MULTILINEAR ISOMETRIES ON FUNCTION ALGEBRAS
MALIHEH HOSSEINI, JUAN J. FONT, AND MANUEL SANCHIS

ABSTRACT. Let Aj,..., A be function algebras (or more generally, dense subspaces of uniformly
closed function algebras) on locally compact Hausdorff spaces X1, ..., X, respectively, and let Z
be a locally compact Hausdorff space. A k-linear map T : A1 X ... X Ay, — Co(Z) is called a

multilinear (or k-linear) isometry if

k
IT (1o Sl = TTIAN (1 s i) € Av X x Ag).

i=1
Based on a new version of the additive Bishop’s Lemma, we provide a weighted composition
characterization of such maps. These results generalize the well-known Holszty1iski’s theorem ([9])

and the bilinear version of this theorem provided in [10] by a different approach.

1. INTRODUCTION

Let X be a locally compact Hausdorff space. As usual, Co(X) (resp. C(X) if X is compact)
stands for the Banach algebra of all continuous scalar-valued functions on X which vanish at infinity,
endowed with the supremum norm, | - ||. In [9], W. Holsztyniski inaugurated a new direction of gen-
eralization of the famous Banach-Stone Theorem. Namely, he provided the following non-surjective
version: If there exists a (not necessarily onto) linear isometry T : C(X) — C(Y), then T is a
weighted composition operator on a subset of Y. More precisely, there are a closed subset Yy of Y, a
continuous map h from Y, onto X and a unimodular continuous function a defined on Y, such that
T(f)(y) = aly)f(h(y)) for all y € Yy and all f € C(X).

In [10], the authors proved, based on the powerful Stone-Weierstrass Theorem, the following
bilinear version of Holsztynski’s theorem:

Let T : C(X) x C(Y) — C(Z) be a bilinear (or 2-linear) isometry. Then there exist a closed
subset Zy of Z, a surjective continuous mapping ¢ : Zyg —> X X Y and a unimodular function
a € C(Zp) such that T(f, 9)(z) = a(z) f(mz(p(2)))g(my(¢(2))) for all z € Z, and every pair (f,g) €

C(X) x C(Y), where 7, and m, are projection maps.

Key words and phrases: function algebra, k-linear isometry, Choquet boundary, additive Bishop’s Lemma, peaking
function, uniform algebra.
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In this paper we extend this bilinear version of Holsztyriski’s theorem to a more general context,
where Stone-Weierstrass Theorem is not applicable. Namely, let A, ..., A; be function algebras (or
more generally, dense subspaces of uniformly closed function algebras) on locally compact Hausdorff
spaces X1, ..., Xi, respectively, and let Z be a locally compact Hausdorff space. A k-linear map

T:A; x...x A — Co(2) is called a multilinear (or k-linear) isometry if

k
T (frs o )l = TTIAN ((Froens f) € Ar o x Ay).
=1

We provide a complete characterization of such maps as follows: given a k-linear isometry T :
Al X ... X Ay, — Co(Z), there exist a nonempty subset Zy of Z, a continuous surjective map
v Zy — Ch(A1) X ... x Ch(Ag) and a unimodular continuous function a : Zy — T such that
T(f1, . [r)(2) = a(z) ]—kl fi(mi(p(2))) for all (fi1,..., fx) € A1 X ... x A and z € Zy, where 7; is the
ith projection map. =

The main tool we use to prove this characterization is a recent stronger version of the additive
Bishop’s Lemma (see [12] or Lemma 2.2 below). This technique also lets us fix some inaccuracies
detected in [6], particularly in the bounds obtained in the proof of [6, Lemma 3.3]. Furthermore, for
the sake of completeness and in order to give a unified version of the proofs involved in this topic,
the (known) results for 1-linear isometries are also included and proved straightforwardly by using

this version of the additive Bishop’s Lemma.

2. PRELIMINARIES

Let X be a locally compact Hausdorff space and let X, be its one point compactification. Let us
recall that Cp(X) is the algebra of all continuous scalar-valued functions on X vanishing at infinity.
A function algebra A on X is a subalgebra of Cy(X) which separates strongly the points of X, i.e.
for each x,2’ € X with x # 2/, there exists an f € A with f(x) # f(z') and for each x € X, there
exists an f € A with f(x) # 0. If X is a compact Hausdorff space, each unital uniformly closed
function algebra on X is called a uniform algebra on X.

Let A be a function algebra on a locally compact Hausdorff space X. We denote the uniform
closure of A by A. The unique minimal closed subset of X with the property that every function
in A assumes its maximum modulus on this set, which exists by [2], is called the Silov boundary
for A and is denoted by 0A. The Choquet boundary Ch(A) of A is the set of all z € X for which
0., the evaluation functional at the point x, is an extreme point of the unit ball of the dual space
of (A,]|-]). So it is apparent that Ch(A) = Ch(A). Besides, note that for a function algebra A,
0A is the closure of Ch(A) [2, Theorem 1]. A point z € X is called a strong boundary point (or
weak peak point) for A if for every neighborhood V' of x, there exists a function f € A such that

Ifl=1=1f(x)] and |f| <1 on X\ V. It is known that if A is a uniformly closed function algebra
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on a locally compact Hausdorff space X, then Ch(A) coincides with the set of all strong boundary
points (see [11]). However, according to the example given in [4], this coincidence is not true for all
function algebras, although the Choquet boundary always contains the strong boundary points.

A function f € A is a peaking function if ||f]| = 1 and for each z € X, either |f(z)] < 1 or
f(z) = 1. If we fix g € X, then P4(z() denotes the set of peaking functions f in A with f(z¢) = 1.

Moreover, if A is a subspace of Cy(X), for an element z € X, we set C, :={f € A: |f(x)|=1=
| f]|}. Besides, for g € A we denote the maximum modulus set of g by M, := {x € X : |g(x)| = ||g]|}.

As mentioned in the introduction, the proofs of the technical lemmas preceding our main result
are based essentially on extensions of Bishop’s Lemma in the context of uniform algebras [3, The-
orem 2.4.1], a result which has been generalized in many directions. Next we include the following

generalizations (given in [8] and [12] respectively) which we shall use in the next sections.

Lemma 2.1. Let A be a uniformly closed function algebra on a locally compact Hausdorff space X,
f € Aand zg € Ch(A). If f(zo) # 0, then there exists a peaking function h € Pa(xg) such that
s € Pa(xo).

Proof. The result can be concluded by the arguments similar to [8, Lemma 2.3], where X is a

compact Hausdorff space. O

Lemma 2.2. Assume that A is a uniformly closed function algebra on a locally compact Hausdor[f
space X and f € A. Let xg € Ch(A) and arbitrary v > 1 (orr > 1 if f(xo) # 0), then there exists
a function h € v||fl|Pa(zo) = {r||fl|k : k € Pa(zo)} such that

|f(@)] + [h(2)] < |f(z0)| + |[h(x0)]
for every x ¢ My, and |f(x)|+|h(x)| = |f(xo)|+|h(x0)| for all x € My,. Consequently, |||f|+|h|||lx =

|f(xo)| + |h(x0)]-

Proof. The proof is exactly the same as that of [12, Lemma 1], where X is a compact Hausdorff

space. U

Let us remark that Lemma 2.1 is a version of the multiplicative Bishop’s Lemma and Lemma 2.2
is the strong version of the additive Bishop’s Lemma (see [7] for further details concerning Bishop’s

Lemma).

3. 1-LINEAR ISOMETRIES BETWEEN FUNCTION ALGEBRAS

In this section we shall assume that A and B are dense subspaces of uniformly closed function
algebras on locally compact Hausdorff spaces X and Y, respectively, and characterize linear (i.e.,

1-linear) isometries T : A — B. It should be noted that although these results can be deduced
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from [1], here we provide new shorter proofs based on Lemma 2.2 in order to give a self-contained

unified vision of this topic. We refer the reader to [5] for a summary on the study of isometries.

Theorem 3.1. Let T : A — B be a linear isometry. Then there exist a nonempty subset Yy of Y,
a continuous surjective map ¢ : Yo — Ch(A), a unimodular continuous function a : Yo — T, such
that T(f)(y) = a(y)f(e(y)) for all f € A and y € Yy. Moreover, a(y) = T(g9)(y) for any g € A with
9(e(y)) = 1.

First note that we can extend easily T : A — B to a linear isometry T : A — B between their
uniform closures. Besides, notice that the Choquet boundary for a linear subspace of continuous
functions on a locally compact Hausdorff space is defined similar to the function algebra case. So
since the Choquet boundary of a subspace equals the Choquet boundary of its uniform closure,
without loss of generality, we can assume that A and B are uniformly closed function algebras.

Before providing the proof of Theorem 3.1, we need several lemmas.

Lemma 3.2. Let x € Ch(A). Then the set T, := (| Mrpy) is nonempty.
feCs

Proof. The proof is the same as that of [1, Lemma 2.2]. O
Lemma 3.3. Let x € Ch(A). If f € A such that f(x) =0, then T(f)(y) =0 for all y € I,.

Proof. Let f € A with f(z) = 0 and y € Z,. Suppose, on the contrary, that T(f)(y) # 0. We
may assume, without loss of generality, that || f|| = 1 and T(f)(y) = «, where 0 < « < 1. Fix a
constant r > 1. By Lemma 2.2, there is a peaking function h € P4(x) such that |||f|+7|h|]| = 7. In
particular, ||f + rAh| = r, where A = T'(h)(y) € T. Hence

r=f+r k| = T(f +rA0)| > |T(f)(y) + 7l =a+r,
which is a contradiction showing that T'(f)(y) = 0. d
Lemma 3.4. If f € A and x € Ch(A), then |T(f)(y)| = |f(z)| for all y € T,.

Proof. Let f € A, x € Ch(A) and y € Z,.. If f(z) = 0, then, by the preceding lemma, T'(f)(y) = 0.
Now let us suppose that f(z) # 0. Since z € Ch(A), there is a peaking function h € C,. If we
define

g(t) := f(t) = f(x)h(t) (t € X),
then g € A and g(x) = 0. So, by Lemma 3.3, 0 = T(g9)(y) = T(f)(y) — f(z)T(h)(y). Hence
T(f)(y) = f(x)T(h)(y). On the other hand, since y € Z, and h € C,, |T(h)(y)| = 1. Therefore,
()W) = £ (). 0

Lemma 3.5. For different points x and =’ in Ch(A), I, N L, = 0.
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Proof. Choose a peaking function f € C,, such that |f(2')| < 1. Now ify € Z,NZ,/, then from Lemma
3.4, it follows that |T'(f)(y)| = |f(x)] = 1 and |T(f)(y)| = |f(2’)| < 1, which is a contradiction.
Thereby, 7, N T, = (). ]

Now we are ready to complete the proof of Theorem 3.1:

Proof. Let Yo := |J Z,. Clearly, Yy # 0, by Lemma 3.2. Define the map ¢ : Yy — Ch(A) by
zECh(A)
o(y) := x if y € Z,. Note that, since for different points z and 2’ in Ch(A4), Z, N Z,» = (), the map

¢ is well-defined. Furthermore, ¢ is surjective because Z, # ) for each x € Ch(A). Meantime, since
for all f € A, |T(f)] =|f o | on Yy and the set {|f|: f € A} separates the points of X, it is not
difficult to check that ¢ is continuous.

Now we define the function a : Yy — T. For this purpose, let y € Yy. Then take f € A with
f(e(y)) = 1 and define a(y) := T(f)(y). Note that the definition is independent of the choice of f
because if f, f' € A and f(p(y)) =1 = f'(p(y)), then f — f" € A with (f — f")(¢(y)) = 0. Hence,
by Lemma 3.3, we conclude that T'(f — f')(y) = 0 and so T'(f)(y) = T'(f')(y). Moreover, by Lemma
3.4, it is evident that |a(y)| = 1.

Next, we give the representation of T. Let f € A and y € Y. The function g := f — f(¢(y))k,
where k is a function in Pa(¢(y)), belongs to A and g(p(y)) = 0. So by Lemma 3.3, T(f)(y) =
Fle)T(k)(y), ie., T(f)(y) = aly)f(e(y))

We finally show the continuity of a. Let yo € Yy and choose f € A such that f(¢(yo)) # 0.
If we define W := {& € Ch(A) : f(x) # 0}, then ¢~1(W) is a neighborhood of yy. Moreover,
a(y) = 2DW. 10lds for all y € = (W). Now from the continuity of % on ¢~ Y(W), it follows

T (foo)(w)
that a is also continuous at yg. O

Remark 3.6. (i) Notice that ¢ sends Ch(T(A)) onto Ch(A). In fact, T : A — T(A) is a bijective
isometry, then the adjoint of T', T* : T(A)* — A* is a bijective isometry. Therefore, ext(T'(A)})
is sent onto ext(A}), where T'(A); and A} are the unit ball of T'(A)* and A*, respectively. Thus,
by Lemma 3.4, it follows easily that ¢(Ch(T'(A))) € Ch(A). Next repeating the same arguments
for T~! and noting that (T-1)* = (T*)7!, finally we conclude that p(Ch(T(A))) = Ch(A). In
particular, if T is surjective, then ¢ is a homeomorphism of Ch(B) onto Ch(A).

(ii) We note that if a map T': A — Cy(Y) is defined by T'(f) = af o ¢ on Yy, where Yy C YV
is a boundary for T'(A4), a is a unimodular continuous function on Yy, and ¢ : Yy — Ch(A4) is a

surjective map, then T is a linear isometry.



4. k-LINEAR ISOMETRIES BETWEEN FUNCTION ALGEBRAS

Let A1, ..., Ax be dense subspaces of uniformly closed function algebras on locally compact Haus-
dorff spaces X1, ..., X, respectively, and let Z be a locally compact Hausdorff space. We recall that

a k-linear map T : Ay X ... x A, —> Cy(Z) is called a multilinear (or k-linear) isometry if

k
N T(frs fi)ll = H WGl ((fry e ) € AL X o X Ap).
=1

In this section we shall deepen in these maps. First note that it is not difficult to extend T :
Ap X ... x A, — Co(Z) to a k-linear isometry T : A; x ... x Ay — Co(Z), where A; is the
uniform closure of A; (i =1,..., k). So, as before, without loss of generality, we can assume each A;
(i =1,...,k) is a uniformly closed function algebra.

Let us recall that for an element x; € X, we set Cy, :={f € A; : |f(x;)| =1 = | f||}- Moreover,

for g € Co(Z), My :={z € Z : |g(z)| = ||g||} stands for the maximum modulus set of g.
Lemma 4.1. Let (z1,...,x;) € Ch(Ay) x ... x Ch(Ag). The set

Torar, =12 € Z:2€ Mpg,,..50) for all (fi,..., fr) € Coy X oo x Oy, }
s nonempty.

Proof. The proof is a modification of the proof of [6, Lemma 3.1]. Since for each (fi,..., fx) €
Cz, X ... X Cy,, the maximum modulus set of T'(f1, ..., fx), Mp(s,,....1,), is @ compact subset of Z,
so it is enough to check that the family {Mrs, . 5) @ (f1,-; f) € Czy X ... X Oy, } has the finite
intersection property. For this, let (f1,..., f}), ..., (f', ..., f¥) be members in Cy, X ... X Cy, . Define

fi= ! ZL I iefl,.. k).

== : ,
Lt flz)™

Clearly, (f1,..., fx) € Cyy X ... X Cy,.. Hence || T(f1, ..., fx)|l = | f1ll---|l fx]l = 1. Then there is a point
2o € Z such that

T s Ji)(20)] -

L= [T o)l = | Y

1<i1,....ix<n fl(xl) . ;Z’“(wk)

Since for each 1 < iy, ...,i, < n, fi* € Cyy, vy f1F € Cyp and || T(f1*, .., £1#)]| = 1, we conclude that
n

IT(f{* .y £7%)(20)| = 1. In particular, z € iol Mqyyi,... 55y Therefore 101 My g5y # 0, as was
to be proved. O

Lemma 4.2. Fizi € {1,...,k} and let (z1,...,25) € Ch(A1) X ... x Ch(Ag). If f = (f1,.- fx) €
Cpy X oo X Oy X Ay X Cyyy ) X oo X Cyy such that fi(x;) =0 and z € I, ... 4, then T(f)(z) = 0.
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Proof. For simplicity, we can take i = 1. Let f = (f1,...,fx) € A1 X Cg, X ... X Cy, such that
fi(z1) = 0 and suppose that there exists zg € Zy,, . », such that T'(f)(z0) # 0. We can assume,
without loss of generality, that ||f1]| = 1 and T'(f)(z0) = «, where 0 < o < 1. Fix a constant r > 1.
By Lemma 2.2, there is a peaking function hy € A; such that hy(z1) =1 and |||f1] +r|h1]]| =7 In
particular, ||fi + rAhi|| = 7, where A = T'(h1, f2, ..., fx)(20) € T. Then we have

r= o+ Al foll- el = 1T (fy + rAR, fo, o )l

while

T(fl + ’I"j\hl7 fa, -, fk)(ZO) = T(fl, fa, s fk)(ZO) + T;\T(hl, fa, s, fk)(Z()) =+,

a contradiction which yields T'(f)(z) =0 for all z € Z,, . »,- O

Lemma 4.3. Let (z1,...,xx) € Ch(A1) X ... x Ch(A) and z € Ly, ... 4, Let also I and J be two
disjoint sets with I # 0 and I U J = {1,...,k}. Assume that for each j € J, h; € Cz,; and for each
1€1, fi € A; with fi(x;) =0, then T(Fy, ..., F)(z) =0, where Fy = fy ift € I and Fy = hy ift € J.

Proof. Let us suppose, contrary to what we claim, that there exists zyp € Z,, ... such that
T(F,...,Fr)(20) # 0. Without loss of generality, we may assume that ||f;|| = 1 for each ¢ € T
and T(Fy, ..., Fx)(z0) = a with 0 < a < 1. Fix a constant r > 1. For each ¢ € I, we can choose, by
Lemma 2.2, a peaking function h; € C,, such that |||fi| + 7|hs||| = 7. In particular, for each i € I
we have || f; + rAh;|| = r, where A = T'(hy, ..., hy)(20) € T.

Let us first suppose that I = {1,2}. Hence, by Lemma 4.2, we can conclude that

T(f1 + 1A, f2 +Tho, sy o i) (20) = T(f1, f2, hay ooy hie) (20) + P AT (R, fo, b, ooy By ) (20)
+ 7T (f1, ha, ha, o hi) (20) + P2 XT (A, ooy hi) (20) = o 4 72
> 7% = || f1 + AR ||| f2 + rha ||| hs]|... |||

= |T(f1 + rAhy, fo + rho, hs, ...he) |,

a contradiction which implies that the result is true when I = {1,2}. Similarly, this result is held
for all the cases where card(I) = 2.
Now we can continue by induction: noting to the above explanation, let us assume that the result

is true for card(I) =1 —1 and 3 < < k. We shall show that the result is held if card(I) = 1. We
7



suppose that card(l) =1 and I = {z1,...,2;}, without loss of generality. If I < k, then we get

b= | fr + A ||| fo + rholl- | fo 4+ vl ] Pl
= | T(f1 + rAh1, fo + Thoy oo fr 4 The, g, ooy ) |
> |T(f1 + ARy, fo +7ha, ooy fi +7hy, higt, - hi) (20)]
=T (fryeos f1, hig1s ooy ) (20) + 7 AT (hy,y oo by ) (20)] = @+ 1,

which is impossible. Therefore, T'(f1, ..., fi, Pi41, .., hx)(2) = 0 for all z € Z,, . ».. Now if | =k,
then I = {x1, ...,z } and

k= ||f1 + ’I“S\h1||||f2 + Thg””fk + Tth = ||T(f1 + Tj\hl,fg +rha, .., fx + Thk)”
Z ‘T(fl + Tj\hlaf? + tha "'7fk +Thk)(20)|
= ‘T(fh ~"7fk)(20) + ’rkS‘T(hla (RS hk)(zo)| =o+ Tka

which is a contradiction showing that T'(f1,..., fx)(z) =0forall z € Z,, .. O

Lemma 4.4. Let (z1,...,xx) and (2}, ...,z},) be distinct points in Ch(A;) x ... x Ch(Ay). Then
le,...,zk me’l,,w% = @

Proof. Contrary to what we claim, assume that there exists 2o € Ty, ... 2, NZy, - Since (1, ..., T)

and (xf,...,z}) are distinct, the set L = {i : 1 < ¢ < k,x; # x} is nonempty. For each i € L, we
can choose a function g; € A; such that g;(x;) = 1 and g;(z}) = 0, and then, by Lemma 2.1,
a peaking function h; € Py, (x;) such that g;h; € Pa,(x;). Now if we let f; = g;h; for every
i € L, then f; € Cy, with fi(z;) = 1 and f;(z;) = 0. Moreover, for each j € {1,...,k} \ L, we
can also choose a peaking function f; € C;. On one side, since (f1,..., fx) € Cp X ... X Cpy,

|T(f1, - fx)(z0)| = 1. On the other side, by Lemma 4.3, T(f1, ..., fx)(z0) = 0, which is impossible.
Therefore, Zy,, .z, N Ly 2 = 0. 0

,,,,,

Theorem 4.5. Suppose that T : Ay X ... x Ay — Co(Z) is a k-linear isometry. Then there exist

a nonempty subset Zy of Z, a continuous surjective map ¢ : Zg — Ch(A1) X ... x Ch(Ag) and a
k

unimodular continuous function a : Zg — T such that T(f1, ..., fx)(z) = a(2) [] fi(mi(e(2))) for
i=1

all (f1,..0 fr) € A1 X ... X A and z € Zy, where m; is the ith projection map.

Proof. Let Zy := {z € Ty, ....ap, : (X1,..,2%) € Ch(A1) x ... x Ch(Aj)} which is a nonempty set,
by Lemma 4.1. Fix (z1,...,2;) € Ch(A41) x ... x Ch(Ax) and h; € C,, with h;(x;) = 1 for each i,
i=1,...,k. Then for each i, 7+ =1, ..., k, we can define an isometry as follows:

Ti(f) =T(h1, oy hiz1, [y Rig1y ey PE).
8



According to Theorem 3.1, there exist a subset Z; of Z, a continuous surjective map p; : Z; —

Ch(A;) such that

Ti(fi)(z) = T(h1, ..., ) (2) fi(pi(2)),  (fi € A,z € Z;).

Namely, Z; D U Zu..w. . zandifze€Zy o0 then ¢;(2) = 2.
z,eCh(A;) ’ ‘
Let (f1,..., fx) € A1 x ... x A. Now for a given z € Z, . ,,, by Lemma 4.3 and using the above

reasonings, we conclude that

0="T(f1 — fi(x1)h1, fo — fo(x2)ho, hs3, ..., hi)(2)
=T(f1, fa, h3y .oy hi)(2) — f1(21)T (R, fo, b3, ..., hi)(2)
— fa(x2)T(f1, hoy hy ooy b)) (2) + f1(z1) fo(22)T (h, ..y hg)(2)
= T(f1, f2; b, ooos i) (2) = fr(@1)Ta(f2)(2) = fa(a2) Ta(f1)(2) + (@) fa(@2) T (has - he) ()
=T(f1, fa, hzy .oy hi)(2) — f1(z1)T (1, ..., i) (2) fa(z2)
= fa(x2)T(ha, ... hie)(2) fr(@1) + f1(@1) fo(22)T (P, - i) (2)

=T(f1, f2; h3, s i) (2) = fi(z1) fo(22)T (R, ..oy By ) (2)-

Thus T'(f1, f2, ha, ..., hi)(z) = T'(ha, ..., hi)(2) f1(z1) f2(z2). By continuing this process and applying

Lemma 4.3, finally we see that

0="T(f1 — fi(z1)h1, ..., fx — fr(zr)he)(2)
=T(f1,. f&)(2) = T(ha, ..., hie)(2) f1(x1) o fro(zk ),

thereby, T'(f1, ..., f&)(2) = T(h1, ... hie)(2) f1(@1)... fio(@k).

Now we define the map ¢ : Zg — Ch(A1) X ... x Ch(Ag) by @©(2) := (x1,...,x%) if 2 € Ty, 4
Since for distinct points (z1,...,zx) and (z,...,z}) in Ch(A;1) X ... x Ch(Ay), Lemma 4.4 yields
Loy, N If’p---@; = (), so the map ¢ is well-defined. Moreover, we can define the unimodular
function a : Zg — T such that if z € Zy then a(z) := T'(hq, ..., hi)(z), where h; € Py, (mi(¢(2)))-
Lemma 4.3 implies that the definition of a(z) is independent of the choice of hq, ..., hj. Besides, from
the above argument, it follows that if z € Zy with ¢(z) = (21, ..., xx) and (f1, ..., fr) € A1 X ... X Ay

then
k k

T(fr, - fi)(2) = a(2) [] filw:) = alz) [ ] filmilp(2))).-

i=1 i=1
Next we prove that ¢ is continuous. Suppose that zg € Zy, ¢(20) = (z1, ..., 2x) and Uy X...x U is a
neighborhood of (z1, ..., x;) in Ch(A1) x ... x Ch(Ag). For each i, i = 1, ..., k, there is a neighborhood

U! of z; in X; with U; = U/ N Ch(4;). Choose a peaking function f; € C,, such that |f;| < % on
9



X \U! (i=1,..,k). Then |T(f1,..., fx)(20)] = 1. Set
Vi (€ Zo: [T(f1 o )G > ).

Clearly V is a neighborhood of zp such that ¢(V) C Uy x ... x Uy because if z € V and ¢(z) =

(21, ...,x},), then

k
5 <T@ = [TIREDI < 1RGD] G =1,0h),
i=1
Hence 2 € U; and so (z,...,2},) € Up X ... X Uy.

To complete the proof, it suffices to check the continuity of a. Let zo € Zy. Then zy € Z,, ... 4,
for a unique (21, ...,zx) in Ch(A;) X ... x Ch(Ayg). For each i, i = 1,..., k, choose a peaking function
fi € Pa,(x;) and take

U, :={x € Ch(A;) : fi(x) # 0}.

Then U = U; X ... X Uy, is a neighborhood of (z1, ..., zx) in Ch(A1) X ... x Ch(A) and consequently
o~ 1(U) is a neighborhood of zy. We have

a(z): T(f177fk)(z)
[T, fi(mi(e(2))

T(f1seesfr)
%

i—1 Jiomiop

20 O

(z € 71 (U)).

So from the continuity of the function on ¢~ 1(U), we conclude that a is continuous at
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