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Abstract

Let G be a finite group and N be a normal subgroup of G and suppose
that the p-regular elements of N have exactly two G-conjugacy class sizes.
It is shown that N is solvable and that if H is a p-complement of N , then
either H is abelian or H is the product of an r-group for some prime r 6= p
and a central subgroup of G.

1. Introduction

The study of the group structure from its conjugacy class sizes is a classical
topic in Finite Group Theory. Class sizes do not have a good behavior respect
to normal subgroups and quotients and, thus, one of the handicaps appearing in
this study is the impossibility of using inductive arguments. In fact, regarding
normal subgroups, the only available information is basically that each class
size of the normal subgroup is a divisor of its respective class size in the whole
group. Moreover, there is no relation between the number of class sizes of the
normal subgroup and the number of class sizes of the group.

∗AMS 2010 classification numbers: 20E45, 20D20. Keywords: Finite groups, conjugacy
class sizes, p-regular elements.
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Let G be a finite group and let N be a normal subgroup of G. Since N is the
union of classes of G (called G-classes of N), it is natural to wonder if these sizes
exert influence on the structure of N . This new point of view has the advantage
of allowing to work inductively, since for instance the number of G-class sizes
of N is trivially bounded by the number of class sizes of G. Recent results have
indicated that there is indeed a close connection between G-class sizes and the
normal structure of G. In [2], the nilpotency of normal subgroups with two
G-class sizes is shown, thereby it is obtained a generalization for normal sub-
groups of the celebrated Itô’s Theorem on groups having two class sizes ([5]).
We remark that while the proof of Itô’s result is quite elementary, the proof of
the above extension requires the Classification of the Finite Simple Groups.

In this paper, our attention is focused on those elements of the group whose
orders are not divisible by a fixed prime p (p-regular elements) and on its class
sizes. The importance of the results on class sizes of p-regular elements is that
the obtained information can be used in a more general context of ordinary
classes. However, this approach increases the difficulty, especially when no p-
solvability hypothesis is assumed. The first results on groups having two p-
regular class sizes appeared in [4], where such groups were proved to be solvable.
Afterwards, the proof was simplified in [3] and the structure of a group G with
two p-regular class sizes was determined: G either has abelian p-complements
or, up to central factors, is a {p, r}-group for a prime r 6= p, so in particular, G is
solvable. On the other hand, in [1] it is proved that if G is p-solvable and N is a
normal subgroup of G with two p-regular G-class sizes, then the p-complements
of N are nilpotent. The significant goal of this note is to improve this result by
eliminating the p-solvability condition.

Theorem A. Let N be a normal subgroup of a finite group G. Let p be
a prime number and suppose that the G-conjugacy class of every p-regular el-
ement of N has size 1 or m for some fixed integer m. Then N has abelian
p-complements or N = RP × A, where R and P are a Sylow r-subgroup for
some prime r and a Sylow p-subgroup of N respectively, and A is a central
subgroup of G.

Theorem A is an extension of the main result of [2], when p does not divide
the order of N , which is the following

Corollary B. Let N be a normal subgroup of a finite group G and suppose
that the G-conjugacy class of every element of N has size 1 or m for some
fixed integer m. Then either N is abelian or N = R × A, where R is a Sylow
r-subgroup of N for some prime r and A is central in G.

At the same time, Theorem A generalizes and provides an alternative proof
of the main result of [3], when N = G. One of the keys of the proof of Theorem
A consists of analysing the Schur multiplier of some simple groups satisfying
certain conditions on the orders of their elements, which can be formulated in
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the terminology of graph theory as those groups whose prime graph is a forest.
The classification of such groups was obtained by M.S. Lucido in [8].

Throughout this paper all groups are finite. If x is any element of a group
G, we denote by xG the conjugacy class of x in G and |xG| is called the class
size of x in G or the G-class size of x.

2. Proofs

First, we state the preliminary results that we are going to use.

Lemma 1. Let P × Q be the direct product of a p-group P and a p′-group
Q and suppose that P × Q acts on a p-group G. If CG(P ) ⊆ CG(Q), then Q
acts trivially on G.

Proof. This is Thompson’s P ×Q-Lemma. See for instance 8.2.8 of [7]. 2

We also recall the definition of the prime graph associated to a group, which
is one of the main tools of the proofs.

Definition 2. Let G be a finite group. The prime graph Γ(G) of G is defined
as follows. The vertices of Γ(G) are the primes dividing the order of G and two
distinct vertices r and s are joined by an edge if there is an element in G of
order rs.

In [8] it is provided a complete classification of the finite non-abelian simple
groups whose prime graph is a forest. These groups are exactly 12 specific simple
groups or belong to five families of Lie type groups under certain arithmetical
properties on the parameters. However, we do not need to employ the complete
classification, and for the purpose of brevity, we will only state the part we need.
The notation for the simple groups is the one appearing in the original article.

Theorem 3. Let G be a finite non-abelian simple group. If Γ(G) is a
forest then G is one of the following simple groups: A5, A6, A7, A8, M11, M22,
PSL4(3), B2(3), G2(3), U4(3), U5(2),2F4(2)′, or belongs to one of the families:
PSL2(q), PSL3(q), PSU3(q), Sz(q2) with q2 = 2f or q = 2f2

with f an odd
prime, and Ree(3f ), with f an odd prime.

Proof. See Proposition 4 of [8]. 2

We show now how this property of the prime graph arises with the hypothesis
under study, that is, when a normal subgroup has two p-regular G-class sizes.
The following property is one of the main results in [1].
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Theorem 4. Let N be a normal subgroup of a group G such that the G-
conjugacy class size of every p-regular element of N is 1 or m, for some inte-
ger m. Then either N has abelian p-complements or all p-regular elements of
N/(N ∩ Z(G)) have prime power order.

Proof. See Theorem 1, in [1]. 2

Corollary 5. Let N be a normal subgroup of a group G such that the
G-conjugacy class size of every p-regular element of N is 1 or m, for some
integer m. Then either N has abelian p-complements or the prime graph of
N = N/(N ∩ Z(G)) is a forest.

Proof. By Theorem 4, we have that either N has abelian p-complements
or all p-regular elements of N have prime power order. This implies that each
prime dividing |N | distinct from p can only be connected by an edge to p, so
Γ(N) is a forest. 2

Theorem 6. If N is a solvable normal subgroup of a group G with two
G-class sizes of p-regular elements, then N has nilpotent p-complements.

Proof. We argue by minimal counterexample. Let N be a normal solvable
subgroup of G of minimal order which satisfies the hypotheses and does not
possess any nilpotent p-complement. So by Theorem 4, all p-regular elements
of N = N/(N ∩ Z(G)) have prime power order.

Let N/K be a chief factor of G, such that N ∩Z(G) ⊆ K. Notice that K is a
normal subgroup of G and thus, the hypotheses of the theorem are inherited by
K and so, by minimality, K has nilpotent p-complements. Moreover, we know
that K = K/(N ∩Z(G)) does not have any p-regular element of order divisible
by two distinct prime numbers, since K ⊆ N . We conclude that π(K) ⊆ {p, r},
where r is a prime number distinct from p.

Notice that N/K is an (elementary abelian) s-group, for some prime number
s 6∈ {p, r}, otherwise N is a {r, p}-group and consequently, N has nilpotent p-
complements, which is a contradiction. Then, there exists an s-element x ∈ N
which is noncentral in G and we take R ∈ Sylr(CG(x)). Let us consider NR ≤ G
and note that NR is solvable. We can take then a p-complement of NR, say H,
such that H ∩ CRN (x) is a p-complement of CNR(x). We assert that x ∈ H.
This is because 〈x〉CH(x) is a p′-subgroup of CNR(x) containing CH(x). Now
we show that Or(H ∩ N) ⊆ Z(G). We take R0 ∈ Sylr(CRN (x)) such that
R0 ⊆ H. Since R commutes with x, we have that R is also a Sylow r-subgroup
of CNR(x), and hence R0 ∈ Sylr(CG(x)). Then we consider the action of
R0 × 〈x〉 on Or(H ∩ N). We claim that COr(H∩N)(R0) ⊆ COr(H∩N)(x). In
fact, if z ∈ COr(H∩N)(R0) \ Z(G), then 〈R0, z〉 ⊆ CG(z), and this implies that

|R0| ≤ |〈R0, z〉| ≤ |CG(z)|r = |CG(x)|r = |R0|.

Thus, the equality holds and hence z ∈ R0. Therefore z ∈ CG(x)∩Or(H∩N) =
COr(H∩N)(x), as claimed. Now, we can apply Lemma 1 and we infer that x
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acts trivially on Or(H ∩N), that is, x ∈ CN (Or(H ∩N)). Now, suppose that
Or(H ∩N) 6⊆ Z(G) and take some y ∈ Or(H ∩N) which is noncentral in G. As
x centralizes y, we have that xy(N ∩Z(G)) is a p-regular element of composite
order, contradicting the fact that all the p-regular elements of N/(N ∩ Z(G))
have prime power orders, observed in the first paragraph. We conclude that
Or(H ∩N) ⊆ Z(G).

Finally we get a contradiction. We certainly have that K ∩ H is normal in
H and observe that K ∩ H = R1 × (N ∩ Z(G)){p,r}′ , where R1 is a Sylow r-
subgroup of N . Hence, we obtain that R1 ⊆ Or(H ∩N) ⊆ Z(G), which implies
that K ∩ H ⊆ Z(G). This is a contradiction, since N does not have nilpotent
p-complements, and the proof finishes. 2

Corollary 7. If N is a solvable normal subgroup of a group G with two
G-class sizes of p-regular elements, then N has abelian p-complements or N =
RP ×A, where R and P are a Sylow r-subgroup for a prime r 6= p, and a Sylow
p-subgroup of N respectively, and A is a central group of G.

Proof. By Theorem 6, we have that N has nilpotent p-complements. More-
over, assuming that N has non-abelian p-complements we know that N/(N ∩
Z(G)) does not possess any p′-element such that its order is divisible by two
different primes. Therefore, if H is a p-complement of N , then all the elements
in H/(H ∩Z(G)) have prime power order and, by the nilpotency of H, we con-
clude that H = R ×A, where R is a Sylow r-subgroup of N and A is a central
group of G. 2

Theorem 8. If N is a normal subgroup of G with two G-class sizes of
p-regular elements, then N is solvable.

Proof. We argue by minimal counterexample and thus, we assume that N is
a non-solvable normal subgroup of G of minimal order satisfying the hypothesis
of the theorem. First, we notice that, by Theorem 4, N = N/(N ∩ Z(G)) does
not have any p′-element whose order is divisible by two primes, since groups
with an abelian p-complement are solvable.

Let x ∈ N be q-element for some prime q 6= p such that x is noncentral in G.
We easily get that any Sylow r-subgroup of CN (x) lies in N ∩ Z(G), for every
r 6∈ {p, q}. Otherwise, there exists an r-element y ∈ CN (x) \ (N ∩ Z(G)), and
so the order of xy(N ∩ Z(G)) is not a prime power. Therefore, we obtain that
|N |r divides |xN |r. Set m equal to the size of any noncentral p-regular class of
G contained in N . As |xN | divides |xG| = m, we deduce that |N |{p,q}′ divides
m{p,q}′ . Arguing similarly with a noncentral t-element, for any t prime divisor
of |N | such that t 6∈ {p, q}, we conclude that |N |p′ divides mp′ . Notice that
such a prime and such an element exist, since otherwise the p-complements of
N would be nilpotent and consequently, N would be solvable.

Let q 6= p be a prime divisor of |N | and let Q be a Sylow q-subgroup of G, so
that Q∩N is a Sylow q-subgroup of N . Suppose that x is an element of Q∩N
which is noncentral in G. Certainly, there exists some y ∈ G such that CQy (x)
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is a Sylow q-subgroup of CG(x). Hence mq = |G|q/|CG(x)|q = |Qy|/|CQy (x)|.
On the other hand, there is some z ∈ CG(x), such that CQ(x) ⊆ CQy (x)z =
CQyz (x). Then, mq = |Qyz|/|CQyz (x)| divides |xQ|. Now, as Q ∩ N is normal
in Q, we can use the class equation for this subgroup and this yields to

|Q ∩N | = |Q ∩N ∩ Z(G)|+ kmq,

for some positive integer k. Since |N |q divides both |Q ∩N | and mq, it follows
that |N |q divides |N ∩ Z(G)|. This is true for every prime q 6= p dividing |N |,
so we conclude that |N |p′ divides |N ∩ Z(G)|.

Now, let N/K be a chief factor of G, such that N∩Z(G) ⊆ K. By minimality,
we have that K is solvable, and since K also has two G-class sizes of p-regular
elements, by Theorem 6, we obtain that K has nilpotent p-complements. If we
denote K = K/(N ∩ Z(G)), as we know that K does not have any p′-element
whose order is divisible by two different primes, it follows that a p-complement
of K is just an r-group for some prime r 6= p, that is, π(K) ⊆ {p, r}, where
r 6= p. On the other hand, since N/K is characteristically simple, then N/K ∼=
S1 × · · · ×Sl, where the subgroups Si are necessarily non-abelian simple groups
and are pairwise isomorphic. Furthermore, by Theorem 4, we know that N/K
does not have any p′-element whose order is divisible by two primes, whence
N/K is isomorphic to just one non-abelian simple group, say S. Moreover,
by Corollary 5, we know that the prime graph of N is a forest, so the prime
graph of N/K is a forest too, and thus, N/K is isomorphic to one of the groups
appearing in Theorem 3.

Regarding the subgroup K, we observe that K ∼= O{r,p}(N)×(N∩Z(G)){p,r}′ .
Moreover, we notice that N is perfect by minimality, and then the group
N/O{r,p}(N) is perfect too. By the fact that

N/O{r,p}(N)
K/O{r,p}(N)

∼= N/K

is simple and (N ∩ Z(G)){r,p}′ ∼= K/O{r,p}(N) ≤ Z(N/O{p,r}(N)), we infer
that K/O{r,p}(N) = Z(N/O{r,p}(N)). Hence we deduce that N/O{r,p}(N)
is a quasi-simple group. Now, observe that S is the simple group associated
to this quasi-simple group. Consequently, Z(N/O{r,p}(N)) is isomorphic to a
subgroup of the Schur multiplier M(S), so in particular, |(N ∩ Z(G))|{r,p}′ =
|Z(N/O{r,p}(N))| divides |M(S)|. Therefore, |S| = |N/K| divides |M(S)|pαrβ ,
for some integers α and β (hence, notice that |M(S)| cannot be trivial). We
are going to check (for instance, with the help of [6]) that this property is not
possible for the simple groups listed in Theorem 3.

Assume first that S is one of the following groups: A5, A6, A7, A8, M11, M22,
PSL(4, 3), B2(3), G2(3), U4(3), U5(2), 2F4(2)′, Sz(q2) or Ree(3f ). Then |M(S)|
may be 1, 2, 3, 4, 6, 12 or 36, and it is easy to prove that all these possibilities
together with the above divisibility property lead to a contradiction.

Suppose that S ∼= PSL(2, q) and then |M(S)| divides (2, q − 1), except for
the cases PSL(2, 4) ∼= A5 and PSL(2, 9) ∼= A6. It follows by orders that these
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two cases are not possible. In the rest of the cases, we have that |PSL(2, q)|
divides 2pαrβ , which implies a contradiction because |PSL(2, q)|2 > 2.

Suppose that S ∼= PSL(3, q). Then |M(S)| divides (3, q − 1), except for
the cases PSL(3, 2) and PSL(3, 4). These are not possible again by order
considerations. In the other cases, since M(S) cannot be trivial, we can assume
|M(S)| = 3 and thus q ≡ 1(3). We get that |PSL(3, q)| = q3(q2 − 1)(q3 − 1)/3
divides 3pαrβ , which is a contradiction again since |PSL(3, q)|3 > 3 for such q.

Finally, if S ∼= PSU(3, q), then |M(S)| divides (3, q + 1), and as above, we
can assume |M(S)| = 3 and q ≡ −1(3). As |PSU(3, q)| = q3(q2 − 1)(q3 + 1)/3
divides 3pαrβ , we get again a contradiction because |PSU(3, q)|3 > 3 for such
q. 2

Proofs of Theorem A and Corollary B. Theorem A is immediate by
Corollary 7 and Theorem 8. In particular, Corollary B follows by taking any
prime p not dividing the order of N . 2

Remark. We want to remark that when N = G in Theorem A then m is
equal to paqb for some prime q and some nonnegative integers a and b (see the
main theorem of [3]). However, this is not true for normal subgroups in general,
and we show it with an example. For instance, let G = SL(2, 3) × P , where P
is a p-group for a prime p 6= 2, 3. Let Q be the Sylow 2-subgroup of SL(2, 3)
(quaternion group of order 8) and let N = Q× P . Then, the p-regular G-class
sizes of N are 1 and 6.

On the other hand, the fact that each class size of N divides its corresponding
G-class size implies that if m is a p′-number, then the normal subgroup N has
a Sylow p-subgroup which is a direct factor of N . This also occurs in the above
example when p 6= 2, 3.
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