
	
  
	
  
	
  
	
  
	
  
 
 
Título artículo / Títol article: 
 
 

	
  

Reflexivity	
  in	
  precompact	
  groups	
  and	
  extensions	
  

	
  	
  
 
Autores / Autors 
 
 

	
  
Galindo	
  Pastor,	
  Jorge	
  ;	
  Tkachenko,	
  Mikhail	
  ;	
  
Bruguera,	
  Montserrat	
  ;	
  Hernández,	
  Constancio	
  	
  
	
  

 
Revista: 
 
 

	
  
Topology	
  and	
  its	
  Applications	
  Volume	
  163,	
  15	
  
February	
  2014	
  

 
Versión / Versió:  

	
  
Preprint	
  de	
  l’autor	
  
	
  

 
Cita bibliográfica / Cita 
bibliogràfica (ISO 690): 
 
 

	
  
GALINDO,	
  J.,	
  et	
  al.	
  Reflexivity	
  in	
  precompact	
  
groups	
  and	
  extensions.	
  Topology	
  and	
  its	
  
Applications,	
  2014,	
  163:	
  112-­‐127.	
  

 
url Repositori UJI: 
 
 

	
  
http://hdl.handle.net/10234/125210	
  

	
  



REFLEXIVITY IN PRECOMPACT GROUPS AND EXTENSIONS

J. GALINDO, M. TKACHENKO, M. BRUGUERA, AND C. HERNÁNDEZ

Abstract. We establish some general principles and find some counter-examples con-

cerning the Pontryagin reflexivity of precompact groups and P -groups. We prove in

particular that:

(1) A precompact Abelian group G of bounded order is reflexive iff the dual group G∧

has no infinite compact subsets and every compact subset of G is contained in a

compact subgroup of G.

(2) Any extension of a reflexive P -group by another reflexive P -group is again reflexive.

We show on the other hand that an extension of a compact group by a reflexive ω-

bounded group (even dual to a reflexive P -group) can fail to be reflexive.

We also show that the P -modification of a reflexive σ-compact group can be non-

reflexive (even if, as proved in [20], the P -modification of a locally compact Abelian

group is always reflexive).

1. Introduction

The papers [1, 19, 20, 21] have unveiled that the duality properties of the class of pre-

compact groups are more complicated than expected. The following theorem summarizes
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some of the known facts that concern the duality of precompact groups, see below for

unexplained terminology.

Theorem 1.1. Let G be an Abelian group and let τH be a precompact topology on G induced

by some group of homomorphisms H ⊂ Hom(G,T). The topological group (G, τH)∧ dual

to the precompact group (G, τH) can be:

(1) a discrete group, as for instance when H is countable (see [3] and [9]) or (G, τH)

is the Σ-product of uncountably many copies of the discrete group Z(2) (this can

be deduced from (the proof of) Lemma 27.11 of [5], see Lemma 5.2 below). In this

case (G, τH) is not reflexive.

(2) a nondiscrete P -group. This is the case when when (G, τH) is the ω-bounded group

that arises as the dual of a reflexive P -group, as those constructed in [20] and [21].

Obviously (G, τH) is reflexive in this case.

(3) a precompact noncompact group, as is the case of the infinite pseudocompact groups

with no infinite compact subsets constructed in [19] and [1]. These groups are

reflexive.

(4) a compact group, as happens when H = Hom(G,T), the family of all homomor-

phisms of G to T.

The bases on which the reflexivity of precompact groups stands remain elusive so far.

In this paper we give a first insight to this issue by establishing some general facts and

giving some counterexamples to what could be regarded as reasonable generalizations of

known results. We prove in Proposition 2.10 that a precompact Abelian group of bounded

order is reflexive if and only if the compact subsets of the dual group G∧ are finite and

every compact subset of G is contained in a compact subgroup.

We will especially address the behavior of reflexivity under extensions in precompact,

ω-bounded, and P -groups. We recall that the class of P -groups is naturally linked to that

of precompact groups through duality since, by [20, Lemma 4.1], the dual group G∧ of

every P -group G is ω-bounded and hence precompact.
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Our starting point in this regard is the fact that an extension of a reflexive group by a

compact group is again reflexive provided that the dual of the extension separates points

of the extension (see [6, Theorem 2.6]). We show in Example 4.3 that an extension of a

compact group by a reflexive precompact (even ω-bounded) group may be non-reflexive.

In Corollary 3.5 we prove, in contrast, that an extension of a reflexive P -group by another

reflexive P -group is always reflexive.

Answering a question in [20] we prove in Section 5 that, while the P -modification of an

LCA group is always reflexive, the P -modification of a reflexive σ-compact group can fail

to be reflexive.

1.1. Notation and terminology. All groups considered here are assumed to be Abelian.

A character of a topological group G is a continuous homomorphism of G to the circle

group T = {z ∈ C : |z| = 1} when the latter is considered as a subgroup of in the complex

plane C with its usual topology and multiplication. The group G∧ of all characters of G

with the pointwise multiplication is called the dual group or simply the dual of G. The

dual group G∧ carries the compact-open topology τco defined as follows.

Put T+ = {z ∈ T : Re(z) ≥ 0}. For a nonempty set K ⊂ G, we define

KB =
{
χ ∈ G∧ : χ(K) ⊂ T+

}
.

The collection of sets {KB : K ⊂ G, K is compact} forms a neighborhood basis at the

identity of G∧ for the compact-open topology τco. Let us note that the sets KB are not

necessarily open in (G∧, τco) since T+ is not open in T. If, instead of T+, we use a smaller

neighborhood U of 1 in T to construct the sets KB, the resulting sets will also form a

neighbourhood basis at the identity for the compact-open topology τco.

The subgroup

K⊥ =
{
χ ∈ G∧ : χ(K) = {1}

}
of G∧ is called the annihilator of a set K ⊂ G. If B ⊂ G∧, we will also find useful to refer

to the set BC = {x ∈ G : χ(x) ∈ T+ for all χ ∈ B}.
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A subset A of a topological group G is called quasi-convex if A = (AB)C. If quasi-convex

sets in G form a neighborhood base of the neutral element in G, the group G will be called

locally quasi-convex [3].

The bidual group of G is G∧∧ = (G∧)∧. The evaluation mapping αG : G → G∧∧ is

defined by

αG(x)(χ) = χ(x),

for all x ∈ G and χ ∈ G∧. It is easy to see that αG is a homomorphism. If it is a

topological isomorphism of G onto G∧∧, the group G is called reflexive. Every reflexive

group is locally quasi-convex [3, Proposition 6.6].

Let H be a subgroup of a topological group G. We say that H dually embedded in

G if each continuous character of H can be extended to a continuous character of G. A

subgroup H of a topological group G is said to be h-embedded into G provided that any

homomorphism ϕ of H to an arbitrary compact group K is extendable to a continuous

homomorphism ϕ̃ : G → K. Note that if H is an h-embedded subgroup of G, then any

homomorphism of H to a compact group is continuous. Note also that every h-embedded

subgroup H of G is dually embedded in G.

Let N be a closed subgroup of a topological group G. The group G is usually called

an extension of G/N by the group N . For example, every feathered (equivalently, almost

metrizable) Abelian group is an extension of a metrizable group by a compact group (see

[2, Theorem 4.3.20]).

A space X is called ω-bounded provided the closure of every countable subset of X is

compact. It is clear that every ω-bounded space is countably compact, but not vice versa.

A Tychonoff space is pseudocompact if every continuous real-valued function on the

space is bounded. According to [14, Theorem 1.2], a precompact topological group H

is pseudocompact iff G intersects every non-empty Gδ-set in the Răıkov completion %H

of H. Every pseudocompact topological group is precompact [14, Theorem 1.1]. Hence

all ω-bounded and countably compact groups are precompact. By a well-known theorem
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of Comfort and Ross in [13], a topological group (G, τ) is precompact if and only if the

topology τ of G is the topology τH generated by a group of characters H ⊂ Hom(G,T).

By a protodiscrete group we understand a topological group having a basis of neighbor-

hoods of the identity consisting of open subgroups. Protodiscrete groups are also known

as linear groups. Evidently, protodiscrete Abelian groups are locally quasi-convex.

A P -space is a space in which every Gδ-set is open. A P -group is a topological group

which is a P -space. According to [2, Lemma 4.4.1], every P -group is protodiscrete.

Given a space X, the P -modification of X, denoted by PX, is the underlying set X

endowed with the topology whose base consists of Gδ-sets in the original space X. It is

clear that the P -modification of a topological group is again a topological group.

Let A denote a non-empty index set and let, for each α ∈ A, Gα be a compact group

with identity eα. Given x ∈
∏
α∈AGα, we put

supp(x) = {α ∈ A : xα 6= eα},

∑∏
α∈A

Gα = {x ∈
∏
α∈A

Gα : | supp(x)| ≤ ω},

and ⊕
α∈A

Gα = {x ∈
∏
α∈A

Gα : | supp(x)| < ω}.

It is clear that
∑∏

α∈AGα is a dense ω-bounded subgroup of
∏
α∈AGα (see [2, Proposi-

tion 1.6.30]). In particular, the group
∑∏

α∈AGα is countably compact. This subgroup

of
∏
α∈AGα is called the Σ-product of the family {Gα : α ∈ A}. When Gα = G for all

α ∈ A, we use the symbol ΣGA instead of
∑∏

α∈AGα. The group ⊕α∈AGα is usually

known as the direct sum (and also as the σ-product) of the family {Gα : α ∈ A}.

2. On the duality of precompact Abelian groups

In this section we collect several general results concerning the duality theory of precom-

pact groups. Some of them appear in the literature, while some others might be known to

specialists. It seems nonetheless convenient to have them collected here, as they prove to
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be useful in later sections (Corollary 2.11, for instance, is essential in the proof of Example

4.3, one of the main results of the paper).

Lemma 2.1. If the family G∧ separates elements of the group G, then αG : G → G∧∧ is

a monomorphism.

Proof. If g ∈ G and g 6= 0G, then there exists χ ∈ G∧ such that χ(g) 6= 1 or, equivalently,

αG(g)(χ) 6= 1. Hence αG(g) is distinct from the neutral element of G∧∧ and αG is a

monomorphism. �

Lemma 2.2. Every subgroup L of a precompact group G is dually embedded.

Proof. Let %G be the Weil completion of G and H be the closure of L in %G. Then H is

a closed subgroup of the compact Abelian group %G, so [2, Proposition 9.6.2] implies that

H is dually embedded in %G. By [2, Proposition 3.6.12], the dense subgroup L of H is

dually embedded in H. Hence L is dually embedded in %G and in G. �

Proposition 2.3. Let G be a topological group. If each compact subset of G is contained

in a reflexive, dually embedded subgroup, then αG is onto.

Proof. Let Ψ ∈ G∧∧ be an element of the bidual group. Then there is a compact subset

K ⊂ G such that KB ⊂ Ψ−1(T+). By hypothesis there is a reflexive dually embedded

subgroup L of G with K ⊂ L. Since L⊥ = LB ⊂ KB we have that L⊥ ⊂ ker Ψ. Since L

is dually embedded, this implies that Ψ factorizes through L̂. In other words, there is a

continuous homomorphism ΨL : L̂→ T that, denoting by R the canonical restriction map

of G∧ to L∧, makes the following diagram commute.

G∧
R //

Ψ

  

L∧

ΨL

~~
T

Notice that R is a continuous surjective homomorphism, while the continuity of ΨL follows

from the inclusion K ⊂ L. Since L is reflexive, ΨL = αL(g) for some g ∈ L. This means

that Ψ = αG(g). Indeed, if χ ∈ G∧ then Ψ(χ) = ΨL(χ�L) = χ�L (g) = χ(g). �
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The applicability of Proposition 2.3 in our context is enhanced by the following fact.

Lemma 2.4 (S. Hernández and S. Macario, [24]). If G is a pseudocompact group, then

G∧ has no infinite compact subsets.

Proof. Let H be a subgroup of Hom(G,T) that induces the topology of G. By [24, Propo-

sition 3.4], every countable subgroup of (H, TG) carries the finest precompact topological

group topology, where TG is the topology (on H) of pointwise convergence on elements of

G. This implies that (H, TG) cannot contain infinite compact subsets, see [17]. The same

is true, a fortiori, for G∧. �

Corollary 2.5. Let G be a pseudocompact group. If every compact subset of G is contained

in a compact subgroup of G, then G is reflexive.

Proof. Since G is pseudocompact (hence precompact), G∧ separates elements of G. There-

fore, Lemma 2.1 shows that αG is a monomorphism. By Lemma 2.2, all subgroups of G

are dually embedded. Hence Proposition 2.3 implies that αG is a group isomorphism.

Since, by Lemma 2.4, G∧∧ carries the topology of pointwise convergence on elements of

G∧, just as G does, this isomorphism is easily seen to be a homeomorphism. The group

G is therefore reflexive. �

Proposition 2.6. If G is precompact and αG is onto, then every closed metrizable sub-

group of G is compact.

Proof. Let N be a metrizable subgroup of G. If %N denotes the completion of N we have,

as a consequence of the Auenhofer–Chasco theorem (see [3] or [9]) that N∧∧ = %N .

If some closed metrizable subgroup N of G is not compact, there is Ψ ∈ N∧∧ with

Ψ /∈ αN (N). Define now ΨG : G∧ → T by ΨG(χ) = Ψ(χ�N ) for each χ ∈ G∧. Then

ΨG ∈ G∧∧. Since αG is onto by hypothesis, there must be g ∈ G with ΨG = αG(g). As N

is closed it follows that g ∈ N , for otherwise there is χ ∈ G∧ with χ�N = 1 and χ(g) 6= 1

yielding that χ(g) = αG(g)(χ) = ΨG(χ) = Ψ(χ�N ) = 1. But, since g ∈ N , this implies

Ψ = αN (g) ∈ αN (N), against our choice of Ψ. �
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Proposition 2.7. Let G be a precompact topological group such that G∧ is a protodiscrete

group with no infinite compact subsets. Then G is reflexive if and only if every compact

subset of G is contained in a compact subgroup of G.

Proof. Observe that the general hypothesis implies that αG is a topological isomorphism

of G onto a subgroup of G∧∧.

Sufficiency: If every compact subset of G is contained in a compact subgroup of G,

then αG is onto by Lemma 2.3.

Necessity: Suppose that G is reflexive and let K be a compact subset of G. Since KB is

a neighbourhood of the identity of G∧, there is an open subgroup N of G∧ with N ⊂ KB.

Now αG(K) ⊂ KBB ⊂ N⊥ and N⊥ is a compact subgroup of G∧∧ = G, for N is open

in G∧ (see [27, Lemma 2.2]). Thus K is contained in the compact subgroup α−1
G (N⊥) of

G. �

Corollary 2.8. Let G be a precompact topological group such that G∧ is a P -group. Then

G is reflexive if and only if every compact subset of G is contained in a compact subgroup

of G.

Proof. Clearly all compact subsets of a P -group are finite. Since every P -group is pro-

todiscrete [2, Lemma 4.4.1], the conclusion follows from Proposition 2.7. �

The next Lemma can also be deduced from Proposition 2.1 of [4].

Lemma 2.9. If G is a precompact group of bounded order, then G∧ is a protodiscrete

group.

Proof. Let n be the exponent of G. Choose a neighbourhood V of 1 in T not containing

n-roots of 1 other than 1 itself. Then the equality {χ ∈ G∧ : χ(K) ⊂ V } = K⊥ holds for

every compact set K ⊂ G. These sets form a basis of open neighbourhoods of the identity

in G∧ and each of them is evidently a subgroup of G∧. �

Proposition 2.10. Let G be a precompact group of bounded order. Then G is reflexive if

and only if it has the following two properties:
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(1) G∧ has no infinite compact subsets.

(2) Every compact subset of G is contained in a compact subgroup of G.

Proof. If G is reflexive and K ⊂ G∧ is compact, then K is finite by [1, Proposition 2.7].

By Lemma 2.9, G∧ is protodiscrete. Hence (2) follows from Proposition 2.7.

Suppose conversely that (1) and (2) hold. Then, by Lemma 2.9, G satisfies the hypoth-

esis of Proposition 2.7 and is therefore reflexive. �

Combining Lemma 2.4 and Proposition 2.10 we deduce the following:

Corollary 2.11. A pseudocompact group G of bounded order is reflexive if and only if

each compact subset of G is contained in a compact subgroup of G.

Remark 2.12. Proposition 2.10 is false for groups of infinite exponent. It suffices to con-

sider an infinite torsion-free pseudocompact group G without infinite compact subsets

(see Corollary 5.6 of [19]). Such a group is reflexive by (3) of Theorem 1.1, but it cannot

contain any nontrivial compact subgroup.

3. Some extension results

We say that P is a three space property if for every Hausdorff topological group G and

every closed invariant subgroupN ofG such that bothN andG/N have P, the groupG has

P as well. It is known, on one hand, that compactness, connectedness, precompactness,

pseudocompactness, Răıkov completeness, etc., are all three space properties. On the

other hand, Lindelöfness, normality, having a countable network, countable compactness,

and many others, fail to be three space properties (see [8] for a detailed discussion on the

subject).

We have already mentioned in the introduction that extensions of reflexive groups by

compact groups preserve reflexivity (provided that extensions are MAP groups, i.e., their

dual groups separate points). However, we will see in Section 4 that an extension of a

compact group by a reflexive (even ω-bounded) group may fail to be reflexive. It is worth

noting that extensions preserve the class of precompact topological groups [12, Theorem

6.3], and that all precompact groups are MAP groups.
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Therefore reflexivity is not a three space property even among ω-bounded groups. The

situation is completely different for the class of P -groups as we now set on to show. First

we need two auxiliary facts.

Lemma 3.1. Let H be a closed subgroup of a topological Abelian group G. If the groups

H and G/H are protodiscrete, so is G.

Proof. Take an arbitrary neighborhood U of the neutral element e in G and choose another

neighborhood V of e with V + V ⊂ U . Since H is protodiscrete, there exists an open

subgroup C of H with C ⊂ H ∩ V . Let W be an open symmetric neighborhood of e in G

such that W ⊂ V and (W +W +W ) ∩H ⊂ C.

Denote by π the quotient homomorphism of G onto G/H. Since G/H is protodiscrete,

one can find an open subgroup K of G/H satisfying K ⊂ π(W ). We claim that N =

π−1(K) ∩ (W + C) is an open subgroup of G with N ⊂ U . The set N is open in G since

K is open in G/H and W is open in G. It is also clear that N ⊂ W + C ⊂ V + V ⊂ U .

Therefore, to finish the proof, it suffices to verify that N is a subgroup of G.

First we note that N is symmetric, and C ⊂ N (observe that C ⊂ H). In fact, our

definition of N implies that N + C = N . We then take arbitrary elements x1, x2 ∈ N .

There exist w1, w2 ∈ W and c1, c2 ∈ C such that xi = wi + ci for i = 1, 2. Note that

π(N) = K ∩ π(W + C) = K ∩ π(W ) = K. Since K is a subgroup of G/H, we see that

π(x1 + x2) = π(x1) + π(x2) ∈ K. Hence there exists x3 ∈ N such that π(x3) = π(x1 + x2)

and we can find h ∈ H such that x1 + x2 = x3 + h. Choose w3 ∈W and c3 ∈ C such that

x3 = w3 + c3. Then w1 + w2 − w3 = h − c1 − c2 + c3, so the element h − c1 − c2 + c3 is

in (W + W + W ) ∩ H ⊂ C. In its turn, this implies that h ∈ C. Therefore, x1 + x2 =

x3 + h ∈ N + C = N . This shows that N is a subgroup of G and finishes the proof. �

Proposition 3.2. Let G be a topological group and H be a closed subgroup of G. Suppose

that both H and G/H are reflexive, protodiscrete, and contain no infinite compact subsets.

If K ⊂ G∧ is compact, then there is an open subgroup N of G with K ⊂ N⊥.
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Proof. Let K be a compact subset of G∧. Denote by j the natural embedding of H to G.

We consider the exact sequences

H
j

// G
π // G/H

and

(G/H)∧
π̂ // G∧

̂
// H∧.

Then ̂(K) is a compact subset of H∧. Since H is reflexive and protodiscrete, there is an

open subgroup P of H such that ̂(K) ⊂ P⊥H , where P⊥H is the annihilator of P in H∧.

This implies that K ⊂ P⊥G , with P⊥G the annihilator of P in G∧.

Let now P̃ be an open subgroup of G with P̃ ∩H = P (here we use the protodiscreteness

of G provided by Lemma 3.1) and consider the sequence of mappings

P̃
πP // (P̃ +H)/H

σ // P̃ /P.

Here πP is the quotient homomorphism and σ is the obvious group isomorphism given by

the third isomorphism theorem. Since P̃ is open in G, σ is a topological isomorphism.

We have the following dual sequence:

(
P̃ /P

)∧ σ̂ //
(

(P̃ +H)/H
)∧ π̂

P // P̃∧ .

As neither P̃ nor (P̃ +H)/H have infinite compact subsets, π̂P (and hence also π̂P ◦ σ̂) is

a topological isomorphism onto P⊥, the annihilator of P in P̃∧.

Finally, denote by R : G∧ → P̃∧ the restriction homomorphism dual to the inclusion

of P̃ into G. Since K ⊂ P⊥G , R(K) is contained in the image of π̂P . Then π̂−1
P (R(K))

is a compact subset of the dual of the group (P̃ + H)/H. Notice that (P̃ + H)/H is

reflexive as an open subgroup of the reflexive group G/H [6, Theorem 2.3]. Since the

former group is protodiscrete, there is an open subgroup N of P̃ (hence of G) such that

π̂−1
P (R(K)) ⊂ πP (N)⊥.

We finally claim that K ⊂ N⊥. To that end, let χ ∈ K and x ∈ N be arbitrary

elements. Since ̂(K) ⊂ P⊥H , there is some χ̃ ∈
(
P̃ /P

)∧
with R(χ) = (σ ◦ πP )∧(χ̃). But
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then σ̂(χ̃) ∈ π̂−1
P (R(K)) and, recalling that π̂−1

P (R(K)) ⊂ πP (N)⊥, we see that

σ̂(χ̃)(πP (x)) = 1. (1)

In addition,

σ̂(χ̃)(πP (x)) = π̂P

(
σ̂(χ̃)

)
(x) = (σ ◦ πP )∧(χ̃)(x) = R(χ)(x) = χ(x). (2)

Equalities (1) and (2) show that χ(x) = 1 for all x ∈ N and χ ∈ K. Hence K ⊂ N⊥. �

Corollary 3.3. Let H be a closed subgroup of a topological group G and assume that

H and G/H contain no infinite compact subsets. If both H and G/H are reflexive and

protodiscrete, then G is reflexive and protodiscrete.

Proof. It follows from our assumptions about H and G/H that all compact subsets of the

group G are finite, while Lemma 3.1 implies that G is protodiscrete and, therefore, locally

quasi-convex.

Take a basic open neighborhood of the neutral element in G∧∧ of the form KB, where

K is a compact subset of G∧. By Proposition 3.2, there exists an open subgroup N of G

such that K ⊂ N⊥. Then αG(N) ⊂ (N⊥)B ⊂ KB, so αG is continuous.

Since G is locally quasi-convex, αG is necessarily injective and open as a mapping onto

αG(G) [3, Proposition 6.10]. Finally, G∧ carries the topology of pointwise convergence on

elements of G since G does not have infinite compact subsets and, as a consequence, αG

is surjective (apply [13, Theorem 1.3]). We conclude that G is reflexive. �

In Corollary 3.5 below we show that the property of being a reflexive P -group is closed

under extensions. Let us first establish that the class of P -groups behaves similarly:

Lemma 3.4. Suppose that H is a closed subgroup of a topological (not necessarily Abelian)

group G and that both H and G/H are P -groups. Then G is also a P -group.

Proof. Let π : G→ G/H be the quotient homomorphism. Denote by τ the topology of G

and let τ̃ be the P -modification of the topology τ . It is clear that τ̃ is finer than τ and

that G̃ = (G, τ̃) is again a topological group. In particular, H is closed in G̃. Since H is
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a P -group, we see that τ̃ �H = τ �H. Similarly, since G/H is a P -group, the quotient

groups G̃/H and G/H carry the same topology, i.e., τ̃ /H = τ/H. By [15, Lemma 1], this

implies that τ̃ = τ , so G is a P -group. �

Corollary 3.5. If H is a closed subgroup of a topological group G and both H and G/H

are reflexive P -groups, then so is G.

Proof. It follows from Lemma 3.4 that G is a P -group. Notice that P -groups are protodis-

crete [2, 4.4.1 (a)] and have no infinite compact subsets [22, 4.K.2]. Hence G is reflexive

by Corollary 3.3. �

4. Extending compact groups by reflexive groups

In this section we present several examples of non-reflexive extensions of compact groups

by ω-bounded groups. Let us start with two lemmas.

Lemma 4.1. Let φ : H1 → H2 be a continuous homomorphism of topological groups and

Gr(φ) = {(x, φ(x)) : x ∈ H1} be the graph of φ considered as a subgroup of H1 ×H2. If L

is a dense subgroup of H2, then the subgroup G = Gr(φ) +N of H1 ×H2 is an extension

of H1 by L, where N = {e} × L and e is the neutral element of H1. If L is Gδ-dense in

H2, then G is Gδ-dense in H1 ×H2.

Proof. It is easy to see thatN = G∩({e}×H2), soN is a closed subgroup ofG topologically

isomorphic to L. Since N is dense in {e} × H2, it follows from [23, Lemma 1.3] that

the restriction to G of the projection π : H1 × H2 → H1 to the first factor is an open

homomorphism of G onto H1. Therefore, G/N ∼= H1.

Finally, suppose that L is a Gδ-dense subgroup of H2 and let V1×V2 be a non-empty Gδ-

subset of H1×H2. Take x ∈ V1; by the Gδ-density of L there must be y ∈ L∩(φ(x)−1+V2).

Then (x, φ(x) + y) ∈ G ∩ (V1 × V2) and hence G is Gδ-dense in H1 ×H2. �

Lemma 4.2. Let P = PZ(2)c be the P -modification of the compact group Z(2)c. There is

a topological monomorphism j : P∧ → Z(2)2c such that j(P∧) ∩ ΣZ(2)2c = {e}.
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Proof. Let A be a maximal independent subset of P . Denote by jA the restriction ho-

momorphism of P∧ to Z(2)A, jA(χ) = χ �A for each χ ∈ P∧. We claim that jA is a

topological isomorphism of P∧ onto the dense subgroup jA(P∧) of Z(2)A.

Indeed, jA is a monomorphism since A generates the group P algebraically. Since

the compact subsets of P are finite, P∧ is a topological subgroup of Z(2)P . Hence the

continuity of jA follows from the continuity of the projection of Z(2)P to Z(2)A. Let us

show that jA is open as a mapping of P∧ onto the subgroup jA(P∧) of Z(2)A. Given a

neighborhood U of the neutral element in P∧, we can find elements x1, . . . , xn in P such

that

V = {χ ∈ P∧ : χ(xi) = 1 for each i = 1, . . . , n} ⊂ U.

For every i ≤ n, take elements ai,1, . . . , ai,ki ∈ A such that xi = ai,1 · · · · · ai,ki and let

B = {ai,j : 1 ≤ i ≤ n, 1 ≤ j ≤ ki}

and

O = {x ∈ Z(2)A : x(b) = 1 for each b ∈ B}.

An easy verification shows that jA(V ) ⊃ O ∩ jA(P∧), which implies that jA is open.

Summing up, jA is a topological monomorphism. The density of jA(P∧) in Z(2)A is

evident. Note that jA(χ) ∈ ΣZ(2)A if and only if χ(a) = 1 for all but countably many

a ∈ A.

For every C ∈ [c]≤ω, let NC = π−1
C (eC) be the Gδ-subset of Z(2)c, where πC : Z(2)c →

Z(2)C is the projection and eC is the neutral element of Z(2)C . Let YC denote a maximal

independent subset of NC . Observe that, for every x /∈ NC , x · YC is again independent.

For every B ∈ [c]≤ω, choose an element xB ∈ Z(2)c which is supported precisely on B,

that is, xB(α) = −1 iff α ∈ B.

We then define, for all B,C ∈ [c]≤ω with B ∩ C 6= ∅, the sets XB,C = xB · YC . Since

each XB,C is independent and has cardinality 2c, we may construct as in Lemma 4.4 of

[10] a collection of sets ZB,C ⊂ XB,C , such that:

(1) |ZB,C | = 2c;
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(2) ZB,C ∩ ZB′,C′ = ∅ if (B,C) 6= (B′, C ′);

(3)
⋃
B,C ZB,C is independent.

Let Z be a maximal independent subset of Z(2)c containing the union in (3). Denote by

j = jZ the topological monomorphism of P∧ to Z(2)Z corresponding to Z.

Suppose now that ψ ∈ P∧, ψ 6= 1. Since ψ is continuous there must be C ∈ [c]≤ω

such that ψ(NC) = {1}. As ψ 6= 1 (and noting that ΣZ(2)c is dense in P ), there must

also be B ∈ [c]≤ω with ψ(xB) = −1; observe that necessarily B ∩ C 6= ∅. It follows that

ψ(xB ·NC) = {−1} and ψ(ZB,C) = {−1}, which means that j(ψ) /∈ ΣZ(2)Z . This implies

that j(P∧) ∩ ΣZ(2)Z = {e}. Note that |Z| = 2c, so we complete the proof by identifying

Z with 2c. �

The non-reflexivity of the pseudocompact group G in the next example is obtained

making use of Corollary 2.11.

Example 4.3. There is a non-reflexive pseudocompact group G that arises as an extension

of a compact group G/L ∼= Z(2)2c by a closed, reflexive, ω-bounded subgroup L of G.

Proof. Let P be the P -modification of the compact group Z(2)c. By Theorem 4.8 of [20],

P is reflexive. Denote by L the character group of P . It is easy to see that |L| = 2c. By

Lemma 4.2, there is a topological monomorphism j : L → Z(2)2c such that j(L) is dense

in Z(2)2c and j(L) ∩ ΣZ(2)2c = {e}. In the sequel we identify L with j(L).

Let K be a compact subset of Z(2)2c such that |K| = 2c and 〈K〉 is dense in Z(2)2c .

For example, one can take K = {e} ∪ {bα : α < 2c}, where e is the neutral element of

Z(2)2c and bα(β) = −1 only if α = β; α, β < 2c. Let also RK be a subgroup of Z(2)2c

such that Z(2)2c = 〈K 〉 ⊕ RK and define a (necessarily discontinuous) homomorphism

φ : Z(2)2c → Z(2)2c with the following properties:

(1) φ�〈K 〉 is the identity mapping;

(2) φ(r) /∈ rL for every r ∈ RK with r 6= e.
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To construct such a homomorphism we first observe that |Z(2)2c/〈K〉| = 22c and then

consider a maximal independent subset {rα : α < 22c} of RK . It suffices to define φ

satisfying (1) such that φ(rα) /∈ 〈
⋃
{rβL ∪ φ(rγ)L : β ≤ α, γ < α} 〉, for each α < 2c.

We use the homomorphism φ to apply Lemma 4.1 and consider the subgroup G =

Gr(φ) · N of Π = Z(2)2c × Z(2)2c , where N = {e} × L. By Lemma 4.1, G is a Gδ-dense

subgroup of the compact group Π, so G is pseudocompact according to [14, Theorem 1.2].

Then K̃ = {(k, k) : k ∈ K} is a compact subset of G. If (a, b) ∈ G∩ clΠ〈 K̃ 〉, then a = b

and a = φ(a)y with y ∈ L. Since a = kr with k ∈ 〈K 〉 and r ∈ RK , we see ry−1 = φ(r).

Therefore (2) implies that r = e. This proves the inclusion

clG〈 K̃ 〉 ⊂ {(a, a) : a ∈ 〈K 〉},

while the inverse inclusion is evident. Thus 〈K̃〉 is a closed subgroup of G. Since 〈K〉 is a

proper dense subgroup of Z(2)2c it follows that 〈 K̃ 〉 is not compact and, hence, the group

G is not reflexive by Corollary 2.11. �

We now construct a larger family of non-reflexive extensions of compact (even metriz-

able) groups by ω-bounded groups. This requires several preliminary steps.

Given an abstract Abelian group G, we denote by G# the underlying group G which

carries the maximal precompact group topology [16]. This topology on G is called the

Bohr topology of G. Notice that every homomorphism of G# to T is continuous and that

this property characterizes G# among precompact groups. The following fact is a part of

the duality folklore.

Lemma 4.4. Let K be a compact Abelian topological group and (K∧, τp(K)) be the dual

group of K with topology τp(K) of pointwise convergence on elements of K. Then τp(K)

is the Bohr topology of the (abstract) group K∧.

Proof. By the classical Pontryagin–van Kampen duality theorem K∧ is a discrete group

and αK : K → K∧∧ is a topological isomorphism. Therefore, the Bohr topology of K∧ is

the precompact group topology τp(K) generated by K. �
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Definition 4.5. Let κ ≥ ω be a cardinal number. We say that a subgroup L ≤ Z(2)2κ

satisfies condition (Sm) provided that for every N ∈ [L]≤ω there is a set AN ⊂ 2κ with

|AN | = 2κ such that πAN (N) = {eN}, where πAN : Z(2)2κ → Z(2)AN is the projection and

eN is the neutral element of Z(2)AN .

Given a cardinal κ, we denote by Z(2)(κ) the direct sum of κ copies of the group Z(2).

Lemma 4.6. Let κ ≥ ω be a cardinal, L be a dense pseudocompact subgroup of Z(2)2κ

with |L| ≤ 2κ, and suppose that L∧ is discrete and satisfies (Sm). Then there exists a

pseudocompact group G containing L as a closed subgroup with G/L compact and such

that

G∧ =
(
Z(2)(κ)

)#
× L∧,

where
(
Z(2)(κ)

)#
stands for the group Z(2)(κ) equipped with its Bohr topology.

Proof. Let S be the family of countable subgroups of Z(2)κ. Consider the family

A = {(S, f, h) : S ∈ S, f ∈ Hom(S,Z(2)), h ∈ Hom(S,L)} .

It is clear that |A| = 2κ. Let us fix an injective mapping ρ : A → 2κ such that ρ(S, f, h) ∈

Ah(S) for every (S, f, h) ∈ A; here Ah(S) is as in Definition 4.5. The existence of such

a mapping ρ follows from the equalities |A| = 2κ and |AS | = 2κ for S ∈ S. For each

(S, f, h) ∈ A, we consider a homomorphism ϕα : Z(2)κ → Z(2) extending f , where α =

ρ(S, f, h). Finally, for each α < 2κ we define a homomorphism φα : Z(2)κ → Z(2) by the

following rule:

φα =


ϕα, if α = ρ(S, f, h) for some (S, f, h) ∈ A;

1 (constant), if α /∈ ρ(A).

Let φ be the diagonal product of φα’s, φ : Z(2)κ → Z(2)2κ .

We define the group G = Gr(φ) ·N for these φ and N as in Lemma 4.1. Then G is a

dense subgroup of Π = Z(2)κ × Z(2)2κ . According to Lemma 4.1, G is Gδ-dense in Π, so

G is pseudocompact by [14, Theorem 1.2]. Let π be the projection of the product Π to

the first factor Z(2)κ.
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We now proceed to identify the dual group of G. This task requires an analysis of the

structure of compact subsets of G. We start with the following fact:

Claim 1. If S is a countable subgroup of G and the restriction of π to S is one-to-one,

then S is h-embedded in G.

Indeed, let S be a countable subgroup of G such that π�S is one-to-one. Then S is the

graph of a homomorphism g : D → Z(2)2κ , where D = π(S). It follows from the definition

of G that g = h · φ�D, where h is a homomorphism of D to L.

Let p : S → Z(2) be an arbitrary homomorphism. For every z ∈ S, put f(π(z)) = p(z).

Then f : D → Z(2) is a homomorphism and (D, f, h) ∈ A. With α = ρ(D, f, h) we have

φα�D = ϕα�D = f and h(x)α = 1 for each x ∈ D since α ∈ Ah(D).

For every α < 2κ, let πα : Z(2)2κ → Z(2) be the projection of the product group

Z(2)2κ to the αth factor Z(2)(α). We claim that the homomorphism p coincides with the

restriction to S of the continuous homomorphism πα ◦ $, where $ : Π → Z(2)2κ is the

projection of Π to the second factor. Indeed, take an arbitrary element z = (x, y) ∈ S.

Then y = h(x) · φ(x), since S is the graph of the homomorphism h · φ �D. We have, on

one side, that

p(z) = f(π(z)) = f(x) = ϕα(x). (3)

On the other side, it follows from our choice of α < 2κ and the definition of ϕ that

πα($(z)) = πα(y) = πα(h(x)) · πα(φ(x))

= h(x)α · ϕα(x) = ϕα(x).

Comparing the above equality and equality (3), we infer that p(z) = πα($(z)) for each

z ∈ S, which proves that p = πα ◦$�S.

Thus, every homomorphism p : S → Z(2) extends to a continuous homomorphism of G

to Z(2). This proves Claim 1.

Claim 2. If S is a countable subgroup of G and the restriction of π to S is one-to-one,

then π(clG(S)) = π(S).
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Let g be an element of G such that π(g) /∈ π(S). It suffices to show that g /∈ clG(S). It

follows from our choice of g that the restriction of π to the subgroup T = S · 〈g〉 of G is

also one-to-one. Hence, by Claim 1, T is h-embedded in G. Let ϕ be a homomorphism of

T to Z(2) such that ϕ(g) = −1 and ϕ(S) = {1}. Then ϕ is continuous on T and, therefore,

g /∈ clG(S).

Claim 3. The projection π(K) is finite, for every compact set K ⊂ G.

Suppose for a contradiction that π(K) is infinite, for a compact subset K of G. We

can assume without loss of generality that π(K) does not contain the neutral element e

of Z(2)κ. Clearly π(K) contains a countable infinite independent subset, say X. Choose

a subset Y of K such that π(Y ) = X and the restriction of π to Y is one-to-one. Then

Y is countable and independent in G and the restriction of π to the subgroup S = 〈Y 〉

of G is one-to-one. Let C = K ∩ clG(S). Then C is a compact subset of G and Claim 2

implies that π(C) ⊂ π(S). It also follows from Y ⊂ K ∩ S ⊂ C and π(Y ) = X that the

compact sets C and π(C) are infinite. Since π(C) is countable (hence metrizable) and

X ⊂ π(C), there exists a sequence {xn : n ∈ ω} ⊂ X converging to an element x∗ ∈ π(C),

where x∗ 6= xn for each n ∈ ω. Notice that x∗ 6= e. By induction we can choose an

infinite subset X ′ of {xn : n ∈ ω} such that x∗ /∈ 〈X ′〉. Take a subset Y ′ of Y such that

π(Y ′) = X ′ and let S′ = 〈Y ′〉. Arguing as above, we see that C ′ = K ∩ clG(S′) is a

compact subset of G, π(C ′) ⊂ π(S′), and that X ′ = π(Y ′) ⊂ π(C ′). In particular, the

compact set π(C ′) contains infinitely many points xn’s and, hence, x∗ ∈ π(C ′). The latter,

however, is impossible since π(C ′) ⊂ π(S′) = 〈X ′〉 and x∗ /∈ 〈X ′〉. This proves Claim 3.

We now obtain a complete description of G∧, both algebraic and topological. Since G

is dense in Π (and hence each character of G extends to a character of Π), there exists a

natural (abstract) isomorphism

G∧ ∼= (Z(2)κ × Z(2)2κ)∧ ∼= (Z(2)κ)∧ ⊕ (Z(2)2κ)∧. (4)
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The second isomorphism in (4) is obtained by restricting every character of Π to the

factors Z(2)κ and Z(2)2κ . Since the groups Z(2)κ and Z(2)2κ are compact, (Z(2)κ)∧ and

(Z(2)2κ)∧ are Boolean groups of cardinality κ and 2κ, respectively.

Finally, we claim that G∧ is topologically isomorphic to the group

((Z(2)κ)∧, τp)⊕ L∧, (5)

where τp stands for the pointwise convergence topology on the abstract group (Z(2)κ)∧.

For each F ⊂ Z(2)κ and each P ⊂ G, let

CF,P = {(x, φ(x)y) : x ∈ F, y ∈ P}.

If K ⊂ G is compact, then F = π(K) is finite and the set

PK = {y ∈ L : (x, φ(x)y) ∈ K for some x ∈ F}

is a compact subset of L. Since K ⊂ CF,PK , we deduce that the family

{(CF,P )B : F ⊂ Z(2)κ, |F | < ω, P ⊂ L, P is compact} (6)

forms a local base at the neutral element of the group G∧.

Let now F ⊂ π(G) be finite and P ⊂ L be compact. If P̃ = φ(F )P , then

FB × P̃B ⊂ (CF,P )B.

The sets (CF,P )B are therefore neighborhoods of the identity in ((Z(2)κ)∧, τp)× L∧.

We now use the fact that L∧ is discrete and take a compact set P0 ⊂ L such that

PB0 = {1}, where 1 is the neutral element of L∧. Since CF,P0 contains the set {e} ×

P0, we see that FB × {e} = (CF,P0)B, for every finite set F ⊂ Z(2)κ. Therefore, G∧

is topologically isomorphic to ((Z(2)κ)∧, τp) × L∧. It only remains to observe that, by

Lemma 4.4, ((Z(2)κ)∧, τp) is exactly
(
Z(2)(κ)

)#
. �

Corollary 4.7. There exists a pseudocompact, non-compact, Abelian group G which con-

tains a closed ω-bounded (hence countably compact) subgroup N such that the dual groups
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N∧ and (G/N)∧ are discrete, but G∧ is not. In addition, the quotient group G/N is com-

pact and metrizable, while the bidual group G∧∧ is compact and topologically isomorphic

to %G, the completion of G.

Proof. In Lemma 4.6, let κ = ω and take L to be the Σ-product ΣΠ, where Π = Z(2)2c .

It is obvious that L is ω-bounded, non-compact, and dense in Π. Also, it satisfies con-

dition (Sm), and the dual group L∧ is discrete. Applying Lemma 4.6, we find a dense

pseudocompact subgroup G of Z(2)ω × Π containing L as a closed subgroup such that

G/L ∼= Z(2)ω and G∧ ∼= (Z(2)(ω))# × L∧. In particular, G is not compact and G∧ is not

discrete. Further, the standard calculation shows that

G∧∧ = Z(2)ω × L∧∧ = Z(2)ω × Z(2)2c .

Since G is dense in Z(2)ω × Z(2)2c , we conclude that G∧∧ ∼= %G. �

Remark 4.8. The group G in Corollary 4.7 fails to be countably compact, even when the

closed subgroup L of G is countably compact (even ω-bounded) and the quotient group

G/L ∼= Z(2)ω is compact and metrizable. The first example of a such a group was con-

structed in [7].

Let us show that the present groupG contains an infinite closed discrete subset. We keep

the notation adopted in Lemma 4.6. Take a sequence {xn : n ∈ ω} ⊂ Z(2)ω converging to

an element x∗ ∈ Z(2)ω, where x∗ 6= e. We can assume that for each n ∈ ω, the element

xn is not in the subgroup of Z(2)ω generated by the set {x∗} ∪ {xk : k < n}. For every

n ∈ ω, let zn = (xn, yn), where yn = φ(xn). It follows from the definition of G that the

set P = {zn : n ∈ ω} is contained in G.

We claim that P is closed and discrete in G. Since π(zn) = xn and xn → x∗, all

accumulation points of P , if any, lie in π−1(x∗). Take an arbitrary point z = (x∗, y) ∈

π−1(x∗)∩G. Again, our definition of G implies that y = φ(x∗) · s, for some s ∈ L. Denote

by D the subgroup of Z(2)ω generated by {x∗} ∪ {xn : n ∈ ω} and take a homomorphism

f : D → Z(2) such that f(x∗) = −1 and f(xn) = 1, for each n ∈ ω. Since supp(s) ⊂ c is

countable and the mapping % : A → c is injective, there exists a homomorphism h : D → L
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such that α = %(D, f, h) /∈ supp(s). Notice that ϕα�D = f . We now have that

πα$(z) = πα(y) = πα(φ(x∗) · s)

= παφ(x∗) · πα(s) = ϕα(x∗) = f(x∗) = −1,

while a similar calculation shows that πα$(zn) = 1, for each n ∈ ω. Since the homomor-

phism πα ◦ $ : Z(2)ω × Z(2)c → Z(2)(α) is continuous, we conclude that z /∈ clGP . This

proves that P is closed and discrete in G and that G is not countably compact.

5. P-modification of reflexive groups

In our first example we show that the P -modification of a reflexive σ-compact group can

fail to be reflexive. Our argument uses essentially Pestov’s theorem about the reflexivity

of free Abelian topological groups on zero-dimensional compact spaces (see [28, 29]).

Let D be an uncountable discrete space and X a one-point compactification of D with

a single non-isolated point x0.

Lemma 5.1. Let G = A(X) be the free Abelian topological group over X. Then the

P -modification PG of G is topologically isomorphic to the free Abelian topological group

A(Y ), where Y = PX is the P -modification of the space X.

Proof. It is clear that Y is a Lindelöf P -space, and so is every finite power of Y [26]. Hence

the group A(Y ) is Lindelöf, while [2, Proposition 7.4.7] implies that A(Y ) is a P -space.

Let i : A(Y )→ A(X) be the continuous isomorphism of A(Y ) onto A(X) which extends

the identity mapping of Y onto X. It suffices to verify that i is a homeomorphism of A(Y )

onto PA(X) (the group A(X) with the P -modified topology).

Let C be a countable subset of D. Denote by rC the retraction of X onto XC =

C ∪ {x0}, where rC(x) = x for each x ∈ XC and rC(y) = x0 for each y ∈ X \ XC .

Clearly, rC is continuous. Extend rC to a continuous homomorphismRC : A(X)→ A(XC).

Since the free Abelian topological group A(XC) has countable pseudocharacter (and RC

is continuous), kerRC is a closed Gδ-set in A(X). Hence HC = i−1(kerRC) is an open

subgroup of A(Y ).
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Consider the family

H = {HC : C ⊂ D, |C| ≤ ω}.

It is easy to see that if {Cn : n ∈ ω} is a sequence of countable subsets of D and C =⋃
n∈ω Cn, then HC ⊂

⋂
n∈ωHCn . It is also clear that the intersection of the family H

contains only the neutral element of A(Y ).

We claim that H is a local base at the neutral element e of A(Y ). Indeed, take an

arbitrary open neighborhood U of e in A(Y ). Suppose for a contradiction that every

element of H meets the closed subset F = A(Y ) \ U of A(Y ). Then the family H ∪ {F}

of closed subsets of A(Y ) has the countable intersection property. Since the space A(Y )

is Lindelöf, we must have that F ∩
⋂
H 6= ∅, which contradicts the equality

⋂
H = {e}.

Finally, since kerRC is open in PA(X), the P -modification of A(X), this implies that

i : A(Y )→ PA(X) is a homeomorphism. �

The proof of the following fact is implicitly contained in (the proof of) Lemma 17.11

of [5]. We include the proof for the sake of completeness, it follows that the same result

is valid for any infinite direct sum or any infinite Σ-product of compact groups (see [11,

Lemma 3.12])

Lemma 5.2. The dual group
(
ΣTD

)∧
of the Σ-product ΣTD is a discrete group.

Proof. Define for each x ∈ T and d ∈ D the element of fx,d ∈ TD that takes the value x at

d and 1 elsewhere. The set K = {fx,d : x ∈ T, d ∈ D} is then a compact subset of ΣTD.

Since for each d ∈ D, the set Ad = {fx,d : x ∈ T} is a subgroup of TD contained in K, we

conclude that χ(Ad) = {1} for every χ ∈ K� and d ∈ D. But the subgroup generated by

all the Ad’s is dense in TD, therefore K� = {1} and
(
ΣTD

)∧
is discrete. �

Example 5.3. The free Abelian topological group G = A(X) is reflexive, but the P -

modification PG of G is not. Furthermore, the second dual of PG is discrete.

Proof. Since X is a zero-dimensional compact space, the reflexivity of G follows from [28]

or [29]. Let us verify that PG is not reflexive. Since, by Lemma 5.1, PA(X) is topologically
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isomorphic to A(Y ), where Y = PX, and neither Y nor A(Y ) is discrete, it suffices to

show that the second dual of A(Y ) is discrete.

Clearly, all functionally bounded subsets of the P -space Y are finite, so Y is a µ-space.

It follows from [18, Theorem 2.1] that the dual group A(Y )∧ is topologically isomorphic

to Cp(X,T), the group of all continuous functions on X with values in the circle group T,

endowed with the pointwise convergence topology.

Let Y = D ∪ {x0}, where x0 is the only non-isolated point of Y . Every neighborhood

of x0 in Y has the form Y \ C, where C is a countable subset of D. Therefore, for every

element f ∈ Cp(Y,T), there exists a countable set C ⊂ D such that f(x) = f(x0) for each

x ∈ Y \ C.

Denote by ΣTD the Σ-product lying in TD and considered as a dense subgroup of

the compact group TD. We consider a mapping ϕ : Cp(Y,T) → T × ΣTD defined by

ϕ(f) = (f(x0), tf · f), where tf = f(x0)−1 ∈ T and the function tf · f is restricted to D.

Then tf · f ∈ ΣTD and ϕ(f) ∈ T×ΣTD. Since Cp(Y,T) carries the topology of pointwise

convergence, ϕ is a topological isomorphism of Cp(Y,T) onto T × ΣTD. Hence the dual

of Cp(Y,T) is topologically isomorphic to (T × ΣTD)∧ ∼= T∧ × (ΣTD)∧ ∼= Zd × (ΣTD)∧,

where Zd is the discrete group of integers. Finally, we know by Lemma 5.2 that the dual

group (ΣTD)∧ is discrete. Hence the second dual A(Y )∧∧ is discrete as well. �

Corollary 5.4. Let D be an uncountable discrete space and let Y denote the one-point

Lindelöfication of D. Then Cp(Y,T) is not reflexive.

Proof. We note that Y = PX, where X is the one-point compactification of D. The proof

of Example 5.3 shows that Cp(Y,T)∧ is discrete, while Cp(Y,T), being a proper dense

subgroup of TY , is not compact. �

Remark 5.5. Corollary 5.4 is in contrast with Example 3.12 of [25], where it is shown that

Cp(Y,C) is reflexive if |D| = ω1 and MA(ω1) is assumed (here C stands for the field of

complex numbers).
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