
Journal Name RSCPublishing 

COMMUNICATION 

This journal is © The Royal Society of Chemistry 2012 J. Name., 2012, 00, 1-3 | 1  

Cite this: DOI: 10.1039/x0xx00000x 

Received 00th January 2012, 

Accepted 00th January 2012 

DOI: 10.1039/x0xx00000x 

www.rsc.org/ 

Efficient Passivated Phthalocyanine-Quantum Dot 

Solar Cells 

Vicente M. Blas-Ferrando,
a
Javier Ortiz,

a
 Victoria González-Pedro,

b
 Rafael S. 

Sánchez,
 b

 Iván Mora-Seró,
b
 Fernando Fernández-Lázaro

a
 and Ángela Sastre-

Santos*
,a

 

 

The power conversion efficiency of CdSe and CdS quantum dot 
sensitized solar cells is enhanced by passivation with 
asymmetrically substituted phthalocyanines. The introduction of 
the phthalocyanine dye increases the efficiency up to 45% for 
CdSe and 104% for CdS. The main mechanism causing this 
improvement is the quantum dot passivation. This study highlights 
the possibilities of a new generation of dyes designed to be 
directly linked to QDs instead of the TiO2 electrodes. 
 

Dye-sensitized solar cells (DSSC) have emerged as a low cost 

alternative to silicon.1The most frequently used dyes are ruthenium 

complexes,2porphyrins,3phthalocyanines,4althougheventually 

quantum dots5are attractingmore and more attention. 

Quantum dots (QDs) are nanocrystals of semiconductor materials 

undergoing phenomena of quantum confinement.6 They are heat 

resistant, low cost materials that can efficiently transfer electrons to 

large band gap semiconductorand whoseelectronic properties can be 

tuned by controlling the particle size, shape and 

composition.7Moreover, they are quite promising light harvesting 

materials inDSSC for their ability to generate multiple charge 

carriers8 under high energy irradiation and to inject hot 

electronsallowing to potentially overcome the theoretical limit of 

Shockley-Queisser.9However,the efficiencies achieved with QD-

sensitized solar cells (QDSCs) are much lower (6-7%)10than those 

obtained with DSSC (13%).11 Although the photocurrent is 

comparable in both devices, the voltage and the fill factor for 

QDSCs are lower due to the existence of electron transfer processes 

working against the cell cycle. 
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Various strategies have been used to increase the efficiency of 

QDSC devices, such as doping of the semiconductor with transition 

metal ions12 or the use of plasmon resonances in metallic 

nanoparticles to generate charge carriers in adjacent semiconductor 

materials.13The most extensively used semiconductor quantum dots, 

as CdSe or CdS, only absorb in the visible. If a near infrared-

absorbingdye was attachedto this kind of quantum dots, the resulting 

structure could maximize the absorption of the radiation and, in 

addition, reduce internal recombination,thus enhancing the 

photoinjected charge from the QD in a synergic process.14In this 

way, bilayer electrodes15 sensitized with quantum dots and dyes or 

colloidal quantum dots acting as antennas that funnel absorbed light 

to the dye molecules via Förster resonance energy transfer (FRET) 

have been used.16Alternative strategies such as supersensitization of 

CdSQDs with a near-infrared organic dye17 and sensitization of TiO2 

films with covalently linked squaraine-CdSe quantum dots18 have 

improved the performance of QDSCs.Despite QDSCs and DSSCs 

follow the same working principles; there is a fundamental 

difference between both. QDspresent surface states that may play an 

important role in the recombination process and, consequently, in the 

final device performance.19, 20Photoexcited electrons and holes in 

QDs can recombine through QD surface states before being injected 

reducing the expected device photocurrent.19 On the other hand, 

electrons photoinjected into the TiO2 can also recombine before they 

arrive to the extracting contact. Again, surface states in QDs can 

favor this recombination that reduce the device open circuit 

potential.21In this sense, efficient passivation of QD surface state is 

an strategy commonly employed to enhance QDSCs performance. 
19,21,22 

Phthalocyanines (Pcs) are aromatic macroheterocycles which have 

been used successfully in DSSCs because they absorb intensely in 

the red spectral region, are able to inject into titanium oxide and are 

thermal and photochemicallyverystable compounds.23Theirtendency 

to form aggregates on the TiO2surface, which reduces the efficiency 

of solar cells, can be countered with the introduction ofbulky groups 

in the peripheral24 or apical25positions going to efficiencies up to 

6.5%.26 
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The chemical coordination of QDs to the Pc ring has not received 

much attention. FRET from QDs to different phthalocyanine 

photosensitizers has been demonstrated in a number of 

studies27wherePcs and QDs wereunlinked.28Until now, just a few 

articles have been published where the QDs are covalently linked to 

the Pcs showing efficient FRET29 but no QD-DSSC have been 

studied yet.  

Here we present the improvement inefficiency of QDSCs through 

their passivationwith covently linked phthalocyanines. Our approach 

represents a seminal work for the development of a new generation 

of dyes with multifunctional purposes, completing the light 

absorption range of QDs and, at the same time, passivating QDs 

surface, enhancing consequently the contribution from QD 

sensitization.For this purpose, a new 

bisphthalocyanine(ZnPcS)21containing two asymmetrically 

substituted Pcs has been synthetized (Scheme 1).(ZnPcS)21presents a 

disulfide group for the covalent bindingto QDs and bulky tert-butyl 

substituents to hinder possible aggregation. 

(ZnPcS)21was prepared by acylation of the 

aminoethoxyphthalocyanine230with 4,4'-dithio-bis-benzoyl 

chloride31in96 % yield (Scheme 1). 

Scheme 1Synthesis of bisphthalocyanine(ZnPcS)21 

The UV-vis absorption of the 

bisphthalocyanine(ZnPcS)21represented in Fig. 1a corresponds 

to a non-aggregated metallophthalocyanineexhibiting the 

typical sharp Q band transition at 675 nm, withvibronic replica 

at 610 nm, and a Soret band at around 350 nm. This behaviour 

is quite important for an efective sensitization of the 

dye.23Thenormalized fluorescence spectrum is given in Fig 1a 

(red curve) being roughly mirror symmetric with respect to the 

absorption spectrum. From the intersection of the normalized 

absorption and emission spectra, the zero–zero excitation 

energy (E0–0) is determinedas 1.82eV. 

 

 
Fig. 1 (a) UV-Vis and fluorescence spectra of (ZnPcS)21 in DMF as 
solvent. (b)Cyclic voltammogram (100 mV s-1) of 0.5 mM (ZnPcS)21 in 

benzonitrile as solvent containing 0.10 M of TBAPF6 as a supporting 

electrolyte. 

 

Cyclic voltammetric studies of (ZnPcS)21,performed on a 

benzonitrile solution containing 0.10 M of TBAPF6 as 

supporting electrolyte, showed an oxidation peak at 0.49 Vand 

tworeduction peaks at -1.13V and -1.29 V vs SCE (Fig. 1b).The 

electrochemically calculated HOMO-LUMO gap (Eox-Ered), 

1.63eV, is roughlyin agreement with the E0-0 energy, previously 

inferred from spectroscopic measurements.  

The electrochemical characterization allows to determine the 

energy of the HOMO orbital and, together with the 0-0 

transition energy, the energy of the LUMO orbital. Taking into 

account these values, together with the energy value for the 

conduction band of TiO2 (-4.2eV) and the energy level of the 

polysulfide redox couple (-4.0eV), an energy level diagram can 

be sketched and the driving forces for electron injection and 

regeneration processes evaluated (Figure 2). The LUMO 

position for (ZnPcS)21is higher in energy than the conduction 

band (CB) of the CdSeandCdS QD, which is a fundamental 

requisite in order to achievethe electron injection from the 

excited dye to the QDthermodynamically. 

 

 
Fig. 2 Energy levels of TiO2, CdSe, CdS and (ZnPcS)2. 

Our study began with CdSeQDs. They were prepared by the 

successive ionic layer adsorption and reaction (SILAR) method 

on TiO2substrates, see SI. Half of these electrodes were 

immersed in a solution of the (ZnPcS)21during 24 h while the 

rest were used without this treatment. The comparison of the 

parameters of solar cells assembled with the Pc-

treatedelectrodes and those of solar cellsassembled with the Pc-

untreatedelectrodeswill provide a measure of the efficacy of 

this protocol(Table 1). First, we studied the influence of the 

solvent in the process: chloroform, toluene and DMF were 

tested. Chloroform resulted in the worst results (entry 2). 

Change to toluene provided some improvements in cell 

parameters (entries 3 and 4). DMF, much more polar than the 

previous solvents, was then tested obtaining the best results 

with a significant increase inthe photocurrent and voltage, 

raising the efficiency to 2.9% (entry 5). 

 
Fig. 3 (a)J/V curve of QDSC device. (b)IPCE of device: black line 

CdSe ref, red line CdSe-DMFand green line QD CdSe-ZnPc. 
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Figure 3a shows the J/V curve comparing the Pc-untreatedCdSe 

device as reference, CdSe with DMF and with our CdSe-

(ZnPcS)2 hybrid system. To rule out that the improvements 

were aneffect of the solvent used in the process, the Pc-

untreated reference electrode was treated with DMF (entry 6), 

obtaining a solar cell with an efficiency of 2.22 % (Figure. 3a). 

Higher Voc and Jscwereobtained when(ZnPcS)21was attached to 

the CdSe quantum dot.However, Figure 3b (external quantum 

efficiency versus wavelength)doesnot showthe expected 

improvement in the absorption area of phthalocyanines (600-

700 nm). 

In addition, CdS-based QDSCs were also analyzed using the 

previous methodology. Electrodes were prepared in the same 

way as those ofCdSe. When one of these electrodes wastreated 

with (ZnPcS)21solution in DMF for 24 h, a substantial increase 

in the photocurrent and improved fillfactor and voltage were 

achieved, doubling the cell efficiency (entry 7,8 and Figure 4a). 

Also, we rule out that the improvements were due to the effect 

of the solvent, obtaining a solar cell with an efficiency of 1.5% 

(entry 9, Figure. 4a).In order to discard that the direct 

sensitization of TiO2 by (ZnPcS)21was the major contribution 

to the photovoltaic response, aCdS-QD-free electrode was 

preparedadsorbing directly (ZnPcS)21ontoTiO2 (entry 10). No 

efficiency was observed, ruling out this possibility. 

Figure 4b shows the diagram EQE vs wavelength for these 

cells. A significant increase of the EQE in the area between 300 

and 500 nm is observed, however, it does not occurs the same 

in the area of 600-700 where the phthalocyanine absorbs. To 

make sure that the phthalocyanine is attached to the quantum 

dots, reflectance studies were conducted on the prepared 

electrodes. Figure 5 shows the appearance of the absorption 

band typical of the phthalocyanines confirming theirpresence. 
Fig. 4(a)J/V curve of QDSC device (b) IPCE of device. Black line CdS 

ref, red line CdS with DMF and green line QD CdS-ZnPc. 

 

Table 1 Values obtained from the devices. 
a
λmax=535 nm for CdSe and λmax=440 nm for CdS. 

Fig. 5Absorbancemeasurements of QD CdS ref black line, QD CdS-
(ZnPcS)2 green line. 

 

The observed increase of EQE in the light absorption region 

corresponding toCdS QDs indicates an effective beneficial 

interaction between QDs and dye molecules. We have also 

verified that the change of the absorption from the QDs (350-

575 nm), see Figure 5, for QD CdS-(ZnPcS)2 sample can only 

justify an increase of 10% in the photocurrent, but a much large 

increment of 52%, see Fig. 4b, is obtained. This fact together 

with the absence of EQE at the light absorption region of the 

dye suggest that the main effect of the interaction is the 

passivation of the QD surface.22 

As it has been commented previously, surface states in QDs can 

act as recombination centers of photoexcited electron-hole 

pairs, before electron injection into electrode. Passivation of 

these states increases device IPCE and photocurrent.19 In 

addition, electrons photoinjected into TiO2 can also recombine 

through these QD surface states. This kind of recombination of 

electrons in the TiO2 will move down the TiO2 Fermi level and, 

consequently, the cell photovoltage.21To this extent, passivation 

also enhance photovoltage and FF. 

In conclusion, we have successfully synthesized and 

characterized a new disulfide-bisphthalocyaninedye and we 

have explored its capacity as superpasivatingagents in QDSCs. 

With CdSe QDSC we studied the effect of solvent on the 

process and concluded that the best one was DMF.Pc-treated 

QDSCsshowed an improvement of the photocurrent that was 

not accompanied by a parallel increase of the IPCE in the 

absorption zone of the phthalocyanine. QD:(ZnPcS)2hybrid 

provided a major improvement in photocurrent and voltage, 

concluding that the main effect of QD-dye interaction is the 

passivation of QD surface.Reflectancestudies confirmed the 

link of phthalocyanine molecules to quantum dots. The 

introduction of the phthalocyanine dye increases the efficiency 

up to 45% for CdSe and 104% for CdS.Further efficiency 

increase,currently under study, could be expected from the 

development of new dyes,linked to QDs either directly or 

through a conjugated bridge, which in addition can extend the 

light harvesting region. This study opens the possibility of 

design a new generation of dyes with an adequate 

functionalization to be directly linked to QDs boosting the solar 

cell efficiency by a synergic interaction in several ways, QD 

passivation and extended light harvesting. 
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1 CdSe - - 8.25 422 56 2.00 35 
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