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important source of spin relaxation.
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1. Introduction

The spin of carriers confined in nanostructures has been intensively studied in

recent years due to its promising applications in spintronics and spin-based quantum

information processing.[1, 2] In particular, hole spins in quantum dots (QDs) have

received great attention as a consequence of their long decoherence times and

versatility. The confinement in heterostructures is responsible for the suppression

of the main decoherence mechanisms present in bulk systems.[3, 4] Additionally, the

p-type symmetry of the valence band orbitals causes a weak hyperfine interaction

with the lattice nuclei, thus giving rise to decoherence times potentially longer than

those of electron spins.[5, 6, 7, 8, 9, 10, 11] This has enabled successful hole spin

initialization[12] and coherent control[10, 13]. Double quantum dots (DQDs) are a

natural extension which should facilitate the use of independent optical transitions

for spin preparation, manipulation and readout,[14] as well as the scalability towards

multiple qubit architectures.[15] Also, DQDs are more versatile than single QDs since the

coupling between the two QDs offers an additional control mechanism, as the tunneling

can be tuned by using externally applied electric fields.[16, 17, 18, 19]

Using the spin of holes in qubits requires control over the hole spin relaxation

(T1) and decoherence (T2) times, the latter being related to the former at low

temperatures.[20] In the presence of external magnetic fields, the main mechanism of

spin relaxation for the valence band is usually phonon scattering mediated by spin-orbit

interaction (SOI).[21, 22] Indeed, the strong SOI of holes is responsible for some of its

characteristic properties, e.g. the g-factor anisotropy or the origin of antisymmetric

ground states in DQDs.[23, 24, 25, 26] The three main SOI mechanisms are the light

hole-heavy hole (LH-HH) mixing, the bulk inversion asymmetry (BIA or Dresselhaus

SOI)[27] and the structural inversion asymmetry (SIA or Rashba SOI).[28] Several works

have theoretically addressed the hole spin relaxation in single QDs taking into account

different SOI mechanisms and have showed that one or another prevail depending on

the QD traits.[20, 29, 30, 31, 32] By comparison, the spin relaxation of holes in DQDs is

still poorly understood. This is inspite of their promising prospects for the development

of quantum information architectures.[10, 15, 19] Understanding the hole spin dynamics

in DQDs is also of relevance for recently proposed exciton spin based qubits,[33] since

hole relaxation usually determines the excitonic spin lifetime.

In the present work, we investigate the hole spin relaxation between Zeeman split

sublevels in vertically coupled DQDs. We consider InAs/GaAs DQDs with various

relative positions of the individual dots while maintaining their dimensions unaltered.

In particular, we play with the interdot barrier thickness and the dots alignment. The

hole states are simulated using three-dimensional (3D) Hamiltonians including not only

quadratic-in-k LH-HH coupling present in the Luttinger-Kohn Hamiltonian, but also

cubic Dresselhaus SOI, which was found to be potentially important in single InAs

QDs.[31] Calculations are carried out for varying strength of an electric field applied

along the DQD stacking direction. This makes possible to study the transition from



Hole spin relaxation in InAs/GaAs quantum dot molecules 3

atomic-like states confined in one of the constituent QDs to fully molecular-like states,

which are obtained when the field brings the hole levels in the upper and lower dots into

resonance.[19]

We show that T1 of molecular spin-orbitals is often larger than that of holes localized

in single QDs, with lifetime extensions reaching 600% in some cases, which is a result

of the higher symmetry of the system under resonant electric fields. Dresselhaus SOI

however plays an important role in the description of the hole spin dynamics. Its

inclusion in the Hamiltonian provides new channels of spin admixture, decreasing T1 up

to one order of magnitude and reducing the differences between molecular and single

QD states. Nevertheless, the most drastic factor reducing T1 is misalignment between

the QDs forming the DQD. The severe symmetry breaking enhances SOI, leading to

pronounced shortenings of T1, as well as to the appearance of spin anticrossings in the

energy spectra, which constitute spin-hot spots with extremely fast relaxation.

The paper is organized as follows. In section 2 we present the details of the model

we use to compute the hole states and the spin lifetimes. In section 3 we show and

discuss the results of the calculations for a DQD system with strong and weak hole

tunneling. Finally, conclusions are given in section 4.

2. Theoretical model

We investigate the spin relaxation of holes confined in vertically coupled DQDs grown

along the [001] direction. The system is subject to external magnetic and electric fields

applied along the growth direction. The Hamiltonian that describes the hole states

reads

Hh = HL +HB + (VQD + eFzz) I +HBIA +HSIA, (1)

where HL is the Luttinger Hamiltonian[34] and HB represents the terms coming from

the implementation of the magnetic field. The next two terms in (1) are the 3D

confining potential VQD and the externally applied electric field F = (0, 0, Fz), with

e standing for the hole charge and I the 4x4 identity matrix. Finally, HBIA is the spin-

orbit Hamiltonian corresponding to the Dresselhaus SOI. Rashba SOI is disregarded in

this study because the system asymmetry in the growth direction is suppressed under

resonant electric fields, which lead to the formation of molecular states with effective

parity symmetry.[23] All the same, we have carried out a series of calculations (not

shown) that confirm the negligible influence of Rashba SOI in the vicinity of the resonant

field.

The Luttinger Hamiltonian HL is a four-band Hamiltonian which includes the spin-

orbit coupling between light-holes (LH) and heavy-holes (HH) subbands up to second

order in k.[34] The matrix representation of HL in terms of the Bloch basis functions
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Jz = +3/2,+1/2,−1/2,−3/2 is

HL = −











P + Q −S R 0

−S† P −Q 0 R

R† 0 P −Q S

0 R† S† P +Q











, (2)

with

P =
1

2m0
γ1

(

k2
x + k2

y + k2
z

)

, (3)

Q =
1

2m0
γ2

(

k2
x + k2

y − 2k2
z

)

, (4)

R =
1

2m0

[

−
√
3 γ2 (k

2
x − k2

y) + 2 i
√
3 γ3 kx ky

]

(5)

S =
1

2m0
2
√
3 γ3 (kx − i ky) kz, (6)

Here m0 is the free electron mass and γi are the Luttinger mass parameters. For the sake

of simplicity, we use constant Luttinger parameters throughout the entire nanostructure.

The uniform axial magnetic field is described by the vector potential in the

symmetric gauge A = B
2
(−y, x, 0). The implementation follows the procedure described

in [35]. The resulting Hamiltonian HB has the form

HB = −
(

B2

8m0
(x2 + y2) +

B

2m0
(xky − ykx)

)

M − κµBBJz (7)

with M being the 4x4 diagonal matrix with elements {γ1 + γ2, γ1 − γ2, γ1− γ2, γ1 + γ2}.
The last term of (7) corresponds to the Zeeman splitting with κ standing for the hole g

factor, µB the Bohr magneton and Jz the matrix representation of the third component

of the angular momentum with quantum number J = 3/2.

The last two elements in (1), HBIA and HSIA, are additional terms describing the

Dresselhaus and Rashba SOI, respectively.[36] As stated above, we disregard HSIA due

to its negligible influence under resonant electric fields. HBIA includes linear and third

order in k terms and is given by:

HBIA =
2√
3
Ck

[

kx {Jx, J
2
y − J2

z }+ cp
]

+ b41
[

{kx, k2
y − k2

z} Jx + cp
]

+ b42
[

{kx, k2
y − k2

z} J3
x + cp

]

+ b51
[

{kx, k2
y + k2

z} {Jx, J
2
y − J2

z }+ cp
]

+ b52
[

k3
x {Jx, J

2
y − J2

z }+ cp
]

(8)

where Ck, b41, b42, b51 and b52 are material dependent coefficients, {A,B} = 1
2
(AB+BA)

and cp stands for cyclic permutations of the preceding terms. The matrix form of

Hamiltonian (8) can be found in [31].

Since Hh is a four-band Hamiltonian, its eigenfunctions are four-component spinors

of the form:

Ψn =

3/2
∑

Jz=−3/2

f
(n)
Jz

(r) |Jz〉, (9)
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where f
(n)
Jz

(r) and |Jz〉 are the envelope and Bloch parts of the Jz component.

We study the spin relaxation of hole states mediated by the phonon bath. The

transitions considered involve the Zeeman split sublevels of lowest energy, i.e. from

the first excited to the hole ground state. The energy splitting of these states is small

and, thus, only long-wave acoustic phonons can participate and the linear dispersion

regime holds, Eλq = ~cλq. Here, cλ is the phonon velocity of the longitudinal or two

transversal phonon modes λ. The Hamiltonian that describes the coupling between

holes and phonons is

Hh−ph = e φpz I +Hdp, (10)

where e is the hole charge, I is the 4x4 identity matrix, φpz the piezoelectric potential

and Hdp the deformation potential term. These are the two scattering mechanisms that

dominate the hole spin relaxation.[30] The deformation potential coupling Hdp is given

by the strain Hamiltonian[37] and the piezoelectric interaction by the potential[38]

φpz =
∑

λ

φλ
pz = −

∑

λq

4π i

ǫr q2
h14

(

qx ε
λ
yz + qy ε

λ
zx + qz ε

λ
xy

)

. (11)

where ǫr stands for the relative dielectric constant, h14 is the piezoelectric constant and

εij is the strain tensor component. The complete expressions and derivation of the

piezoelectric potential and the deformation potential operators for the three phonon

branches is presented in [31].

The transition rate between the initial hole state |Ψh
i 〉 and the final hole state |Ψh

f〉
is estimated using the Fermi golden rule

1

T1
=

2π

~

∑

λ,q

∣

∣

∣
〈Ψh

f |Hλq
h−ph |Ψh

i 〉
∣

∣

∣

2

δ(∆Efi + ~cλq). (12)

where Hλq
h−ph is the hole-phonon coupling Hamiltonian, equation (10), and ∆Efi =

Ef −Ei. The sum is done over all directions of q and the three phonon branches of bulk

zinc-blende crystals, one longitudinal and two transversal. All calculations are carried

out at zero temperature, so that only phonon emission processes are possible.

The multi-band Hamiltonian (1) is of fully 3D nature, as in DQDs the vertical

and lateral dimensions can be comparable, which prevents the adiabatic separation of

variables usually employed for single QDs[1]. Besides, we are interested in analyzing the

effect of misalignment between the QDs forming the DQD, which implies breaking the

in-plane symmetry through VQD. We then use Cartesian coordinates. It is also worth

noting that Hh includes third-order derivatives through the HBIA term. Since SOI is a

fine effect, precise estimates of its influence require a very accurate description of such

derivatives. To solve this challenging problem, we integrate Hh numerically using a

finite differences scheme. Since the Fortran code allows for Hamiltonian rotation and

the discretization up to third derivatives in N-point (N 6 15), the associated Fortran

routines have been built using ad hoc Mathematica codes. In order to achieve the desired

accuracy while maintaining a reasonable mesh, we have explored increasing the points of
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the derivatives discretization. After a series of convergence tests, we found that a 5-point

stencil central difference scheme offers a good description at a reasonable computational

cost. In addition, we consider QDs with cuboidal shape which are perfectly adjusted

to the 3D regular mesh. This simplified geometry grants comparable accuracy in the

estimate of potential and kinetic energy terms, while allowing us to study the influence

of the basic features of DQDs on the spin dynamics, namely the effect of interdot barrier

thickness and that of misalignment. The 3D discretization of (1) yields a huge sparse

matrix that is diagonalized by means of the Arnoldi iterative method. The size of

these matrices ranges from 73644×73644 for close aligned QDs up to 150326×150326

for distant misaligned QDs.

3. Numerical results and discussion

The system studied is a DQD of InAs embedded in a GaAs matrix as represented in

figure 1. The QDs are identical with cuboidal shape (Lx = 20 nm, Ly = 20 nm and

Lz = 3nm) and are separated by a distance d. The parameters used in the calculations

are summarized in table 1. They all correspond to the QD material InAs, except for the

ones describing the phonons (cl, ct and ρ) which correspond to the matrix material GaAs

as we assume bulk phonons. The confining potential VQD is zero inside the QDs and

V0 outside, where V0 = −0.33 eV is the valence band offset between InAs and GaAs.[39]

Finally, we take κ = 4/3 for the hole g factor as suggested in [40].

3nm

20nm

-Δx

+Δx

20nm

z
y

x

Figure 1. Schematic drawing of the InAs DQD cuboidal system. The dimensions of

the QDs and the variable parameters d and ∆x are indicated. The boxes with dashed

lines represent the DQD with misalignment.

We investigate the dependence of the hole spin lifetime on the external electric field

Fz. We consider two different interdot barriers d = 3nm and d = 9nm as an example of

a DQD system with strong and weak tunneling, respectively. In addition, for each d we

study the possibility of the two QDs being perfectly aligned and also misaligned. The

misalignment consists in a shift in x in opposite directions of the two QDs by an offset
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Table 1. Material parameters used in the numerical calculations.

Parameter Symbol InAs Ref.

Luttinger parameter γ1 20 [39]

Luttinger parameter γ2 8.5 [39]

Luttinger parameter γ3 9.2 [39]

Deformation potential (eV) a 1.0 [39]

Deformation potential (eV) b -1.8 [39]

Deformation potential (eV) c -3.6 [39]

Dresselhaus coeff. (eV Å) Ck -0.0112 [36]

Dresselhaus coeff. (eV Å3) b41 -50.18 [36]

Dresselhaus coeff. (eV Å3) b42 1.26 [36]

Dresselhaus coeff. (eV Å3) b51 0.42 [36]

Dresselhaus coeff. (eV Å3) b52 -0.84 [36]

Longitudinal phonon speed (m s−1) cl 4720 [41]

Transversal phonon speed (m s−1) ct 3340 [41]

Crystal density (kgm−3) ρ 5310 [41]

Piezoelectric constant (V cm−1) h14 3.5× 106 [41]

Relative dielectric constant ǫr 12.9 [41]

∆x = 3.3 nm as depicted in figure 1. This value corresponds to a DQD with large yet

realistic lateral offset.[42] All calculations are carried out at a magnetic field B = 2T.

3.1. Strong tunneling regime

Figure 2 illustrates the energy spectra and hole spin lifetimes of a DQD with interdot

distance d = 3nm as a function of the external electric field Fz. An analysis of the low-

energy hole states reveals that they have mainly HH character. ‡ Thus, the transition

between the Zeeman-split sublevels, indicated in figure 2(a) and (b) by orange arrows,

is essentially a transition from a HH with Jz = +3/2 (⇑ in figure 2) to a HH with

Jz = −3/2 (⇓).
Panels (a) and (c) of figure 2 show the energy spectrum and spin lifetime for a DQD

with no misalignment. For a finite electric field the wave function tends to localize in one

of the dots as represented in the insets of figure 2(a). The change of localization when

varying Fz gives rise to a charge transfer anticrossing at Fz = 0 kV cm−1, where hole

states of both QDs are in resonance and the wave function forms delocalized molecular

orbitals. Since the barrier thickness we consider is beyond the critical distance at which

the hole ground state changes from bonding to antibonding character,[23] the two states

of the Zeeman doublet we consider are antibonding.

Calculations of the hole spin lifetime are shown in figure 2(c) for two different

‡ Energies are negative because they are referred to the top of the valence band. By lowest energy we

mean lowest absolute value.
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Figure 2. Hole energy spectra (a)-(b) and spin lifetime (c)-(d) as a function of the

applied electric field for DQDs with interdot barrier d = 3nm. Left panels: aligned

QDs. Right panels: QDs with misalignment of ∆x = 3.3 nm. The energy spectra are

obtained fromHh, (1). The hole spin lifetimes are calculated under different conditions:

Luttinger Hamiltonian HL only (black solid line) or HL + HBIA (blue dashed line).

The insets in (a)-(b) show the wave function localization and the dominant spinor

component, Jz = +3/2 (⇑) or Jz = −3/2 (⇓). The orange arrows represent the

transition studied. The labels in (c)-(d) give the point group of the system in different

situations.

situations: considering only the LH-HH mixing derived from the standard Luttinger

Hamiltonian HL (black line) and considering the additional influence of HBIA as well

(dashed line). When only LH-HH mixing is taken into account, one can see that T1

presents a maximum for molecular states (Fz = 0 kV cm−1) that slowly decreases as we

move toward localized, atomic-like states (|Fz| > 10 kV cm−1). This remarkable result

is reminiscent of the T1 enhancement recently reported for single QDs at certain values

of Fz.[32] The inclusion of HBIA, however, reduces T1 by one order of magnitude and

moderates the longer lifetime of the molecular regime (Fz ≈ 0).

Since spin lifetime is connected with SOI-induced spin admixture,[1] in order

to understand the above results we analyze the strength of the SOI, which can

be qualitatively estimated from symmetry considerations. In general, a lowering in

symmetry implies the activation of additional SOI mechanisms[36] and hence shorter

T1. HL in (1) has Td symmetry, corresponding to the bulk zinc-blende point group. The
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confining potential that defines the aligned DQD system, VQD, reduces the symmetry to

D4h. Then, the application of an external magnetic field in the axial direction further

reduces it to C4h. We can take this as the starting point, HL at Fz = 0 in figure 2(b).

Next we add other factors like external electric fields or additional SOI terms, which

further reduce the symmetry and hence T1. Thus, a finite electric field Fz lifts the parity

symmetry in z, reducing the system symmetry to C4, which explains the shorter T1 for

individual QDs as compared to the symmetric DQD in the HL curve of figure 2(c). If

we include HBIA to the calculation instead, the reduction is more important, group C2,

and thus the decrease of T1 is more pronounced. In this case, the introduction of an

external electric field no longer reduces the symmetry and has negligible effect on T1.

The results for a DQD with misalignment are illustrated in figure 2(b) and (d).

Energetically, the main consequence of introducing a lateral offset to the QDs position is

a reduction in the hole tunneling which, in turn, diminishes the magnitude of the charge

anticrossing in the energy spectrum.[42] As for the hole spin lifetimes, by comparing with

figure 2(c), figure 2(d) shows that misalignment of the QDs roughly preserves the shape

of T1 estimated from either HL or HBIA, but it causes an additional decrease in T1 of

one order of magnitude or more.

These results can be explained following the same reasoning as for a DQD with

no misalignment. Now, the interplay of confinement potential VQD and magnetic field

removes all exact symmetry elements. Therefore, the hole spin lifetime is reduced in

comparison to the aligned case. The symmetry breaking becomes even more efficient in

the presence of an applied electric field, resulting in shorter lifetimes.

3.2. Weak tunneling regime

In this section we investigate the same situations as above but we consider now a DQD

system with an interdot barrier d = 9nm.

Figure 3(a) illustrates the energy spectrum when the QDs are aligned. A clear

difference with the previous case, figure 2(a), is observed since now the Jz = +3/2

antibonding and Jz = −3/2 bonding states cross near the resonant field (see grey

dotted boxes in figure 3). The inset of figure 3(a) contains a zoom of the crossing at

|Fz| ≈ 0.5 kV cm−1. It shows that no spin anticrossing takes place in spite of including

BIA spin-orbit terms in the calculations.

The absence of anticrossings can be understood analyzing the symmetry of the hole

states. Hh belongs to the C2 point group. The symmetry of its spinorial eigenstates

Ψn, equation (9), is then obtained from the double group C̄2. As shown in the labels

of figure 3(a), the two states crossing each other have E3/2 and E−3/2 symmetry,

respectively (see Appendix for more details). The different symmetry of the states

justifies the absence of spin anticrossings in the spectrum.

The results for the spin lifetime are presented in figure 3(c). All calculations are

also carried out considering the transition between the Zeeman split antibonding states

(see orange arrows in figure 3). In general, we find similar lifetimes compared to the
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Figure 3. Same as figure 2 but for a DQD with barrier thickness d = 9nm. The

insets in (a)-(b) are a zoom of the squared region, showing the crossing/anticrossing

between the hole states of different HH spin and localization at Fz ≈ 0.5 kV cm−1.

aligned DQD with strong tunneling. As in the strong tunneling case, HL predicts the

longest T1 values for the molecular regime (Fz = 0), although the enhancement is now

smaller and takes place for a narrower range of electric fields, which is a consequence

of the weaker tunneling energy. Interestingly, in this case adding HBIA preserves the

T1 maximum at zero electric field. This is because the dominant term of HBIA (b41 in

(8)) scales roughly proportional to 〈k2
z〉.[1] In a DQD with thick interdot barrier a small

electric field is enough to localize the wave function in one of the QDs, rapidly increasing

〈k2
z〉 and reducing T1. In contrast, when the tunneling is important, stronger fields are

needed to break the molecular character. As a consequence, in figure 2(c) 〈k2
z〉 did not

change significantly in the range considered and the T1 maximum was less pronounced.

Figure 3(b) illustrates the energy spectrum for a misaligned DQD. At first glance,

no major differences with the aligned situation are observed, except for the smaller

magnitude of the charge transfer anticrossings. However, the inset of figure 3(b) shows

that now the states of different spin anticross. The size of this spin anticrossing is of the

order of few µ eV, particularly ∆s ≈ 6µ eV for HL and further increases to ∆s ≈ 20µ eV

when Dresselhaus SOI is included. The presence of a spin anticrossing implies the

admixture of hole states with the same symmetry. The reason is that misalignment

reduces the symmetry to the C1 point group, and all the states belong to the totally
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symmetric irreducible representation.

The obtained lifetime results are summarized in figure 3(d). Similarly to the strong

tunneling case, misalignment of the QDs reduces the spin lifetimes by one order of

magnitude. The main difference with respect to the strong tunneling case (figure 2(d))

is the appearance of two sharp dips in the hole lifetime at Fz ≈ ±0.5 kV cm−1, where

T1 decreases by two orders of magnitude. These correspond to the spin anticrossings of

figure 3(b). These anticrossings form so-called spin-hot spots (see, e.g., [43]), where spin

mixing is maximized. While the strong spin mixing can be benefitial for spin control

protocols[42], our calculatios show that it also leads to severely reduced T1.

We have checked the robustness of the results in this section vs. small changes

in the model parameters (geometry, size and magnetic field). As discussed above, the

qualitative trends are a consequence of the symmetry in the Hamiltonian rather than a

specific set of parameters.

4. Conclusions

We have investigated the hole spin lifetime in InAs/GaAs DQDs as a function of the

axial electric field strength. We have explored the effect of changing the QDs relative

position (alignment and distance) and the introduction of Dresselhaus SOI.

A clear correlation between the symmetry of the system and T1 is observed, which

follows from the enhancement of SOI induced spin admixture with lowering symmetry.

Thus, we show that the Luttinger Hamiltonian yields maximum T1 for DQDs under

resonant electric fields, but it decreases when the electric field pushes the wave function

towards one of the QDs. This is a consequence of the higher symmetry of DQDs under

resonant electric fields, when wave functions with parity symmetry are obtained.

Cubic Dresselhaus SOI lowers the symmetry to a C2 point group, consequently

reducing T1 about one order of magnitude. In fact, a strong Dresselhaus SOI, as that

found for DQDs in the strong tunneling regime, can even suppress the different behaviour

between single QD and DQD states.

Misalignment of the QDs, which is often observed in DQDs, reduces the system

symmetry to C1. When severe, it can reduce of T1 over one order of magnitude. It is

also responsible for the appearance of spin anticrossings in the energy spectra, which

are absent for aligned DQDs. These are spin-hot spots, where spin mixing is maximized

and a drastic decrease of T1 is observed.

In summary, while the increase of symmetry, reached by the formation of molecular

orbitals induced by resonant electric fields, favors spin purity and long T1 values,

misalignment or defects as well as strong Dresselhaus spin-orbit interaction play in

opposite direction and can eventually overcome the effects of the resonant field.



Hole spin relaxation in InAs/GaAs quantum dot molecules 12

Acknowledgments

This work was supported by UJI Project No. P1.1B2014-24, MINECO Project No.

CTQ2011-27324, and FPU Grant (C S).

Appendix

The character table of the double group C̄2 we use is:

C̄2 E C1
2 C2

2 C3
2 basis (eiMφ)

A 1 1 1 1 M = 0,±2,±4, k2
x, k

2
y , k

2
z , kxky

B 1 −1 1 −1 M = ±1,±3, kykz, kxkz
E−3/2 1 i −1 −i M = 1/2,−3/2

E3/2 1 −i −1 i M = −1/2, 3/2

(A.1)

and the corresponding table of product of irreducible representations:

A B E−3/2 E3/2

A A B E−3/2 E3/2

B A E3/2 E−3/2

E−3/2 B A

E3/2 B

(A.2)

Within this group, the four Bloch functions |Jz〉, with Jz = 3/2, 1/2,−1/2,−3/2, form

basis of the following irreducible representations:










E3/2

E−3/2

E3/2

E−3/2











(A.3)

respectively.

As for the envelope parts, fn
Jz
, we consider that the symmetry of the matrix element

operators in the 4-band Hamiltonian Hh, obtained with the help of (1), is:

ΓHh
=











A B A B

B A B A

A B A B

B A B A











. (A.4)

Since the envelope eigenfunctions must have a definite symmetry within the C2 group,

the two possibilities compatible with (A.4) are:










A

B

A

B











and











B

A

B

A











, (A.5)
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whose product with (A.3) gives total spinor symmetry E3/2 and E−3/2, respectively. For

the ground state in figure 3(a), Ψ1, since the main component is a totally symmetric

spin down HH, f
(1)
−3/2 must have A symmetry and it follows that the spinor symmetry is

E−3/2. For the other Zeeman sublevel, Ψ2, the dominant component is the spin up HH,

so that f
(2)
3/2 has A symmetry and the spinor symmetry is E3/2. A similar procedure is

followed to obtain the symmetry of the remaining hole states in figure 3.
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