+1},$$

for $2 \leq i \leq k - 1$.

$$0 = 2\left(\int_0^1 (B_{nk}(u)^T \otimes B_{nk}(u) \otimes I_2) \, du\right) \text{vec} X_{nk}(t + \Delta t) - (I_2 \otimes B_{nk}^*) X_{i1}^i$$ \quad (57)$$

$$+L_{nk}^T \mu_{ni-1} - n_i (R_{nk}^*)^T \mu_{k+i+1} + n_i (L_{nk}^*)^T \mu_{2k}.$$

Finally, we conclude that the solution of the minimization program (47) can be computed by means of the following linear system,

$$Ax(t + \Delta t) = f(t)$$ \quad (58)$$

where A is a block matrix given by

\[
A = \begin{bmatrix}
A_{1,1} & A_{1,2} \\
A_{2,1} & 0
\end{bmatrix}.
\]

The block matrices are

$$A_{1,1} = \text{diag} \left(Z_{n1}, \ldots, Z_{nk} \right)$$

where,

$$Z_{ni} = 2\int_0^1 (B_{ni}(u)^T \otimes B_{ni}(u) \otimes I_2) \, du \in \mathbb{R}^{2(n+1) \times 2(n+1)}$$

for $i = 1, 2, \ldots, k$,

$$A_{1,2} = \begin{bmatrix} B_1 & B_2 & B_3 & B_4 \end{bmatrix} \text{ and } A_{2,1} = \begin{bmatrix} C_1 \\ C_2 \\ C_3 \\ C_4 \end{bmatrix}.$$

where

$$B_1 = \text{diag} \left(-(I_2 \otimes B_{n1}^{i1}), \ldots, -(I_2 \otimes B_{n1}^{ik}) \right),$$

$$C_1 = \text{diag} \left((B_{n1}^{i1})^T \otimes I_2, \ldots, (B_{nk}^{i1})^T \otimes I_2 \right),$$
\[B_2 = \begin{bmatrix}
-R_{n_1}^T & 0_{n_1}^T & 0_{n_1}^T & 0_{n_1}^T & \cdots & 0_{n_1}^T & 0_{n_1}^T \\
L_{n_2}^T & -R_{n_2}^T & 0_{n_2}^T & 0_{n_2}^T & \cdots & 0_{n_2}^T & 0_{n_2}^T \\
0_{n_3}^T & L_{n_3}^T & -R_{n_3}^T & 0_{n_3}^T & \cdots & 0_{n_3}^T & 0_{n_3}^T \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0_{n_{k-1}}^T & 0_{n_{k-1}}^T & 0_{n_{k-1}}^T & 0_{n_{k-1}}^T & \cdots & L_{n_{k-1}}^T & -R_{n_{k-1}}^T \\
0_{n_k}^T & 0_{n_k}^T & 0_{n_k}^T & 0_{n_k}^T & \cdots & 0_{n_k}^T & L_{n_k}^T
\end{bmatrix},
\]

\[C_2 = \begin{bmatrix}
R_{n_1} & -L_{n_2} & 0_{n_3} & \cdots & 0_{n_{k-2}} & 0_{n_{k-1}} & 0_{n_k} \\
0_{n_1} & R_{n_2} & -L_{n_3} & \cdots & 0_{n_{k-2}} & 0_{n_{k-1}} & 0_{n_k} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0_{n_1} & 0_{n_2} & 0_{n_3} & \cdots & R_{n_{k-2}} & -L_{n_{k-1}} & 0_{n_k} \\
0_{n_1} & 0_{n_2} & 0_{n_3} & \cdots & 0_{n_{k-2}} & R_{n_{k-1}} & -L_{n_k}
\end{bmatrix},
\]

\[B_3 = \begin{bmatrix}
-n_1(L_{n_1}^*)^T & 0_{n_2}^T & 0_{n_2}^T & \cdots & 0_{n_2}^T & 0_{n_2}^T \\
0_{n_2} & 0_{n_2}^T & 0_{n_2}^T & \cdots & 0_{n_2}^T & 0_{n_2}^T \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0_{n_{k-1}} & 0_{n_{k-1}}^T & 0_{n_{k-1}}^T & \cdots & 0_{n_{k-1}}^T & 0_{n_{k-1}}^T \\
0_{n_k} & 0_{n_k}^T & 0_{n_k}^T & \cdots & 0_{n_k}^T & 0_{n_k}^T
\end{bmatrix},
\]

\[C_3 = \begin{bmatrix}
n_1L_{n_1} & 0_{n_2} & 0_{n_3} & \cdots & 0_{n_{k-1}} & 0_{n_k} \\
0_{n_1} & 0_{n_2} & 0_{n_3} & \cdots & 0_{n_{k-1}} & 0_{n_k}
\end{bmatrix},
\]

\[B_4 = \begin{bmatrix}
-n_1(R_{n_1}^*)^T & 0_{n_2}^T & 0_{n_2}^T & \cdots & 0_{n_2}^T & 0_{n_2}^T \\
0_{n_2} & 0_{n_2}^T & 0_{n_2}^T & \cdots & 0_{n_2}^T & 0_{n_2}^T \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0_{n_{k-1}} & 0_{n_{k-1}}^T & 0_{n_{k-1}}^T & \cdots & 0_{n_{k-1}}^T & 0_{n_{k-1}}^T \\
0_{n_k} & 0_{n_k}^T & 0_{n_k}^T & \cdots & 0_{n_k}^T & 0_{n_k}^T
\end{bmatrix},
\]

and
\[C_4 = \begin{bmatrix}
n_1R_{n_1} & -n_2L_{n_2}^* & 0_{n_3} & \cdots & 0_{n_{k-2}} & 0_{n_{k-1}} & 0_{n_k} \\
0_{n_1} & n_2R_{n_2}^* & -n_3L_{n_3}^* & \cdots & 0_{n_{k-2}} & 0_{n_{k-1}} & 0_{n_k} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0_{n_1} & 0_{n_2} & 0_{n_3} & \cdots & n_{k-2}R_{n_{k-2}}^* & -n_{k-1}L_{n_{k-1}}^* & 0_{n_k} \\
0_{n_1} & 0_{n_2} & 0_{n_3} & \cdots & 0_{n_{k-2}} & n_{k-1}R_{n_{k-1}} & -n_{k}L_{n_k}^*
\end{bmatrix}.
\]

We point out the dimension of the block matrices:
\[A_{1,1} \in \mathbb{R}^{2\sum_{i=1}^{k}(n_i+1)\times 2\sum_{i=1}^{k}(n_i+1)}, B_1 \in \mathbb{R}^{2\sum_{i=1}^{k}(n_i+1)\times 2\sum_{i=1}^{k}r_i}, B_2 \in \mathbb{R}^{2\sum_{i=1}^{k}(n_i+1)\times 2(k-1)}, \]
\[B_3 \in \mathbb{R}^{2\sum_{i=1}^{k}(n_i+1)\times 4}, B_4 \in \mathbb{R}^{2\sum_{i=1}^{k}(n_i+1)\times 2(k-1)}, C_1 \in \mathbb{R}^{2\sum_{i=1}^{k}r_i\times 2\sum_{i=1}^{k}(n_i+1)}, \]
\[C_2 \in \mathbb{R}^{2(k-1)\times 2\sum_{i=1}^{k}(n_i+1)}, C_3 \in \mathbb{R}^{4\times 2\sum_{i=1}^{k}(n_i+1)} \text{ and } C_4 \in \mathbb{R}^{2(k-1)\times 2\sum_{i=1}^{k}(n_i+1)}, \]
and hence \(A \in \mathbb{R}^{p \times p} \) for
\[
p = 2 \sum_{i=1}^{k} (n_i + 1) + 2 \sum_{i=1}^{k} r_i + 2(k - 1) + 4 + 2(k - 1) = 2 \sum_{i=1}^{k} (n_i + r_i) + 6k. \tag{59}
\]

Since,
\[
C_j = -B_j^T \quad \text{for } j = 1, 2, 3, 4, \]
we can write
\[
A = \begin{bmatrix}
 A_{1,1} & A_{1,2} \\
 -A_{1,2}^T & 0
\end{bmatrix}.
\]

Finally, we have
\[
z(t + \Delta t) = \begin{bmatrix}
 \text{vec}X_{n_1}(t + \Delta t) \\
 \vdots \\
 \text{vec}X_{n_k}(t + \Delta t) \\
 \lambda_1 \\
 \vdots \\
 \lambda_k \\
 \mu_1 \\
 \vdots \\
 \mu_{2k}
\end{bmatrix} \in \mathbb{R}^{p \times 1}
\]
and
\[
f(t) = \begin{bmatrix}
 \text{vec}T_{r_1}(t) - \text{vec}P_{n_1}(t)B_{r_1}^{n_1} \\
 \vdots \\
 \text{vec}T_{r_k}(t) - \text{vec}P_{n_k}(t)B_{r_k}^{n_k} \\
 0 \\
 \vdots \\
 0
\end{bmatrix} \in \mathbb{R}^{p \times 1}.
\]

Next, we will show that \(A \) is a non-singular matrix and hence there exists a unique minimum for our problem.

Proposition 3. Assume that \(\text{rank} B_{r_j}^{n_j} = r_j \) for \(1 \leq j \leq k \). Then the matrix \(A \) is invertible.

Proof. First, observe that
\[
A_{1,1} = \text{diag}(Z_{n_1}, \ldots, Z_{n_k}).
\]

By Proposition 1 the matrix \(Z_{n_j} \) is invertible for \(1 \leq j \leq k \) and, in consequence, \(\text{rank} A_{1,1} = \sum_{j=1}^{k} 2(n_j + 1) \). Thanks to Theorem 2 the proposition follows if
\[
\text{rank} A_{1,2} = \text{rank} (-A_{1,2}^T) = \sum_{j=1}^{k} 2r_j + 2k,
\]
holds. Observe that \(k < \sum_{j=1}^{k} r_j < \sum_{j=1}^{k} (n_j + 1) \). Let us denote by \(\{e^{(i)}_{n_1}, \ldots, e^{(i)}_{n_i+1}\} \) the canonical basis of \(\mathbb{R}^{n_i+1} \) for \(1 \leq i \leq k \), and observe that
\[
R_{n_i} = \begin{bmatrix}
 0 & \cdots & 0 & I_2 \\
\end{bmatrix} = (I_2 \otimes e^{(i)}_{n_i+1})^T,
\]

19
\[R^*_n = \begin{bmatrix} 0 & \cdots & 0 & -I_2 & I_2 \end{bmatrix} = (I_2 \otimes (e_{n_i+1}^{(i)} - e_{n_i}^{(i)}))^T, \]

\[L_{n_i} = \begin{bmatrix} I_2 & 0 & \cdots & 0 \end{bmatrix} = (I_2 \otimes e_{1}^{(i)})^T \]

and

\[L^*_n = \begin{bmatrix} -I_2 & I_2 & \cdots & 0 \end{bmatrix} = (I_2 \otimes (e_{2}^{(i)} - e_{1}^{(i)}))^T, \]

By inspection it is possible to see that the subspace spanned by the rows of the \(\sum_{j=1}^{k} 2r_j + 2k \times \sum_{j=1}^{k} 2(n_j + 1) \)-matrix \((-A_{1,2}^T)\), that is,

\[
\begin{bmatrix}
(a_{1}^{(i)})^T \otimes I_2 & 0 & \cdots & 0 \\
0 & (a_{2}^{(i)})^T \otimes I_2 & \cdots & 0 \\
0 & 0 & \cdots & (a_{2}^{(i)})^T \otimes I_2 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & (a_{2}^{(i)})^T \otimes I_2 \\
0 & 0 & \cdots & 0 \\
\end{bmatrix}
\]

has dimension equal to \(\sum_{j=1}^{k} 2r_j + 2k \) and the proposition follows. \(\square \)

6. Comparing BSD with T-BSD

The BSD was applied and published in Montés (2008); Hilario (2010, 2011). The BSD algorithm computes the deformation of a continuous Bézier curve. In Montés (2008), it was used to improve the numerical simulation of Liquid Composite Moulding processes. In this case the BSD was used to represent as a continuous curve and update the information of the resin’s flow front when the mould is filling.

Later, in Hilario (2010, 2011), the algorithm was applied to mobile robots to obtain a new technique for flexible path planning based on the deformation of a Bézier curve through a field of forces (vectors). The focus of this research was the generation of a smooth collision-free trajectory for a holonomic mobile robot.

The use of tensors in the algorithms has two different objectives: a low storage cost and as a consequence of the represented tensors are involved into operations, for that reason operations should have a comparably low cost. The idea is the reduction of the data size from \(n^d \) to \(O(dn) \). We can see different applications and specific theory about tensors in Hackbusch (2011).
With T-BSD the reduction of the computational cost of the BSD algorithm is achieved. Figure 4 shows the evolution in computational time required for the calculation of the deformation of Bézier curves (composed of different number of Bézier curves) with the BSD and T-BSD methods. It is clear that, as the number of curves increases, BSD grows exponentially, whereas T-BSD grows linearly. As a consequence of the use of tensors it is got a reduction of the numerical cost. The comparison shown in Figure 4 has been computed using a PC with a 3.06 GHz Intel Core i3 and 4GB RAM.

Our objective is the use of this algorithm in real-time. In fact, whereas the BSD algorithm can use up to 70 quadratic curves for the computation of the modified Bézier curve in one second (see Figure 4), its reformulated algorithm T-BSD is able to use up to 170 curves within the same period of time, which highly increases the accuracy of the modified Bézier curve when it is compared to the BSD method. The use of tensors reduces the calculation time.

Another big advantage of the use of tensors is how the matrix is structured in blocks. This type of structure allows the computation of the algorithm using parallel computing, Grama (2003). The aim of parallel computing is how to break a problem intro discret parts that can be solved concurrently. Each discrete part is executed simultaneously on different processors. For that reason, the computational cost is reduced because a complex problem is solved in less time with multiple compute resources than a single compute resource. There are several applications of parallel computing, for example: databases, data mining, medical imaging and diagnosis, advanced graphics and virtual reality, etc. As a consequence of using tensors and using the parallel computing the numerical cost of the T-BSD algorithm would be reduced as much as possible.
7. Conclusions

This work presents a use of tensors which reduces the computational time of the BSD (Bézier Shape Deformation) algorithm, initially developed within the framework of mobile robotics and liquid composite moulding processes. The result is a tensorial method called T-BSD (Tensor Bézier Shape Deformation) which enjoys the same properties of the former method including a key advantage: its low computational time and real-time performance. This is a critical issue in some engineering applications. For that reason, the reduction of the execution time of the Bézier generation algorithm is such an important goal to achieve.

In this case of the T-BSD algorithm, the calculation costs depend on the number of curves required to compute a new Bézier from a given one. A field of vectors indicate the direction of deformation at predefined points in the initial Bézier. The algorithm performs then the concatenation of a set of curves to obtain the deformed Bézier. Besides, the number of curves is highly related to the accuracy of the modified Bézier. In fact, the more curves are used the better the accuracy of the new Bézier.

As a consequence, the T-BSD algorithm is computed with very low computational time and excellent accuracy. This is a great outcome in a lot of engineering fields.

Qingbiao Wu, Shuyi Tao. Shape modification of B-Splines curves via constrained optimization for multitarget points. World Congress on Computer Science and Information Engineering, 2009.

