ÍNDICE

1. ANTECEDENTES ... 3
2. DATOS GENERALES DEL EDIFICIO ... 3
 2.1 Ubicación ... 3
 2.2 Tipología y descripción del edificio .. 4
 2.2.1 Planta baja ... 4
 2.2.2 Planta piso 1 ... 5
 2.2.3 Planta piso 2 ... 5
 2.2.4 Planta piso 3 ... 5
 2.2.5 Cubierta .. 6
 2.3 Superficie del edificio ... 7
 2.4 Ocupación del edificio ... 7
3. SITUACIÓN ACTUAL DEL EDIFICIO .. 7
 3.1 Reformas realizadas ... 7
 3.2 Envolvente térmica del edificio ... 9
 3.1.1 Fachadas ... 9
 3.1.2 Medianeras ... 11
 3.1.3 Cubierta .. 12
 3.1.4 Solera ... 12
 3.1.5 Huecos .. 13
4. INSTALACIONES ... 14
 4.1 Calefacción ... 14
 4.1.1 Calderas ... 14
 4.1.2 Distribución ... 14
 4.1.3 Calefactores .. 16
 4.1.4 Control .. 16
 4.2 Instalación de ACS .. 16
 4.2.1 Calderas ... 16
 4.2.2 El acumulador .. 16
 4.2.3 Distribución ... 17
 4.2.4 La demanda ... 17
 4.2.5 Control .. 18
 4.3. Instalación del spa .. 19
 4.3.1 Circuito termostático de la piscina ... 20
 4.3.2 Circuito de la depuradora ... 20
 4.3.3 Circuito de la cascada ... 20
 4.3.4 Circuito de las bañeras ... 21
Auditoría energética y propuesta de medidas de mejora sobre el Hotel Balneario de Villavieja

4.3.5 Circuito de “chorros” .. 21
4.4 Instalación de refrigeración .. 22
4.5 Instalación de ventilación ... 23
4.6 Instalación de iluminación ... 23
 4.6.1 Inventario .. 23
 4.6.2 Potencia instalada ... 23
 4.6.3 Horario de funcionamiento ... 24
4.7 Equipamiento ofimático .. 24
4.8 Ascensores ... 24
4.9 Otros aparatos consumidores de energía................................. 25
5. ANÁLISIS DE LOS DATOS RECOPIRADOS 26
 5.1 Consumo de agua .. 26
 5.2 Consumo de gasoil ... 28
 5.3 Consumo de electricidad ... 32
6. PROPUESTAS DE MEJORA .. 37
 6.1 Propuesta para la mejora en el consumo de agua...................... 37
 6.1.1 Reutilización del agua del spa para las cisternas del w.c. 37
 6.2 Propuestas para la mejora en el consumo de combustible 39
 6.2.1 Instalación de captadores solares para la producción de agua caliente 39
 6.2.2 Instalación de recuperador de calor en el spa para precalentar el agua 51
 6.2.3 Cambio de combustible a gas natural 51
 6.2.4 Distribución de las cargas térmicas 53
 6.2.5 Mejora de la envolvente I: cambio de carpinterías 65
 6.2.6 Mejora de la envolvente II: rehabilitación de la fachada 70
 6.2.7 Manta térmica en la piscina ... 73
 6.3 Propuestas para la mejora en el consumo de electricidad 75
 6.3.1 Implantación de iluminación LED 75
 6.3.2 Optimización de la factura eléctrica 76
 6.3.4 Cambio de ascensor ... 80
 6.3.5 Motores de mayor eficiencia .. 81
7. RESUMEN ... 84
BIBLIOGRAFÍA ... 85
ANEXO I: PLANOS .. 86
ANEXO II: DOCUMENTACIÓN COMPLEMENTARIA 92
 II.1 Documentación técnica de los captadores solares 93
 II.2 Documentación técnica sobre los motores 94
ANEXO III: FOTOGRAFÍAS DEL EDIFICIO 95
1. ANTECEDENTES

Esta auditoría está centrada en el hotel-balneario de Villavieja. Este balneario es el resultado de la agrupación de distintos balnearios de este municipio.

Villavieja es una estación termal con una historia que empieza en la época romana, cuando se descubrió un pozo termal. Pero no fue hasta 1866 cuando empezaron a construir los balnearios. Durante el periodo comprendido entre 1860 y 1920 llegaron a existir hasta 11 balnearios en la localidad, produciéndose una afluencia anual de 11000 personas para recibir tratamientos termales.

Durante la Guerra Civil varios de estos edificios fueron destruidos y tras su finalización se fundó la Agrupación de Balnearios de Villavieja.

Fue en 1995 cuando los actuales propietarios se hicieron cargo del balneario, ellos unificaron tres balnearios en un único edificio y realizaron distintas reformas que veremos más adelante.

2. DATOS GENERALES DEL EDIFICIO

2.1 Ubicación

El edificio se encuentra en el municipio de La Vilavella (39°51’32”N, 0°11’01”O) con una altitud de 38 msnm, a 24 km de Castellón. Concretamente está situado en la plaza de la Vila, número 5, entre la plaza de la Vila y la calle San José.
2.2 Tipología y descripción del edificio

Se trata de un hotel-balneario que consta de un edificio principal y un local de apoyo donde encontramos la lavandería y cámaras frigoríficas.

El edificio principal consta de planta baja donde se sitúa la zona de reunión y tres plantas piso donde encontramos las habitaciones. Es el resultado de la agrupación de tres edificios distinto. Por eso a partir de ahora podemos diferenciar las zonas del edificio por sectores: sector A, B y C.

El local de apoyo es una planta baja.

2.2.1 Planta baja

En la planta baja encontramos la recepción, salones y comedor, cocina, baños, pozo termal y la zona del spa.

<table>
<thead>
<tr>
<th>Zonas</th>
<th>Superficie total (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recepción</td>
<td>18,4</td>
</tr>
<tr>
<td>Salones</td>
<td>174,9</td>
</tr>
<tr>
<td>Comedor</td>
<td>85,2</td>
</tr>
<tr>
<td>Zona de la cocina</td>
<td>60,1</td>
</tr>
<tr>
<td>Pozo termal</td>
<td>9,2</td>
</tr>
<tr>
<td>Spa</td>
<td>97,88</td>
</tr>
<tr>
<td>Aseos</td>
<td>12,21</td>
</tr>
<tr>
<td>Distribuidor</td>
<td>48,15</td>
</tr>
<tr>
<td>Escaleras</td>
<td>19,9</td>
</tr>
</tbody>
</table>
2.2.2 Planta piso 1
En esta planta se sitúan las habitaciones. En el patio exterior encontramos la zona de la caldera del spa. Distinguimos las siguientes superficies:

<table>
<thead>
<tr>
<th>Zonas</th>
<th>Superficie (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zonas comunes</td>
<td>99,21</td>
</tr>
<tr>
<td>Habitaciones</td>
<td>325,8</td>
</tr>
<tr>
<td>Escaleras</td>
<td>19,9</td>
</tr>
<tr>
<td>Aseo</td>
<td>5,14</td>
</tr>
<tr>
<td>Ropero</td>
<td>11,9</td>
</tr>
<tr>
<td>Patio exterior</td>
<td>66</td>
</tr>
</tbody>
</table>

2.2.3 Planta piso 2
Las zonas son las siguientes:

<table>
<thead>
<tr>
<th>Zonas</th>
<th>Superficie (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zonas comunes</td>
<td>99,21</td>
</tr>
<tr>
<td>Habitaciones</td>
<td>325,8</td>
</tr>
<tr>
<td>Escaleras</td>
<td>19,9</td>
</tr>
<tr>
<td>Aseo</td>
<td>5,14</td>
</tr>
<tr>
<td>Ropero</td>
<td>11,9</td>
</tr>
</tbody>
</table>

2.2.4 Planta piso 3
En esta planta se pierde una zona de habitaciones en favor de una terraza común.

<table>
<thead>
<tr>
<th>Zonas</th>
<th>Superficie (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zonas comunes</td>
<td>55,4</td>
</tr>
<tr>
<td>Habitaciones</td>
<td>193,8</td>
</tr>
<tr>
<td>Escaleras</td>
<td>19,9</td>
</tr>
<tr>
<td>Aseo</td>
<td>3</td>
</tr>
<tr>
<td>Ropero</td>
<td>11,9</td>
</tr>
<tr>
<td>Terraza</td>
<td>100</td>
</tr>
</tbody>
</table>
2.2.5 Cubierta

En la cubierta encontramos la sala de las calderas, el cuarto de los ascensores, las unidades exteriores de los equipos de refrigeración y depósitos de agua.
2.3 Superficie del edificio

<table>
<thead>
<tr>
<th></th>
<th>Superficie construida</th>
<th>Superficie útil</th>
<th>Superficie iluminada</th>
<th>Superficie calefactada</th>
<th>Superficie refrigerada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planta baja</td>
<td>820,7 m²</td>
<td>554,5 m²</td>
<td>554,5 m²</td>
<td>427,6 m²</td>
<td>379,4 m²</td>
</tr>
<tr>
<td>Planta primera</td>
<td>355,6 m²</td>
<td>530,7 m²</td>
<td>530,7 m²</td>
<td>498,9 m²</td>
<td>399,7 m²</td>
</tr>
<tr>
<td>Planta segunda</td>
<td>356,6 m²</td>
<td>530,7 m²</td>
<td>530,7 m²</td>
<td>498,9 m²</td>
<td>399,7 m²</td>
</tr>
<tr>
<td>Planta tercera</td>
<td>356,6 m²</td>
<td>530,7 m²</td>
<td>506,3 m²</td>
<td>474,6 m²</td>
<td>375,3 m²</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2146,62</td>
<td>2146,6 m²</td>
<td>2146,6 m²</td>
<td>1900 m²</td>
<td>1554,2 m²</td>
</tr>
</tbody>
</table>

2.4 Ocupación del edificio

El cliente mayoritario del balneario de Villavieja es un cliente de avanzada edad, el cuál se acoge a los programas del IMSERSO de una duración de once días. Esta situación hace posible que el balneario tenga una afluencia constante de clientes durante todo el año.

Tanto el spa como el hotel están en funcionamiento durante todo el año, excepto los días comprendidos entre el 20 de diciembre y el 31 de enero, periodo destinado para hacer reformas, reparaciones y mantenimiento en general.

El hotel dispone de 46 habitaciones, capaces de albergar a 89 ocupantes.

El horario del hotel es de 7:30 a 1:00 y el del spa de 8:00 a 14:00 y de 16:00 a 18:00.

3. SITUACIÓN ACTUAL DEL EDIFICIO

Como se ha dicho el edificio linda con la fachada principal a la Plaza de la Vila y con la otra a la Calle San José. El edificio está orientado al sur-este. Los edificios colindantes tienen la misma altura.

3.1 Reformas realizadas

La primera reforma se llevó a cabo en 1995 donde la acción más destacada fue la instalación de dos ascensores. Más adelante, en 1997 se renovó la zona de las habitaciones que dan a la Calle San José y se realizó la instalación de calefacción central.

Más adelante en 1999 se hizo una reforma integral de la planta baja. En 2002 se actuó sobre la zona central y la terraza. En 2004 se centraron en la
mejora de las habitaciones que dan a la Plaza de la Vila, prueba de ello son las carpinterías de mayor calidad y estanqueidad. Ya en 2010 ampliaron la zona del spa con una piscina.

En la siguiente reforma han previsto desplazar la zona comedor y cocina donde está situado el edificio de apoyo y pasar la zona de lavandería a una planta superior. Como vemos nuestro cliente ha ido ejecutando paulatinamente un plan de reformas sobre cada zona del edificio según iban llegando los fondos para su ejecución. Esto también ha afectado a la distribución de las distintas instalaciones del edificio, que también se han ido ampliando y mejorando.
3.2 Envolvente térmica del edificio

3.1.1 Fachadas

Se han detectado tres tipos distintos de cerramientos verticales.

Fachada tipo 1

Transmitancia térmica: Se ha obtenido a partir de la siguiente fórmula, reflejada en el documento básico HE-1 del Código Técnico de la Edificación.

\[U = \frac{1}{R_{si} + e_1 \frac{1}{\lambda_1} + e_2 \frac{1}{\lambda_2} + \ldots + e_n \frac{1}{\lambda_n} + R_{se}} \]

<table>
<thead>
<tr>
<th>Capa</th>
<th>Espesor (m)</th>
<th>λ (W/mK)</th>
<th>Ri (m²K/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rsi</td>
<td></td>
<td></td>
<td>0,13</td>
</tr>
<tr>
<td>Enlucido de yeso</td>
<td>0,015</td>
<td>0,3</td>
<td>0,05</td>
</tr>
<tr>
<td>Roca porosa</td>
<td>0,59</td>
<td>2,33</td>
<td>0,25</td>
</tr>
<tr>
<td>Enfoscado de cemento</td>
<td>0,015</td>
<td>1,4</td>
<td>0,01</td>
</tr>
<tr>
<td>Rse</td>
<td></td>
<td></td>
<td>0,04</td>
</tr>
<tr>
<td>Transmitancia térmica</td>
<td>2,07</td>
<td></td>
<td>W/m²K</td>
</tr>
</tbody>
</table>

Superficie total: 430 m²
Fachada tipo 2:

Transmitancia térmica

<table>
<thead>
<tr>
<th>Capa</th>
<th>Espesor (m)</th>
<th>λ (W/mK)</th>
<th>R_i (m²K/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{si}</td>
<td></td>
<td></td>
<td>0,13</td>
</tr>
<tr>
<td>Enlucido de yeso</td>
<td>0,015</td>
<td>0,3</td>
<td>0,05</td>
</tr>
<tr>
<td>Ladrillo perforado</td>
<td>0,12</td>
<td>0,8</td>
<td>0,15</td>
</tr>
<tr>
<td>Cámara de aire</td>
<td>0,01</td>
<td></td>
<td>0,15</td>
</tr>
<tr>
<td>Ladrillo hueco</td>
<td>0,01</td>
<td>0,06</td>
<td>0,18</td>
</tr>
<tr>
<td>Enfoscado de cemento</td>
<td>0,015</td>
<td>1,4</td>
<td>0,01</td>
</tr>
<tr>
<td>R_{se}</td>
<td></td>
<td></td>
<td>0,04</td>
</tr>
<tr>
<td>Transmitancia térmica</td>
<td></td>
<td></td>
<td>1,41 W/m²K</td>
</tr>
</tbody>
</table>

Superficie total: 17,6 m²
Fachada tipo 3:

Transmitancia térmica

<table>
<thead>
<tr>
<th>Capa</th>
<th>Espesor (m)</th>
<th>λ (W/mK)</th>
<th>Ri (m²K/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rsi</td>
<td></td>
<td></td>
<td>0,13</td>
</tr>
<tr>
<td>Enlucido de yeso</td>
<td>0,015</td>
<td>0,3</td>
<td>0,05</td>
</tr>
<tr>
<td>Ladrillo perforado</td>
<td>0,12</td>
<td>0,8</td>
<td>0,15</td>
</tr>
<tr>
<td>Enfoscado de cemento</td>
<td>0,015</td>
<td>1,4</td>
<td>0,01</td>
</tr>
<tr>
<td>Rse</td>
<td></td>
<td></td>
<td>0,04</td>
</tr>
<tr>
<td>Transmitancia térmica</td>
<td></td>
<td></td>
<td>2,63 W/m²K</td>
</tr>
</tbody>
</table>

Superficie total: 56,2 m²

3.1.2 Medianeras

Transmitancia térmica:

La medianera tiene la misma sección que la fachada, por tanto su transmitancia térmica será 2,07 W/m²K.

Superficie: 570,94 m²
3.1.3 Cubierta

<table>
<thead>
<tr>
<th>Capa</th>
<th>Espesor (m)</th>
<th>λ (W/mK)</th>
<th>Ri (m²K/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rsi</td>
<td></td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>Enlucido de yeso</td>
<td>0,015</td>
<td>0,3</td>
<td>0,05</td>
</tr>
<tr>
<td>Forjado de bovedilla cerámica</td>
<td>0,21</td>
<td>1,00</td>
<td>0,21</td>
</tr>
<tr>
<td>Hormigón ligero</td>
<td>0,1</td>
<td>0,17</td>
<td>0,59</td>
</tr>
<tr>
<td>Enfoscado de cemento</td>
<td>0,015</td>
<td>1,4</td>
<td>0,01</td>
</tr>
<tr>
<td>Rse</td>
<td></td>
<td></td>
<td>0,01</td>
</tr>
<tr>
<td>Transmitancia térmica</td>
<td></td>
<td></td>
<td>2,63 W/m²K</td>
</tr>
</tbody>
</table>

Superficie: 321,4 m²

3.1.4 Solera

La solera del edificio no está aislada. Tiene un perímetro de 126 y un área de 820,7 m². Para calcular la transmitancia térmica de la solera el documento básico HE-1 establece un parámetro llamado longitud característica B’, con la siguiente expresión.

\[B' = \frac{A}{\frac{1}{2}P} \]

Para nuestro caso, el valor de B’ es 13,02 m. Con este valor acudiremos a la tabla E.3 para extraer el valor final de la transmitancia térmica de la primera columna, donde encontramos los valores relativos a las soleras sin aislar U = 0,39 W/m²K.
Superficie de la solera: 820,7 m².

3.1.5 Huecos
En el hotel encontramos distintos tipos de carpinterías, con multitud de materiales, medidas y acristalamientos distintos. Para simplificar los cálculos hemos obtenido las transmitancias medias de las carpinterías. Para esta estimación hemos calculado la parte opaca por un lado y la parte transparente por otro, multiplicando la superficie de cada parte por su transmitancia correspondiente (U). Estos valores los hemos extraído de la tabla E.10 y E.16 del documento básico HE-1 del Código Técnico de la Edificación y son:

<table>
<thead>
<tr>
<th>Material</th>
<th>Transmitancia (W/m²K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parte opaca</td>
<td></td>
</tr>
<tr>
<td>Aluminio</td>
<td>5,88</td>
</tr>
<tr>
<td>Madera</td>
<td>2,5</td>
</tr>
<tr>
<td>Parte transparente</td>
<td></td>
</tr>
<tr>
<td>Vidrio Simple (4 mm)</td>
<td>5,9</td>
</tr>
<tr>
<td>Vidrio Doble (4+6+4 mm)</td>
<td>3,3</td>
</tr>
</tbody>
</table>
Para simplificar la información mostramos la información según la tipología de carpintería.

<table>
<thead>
<tr>
<th>Carpintería</th>
<th>Σ Superficie (m²)</th>
<th>Σ S x U (W/K)</th>
<th>Um (W/m²K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marco madera Vidrio simple</td>
<td>64,61</td>
<td>286,8</td>
<td>4,4</td>
</tr>
<tr>
<td>Marco madera Vidrio doble</td>
<td>74,25</td>
<td>208,15</td>
<td>2,8</td>
</tr>
<tr>
<td>Marco aluminio Vidrio simple</td>
<td>73,93</td>
<td>435,7</td>
<td>5,9</td>
</tr>
</tbody>
</table>

4. INSTALACIONES

4.1 Calefacción

La instalación de calefacción empieza a funcionar a principios de noviembre hasta finales de marzo. El horario de funcionamiento es de 8:00 a 23:00 según los propietarios del hotel. Esta instalación tiene las siguientes características:

4.1.1 Calderas

Se trata de dos calderas convencionales que 119 y 178 kW de potencia nominal. La principal es la de 119 kW y la de 178 kW entra en funcionamiento cuando la caldera principal no es capaz de abastecer toda la demanda. El rendimiento de ambas calderas está alrededor del 94%. Estas calderas también se encargan de generar la energía necesaria para la producción de agua caliente sanitaria.

Ambas calderas cuentan con quemadores de dos etapas de gasóleo.

4.1.2 Distribución

La instalación de calefacción se ramifica en cuatro circuitos distintos: uno para la planta baja, y tres circuitos más correspondientes con los tres sectores del edificio (cada sector incluye las tres plantas piso). El agua calentada en las calderas transcurre a través de tuberías de cobre que van aisladas al exterior y sin aislar por el interior del edificio. La temperatura del agua en este circuito se estima en unos 80 °C.
Conducciones de los circuitos de calefacción aislados

Sectores: visto en planta
4.1.3 Calefactores
Los calefactores son de chapa de aluminio y el número de elementos varía en función de la superficie de la estancia entre los 8 y los 16 elementos. Se han contabilizado 54 radiadores, con una media de 12 elementos. Suponiendo que cada elemento tiene una potencia de 0,16 kW la potencia total de los radiadores es de 104 kW. Con lo cual la potencia de las calderas es suficiente.

4.1.4 Control
En un principio todos los circuitos estaban controlados por su termostato correspondiente, pero al empezar el funcionamiento de la instalación se detectó que la distribución de calor no era eficiente, en algunas estancias se alcanzaban temperaturas muy elevadas mientras que en otras no se llegaba a la temperatura de confort.

El único circuito donde la regulación funcionaba correctamente era en el de la planta baja. Para poder estabilizar la situación en el resto de circuitos se tomó la decisión de arrancar y parar el funcionamiento de cada circuito durante 15 minutos.

4.2 Instalación de ACS
4.2.1 Calderas
Esta instalación se abastece con las mismas calderas que la instalación de la calefacción. Así pues tenemos dos calderas convencionales: la principal de 119 kW y la de apoyo de 178 kW de potencia nominal. El rendimiento de ambas calderas es del 94%. Ambas calderas funcionan con quemadores de dos etapas alimentados por gasóleo.

4.2.2 El acumulador
Para conservar la temperatura del a 60ºC se utiliza un acumulador de 1500l de capacidad.
Depósito de acumulación

4.2.3 Distribución
La distribución del agua caliente sanitaria se realiza a través de unos conductos de cobre sin aislar. La temperatura del agua en este circuito es de 60°C.

4.2.4 La demanda
La instalación de ACS es capaz de abastecer a 89 personas.

Para un hotel de dos estrellas se establece un consumo de ACS de 40l/día y persona

Esto supone una demanda anual de 12994 m³.
La cantidad de energía anual para ACS se ha calculado mes a mes teniendo en cuenta el número de días, el incremento de temperatura y el consumo diario de agua con la siguiente expresión:

\[E = \frac{m \cdot \Delta T}{860} \]

Siendo \(m \), el volumen de agua (l)

\(\Delta T \): el incremento de la temperatura

Y 860 el factor corrector para obtener el resultado en kWh.

Dado que en enero en el hotel se encuentran en periodo de reformas, no se producirá consumo ni de ACS ni de calefacción.

4.2.5 Control

Para mantener la temperatura del agua caliente estable a 60\(^\circ\)C existe una sonda termostática en el interior del acumulador.
4.3. Instalación del spa

En el spa se realizan tres tratamientos termales relevantes: tratamiento hidrotermal en bañeras a 39ºC, baños en piscina a 37ºC y tratamiento con agua a presión a 42ºC. Estos tratamientos exigen una gran cantidad de energía, pero el hotel dispone de un pozo termal que suministra agua 39ºC durante todo el año.

La instalación del spa presenta el siguiente esquema:
En un primer momento el agua pasa del pozo a un primer depósito gracias a dos bombas de 1,5 kW que se van alternando para mover la cantidad de agua necesaria.

Posteriormente el agua viaja del depósito a hasta la piscina gracias a otras dos bombas de 1,5 kW que trabajan alternativamente. La piscina actúa como un gran tanque de agua. De la piscina nacen varios circuitos:

4.3.1 **Circuito termostático de la piscina**

Llamado así porque mantiene la temperatura del agua de la piscina a 37ºC. Cabe destacar que todos los circuitos que necesitan un aporte general lo consiguen gracias a través de una misma caldera.

4.3.1.a **Caldera**

Se trata de una caldera convencional de 27,9 kW de potencia nominal con un rendimiento estimado del 94% que funciona con un quemador de una marcha alimentado por gasóleo.

4.3.1.b **Intercambiador**

Para mantener la temperatura de la piscina a 37ºC utilizan un intercambiador de placas.

4.3.1.c **Bomba**

La bomba encargada de impulsar el agua de nuevo hacia la piscina es una bomba de 0,2 kW.

4.3.2 **Circuito de la depuradora**

Este circuito únicamente se encarga de hacer pasar el agua a través de una depuradora que añade los compuestos químicos necesarios para mejorar las propiedades hidrotermales del agua. El agua es impulsada gracias a una bomba de 0,8 kW.

4.3.3 **Circuito de la cascada**

Aquí se impulsa el agua desde la piscina hasta una salida de agua con efecto cascada. Para darle al agua la presión necesaria utilizan una bomba de agua de 0,82 kW.
4.3.4 Circuito de las bañeras

El tratamiento hidrotermal realizado en las bañeras requiere una temperatura constante de 39ºC.

4.3.4.a Caldera

Como ya se ha dicho anteriormente, se trata de una caldera convencional de 27,9 kW de potencia nominal con un rendimiento estimado del 94% que funciona con un quemador de una marcha alimentado por gasóleo.

4.3.4.b Intercambiador

Para mantener la temperatura de la piscina a 39ºC utilizan un intercambiador de placas (no es el mismo que el del circuito termostático de la piscina).

4.3.4.c Bombas

Para conducir el agua desde la piscina hasta la parte del intercambiador existe una bomba de 3 kW. Esta bomba se complementa con dos más de 1,5 kW.

4.3.5 Circuito de “chorros”

Llamado así porque produce dos chorros a presión, uno para la zona lumbar y otro para la zona dorsal.

4.3.4.a Caldera

Como ya se ha dicho anteriormente, se trata de una caldera convencional de 27,9 kW de potencia nominal con un rendimiento estimado del 94% que funciona con un quemador de una marcha alimentado por gasóleo.

4.3.4.b Acumulador

En este circuito se utiliza un acumulador de 750l que mantiene la temperatura del agua a 42ºC gracias a una sonda termostática ubicada en su interior.
4.3.4.c Bombas

A fin de conducir el agua desde la piscina hasta el acumulador existe una bomba de 3 kW. Para conseguir suficiente presión a la salida del circuito existen dos bombas de 1,5 kW, una para cada chorro.

4.4 Instalación de refrigeración

El sistema de refrigeración de este edificio está basado en sistemas de tipo split. Cada estancia climatizada tiene su propio split.

La potencia térmica de estos equipos es de 2,7 kW para refrigeración y de 2,8 kW para calefacción, aunque únicamente se utilizan para refrigerar.

En todo el hotel encontramos 53 splits distintos, lo cual suma una potencia máxima de refrigeración de 143,1 kW.
4.5 Instalación de ventilación
Se puede decir que la ventilación en este edificio está condicionada a la apertura manual de las ventanas. Para sacar el aire viciado del interior existen unos conductos en todos los aseos del hotel. La extracción de aire se consigue cuando el aire pasa a través de los orificios de las chimeneas de ventilación, de esta manera se genera una depresión con la que se manda al exterior el aire de las estancias. Cuando las ventanas están cerradas se supone que el aire de renovación llega al edificio por infiltración a través de las carpinterías del mismo.

Este sistema de ventilación es insuficiente.

4.6 Instalación de iluminación

4.6.1 Inventario
Actualmente se está implantando la tecnología LED en el edificio, pero encontramos iluminación de todo tipo y formato, a saber:

<table>
<thead>
<tr>
<th>Tecnología</th>
<th>Formato</th>
<th>Potencia (W)</th>
<th>Usos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Led</td>
<td>Plafón</td>
<td>28</td>
<td>Zonas comunes en planta baja excepto spa</td>
</tr>
<tr>
<td></td>
<td>Tubo</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Fluorescente</td>
<td>Bombilla</td>
<td>66</td>
<td>Habitaciones</td>
</tr>
<tr>
<td></td>
<td>Tubo</td>
<td>20</td>
<td>Spa, escaleras y cocina</td>
</tr>
<tr>
<td>Halógena</td>
<td>Ojo de buey</td>
<td>50</td>
<td>Habitaciones, aseos, distribuidores y resto de estancias</td>
</tr>
</tbody>
</table>

4.6.2 Potencia instalada
La potencia instalada según la tecnología es la siguiente:

<table>
<thead>
<tr>
<th>Tecnología</th>
<th>Potencia instalada (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Led</td>
<td>1,21 kW</td>
</tr>
<tr>
<td>Fluorescente</td>
<td>7,00 kW</td>
</tr>
<tr>
<td>Halógena</td>
<td>4,91 kW</td>
</tr>
<tr>
<td>Total</td>
<td>13,12 kW</td>
</tr>
</tbody>
</table>
4.6.3 Horario de funcionamiento
A partir de las entrevistas realizadas con el personal del hotel se ha determinado que el número de horas de funcionamiento se distribuye de la siguiente manera.

<table>
<thead>
<tr>
<th>Zonas</th>
<th>Nº de horas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salones, comedor, recepción y zonas comunes de la planta baja</td>
<td>16</td>
</tr>
<tr>
<td>Zona de la cocina</td>
<td>10</td>
</tr>
<tr>
<td>Zona del spa</td>
<td>11</td>
</tr>
<tr>
<td>Aseos, distribuidores de las plantas piso escaleras y ropero</td>
<td>1</td>
</tr>
<tr>
<td>Habitaciones</td>
<td>2</td>
</tr>
</tbody>
</table>

El control de la instalación de iluminación es manual en su totalidad, salvando la zona de las escaleras donde funcionan con pulsadores que interrumpen la corriente al transcurrir un minuto.

4.7 Equipamiento ofimático

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Unidades</th>
<th>Potencia (W)</th>
<th>Horas de funcionamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordenador de mesa</td>
<td>1</td>
<td>240</td>
<td>12</td>
</tr>
<tr>
<td>Impresoras</td>
<td>2</td>
<td>400</td>
<td>1</td>
</tr>
<tr>
<td>Portátil</td>
<td>1</td>
<td>65</td>
<td>8</td>
</tr>
</tbody>
</table>

4.8 Ascensores
Para comunicar todas las plantas existen dos ascensores hidráulicos con una potencia nominal de 9 kW funcionando durante 1,5 horas diarias cada uno.
4.9 Otros aparatos consumidores de energía
Aparatos pertenecientes al hotel

<table>
<thead>
<tr>
<th>Planta</th>
<th>Unidades</th>
<th>Máquina</th>
<th>Potencia (W)</th>
<th>Horas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baja</td>
<td>1</td>
<td>Televisor</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Heladora</td>
<td>650</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Cámaras frigoríficas</td>
<td>50</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Mini bar</td>
<td>60</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Lavavajillas</td>
<td>420</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Horno eléctrico</td>
<td>10100</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Horno 1 spa</td>
<td>1000</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Horno 2 spa</td>
<td>700</td>
<td>10</td>
</tr>
<tr>
<td>1ª, 2ª y 3ª</td>
<td>46</td>
<td>Televisores</td>
<td>45</td>
<td>1</td>
</tr>
</tbody>
</table>

Aparatos pertenecientes al edificio de apoyo

<table>
<thead>
<tr>
<th>Máquina</th>
<th>Unidades</th>
<th>Potencia (kW)</th>
<th>Horas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lavadora A</td>
<td>2</td>
<td>2,1</td>
<td>1,5</td>
</tr>
<tr>
<td>Lavadora A++</td>
<td>1</td>
<td>2,1</td>
<td>3</td>
</tr>
<tr>
<td>Lavadora A+++</td>
<td>1</td>
<td>2,1</td>
<td>3</td>
</tr>
<tr>
<td>Secadora</td>
<td>3</td>
<td>3,39</td>
<td>3</td>
</tr>
<tr>
<td>Plancha industrial</td>
<td>1</td>
<td>3,4</td>
<td>1,5</td>
</tr>
<tr>
<td>Secadora industrial</td>
<td>1</td>
<td>18,5</td>
<td>1,75</td>
</tr>
<tr>
<td>Cámara pequeña</td>
<td>3</td>
<td>0,2</td>
<td>24</td>
</tr>
<tr>
<td>Cámara grande</td>
<td>4</td>
<td>0,15</td>
<td>24</td>
</tr>
</tbody>
</table>