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Abstract

Recent advances in Indoor Positioning Systems led to a business interest in those appli-

cations and services where a precise localization is crucial. Wi-Fi fingerprinting based

on Machine Learning and Expert Systems are commonly used in the literature. They

compare a current fingerprint to a database of fingerprints, and then return the most

similar one/ones according to: 1) a distance function, 2) a data representation method

for Received Signal Strength values, and 3) a thresholding strategy. However, most of

the previous works simply use the Euclidean distance with the raw unprocessed data.

There is not any previous work that studies which is the best distance function, which is

the best way of representing the data and which is the effect of applying thresholding.

In this paper, we present a comprehensive study using 51 distance metrics, 4 alterna-

tives to represent the raw data (2 of them proposed by us), a thresholding based on the

RSS values and the public UJIIndoorLoc database. The results shown in this paper

demonstrates that researchers and developers should take into account the conclusions

arisen in this work in order to improve the accuracy of their systems. The IPSs based

on k-NN are improved by just selecting the appropriate configuration (mainly distance

function and data representation). In the best case, 13-NN with Sørensen distance and

the powed data representation, the error in determining the place (building and floor)
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has been reduced in more than a 50% and the positioning accuracy has been increased

in 1.7 meters with respect to the 1-NN with Euclidean distance and raw data commonly

used in the literature. Moreover, our experiments also demonstrates that thresholding

should not be applied in multi-building and multi-floor environments

Keywords: Indoor Localization, Distance measures, Similarity measures, k-NN,

Wi-Fi fingerprint

1. Introduction

Automatic user localization is a hot research topic nowadays with an expected

$2.60 billion market in 2018 (Markets & Markets, 2014). Context-aware applications

based on user’s location need to know the precise localization to provide location-based

services (Estevez & Carlsson, 2014; Neves et al., 2014; Torres-Sospedra et al., 2015),

monitor people (Calderoni et al., 2015), and track Internet-of-Things’ objects (Le et al.,

2014), among others. Although outdoor localization is already solved due to the inclu-

sion of Assisted Global Positioning System (A-GPS) sensors in smartphones, indoor

positioning is still an open problem due to the low GPS coverage inside buildings and

the lack of floor identification in GPS.

There is a large number of technologies to develop Indoor Positioning Systems

(IPSs): Radio-Frequency Identification (RFID) (Jin et al., 2006; Montaser & Moselhi,

2014; Calderoni et al., 2015), Bluetooth (Feldmann et al., 2003; Li, 2014), Wireless

Local Area Network (WLAN or Wi-Fi) (Bahl & Padmanabhan, 2000; Lau & Chung,

2007; del Corte-Valiente et al., 2009; Gansemer et al., 2010a; Segou et al., 2010;

Machaj et al., 2011; Marques et al., 2012; Chen et al., 2013; Lan & Shih, 2013; Le

et al., 2014), ZigBee (Martı́ et al., 2012), Ultrasound (Ijaz et al., 2013), Magnetic field

variations (Chung et al., 2011; Guo et al., 2014), and even LED light (Kuo et al., 2014),

among others. A combination of technologies has also been used (Martı́ & Marı́n,

2011; Baniukevic et al., 2013; Li et al., 2015). Wi-Fi is a good choice for indoor posi-

tioning technology due to the ubiquity of Wireless Access Points (WAPs), embedded
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Wi-Fi connectivity in modern mobile phones, and the use of pre-existing Wi-Fi net-

work infrastructure(s)

The IPSs based on Wi-Fi fingerprinting are preferred to those based on the Prop-

agation Model, Angle Of Arrival, Time Of Arrival and Time Difference Of Arrival be-

cause they do not require any very specialized hardware, line-of-sight to the emitter

and knowing emitter’s location to operate (Zhou et al., 2014a; Yu et al., 2014). Figure

1 shows a example of fingerprinting where a smartphone detects 6 WAPs. However

radio-wave propagation through indoor environments is harsh (Karimi, 2013), so there

is no guarantee that the Received Signal Strength Indicator (RSSI or, simply, RSS)

values from a given WAP collected at different location inside a building would reflect

the architectural aspects such as similarity among Wi-Fi fingerprints taken at the same

floor (Campos et al., 2014). Although there exists a general model to represent the RF

signal propagation loss, it is not possible to create an appropriate model for a particu-

lar scenario since it would be altered by many factors (Ward et al., 1997; Yim, 2008).

Moreover, this model requires to know the position of emitter, which may be unknown

Wi-Fi fingerprinting is a complex subject which can profit by well-established Ex-

pert Systems techniques by implementing Machine Learning techniques (k-NN, Neural

Networks, Support Vector Machines, Decision Trees, among others). Since RADAR

Indoor Positioning System publication (Bahl & Padmanabhan, 2000), many IPS use

k-NN algorithm (Cover & Hart, 1967) and the Euclidean distance as base metric, even

in recent contributions (Yu et al., 2014; Hu et al., 2015). In this paper, we mainly con-

centrate on the Wi-Fi Indoor Positioning Systems based on fingerprinting and k-NN

After analyzing the already developed techniques based on Wi-Fi and the k-NN

based Indoor Positioning Systems, we realized that there are three main issues related

to fingerprinting and k-NN algorithm

• The first issue is the lack of a deep comparison of distance/similarity measure-

ments for the k-NN algorithm and Wi-Fi fingerprinting. Even in recent con-
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tributions (e.g., Haque & Assi (2015); Yang et al. (2015)), the Euclidean dis-

tance is the measurement considered for calculating the distance or similarity

between two signals provided by the same WAP in most of cases. However,

there are many more alternative functions to be used with k-NN as it can be seen

in the comprehensive survey on distance/similarity measurements presented by

Cha (2007). Moreover, most of observations contains missing values and the

Euclidean distance may not be appropriate Calderoni et al. (2015) to deal with

them. According to our experiments, some WAPs can appear and disappear in a

fingerprint with respect to a prior fingerprint taken at the same place less than a

second before. This behaviour tends to occur with weak signals (very low RSS

values)

• The second issue is that the logarithmic nature of the Wi-Fi fingerprints is not

usually considered and the differences between fingerprints are linearly com-

puted. For instance, the difference between a received signal strength of−100dBm

and −97dBm has the same weight in fingerprinting than the difference between

−60dBm to −57dBm when the they are linearly computed. The difference is

only 3dBm in both cases, but the power differences in Watts (W) are 0.1pW and

1nW (1000pW ) respectively. Although this difference is significantly different

in both cases, it is not usually considered in existing techniques

• The third issue is that fingerprints contain information provided by far detected

WAPs. Some previous works only considers the strongest signals to provide

indoor locations, so they have introduced thresholding techniques to remove, a

priori, irrelevant information from fingerprints. They assume that this informa-

tion should be removed because it injects noise in the expert system used for

providing indoor location. In contrast, some other works do not apply threshold-

ing. It is not clear whether applying thresholding benefits or worsen the accuracy

of IPSs.
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To deal with these three interesting issues we introduce a deep comparative study

where:

1. We have tested the performance of more than 50 different measures in the real

problem of indoor positioning

2. We have performed performing an analysis of 4 alternative data representations,

two of them consider the logarithmic nature of Wi-Fi signals propagation and

have been proposed by us in this paper

3. We have studied if the presence of very far detected WAPs degrades the accuracy

of an indoor localization system by applying thresholding based on the RSS

values

As far as we know, there is not any prior comprehensive study for Wi-Fi finger-

printing in the realm of expert systems and machine learning for indoor positioning,

such as the one we introduce in this paper

The remainder of this work is organized as follows. Section 2 shows the related

work about distance/similarity measures, data representation and thresholding. Section

3 introduces the material and methods used in this contribution. Section 4 describes the

experiments carried out and shows the results. Section 5 discusses about the results and

compared the new alternatives to the traditional 1-NN based on the Euclidean distance.

Section 6 brings the conclusions

2. Related Work

Although the global navigation satellite systems (GPS, GLONASS or GALLILEO)

work extremely well in most of outdoor scenarios, their accuracy drastically decreases

in indoor scenarios due to multi-path propagation, signal distortion, refraction, and ab-

sorption, among other factors. Thus the necessity of developing intelligent and accurate

Indoor Positioning Systems that should operate in “any” indoor scenario. Although

many indoor localization technologies have been proposed or adopted to attempt it, we

5



focus on Wi-Fi fingerprinting due to the ubiquity of wireless networks and the prolif-

eration of such kind of low-cost techniques

Wi-Fi fingerprinting is based on pattern-matching algorithms such as the distance-

based technique k-Nearest Neighbor (Cover & Hart, 1967) (k-NN), which is detailed in

Section 3.2. Since the development of RADAR, the pioneer IPS based on k-NN (Bahl

& Padmanabhan, 2000), many similar systems have been proposed. Although other ad-

vanced techniques have also been used to elaborate IPSs based on signal fingerprinting

(Bayesian Inference (Zhou et al., 2014b), Neural Networks (Kuo et al., 2013; Cam-

pos et al., 2014), Decision Trees (Yim, 2008), Random Forest (Calderoni et al., 2015),

among others), we concentrate our work on k-NN based techniques in this paper due

to its presence in the literature

2.1. Measurements for k-NN

Only a few well-known distance metrics appear in most of the Indoor Positioning

Systems based on k-NN. Moreover, the study of which distance/similarity function

could perform better in the developed methods is not usually included. Furthermore,

a basic k-NN algorithm is sometimes implemented for comparison purposes when ad-

vanced or complex methods are proposed. Many of the developed or proposed k-NN

based algorithms use just one metric which usually is the Euclidean distance, the Man-

hattan distance or, in a few cases, the Mahalanobis distance.

Yim (2008) introduced decision tree-based IPS to increase the efficiency of IPSs

such as k-NN. In the experimental setup, the reference fingerprint database contains

the average of measures taken at the same reference point instead of having the full

discrete measures set. Although the computational efficiency of their decisions tree-

based IPS was superior to the simple 1-NN, the accuracy of 1-NN was better or similar

in most of the cases they presented. However, the distance metric used for 1-NN was

not explicitly described
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Yu et al. (2014) introduces a Cluster-based version of the k-NN technique to reduce

signal unsteadiness, reduce interferences and improve positioning. They only consid-

ered the Manhattan distance as performance metric since it was slightly better than

Euclidean distance (according to prior works they referenced) and their workspace

was a rectangular rectangle

Calderoni et al. (2015) introduces Random Forest in a positioning system based on

RSS values of RFID beacons. For clustering purposes, the Partial distance is used to

compare the reference fingerprints to the cluster centroids (in the RSS space). This

distance is based on the Euclidean distance and it is used to minimize the missing

values in the observations (fingerprints). Moreover, another interesting step is data

normalization to represent data in a easier-to-manage format

However, many works based on k-NN only consider the Euclidean distance (or a

equivalent one) as base metric to compare two Wi-Fi fingerprints. Campos et al. (2014)

proposes a technique that combines natural (only RSS space) and architectural data

(architectonic restrictions) to provide indoor location. Zhuang et al. (2014) introduces a

matching weight coefficient based on RSS values and order to provide Indoor Location.

In case of multiple candidates, the proposed system uses the 1-NN algorithm to assign

the location. Chapre et al. (2014) also uses Channel State Information and exploits the

frequency & spatial diversity using Multiple Input Multiple Output. Li et al. (2015)

combines Wi-Fi fingerprinting (as in (Cheng et al., 2014)) and magnetic matching to

enhance the accuracy of the positioning systems. k-NN and Euclidean distance are the

basis of many modern IPS, even though RADAR was introduced in 2000

There are some exceptions where several distance/similarity functions have been

considered. del Corte-Valiente et al. (2009) introduced a comparison with 5 differ-

ent measures including: Euclidean, Manhattan, Chi-Squared, Bray-Curtis and Maha-

lanobis. That last measure, Mahalanobis, provided the lowest error in positioning and

this particular measure has also been widely used or reviewed in other works (Duvallet
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& Tews, 2008; Biswas & Veloso, 2010; Beder & Klepal, 2012)

Machaj et al. (2011) proposed an elaborate rank-based fingerprinting algorithm. To

compare two rank-based fingerprints, they tested the following rank distance measures:

Spearman distance, Spearmans footrule, Jaccard coefficient, Hamming distance and

Canberra distance. Their algorithm provided the best results when the Spearmans

footrule similarity measure was used

Marques et al. (2012) performed a study of the impact of several similarity func-

tions on the accuracy in their WI-FI fingerprint-based positioning system. They studied

the Euclidean, Manhattan and Tanimoto distances, and the experimental results proved

that the Manhattan’s one was the best choice

Farshad et al. (2013) investigated different definitions for Wi-Fi fingerprinting.

They used the deterministic k-NN technique with three different distance measures:

Euclidean distance, Manhattan distance and Mahalanobis distance. According to

their experiments, the Manhattan distance seems to be slightly better than the other

two metrics in an office environment. However, in a shopping centre environment, the

Mahalanobis distance was better choice

Hu et al. (2015) introduces a new metric which combines the Minkowsky distance

for computing the average RSS distance and the Jaccard similarity to get WAP sets

similarity. This new distance is compared to traditional methods including 1) selecting

the shared WAPs with strong RSS values and 2) filling non-observed WAPs with a weak

RSS value. However, traditional distances and similarity metrics are not explicitly

included in this comparison. Moreover, a semi-supervised affinity propagation version

of the Weighted k-NN algorithm is successfully proposed

Niu et al. (2015) introduces ZIL: a Wi-Fi fingerprinting system that uses ZigBee

radio. A weighted fingerprint matching algorithm is applied to align a pair of finger-

prints effectively. Then, the k-NN algorithm is implemented with three different dis-

tances the weighted Euclidean distance, the weighted Manhattan distance and relative
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entropy (also known as Kullback-Leibler divergence). They found that the weighted

Manhattan distance provided the best performance

However, there are many more alternative functions to be used for this particular

problem as it can be seen in the comprehensive survey on distance/similarity measure-

ments presented by Cha (2007). In particular, 45 different measures were reviewed and

categorized into 8 families depending on their similitude. Some of them were well-

known measures such as the Euclidean distance or the Manhattan distance (City Block

- L1 in that paper). Cha performed a study to assess the similarities among the 45 well-

known measures with cluster analysis and randomly generated data; and a new family

was introduced with 6 new measures based on the extracted syntactic relationships.

One of the objectives of this paper is to assess the efficiency and suitability of these 51

(45 + 6) measures on the real Indoor Location problem

2.2. Logarithmic strength values and nature of signal propagation

Fingerprinting techniques relies on the Received Signal Strength values. A RSS

value indicates the power of a particular received Wi-Fi (IEEE 802.11) radio signal

and it is expressed in dBm. In this particular case, it indicates the ration between the

received signal’s power and a reference power of one milliwatt (mW ) according to

Eq.1

RSS = 10 · log10
(
PowermW

1mW

)
(1)

Figure 2 shows the relation between dBm and mW for the [−104, . . . , 0] and

[−75, . . . ,−45] intervals according to Eq.1. It can be noticed that the same difference

in dBm have different weight depending on the signal strength values themselves.

A difference between 0dBm & −10dBm corresponds to a difference of 0.9mW

(9 · 10−1mW ), the difference between −50dBm & −60dBm is 0.000009mW (9 ·

10−6mW ), and the difference between −90dBm & −100dBm is 0.0000000009mW

(9·10−10mW ). However, the computed difference in existing fingerprinting algorithms

9



tends to be the same for the three cases, 10dBm

Existing Wi-Fi fingerprinting techniques does not consider the relation between the

signal strength and power as shown in (Gansemer et al., 2010a; Segou et al., 2010;

Chen et al., 2013) and most of the papers reviewed in Section 2.1. In this paper we pro-

pose two new alternative ways to represent RSS values. One based on the exponential

function and the other based on the pow function. Our aim is to improve the integration

of dBm logarithmic scale with k-NN methodologies for Wi-Fi fingerprinting

2.3. Thresholding to remove WAPs

Thresholding consists in removing the RSS values from a fingerprint that may pro-

vide irrelevant information or introduce noise. This technique is, a priori, not directly

related to feature selection or LDA-PCA. Some technical forums and scientific works

suggested that a static threshold values should be introduced. In fact, constant-based

thresholding is applied in the experimental evaluation carried out in Yim (2008) and

Stella et al. (2014), whereas Niu et al. (2015), Hu et al. (2015) and Machaj & Brida

(2015) use RSS-value based thresholding

Yim (2008) only processes the information provided by 5 different WAPs to provide

indoor location inside the Micro Lab as suggested in Kaemarungsi & Krishnamurthy

(2004). Stella et al. (2014) only selects the 3 strongest detected WAPs to generate the

fingerprints. Although this particular kind of thresholding was useful in those works,

it would not be appropriate for general use IPSs. One main disadvantage of these

techniques is that a single Advanced Wireless Access Points (AWAPs) can emit multi-

ple Virtual Wireless Access Points (VWAPs) through a single antenna (Farshad et al.,

2013). When we select the n strongest signals, they could be provided by the same

hardware emitter and, therefore, positioning accuracy may drastically decrease

Martin et al. (2010) stated that values below −85dBm were too inconsistent to be

leveraged as reference, and values above−80dBmwere desirable. Lin & Hung (2014)

introduced a threshold value of −70dBm for indoor localization, whereby RSS values
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lower than −70dBm were not eligible for indoor localization. ZIL (Niu et al., 2015)

introduces a Wi-Fi fingerprinting using ZigBee radio where values below−90dBm are

omitted. This is also the case of Machaj & Brida (2015), where the threshold value for

Wi-Fi RSS values is also −90dBm. As above-mentioned, Hu et al. (2015) compares

their proposed metric to one that only considers the shared strongest WAPs with a RSS

value higher−85dBm. In most of the previous thresholding examples, the experiments

were carried at controlled single-building single-floor scenarios in university buildings

Slightly different thresholding strategies have also been applied. Gansemer et al.

(2010b) proposed a positioning algorithm with four threshold parameters, three of them

directly related to RSS values in dBm. Kai et al. (2013) introduced an adjustable WAP

filter based on the number of samples containing the WAP identifier

Thresholding has been used to filter the weakest signals from Wi-Fi fingerprints.

Due to the variability of threshold values and strategies found in the literature, we

also include an experiment to determine whether the presence of very far detected

WAPs degrades the accuracy of an indoor localization system. In particular, we have

concentrated in RSS-value based thresholding for the experiments

3. Material and methods

This section describes materials and methods used in the experiments. First, the

UJIIndoorLoc database is briefly described. Then, we describe the k-Nearest Neighbor

(k-NN) classifier and how it has been adapted to perform indoor localization. Moreover

this section shows the distance/similarity measures that have been used to perform the

experiments and the four alternatives we have used to represent the fingerprint vector

values. The measures have been grouped according to their syntactic similarities as

in Cha (2007). Finally, the procedure to study whether it is necessary to filter low-

intensity values from Wi-Fi fingerprints is explained.
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3.1. The UJIIndoorLoc Database

The UJIIndoorLoc (Torres-Sospedra et al., 2014) is a multi-building & multi-floor

database based on Wi-Fi fingerprinting, that covers a real scenario with three hetero-

geneous buildings. The database contains 21048 Wi-Fi fingerprints, each fingerprint is

represented as a 520-element vector. Each vector contains the original intensity value

for the detected WAPs and the default value +100dBm for those WAPs that were not

detected. Moreover, the database is split into two well differentiated sets: the training

set (reference fingerprints) with 19937 fingerprints and the validation set (operational

fingerprints) with 1111 records. The former one contains the reference database, and

the later is used to test the positioning system based on k-NN.

With this database, the results of the Indoor Positioning System are more realis-

tic since: 1) It was generated by means of more than 20 users and with 25 different

devices; 2) Some samples for validation where taken by users and devices that not par-

ticipated in generating the training set; and 3) The validation fingerprints were taken

four months later than the reference (training) ones. These three features negatively

affect the precision of an IPS. For instance, according to prior experiments we per-

formed, testing an IPS with the same device and user reports very low positioning error

when the evaluation is done a few days after the reference fingerprints were taken. UJI-

IndoorLoc the obtained error in positioning is more realistic. The aim of this paper is

not to introduce a high-precision Indoor Positioning System, but introducing a realistic

comprehensive study whose conclusions would be used by researchers to improve their

already developed or new systems

We have selected UJIIndoorLoc to perform the experiments since it covers a multi-

building multi-floor scenario, the training set and the validation set are well-differentiated,

and the diversity of samples has been guaranteed by collecting data with different users

and devices. Moreover, researchers and developers can also use this database to eval-

uate their already existing solutions or their new methodologies, distance/similarity
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metrics and, even, data representations for indoor positioning. So existing and fur-

ther advances could be directly compared to the alternatives we have implemented and

proposed in this paper

More information about this database can be found in Torres-Sospedra et al. (2014).

This database has been donated to the UCI repository of Machine Learning (Bache &

Lichman, 2013) and it is publicly available1 for research purposes. So, the results

shown in this paper can be reproduced or fairly compared to other IPS systems based

on Wi-Fi fingerprinting.

3.2. k-NN for Indoor localization

The k-Nearest Neighbor rule (k-NN) is a distance-based classifier which compares

a current sample to all the labelled samples from a database (Cover & Hart, 1967).

This classifier requires generating a database for the comparisons (commonly known

as a training set) where all the samples are properly labelled. In the case of indoor

positioning, the samples are Wi-Fi fingerprints (vectors with the WAP intensities) and

the labels are the numerical values related to the real-world coordinates (longitude,

latitude, altitude/floor and building).

There are two steps to estimate the position of a current fingerprint with k-NN:

1. The distance (or similarity) with respect to the current fingerprint is calculated

for all the training fingerprints.

2. The k nearest (or most similar fingerprints) in the feature space are used to ob-

tain the estimated position. In the simplest scenario, k = 1, the k-NN algorithm

calculates the distance of a current fingerprint with respect to all the training fin-

gerprints. The current position corresponds to the position (as longitude, latitude

and altitude) of the training fingerprint which reported the lowest distance (or

highest similarity).

1https://archive.ics.uci.edu/ml/datasets/UJIIndoorLoc
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However, the concept classification is complex in indoor positioning since a class

label includes: longitude, latitude, altitude/floor and building. So, the procedure to

obtain the final position should be more elaborated for k > 1. Particularly, we propose

that the final position can be estimated as follows:

1. The distance/similarity between the current fingerprint and all the fingerprints

recorded at the reference database is calculated.

2. The k “nearest” reference fingerprints (to the current test one) are extracted ac-

cording to the measure employed (lowest distance or highest similarity).

3. A simplest voting procedure is used to estimate the building from the k-nearest

fingerprints. Each extracted fingerprint provides a single vote to the building in

which the reference fingerprint was taken. The most voted building is assigned

as the estimated building.

4. The simplest voting procedure is also applied to estimate the floor inside the

previously estimated building. In this case, those fingerprints that belong to the

estimated building are only considered. The most voted floor inside the estimated

building is assigned as the estimated floor.

5. The centroid (longitude and latitude) is calculated using only the fingerprints that

belong to the estimated building and estimated floor.

The k-NN distance-based classifier has only one parameter (apart from the dis-

tance/similarity measure used to rank the training instances) which has to be properly

set to obtain optimal results: the value of k. This values represents the number of sam-

ples from the database (fingerprints whose position is well-known) which are used to

estimate the position of a device from a Wi-Fi fingerprint. Setting a low value of k,

such as 1, may be not adequate since only a single sample is considered to estimate the

final position, whereas a high k value may consider points which are very far from the

current position and, therefore, degrade the IPS accuracy Bahl & Padmanabhan (2000).

Note that providing an optimal Indoor Localization algorithm is out of this contri-
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bution’s scope. Therefore, the simple k-NN algorithm, which has high computational

cost at operating stage, is used to perform the comprehensive study

3.3. Distance & Similarity Measures for k-NN

As previously mentioned, Cha (2007) introduced a comprehensive study of 51 dis-

tance and similarity measures using cluster analysis with random data. One of the main

contributions of the present paper is to extend the study of Cha (which was done with

synthetic data) by using data from a real problem. Therefore, their relationship and

suitability can be obtained with real data. The current subsection briefly reviews the 9

categories introduced by Cha to group all the measures.

We will use the nomenclature used in Cha (2007) herein after. There are well-

known measures that seem to have been omitted but they appear under another name.

For instance, the Manhattan distance used in Marques et al. (2012) appeared as City

Block L1 in Cha (2007). In addition, very different measures can have similar name.

This is the case of Jaccard distance and Jaccard coefficient in Machaj et al. (2011).

The distance/similarity equations of this paper are based on the equations shown

by Cha (2007). As an illustrative example, Eq.(2) shows the equation for the Euclidean

distance. Where P and Q refer to the two vectors, the distance between them is being

calculated; and d refers to the vectors length (number of features of the Wi-Fi finger-

printing problem).

distanceeuclidean(P,Q) = 2

√√√√ d∑
i=1

|Pi −Qi|2 (2)

3.3.1. Family 1: The Minkowski family

The Minkowski family measures, Lp, includes: the Euclidean distance (L2); the

City Block distance (also known as Manhattan or Taxicab distances) (L1); the Minkowski

distance (Lp); and the Chebyshev distance (L∞). The Minkowski distance, see Eq.(3),
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is the generalized formula for this family.

distanceLp
(P,Q) = p

√√√√ d∑
i=1

|Pi −Qi|p,∀p ∈ N+ (3)

Note that not all equations are shown in this paper because they are already fully

detailed in Cha (2007). Only one is shown to see the differences between families.

3.3.2. Family 2: The L1 family

The L1 family measures are based on the City Block distance (L1) and this family

includes: Sørensen distance, Gower distance, Soergel distance, Kulczynski distance,

Canberra distance and Lorentzian distance. In distance-based methods, such as k-NN,

Gower distance (see Eq.(4)) and the original City Block (see Eq.3 with p = 1) distances

are equivalent since the distance provided by Gower is the City Block value divided by

a constant (the number of features).

distancegower(P,Q) =
1

d
·
d∑
i=1

|Pi −Qi| =
1

d
· distanceL1(P,Q) (4)

Although the distance value provided by the other L1 family measures are not pro-

portional to the values provided by the original L1 measure, most of them include the

following term:
∑d
i=1 |Pi −Qi|. For instance, Eq.(5) shows the Sørensen distance.

distancesorensen(P,Q) =

∑d
i=1 |Pi −Qi|∑d
i=1 (Pi +Qi)

(5)

3.3.3. Family 3: The Intersection family

The Intersection family contains: Intersection distance, Wave Hedges distance,

Czekanowski distance, Motyka distance, Kulczynski similarity, Ruzicka similarity and

Tanimoto distance. In distance-based methods, such as k-NN, some distances are

equivalent. This is the case of Soergel, Tanimoto and Ruzicka. Moreover, both Kul-

czynski measures are inversely proportional.

It is worth mentioning that some family 3 measures resemble the L1 family since

they include the |Pi −Qi| term. In fact, Czekanowski and Sørensen are the same mea-
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sure (note that Sørensen distance was catalogued as L1 family) see Eq.(6). This is also

the case of intersection distance (see Eq.(7)) which is proportional to Gower distance

as denoted with ∝ symbol.

distanceczekanowski(P,Q) = 1− similarityczekanowski(P,Q)

=
∑d

i=1 |Pi−Qi|∑d
i=1 (Pi+Qi)

= distancesorensen(P,Q) (6)

distanceintersection(P,Q) =
1

2
·
d∑
i=1

|Pi −Qi| ∝ distancegower(P,Q) (7)

3.3.4. Family 4: The Squared L2 family

The Squared L2 family or χ2 family is based on the Euclidean distance and in-

cludes the following distance measures: Squared Euclidean; Pearson χ2; Neyman χ2;

Squared χ2; Probabilistic Symmetric χ2; Divergence; Clark; and Additive Symmetric

χ2. All of these contain the squared of Euclidean distance term, (Pi −Qi)2, weighted

by different factors. For instance, the Neyman χ2 distance is shown in Eq.(8):

distanceneyman(P,Q) =

d∑
i=1

(Pi −Qi)2

Pi
(8)

3.3.5. Family 5: The Inner Product family

The Inner Product family radically differs from the previous families and introduces

the scalar product of two vectors. This product provides a scalar value and, according to

Cha (2007), it corresponds to the number of matches if it is used for binary vectors. As

stated by Cha, most of this family measures are frequently used in information retrieval

and biological taxonomy for the binary feature vector comparison. In this family, the

measures are not proportional among them and they are: Inner Product similarity in

Eq.(9); Harmonic mean similarity; Cosine similarity; Kumar-Hassebrook similarity;
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Jaccard distance; and Dice distance. Eq.(9) shows the Inner product distance as an

example of this family.

similarityinnerproduct(P,Q) = P·Q =

n∑
i=1

(Pi ·Qi) (9)

3.3.6. Family 6: The Fidelity family

The sixth family is the Fidelity family or Squared-chord family and it includes:

Fidelity similarity (see Eq.(10)), Bhattacharyya distance, Hellinger distance, Matusita

distance and Squared-chord distance. This family resembles the measures introduced

in the Inner Product family, but the square root is applied to the vector values.

similarityfidelity(P,Q) =

n∑
i=1

√
Pi ·Qi (10)

3.3.7. Family 7: The Shannon’s Entropy family

Shannon’s Entropy family contains those distance measures based on the Shan-

non’s concept of probabilistic uncertainty: Kullback Leibler (see Eq.11), Jeffreys, K

divergence, Topsøe, Jensen-Shannon, and Jensen difference. Jensen-Shannon distance

corresponds to Topsøe divided by 2.

distancekullback−leibler(P,Q) =

n∑
i=1

(
Pi · log

Pi
Qi

)
(11)

3.3.8. Family 8: The Combinations family

Combinations family contains all those distance measures which combine different

approaches: Taneja; Kumar-Johnson; and Avg(L1, L∞). In fact, Avg(L1, L∞) see

Eq.(12), corresponds to the mean value provided by City Block (L1) and Chebyshev

(L∞) distances.

distanceAvg(L1,L∞)(P,Q) =
distanceL1

(P,Q) + distanceL∞(P,Q)

2
(12)

3.3.9. Family 9: The Vicissitude family

Additionally, Cha (2007) included six distances which were not in the literature.

They were grouped into the Vicissitude family: Vicis-Wave Hedges; Vicis-Symmetric χ2
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(with three different variants); min-Symmetric χ2; and max-Symmetric χ2. As stated by

Cha, a large number of new distance/similarity measures can be relayed by studying the

syntactic relations and may be useful in some applications. For instance, the equation

for the third version of the Vicis-Symmetric is given by Eq.(13):

distanceviccissymmetric3(P,Q) =

d∑
i=1

(Pi −Qi)2

max(Pi, Qi)
(13)

3.4. Fingerprint data representation

Each fingerprint contains a list with the intensity values of the detected WAPs.

Fingerprints can be represented as fixed-size vectors (such as in the UJIIndoorLoc

database) where each index corresponds to a WAP registered by the IPS. So, the vector

representation contains the original intensity values and a default significant value is

used to denote those WAPs which were not detected.

Some distance and similarity measures do not allow the use of negative values. Sev-

eral measures apply the square root to the vector values, and some other measures are

based on logarithmic values. Four alternatives were initially considered for represent-

ing the RSS levels with positive values: positive values Eq.(14); zero-to-one normal-

ized values Eq.(15); exponential values Eq.(16); and powed values Eq.(17). Where the

two last ones, exponential and powed, have been introduced by us in this contribution.

Positive values data representation, Eq.(14), simply subtracts the minimum possible

value. So, new low values stand for low signal, whereas higher values indicate that the

signal is stronger. In this representation, the lowest possible value is 0 and it is used to

show that the WAP has not been detected.
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Positivei(x) =



(RSSi −min) If WAPi is present in the fingerprint x

and RSSi ≥ τ

0 otherwise

(14)

where i is the WAP identifier, and RSS is the actual intensity level provided by i-th

WAP . min is the lowest RSS value minus 1 considering all the of fingerprints and

WAPs of the database. τ is the threshold value, these intensities lower than the thresh-

old are considered as not-detected WAPs, and the lowest possible value is assigned

in the new representation. In some indoor systems, τ is statically set to a fixed default

value (Gansemer et al., 2010b; Kai et al., 2013; Martin et al., 2010; Lin & Hung, 2014),

e.g. −75dBm or −85dBm. To avoid thresholding, τ should be set to a value lower

than the minimum possible RSS value, i.e lower than −104dBm for the dataset used

in this paper.

Similarly, we introduced the zero-to-one normalized representation, Eq.15, which

corresponds to the positive values representation but the intensity values are normalized

in the positive [0 . . . 1] range.

ZeroToOneNormalizedi(x) =
Positivei(x)

−min
(15)

These two last representations (positive and zero-to-one normalized) maintain the

linearity of the original values. Note that τ is introduced in Eq.(14) for thresholding

purposes. Although some previous works such as Gansemer et al. (2010b) ,Kai et al.

(2013), Martin et al. (2010), and Lin & Hung (2014) applied threshold values, we have

initially considered setting min as the threshold value to avoid removing any intensity.

Instead, we have introduced a thresholding study in Section 2.3 to assess the suitability
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of applying threshold values to Wi-Fi fingerprints.

Although in the majority of works the intensity levels are used as lineal values

as provided by the devices, the RSS values are provided in decibels dBm which has

a logarithmic scale. We introduce the exponential representation, Eq.16, and powed

representation, Eq.17, to break linearity of the original intensity values provided by

the device. In both equations, we have introduced α and β to represent the case-based

parameters for exponential and powed representations respectively.

Exponentiali(x) =
exp

(
Positivei(x)

α

)
exp

(−min
α

) (16)

Powedi(x) =
(Positivei(x))

β

(−min)β
(17)

According to prior experiments we carried out, signal fluctuations are generally

more likely to occur when the transmitter is far. If the distance with respect to the

transmitter (WAP) is medium/high, then the probability of interferences is higher. E.g.,

there can be more people and moving objects between the transmitter and the device

which is capturing the signal and the signal can be blocked by them. If the device

is near to a WAP, then the values received have less fluctuations across time. So, the

two last equations (Eq.16 and Eq.17) tend to represent the RSS values as they really

are. Moreover, they also tend to penalize more those fluctuations related to good signal

values, and the differences of WAPs reporting weak/low signal have less importance.

E.g., the new values for −104dDm and −94dBm (very low signal) are practically

identical to these two new representations but the new normalized values for−11dBm

and −1dBm (very strong signal) are very different.

Figure 3 introduces the relationship between the original captured values and the

new values provided by the four representations. The relation provided by positive

values and zero-to-one normalized is equivalent, and it corresponds to the lineal re-

lation shown in the graphic. It can be seen that positive and zero-to-one normalized
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representations maintain the linearity of the values. Moreover, Figure 3 also shows that

exponential and powed representations penalize differences when the signal strength is

high.

Finally, the exponential and powed representations required to setup a few param-

eters: the denominator constant (α) in the former was set to 24, and the exponent (β)

in the later was set to the mathematical constant e. Although these parameters were se-

lected after performing some prior experiments, this optimization is out of the paper’s

scope.

4. Experiments and results

This section presents the experimental results and the discussion which include:

evaluation of the measures with different data representations, thresholding study and

setting the value of k.

4.1. Experiment 1: Distance/Similarity measures evaluation using four different data
representations

Four different vector-based representations have been proposed to represent the

original Wi-Fi fingerprint values (see Section 3.4). Table 1 introduces the results of

this first experiment where the success and error are shown using the fingerprints

from the validation set. Success corresponds to the percentage of testing fingerprints

whose building and floor is correctly predicted, whereas error corresponds to the real

world distance between the actual position (stored in the validation set) and the pre-

dicted position. This error only considers the fingerprints whose building and floor

was correctly predicted. So, the best positioning alternative is the one which provides

the highest success rate and the lowest error. In Table 1, the best case (best data

representation) for each measure is highlighted in bold print. Moreover, 53 different

measures have been tested with 1NN (k-NN with k = 1), 1NN has been used to assess

the suitability of the measures with a simple estimator, note that there are three imple-

mentations of the Minkowski Ln measure (n = 3; n = 4; and n = 5). The measures

22



are introduced and grouped in the table according to the families reviewed in Section

3.3.

For clarification purposes, the analysis of results are shown in three different parts.

4.1.1. Relationship/Equivalences among measures

According to the results shown in Table 1, some measures are proportional and/or

equivalent when they are used in k-NN algorithms. In fact, there are only a total of

36 different non-proportional alternatives to use as base measure for algorithms based

on k-NN from the 53 measures tested (there were 3 versions of the Minkowski L3 dis-

tance). An example of this fact is the case of City Block L1, Gower, and Intersection

(Group 1 of equivalent measures) which provide the same success and error for the

four data representations. However, these three measures are different and they are cat-

alogued into different families. Although these three measures may provide different

distance/similarity values, the values they provide are proportional to
∑
|p − q|. So,

they are equivalent when they are used in distance-based ranking algorithms such as

k-NN. This behavior also occurs with higher values of k, but complete results have not

been provided here because optimizing the value of k due to the table size. Note that

the term Group and Family are not directly related. In fact, Group 1 of equivalent mea-

sures contains measures from three different families. The three mentioned equivalent

measures corresponds to an extract of equivalent measures, the equivalent measures

are:

Group 1: City Block L1, Gower, and Intersection

Group 2: Euclidean L2 and Squared Euclidean

Group 3: Sørensen, Soergel, Kulczynski distance, Czekanowski, Motyka, Kulczynski

similarity, Ruzicka and Tanimoto

Group 4: Squared χ2 and Probabilistic Symmetric χ2

Group 5: Kumar-Hassenbrook, Jaccard distance and Dice
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Group 6: Fidelity and Bhattacharyya

Group 7: Hellinger, Matusita and Squared-Chord

Group 8: Topsøe and Jensen difference

4.1.2. General analysis of data representation

We second analyze the four data representations from Table 1. In general, the

best result for each measurement is provided by the exponential representation or the

powed representation considering the success and the error. The lineal representations

(positive representation and the zero-to-one normalized representation) are equivalent

in almost all of the measures, except for Lorentzian distance and Additive Symmetric

χ2. Moreover, both lineal representations provide the best result only for the Inner

Product. Thus, in the case of Wi-Fi fingerprint, selecting the most appropriate data

representation is a step which should be seriously considered, because the lineal repre-

sentations can be outperformed by using an alternative (with the exponential or powed)

representation.

When the results for Euclidean L2 distance are analyzed, there is not a clear win-

ner since exponential and powed representations are both equally good according to

the error and success. The former representation provided lower error in meters but

it also provided worse success. Although the latter representation provided a higher

error, the success was the best for the Euclidean distance. Anyway, both represen-

tations outperform the results obtained with the positive and zero-to-one normalized

representations. The success increased by more than 2% and the error was reduced by

one meter (exponential representation).

As was expected, the use of non-lineal data representations is more suitable for

the indoor location problem. The exponential and powed data representations tend

to represent the RSS values as they really are, and they also tend to highly penalize

fluctuations related to good signal intensities. Therefore, the success rate and error are

improved with respect to the lineal data representations.
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4.1.3. General analysis of measures

The best result for each representation (positive&normalized, exponential and powed)

are respectively: Sørensen (and group 3 measures), Neyman χ2 and, again, Sørensen

(and group 3 measures). The Euclidean distance combined with the positive represen-

tation (and the zero-to-one normalized) has a success rate of 89.92% and an error of

7.90 meters. However, this positioning accuracy was improved by Sørensen (and group

3 measures) with a success rate of 92.17% and an error of 7.33 meters. The success

rate was thus improved with 2.25% and the error was reduced by 0.57 meters when

using the same data representation of the RSS values. Neyman χ2 provided a success

rate of 93.79% and an error of 6.99 meters with the exponential representation, and

Sørensen (and group 3 measures) provided a success rate of 94.78% and an error of

6.86 meters with the powed representation. In those two last cases, the difference with

respect to the Euclidean distance and positive representation is remarkably high.

Sørensen (and group 3 measures) and some χ2-based measures provide good results

mainly due to the normalization realized in their expressions as stated in del Corte-

Valiente et al. (2009). In fact, the normalization used in Sørensen distance (also known

as BrayCurtis coefficient) provides a final distance value in [0 . . . 1] range which can

be considered a degree or percentage of dissimilarity that does not depend on absolute

RSS values.

Finally, an indoor positioning system can be improved by selecting the appropriate

measure and RSS values representation. Some already developed indoor positioning

systems rely on metrics based on Euclidean distance or the Manhattan’s distance com-

bined with the positive data representation. The results presented in this section show

that the success rate can be improved by almost a 5% and the error in positioning can

be reduced by more than 1 meter by using an alternative measure and data representa-

tion, instead of the common measures combined with positive data representation.
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4.2. Experiment 2: Thresholding analysis

Prior to analyzing the complete results provided after applying the threshold val-

ues to the RSS intensities, we performed a first test in order to obtain the effect of

thresholding on the fingerprints taken in places with low Wi-Fi coverage.

Figure 4 shows the percentage of void training and validation fingerprints after ap-

plying the threshold value. The plots for training and validation samples resembles the

sigmoidal function. Void fingerprints are those that do not detect any WAP, so posi-

tioning can not be done with them. As was expected, this percentage increases as the

intensity threshold increases. In fact, all the fingerprints that are taken in areas with low

Wi-Fi coverage, detect only a few WAPs with low intensity value. So, thresholding can

remove all the detected WAPs in a fingerprint depending on the threshold value. More-

over, Figure 5 shows the mean number of detected WAPs by a device after applying

threshold values. As was expected, this number also decreases as the threshold value

increases.

Figures 4 and 5 show that high threshold values should not be used due to the high

rate of void fingerprints. E.g. the number of void training and validation fingerprints

was 345 (1.74%) and 8 (0.72%) respectively for −85dBm as threshold value, and

these values increased to 1361 (6.85%) void training fingerprints and 40 (3.6%) void

validation fingerprints using −75dBm as the threshold value. Moreover, the number

of detected WAPs per fingerprint decreases as the threshold value increases. If the

threshold value is −74dBm, then fingerprints contains an average of 6 WAPs; but it

decreases to 3 WAPs when the threshold value is −63dBm.

Although it seems that thresholding can be disadvantageous, we decided to apply a

fine-grained analysis of thresholding values using the [−104dBm, . . . ,−75dBm] in-

terval as previously did in other works. Figures 6 and 7 graphically show the success

and the error results according to the selected threshold values. The former figure

shows the results using the Euclidean distance with the four data representations,
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whereas the later shows the results using the best measure for each representation ac-

cording to the experiments introduced in Section 4.1 (Sørensen -and group 3 measures-

for positive, zero-to-one normalized and powed representations, and Neyman χ2 for

exponential representation). In both plots, lineal stands for positive and zero-to-one

normalized representations since both are totally equivalent for the measures herein

used.

On the one hand, the error tends to increase as the threshold value increases ac-

cording to the plots provided for Euclidean distance (Figures 6 and 7); although the

error decreases when the threshold is around −91dBm for powed representation, the

success rate also decreases for this value. On the other hand, success tends to decrease

as the threshold value increases. Success is only improved by applying a threshold

value around −88dBm for positive, zero-to-one and exponential representations, but

the corresponding error is highly increased.

Similarly, the same behavior is provided for the plots shown in Figure 7. Only

the threshold value of −97dBm provided slightly better results for the exponential

representation: it reported a success of 93.88% and an error of 6.97m. For the powed

representation, the threshold value−90dBm also provided slightly better results. Any-

way, these few improvements were not significant since they provided an improvement

in error around 1 or 2 cm and an increase of success lower than 0.1%.

In both cases, Euclidean distance (Figure 6) and best distance (Figure 7), the results

do not vary by applying threshold values from N.T. (where no threshold is applied) to

−100dBm. There are only a few cases in which a WAP reported a value lower than

−100dBm; in particular, 85 training fingerprints (0.42%) and 6 validation fingerprints

(0.54%) contained intensity values lower than −100dBm. Therefore, the best general

results (considering error and success) are provided when the original data without

thresholding is used. The threshold value may be set to −100dBm but the results will

not be altered.
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4.3. Experiment 3: Setting the value of k for k-NN

Here we present an experiment to find the evolution of classification results by

using k values inside the [1,3,5,7,9,11,13,15,17,19,21,23] range. In particular, the evo-

lution of error and success rate is shown according to the value of k for the three

representations. We first show this for the Euclidean distance as reference in Figure 8,

and for the best measure for each representation in Figure 9.

For the Euclidean distance, in Figure 8, the best values for k are shown inside range

of 5 to 9 in general. The results for this range reach: 7.16 meters of error and a suc-

cess of 90.10% for the positive and normalized representations (both represented by

lineal in the figures); 6.44 meters of error and a success of 92.53% for the exponential

representation; and 6.98 meters of error and a success of 93.16% for powed representa-

tion. Note that exponential and powed representations provide the best results for this

distance; the former provided the lowest error in meters and the best success rate was

obtained with the latter. In general, the error reduces (approx. 70 cm for the lineal rep-

resentation and 50 for the other representations) and the success rate slightly improves

(less than 1%) for increasing values of k.

Figure 9 provides the best measure of the different data representations, the worst

results are provided when k-NN only considers the nearest neighbor (k = 1). Accord-

ing to the success rate, the interval 3 to 23 is good for: positive, normalized and powed

representations. However, this interval is narrower for the exponential representation:

k from 3 to 11. According to the error rate, the positioning error decreases while the

k value increases until k with values close to 13. From this value, k > 13, the error

increases as the value of k increases.

Regarding setting the k value, it seems that low values (e.g. k = 1) are not suitable

because the system relies only on a single candidate or on a few similar candidates.

High values, such as 23, are also not suggested because the error is raised and the

success rate decreased. It seems that using an intermediate value balances the diversity
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on samples and better positioning is obtained. In fact, the best overall configuration

is k = 13 for powed representation since it reports an error lower than 6.2 meters

and a success rate higher than 95%. It is worth mentioning that the difference of this

best case with respect to the traditional alternative (Euclidean distance and Positive

representation) is notably high; almost 2 meters in error and more than 5% in the

success rate.

5. Discussion

The results obtained in our experiments provide us with new insights about how to

choose a suitable distance metrics in Wi-Fi fingerprinting based applications. This new

insights can be summarised as follows

First, according to the experiments performed, selecting the most appropriate data

representation is a crucial step. All the measures except the Inner Product provide bet-

ter positioning results when an alternative data representation, exponential or powed, is

used instead of a traditional lineal representation. We strongly recommend to use the

alternative data representations that break the data linearity in order to obtain a repre-

sentation that resembles the original nature of Wi-Fi signals and penalizes differences

in strong signals (close WAPs)

Second, the most suitable measure for each representation (positive&normalized,

exponential and powed) are respectively: Sørensen (and group 3 measures); Neyman

χ2; and Sørensen (and group 3 measures). Moreover, other measures such as Cosine

distance and Kumar-Hassebrook (group 5 of equivalent measures) also provide good

results. These results justify the application of a study in depth on distance/similarity

measures because the default metrics, Euclidean distance or City Block, are not always

the most appropriate ones

Third, applying a thresholding method to remove those Wi-Fi signals with very

low intensity is not needed because the accuracy in locating them did not significantly

improve. In fact, the performance of the localization system decreases if the thresh-

29



old value is set to a high default value such as 85dBm or 75dBm. We suggest to

avoid using thresholding on fingerprinting techniques, since the accuracy decreases as

threshold value increases

Fourth, selecting the most appropriate value of k for k-NN is also important to ob-

tain more accurate results. In fact, the success has reached a very high rate, 95.2%,

and the positioning error has reached the lowest overall value, 6.19m, for k = 13 and

Sørensen distance (and group 3 measures) combined with the powed data representa-

tion. In contrast to the best configuration for k and Euclidean distance which provided

approximately a success of 90% and an error of 7.2m

Finally, it is worth mentioning that we have achieved a success rate of 89.92%

and an error in positioning of 7.90m with the traditional 1-NN algorithm using the

Euclidean distance with the UJIIndoorLoc database, which is a very challenging re-

alistic multi-building multi-floor database. For the Manhattan distance (City Block)

the error in positioning is better but the success rate is worse (7.60m and 88.03% re-

spectively). With the alternative metrics and the data representations we propose, we

can achieve a high success rate of 94.78% and an error rate of 6.86m (Sørensen and

powed representation) with 1-NN. The error in positioning has been reduced in 1m

(which corresponds to a relative reduction of 15% approx.) and the success rate has

been increased in almost 5% (which corresponds to a relative reduction of 48.21%

wrong-building & wrong-floor errors) compared to the traditional approach commonly

used in the literature (e.g., Marques et al. (2012); Farshad et al. (2013); Campos et al.

(2014); Yu et al. (2014); Zhuang et al. (2014); Li et al. (2015), among many others).

As stated in Campos et al. (2014), a medium in-floor error is tolerable, but wrong-floor

errors may not be acceptable at all because it is much easier to move within the same

floor than among floors. By adopting an alternative metric and data representation, we

have not only decreased the in-floor error by 1m, but also reduced the wrong-building

and wrong-floor errors by a half. We consider that other existing techniques can take
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benefit from the increase in success and accuracy supported by alternative metrics and

data representations shown in this paper

6. Conclusions

It is hard to apply signal propagation algorithms to Wi-Fi fingerprinting positioning

due to harsh nature of signal propagation, architectural conditions, diversity of emit-

ters, so solutions based on machine learning techniques and expert systems are good

candidates to tackle this problem. Most of the presented solutions are based on the k-

NN distance based classifier which in turn mainly use the Euclidean distance as main

metrics. However, it could be not the better alternative by default due to the nature

of Wi-Fi fingerprints values. This paper has introduced a comprehensive comparative

study of distance/similarity measures, data representation and thresholding using the

challenging realistic multi-building multi-floor UJIIndoorLoc database

This work demonstrates that selecting the best configuration for k-NN (metric, data

representation and k value) is crucial for indoor positioning. The alternative to tradi-

tional k-NN and Euclidean distance we propose for indoor positioning is based on

the Sørensen distance, powed representation and k = 13. This alternative not only

decreased the in-floor error by 1.7m, but also reduced the severe wrong-place (wrong

building and/or wrong floor) errors by more than a half with respect to the traditional 1-

NN based on raw data and Euclidean distance. Moreover, this work also demonstrates

that applying a thresholding method to remove weak Wi-Fi signals is not needed and

should be avoided in multi-building multi-floor scenarios. It seems that the presence

of distant WAPs in fingerprints can capture the temporal variability inherent to signal

propagation and, therefore, provide robustness to the indoor positioning algorithm. We

consider that researchers can use the herein introduced study to improve their position-

ing systems by applying an alternative measure and/or data representation, specially

when they are based on k-NN and Euclidean distance

As future work we are considering to perform a comprehensive study of cluster-
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ing techniques using the 51 distance/similarity measures for indoor positioning. The

complexity of the reference database used in k-NN could be reduced and the computa-

tional costs at operational stage could be also highly decreased. Moreover, we consider

that the application of the proposed alternatives to represent RSS data could be use-

ful in other expert systems based on Neural Networks, Support Vector Machines, and

Bayesian Inference. In general, those systems do not have explicit knowledge about the

logarithmic nature of RSS values. Another interesting work would focus on increasing

the success rate as maximum as possible, which is a slightly different indoor position-

ing problem. In some scenarios, it is crucial that the expert system provides the correct

‘place’ rather than the exact coordinates
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Table 1: Results of experiment 1: Error in positioning and Success Rate of 53 distance/similarity measure-
ments and 4 alternative data representations.

positive 0-1 norm exponential powed
Measure success error success error success error success error
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Minkowski L3 90.37% 8.58 90.37% 8.58 92.98% 7.23 92.71% 7.53
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Hellinger 84.16% 9.39 84.16% 9.39 91.09% 7.33 91.00% 7.27
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Topsøe 84.88% 9.02 84.88% 9.02 91.09% 7.30 91.45% 7.14
Jensen-Shannon 88.48% 8.76 88.48% 8.76 91.90% 8.89 94.69% 7.44
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Taneja 79.30% 10.88 79.30% 10.88 91.36% 7.34 86.68% 9.34
Kumar-Johnson 78.76% 11.95 78.76% 11.95 91.27% 7.41 80.38% 11.38
Avg(L1,L∞) 88.39% 7.82 88.39% 7.82 91.18% 7.09 91.09% 7.11

Vicis-Wave Hedges 79.21% 11.00 79.21% 11.00 89.11% 7.76 79.21% 11.70
Vicis-Symmetric χ2 1 78.94% 11.41 78.94% 11.41 90.10% 8.54 79.93% 11.64
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List of Figures

Fingerprint
Wap1 = -45dBm
Wap2 = -45dBm
Wap3 = -50dBm
Wap4 = -55dBm
Wap5 = -70dBm
Wap6 = -80dBm

Figure 1: Basic example of fingerprint where the mobile phone has detected 6 different WAPs with different
intensities. Note that WAPs have not to be directly oriented to the device in order to be detected.
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Figure 2: Relation between RSS values (dBm) and Signal Power (mW)
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Figure 3: Visual meaning of the different representations used. Lineal stands for positive and normalized
since both are proportional. The image shows the representation without applying thresholding.
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Figure 4: Percentage of void fingerprints after applying thresholding
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Figure 5: Mean number of detected WAPs after thresholding
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Figure 6: Evolution of success (top) and error (bottom) with respect to the threshold values for the Euclidean
distance and the different representations. Lineal stands for positive and zero-to-one normalized representa-
tions since both are equivalent on the corresponding measure used. N.T. stands for the case in which threshold
was not applied.
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Figure 7: Evolution of success (top) and error (bottom) with respect to threshold values in the best measure
for the different representations. Lineal stands for positive and zero-to-one normalized representations since
both are equivalent on the corresponding measure used. N.T. stands for the case in which threshold was not
applied.
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Figure 8: Evolution of success (top) and error (bottom) with respect to the k value for the Euclidean distance
and the different representations. Lineal stands for positive and zero-to-one normalized representations since
both are equivalent on the corresponding measure used.
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Figure 9: Evolution of success (top) and error (bottom) with respect to k-values in the best measure for the
different representations. Lineal stands for positive and normalized representations since both are equivalent
on the corresponding measure used.
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