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Abstract. Research in the Life Sciences depends on the integration of large, dis-
tributed and heterogeneous web resources (e.g. data sources and web services). The
discovery of which of these resources are the most appropriate to solve a given task is a
complex research question, since there are many candidate resources and there is little,
mostly unstructured, metadata to be able to decide among them.

In this paper we contribute with a semi-automatic approach, based on semantic
techniques, to assist researchers in the discovery of the most appropriate web resources
to fulfill a set of requirements. The main feature of our approach is that it exploits broad
knowledge resources in order to annotate the unstructured texts that are available in
the emerging web-based repositories of web resource metadata.

The results show that the web resource discovery process benefits from a semantic-
based approach in several important aspects. One of the advantages is that the user can
express her requirements in natural language avoiding the use of specific vocabularies
or query languages. Moreover, the discovery exploits not only the categories or tags of
web resources, but also their description and documentation.

Keywords: Web resources discovery, requirements-driven methods, Life Sciences, knowl-
edge resources

1. Introduction

Contemporary research in the Life Sciences depends on the sophisticated inte-
gration of large amounts of data obtained by in-house experiments, for instance
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DNA sequencing, with reference databases available on the web (Cochrane and
Galperin, 2010). This is followed by complex analysis workflows that rely on
highly specific algorithms, often available as web services (Burgun and Boden-
reider, 2008). The amount of data produced and consumed by this process is
prodigious, and the sheer amount of available resources to manage this data is
a source of severe difficulties.

First of all, the existing data sources are very heterogeneous, in some cases as
a consequence of a lack of standards for structure and content (Mesiti et al, 2009)
and in other cases because the community does not use the available standards.
The integration of biomedical data among resources distributed over the web is a
major challenge. For example, (Loureno et al, 2010) remarks the challenges, due
to the heterogeneity, of data integration in a specific domain from well-known
resources which are supposed to contain related data. In addition, many data
sources are wrapped as web services, which provide procedural APIs which are
more specific, but far less flexible, than declarative query languages found in
standalone databases.

Another problem is finding the right web resources for a given research task.
The landscape of Life Sciences-oriented web resources is large and complex: there
are thousands of available resources, but unfortunately only a few are described
by adequate metadata for pursuing large-scale integration efforts.

In addition, there may be several resources that apparently provide the same
broad functionality (a particular insidious example is the variety of resources
providing variants of alignments of genes and proteins), but not enough metain-
formation is available to decide which of them is actually the most appropriate
for a precise task (Smedley et al, 2010).

Here we claim that semantic technologies can provide a solution to the dis-
covery of web resources in the context of the Life Sciences. common interface
for registering, browsing and annotating Life Sciences web services. To enhance
its accessibility and usability, BioCatalogue can be indexed by search engines
such as Google, provides a programmable API and can be queried from a web
browser. The catalogue does not host the services but provides a mechanism to
discover and annotate them. BioCatalogue annotations explain what the services
do and how to use them. These annotations are manually provided by the service
providers and the user community plus some monitoring and usage analysis data
obtained automatically by BioCatalogue servers. However, at the moment, most
of these annotations are very far from being standard metadata specifications,
as they are just free text elements that do not conform to the ™¥Grid ontology
(Wolstencroft et al, 2007), a controlled vocabulary intended to define metadata
of the web resources registered in BioCatalogue.

1.1. Related work

The problem of web resource discovery has been extensively studied (Garofalakis
et al, 2006; Nair and Gopalakrishna, 2010). The applied techniques have varied
according to the exploitable information, which has become ever richer. Origi-
nally, only low-level information on the operations of the web resources (such as
the basic interface details like method names, types and parameters) was avail-
able, or non-functional criteria such as response time or usage data (Birukou
et al, 2007); Al-Masri and Mahmoud, 2007). The development of registries based
on standards such as UDDI allowed the addition of metadata-based techniques
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(Dong et al, 2004; Chukmol, 2008; Crasso et al, 2008), initially based on tradi-
tional keyword search but eventually considering more advanced IR techniques
(Plebani and Pernici, 2009) and, in line with the priorities of our work, a more
user-oriented view (Rong and Liu, 2010), explicitly based on requirements (Hao
and Zhang, 2007; Hao et al, 2010; Nazir et al, 2008). (Skoutas et al, 2010) also
bases the discovery of web services on the requirements and, ranks and clusters
the relevant services with objective measures based on dominance relationships
among them. However, they assume well-described web services and well-defined
inputs and outputs.

A natural choice in this setting is to incorporate semantic, ontology-based
approaches. In (Cardoso, 2006; Skoutas et al, 2007), the similarity between the
request and the candidate services is based on the semantics of the inputs and
outputs. In principle, these techniques aim to provide higher search precision
(Pilioura and Tsalgatidou, 2009), but at the cost of requiring higher develop-
ment costs and requiring the users to provide a formal specification of their
information needs, which is impractical in many cases (Wang et al, 2008). Web
services in BioCatalogue itself are meant to be annotated with the "¥YGrid on-
tology, which aims to provide a controlled vocabulary for the curation of data.
However, in practice searches are hampered by poor documentation and most
annotations are just free text, not conforming to the ™¥Grid (or any) ontology
at all. There are also proposals which aim to use semantic reasoning to dis-
cover and integrate heterogeneous data sources. For instance, SSWAP (Gessler
et al, 2009) is an architecture, a protocol and a platform to semantically discover
and integrate heterogeneous disparate resources on the web. Unfortunately, this
approach heavily relies on the provided metadata, which is usually very poor.
Other approaches focus on the development of interfaces to assist in the loca-
tion of web resources; for example (Navas-Delgado et al, 2006) presents a client
engine for the automatic and dynamic development of service interfaces built on
top of the BioMoby standard.

A specific development in the Life Sciences field is the possibility to exploit
web-based registries such as BioCatalogue in two new ways: as a social graph
(already being exploited in the context of workflow repositories (Tan et al, 2010))
and, most importantly for this work, as the target of data enrichment and in-
tegration using the extensive repositories of information available for the Life
Sciences, such as PubMed or the UMLS.

2. Requirement-driven discovery of web resources

While the number of web resources increases continuously, the Life Sciences
community lacks user accepted standards for annotation, as well as common
procedures to guide the resolution of complex tasks (Tran et al, 2004). It is
usual that only a small group of researchers is aware of the existence of some
web resources. For example, by checking the query logs of BioCatalogue we
observed how most queries just ask for the name of some concrete service. This
indicates that the catalogue is being used as an entry to the specifications of the
services that the users already know, but not as a way to discover new relevant
resources. From our point of view, the problem is that these catalogues are not
oriented to the specification of user requirements and it is difficult to use them
in order to find out appropriate resources for a given task. This problem is even
harder for researchers looking for resources that are out of the scope of their
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Fig. 1. Phases of the proposed approach

fields. For example, a biomedical researcher looking for new biomarkers for some
disease could find out interesting information within biological databases about
putative functions of proteins, but she does not know where they are located nor
how to deal with them.

As a consequence, it is a pressing question how to help researchers to discover
the best possible mapping between their needs and the available tools that may
be useful to them. We have designed a new approach for the discovery of web
resources as follows:

1. The user requirements are provided to the system in natural language. They
consist of a brief description of both the user goals and the tasks that can be
done to reach them.

2. The selection of the relevant web resources is made using semantic technologies
based on knowledge stored in BioCatalogue and in well-accepted Life Sciences
ontologies, such as UMLS and ™Y Grid.

3. For each task, the system prompts to the user a short list of web resources
that could be used to execute it.

4. In case the answer of the system does not meet the user requirements, it should
be possible to modify the initial descriptions so that a new answer is returned.

From the point of view of the users, the main advantages of this approach
are the use of free text to describe their requirements, and the ability to follow
their own procedures in the specification of their goals and the tasks to reach
them. Notice that different users can define different sets of tasks to reach the
same goal. Moreover, with this approach, it is the user who finally chooses the
sequence of web resources to be executed, and if the list proposed by the sys-
tem is not considered to be good enough, the user can modify the initial goal
and task descriptions to get a new answer. In this way, the web resource discov-
ery method proposed by this approach is guided by the expertise of the user.
Furthermore, semantic technologies facilitate the discovery of mappings between
user requirements and web resources.

3. The overall process

Our approach consists in a process divided into three phases as depicted in Figure
1. The main purpose of this process is to normalize both the user requirements
and the web resources metadata in order to compare them and to discover the
web resources that best match the user needs. In this section we explain the
methods and techniques applied in each phase.
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Fig. 2. i* Requirements model

3.1. User Requirements

Given the experience and the knowledge users have on their domains, they can
easily provide natural language descriptions of their requirements and the tasks
that would be manually performed to meet them. Natural language descriptions
are easy to express but difficult to process in an automatic way. In this section we
present the model we have adopted to specify user requirements in a formal way
so that they can be automatically used in the subsequent phases of the resource
discovery process.

User requirements are represented by means of goal and task elements in a
formal specification called the Requirements model. This specification is made
using the ¢* formalism (Yu, 1995; Yu, 1997), which is both a goal-oriented and
an agent-oriented language. We use this framework because it provides the func-
tionality required to obtain a formal specification of the user’s requirements
without taking into account the characteristics of the system. The goal and the
task elements of the Strategic Rationale (SR) model of the i* framework capture
the user’s information requirements and the steps to achieve them. This model
generalizes the work in (Pérez-Cataldn et al, 2009) to allow the specification of
the user requirements in the context of finding appropriate similarity measures
for complex information.

As an example, Figure 2 shows the description of the goals and tasks specified
by a user in demand of gene comparison as part of a study of the presence of the
LRRK2 genes in the organism “N. Vectensis”. Notice that this way of specifying
user requirements by means of a hierarchy of goals and tasks resembles the
approach followed by (Tran et al, 2004) to describe, analyse and classify the
tasks undertaken by bioinformaticians.
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3.2. Normalization

User requirements are described in natural language in the Requirements model
but to be automatically processed, they have to be normalized. During this
process, the normalized user specifications will be compared to the web resources
metadata, which will be also normalized in the same way.

Semantic annotation (SA) can be seen as the process of linking the entities
mentioned in a text to their semantic descriptions, which are usually stored
in knowledge resources (KRs) such as thesauri and domain ontologies (Kiryakov
et al, 2004). Former approaches to SA were mainly guided by users (e.g., (Kahan
and Koivunen, 2001)) through seed documents, manually tagged examples or ad-
hoc extraction patterns. However, in our scenario, we require the SA process to
be fully automatic and unsupervised. This is because the volume of data to
be processed is huge and the set of possible user requirements is unknown a
priori. There are few approaches performing fully unsupervised SA, and many
of them are based on dictionary look-up methods or ad-hoc extraction patterns
and others are based on statistics on the web such as (Sdnchez et al, 2011) (see
(Uren et al, 2006) for a review of SA concepts and approaches).

Most SA approaches assume that the entities are named entities (e.g., people,
locations, organizations, and so on); hence named entity recognition (NER) is
the basic pillar of these approaches. However, the proliferation of comprehensive
KRs has extended the notion of entity to any kind of object or concept. For
example, in (Dénger and Berlanga, 2009; Berlanga et al, 2010), domain ontology
concepts are considered potential entities whose instances occur in the texts. In
the biomedical scenario, proteins, diseases and organs are considered entities to
be identified from texts.

Our SA process consists of three main steps. In the first step, the KR is
processed to generate a lexicon, which should contain the lexical variants with
which each concept is expressed in the written texts. The second step consists
in applying some mapping function between the text chunks likely to contain
an entity and the KR’s lexicon, in order to obtain the list of concepts that are
potentially associated. Notice that entities usually appear in noun phrases; thus,
the text chunks to be considered are restricted to these syntactic structures.
Finally, in the third step, the concepts whose lexical forms best fit to each text
chunk are selected to generate the corresponding semantic annotation. The final
semantic annotation contains the unique references to the corresponding concepts
and the text span matched by these concepts.

3.2.1. Knowledge resources

As our method relies on the SA of both the user requirement specifications and
the web resource metadata, we need to establish the reference KRs from which
concepts are brought. Unfortunately, a single comprehensive ontology for this
application domain does not exist, and therefore we need to combine several
existing resources. For this purpose, we have selected as the main KR the ref-
erence ontologies of Biocatalogue (i.e., ™YGrid ontologies) and EDAM Ontology
(Pettifer et al, 2010), that improves the annotations of the ™¥Grid ontologies.
We have also used the UMLS Meta-thesaurus (version 2010AA) to cover the
concepts about procedures, anatomy, diseases, proteomics and genomics. This
metathesarus is an integrated resource that includes a great variety of thesauri
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Source Concept reference format Comment

UMLS UMLS : C<number>: STypes STypes are the semantic types associ-
ated to UMLS concepts (e.g. Disease,
Protein, etc.)

Wikipedia  Wiki:W<number>:Categs Categs are the categories associated to
the page entry of the referred concept.

myGRID myGR : D<number>: Concepts extracted from the "¥Grid
ontologies.

EDAM EDAM_<number>: Concepts extracted from the EDAM
ontology.

Table 1. Concept reference formats used for the different semantic sources. The generic format
for a reference is Source:ConceptID:SemanticTags

and ontologies such as the Gene Ontology (GO) !, the HUGO database 2, and
many other related to the biomedical domain. Finally, in order to provide broad
coverage for the names of the algorithms and methods involved in Bioinformat-
ics, we have included the entries of the Wikipedia related to any sub-category of
the Bioinformatics category. Currently, we are building other specific annotators
based on other Wikipedia categories, since the Wikipedia is becoming the infor-
mation hub for emerging semantic technologies (Hu, 2010) (Bizer et al, 2009).

For tagging purposes, all these KRs are loosely integrated into a concept
repository which consists of an inventory of concepts, their taxonomical relation-
ships (i.e. is_a relationship) and the lexical variants associated to each concept
(e.g. alternative labels, synonyms, and so on) (Jimeno-Yepes et al, 2009). From
now on, we denote the whole repository as KR, the taxonomical relationship
between two concepts C,C’ € KR as C < C’, and the lexical variants of each
concept C € KR as lex(C).

3.2.2. Normalization through semantic annotation

As previously explained, user descriptions of goals, tasks and resources are ex-
pressed in natural language. In order to reconcile the users requirements and
the resources, we need to normalize their representation under a well-defined
semantic space. This normalization process involves the annotation of all the de-
scriptions with the concepts of the knowledge resource K R. As mentioned before,
this process consists of a mapping function between each text chunk, denoted
with T, and the lexical variants of each KR concept, denoted with lex(c). This
function is defined as follows:

idf (SNT) —idf (S — T)
idf (S)

sim(C,T) = mazgeies(c)

This function measures the information coverage of T" with respect to each
lexical variant of a concept C. Notice that we assume that text chunks and lexical
strings are represented as bags of words. Information is measured as usual with

L http://www.geneontology.org/
2 http://www.genenames.org/



8 M. Pérez-Cataldn et al.

Task description
Build <e id="UMLS:C1519068:T062:1|Wiki:W149326;6555571;825200;976276:1,2]
UMLS:C9000005:T090:1,2|myGR:D9000400: :1,2"> phylogenetic trees < /e>

T= {’C1519068’: 11, ’W149326’: 18, ’C9000005’: 15, ’D9000400’: 18}

Service description

<service id="2027">

<name>GlobPlot< /name>

<category><e id="UMLS:C1513868:T087" >Domains< /category>
<tag>order< /tag><tag>globularity< /tag>

<tag><e id="UMLS:C0012634;T047">disorder< /e>< /tag>
<tag>EMBRACE< /tag><tag>EMBL< /tag>

<tag><e id="myGR:D9000419.15::1,2">protein sequence< /e>< /tag>
<description>Globplot <e id="UMLS:C1999219:T169" >performs< /e>
<e 1d="UMLS:C0021699:T116:1,2|UMLS:C0549551:T046:2,3" >intrinsic
protein disorder< /e><e id="UMLS:C1513868:T087">domain< /e>

< /description>
< /service>

St1429 = {°C1519068°: 11, ’W149326’: 18, ’>C9000005’: 15, ’D9000400’: 18,
’C0040811:11}

Table 2. Semantic Annotation of a task and a service description. Semantic vectors are shown
below each annotated description.

the inverse document frequency (IDF), which is an estimation of the string words
entropy. Thus, idf (S) is defined as follows:

idf (S) = — Z log(P(w|Background))
weS

As background corpus for stating the word probabilities, we have used the
whole Wikipedia.

All these definitions are inspired by the information-theoretic matching func-
tion presented in (Mottaz et al., 2008) and the word content evidence defined in
(Couto et al, 2005).

The set of annotations associated to each text chunk 7' are those concepts
that maximize both sim(C,T) and the word coverage of T. That is, the system
selects the top ranked concepts whose lexical variants best cover the text chunk
T. In order to avoid spurious annotations, a minimum threshold for sim(C,T)
is required (usually above 0.7).

From the annotation set of each description, we define a semantic vector
weighted by the tf x idf score, where tf(C) is the frequency of the concept C' in
the description, and idf (C) is calculated as follows:

’Ldf(C) = maxSElem(C)idf(S)

Considering the concept reference formats of Table 1, the annotations gener-
ated for the example task described as build phylogenetic trees and the metadata
of the web service GlobPlot are shown in Table 2. We have used the IeXML
notation? to show the generated annotations. In the same table we also show the
resulting concept vectors from these annotations.

3 http://www.ebi.ac.uk/Rebholz-srv/IeXML/
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3.3. Web resource discovery

The discovery of suitable web resources for the user’s requirements is based on
the matching between the annotations of the tasks and the metadata of the
web resources. This matching can be now performed over the semantic vectors
associated to them. For example, we could apply the cosine measure to calculate
the similarity between web resource descriptions and user requirements, or a
concept-based probabilistic model like that presented in (Jimeno-Yepes et al,
2010). However, this kind of measures does not take into account the relevance
of each concept within the context of the task.

For example, in the queries “define structurally and functionally important
domains of the membrane”, “predict gene functions” and “compare functional
relationships”, the concept function does not have the same relevance. In the
first query, functionally describes only a characteristic of the domain, in the
second one, function is the key concept in the query, since it is the object that
must be predicted and, finally in the third one, functional specifies the type of
relationship that must be compared. Therefore, the relevance of the same concept
in different queries varies depending on the context. To be able to exploit this
contextual information, in this work we propose to use a topic-based ranking
model (Steyvers and Griffiths, 2007).

The basic idea behind a topic-based model is the translation from a word-
based statistical model to a topic-based one. Topic-based methods in the liter-
ature assume that the topics are hidden and they must be estimated somehow
(e.g. Latent Dirichlet Allocation (Blei et al, 2003; Griffiths and Steyvers, 2004)).
However, in our work, topics are the biomedical tasks underlying both web re-
sources and user requirements. Thus, our method assumes that the topics are
predefined (i.e. the target tasks), and we profit from existing annotations (e.g.
tags) to automatically estimate the corresponding topic models. One limitation
of LDA is that topics are biased to frequent co-ocurrences and, consequently,
topics are dominated by frequent tasks. This is the reason why we have adopted
a relevance-based model similar to (Pérez et al, 2009).

3.8.1. Topic-based model for web resources

In this paper we propose a topic-based model for resource retrieval where topics
represent base user tasks. From now on, we use base task instead of topic.

Let {t1,---,tn} be the set of base tasks specified in the requirements and
to be met by the web resources. Let RT} be a set of web resource descriptions
deemed relevant for the base task ty.

The conditional probability of each concept ¢; € KR for a base task tj is
estimated as follows:

P(cilts) = > P(cilws;) - P(ws;lte)
ws; € RTYy,

That is, we use a mixture of two distributions to calculate the desired one.
The distribution P(c;|ws;) is estimated from the concept frequencies observed
in each resource tf(c;, sw;), and smoothing them with Dirichlet priors (Mackay
and Peto, 1995) as follows:

ey Hews) - P(e]G)
P(Cl|w8]) - chEwsj tf(Ck’ wsj) - :
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CUI Concept P(c|t)
C1261322 Evaluation 0.0152
C0028811 Job 0.0096
C0080143 Sequence alignment  0.0087
C0002520 Amino acids 0.00607
C1514918 Retrieval 0.00557
W4066308  Multiple alignment 0.0047
C0002518 Protein sequence 0.0043
C1514562 Domain, region 0.0041
C0004793 Sequence 0.0039
C0033684 Proteins 0.0039

Table 3. Top-10 concepts for the base task “align sequences”.

To calculate the frequency of concepts, we benefit from the concept taxonom-
ical relationships of K R:

tflciws)) = > tf(c, ws;)

c’eKR,c'<¢c;

Consequently, concepts ¢; can either be present in the semantic vector of ws;
or be an ancestor of some concept in ws;.

The distribution is smoothed in order to avoid probabilities being zero. In this
case we use Dirichlet prior smoothing, which is regulated by both the parameter
i (set to 50 in our experiments) and a background corpus G where concept
probabilities can be estimated.

The second distribution P(ws;|ts) of the conditional probability represents
the chance of retrieving a relevant web resource in the context of given base task.
This probability is estimated by sampling instances of t;, and counting how many
times each web resource of RT} is retrieved. Thus, the probability is calculated
as follows:

n(ws;, tr)

Zwsi ERTy, n(wsi’ tk)

P(wsj|tk) =

where n(ws, t) returns the number of times ws is retrieved with ¢’s instances.
We consider that an instance of a task is an example description of the base task.

Table 3 shows the top-10 ranked concepts for the base task align sequences.
FEvaluation, job and retrieval are common concepts in web resources descriptions
and, therefore, are highly ranked in almost all the base tasks. Then, the other
concepts are true representatives of the base task, like sequence alignment and
multiple alignment.

3.8.2. Web resource ranking

Once topic models are built from the set of relevant web resources RT}, we can
define the similarity between a description ¢ and a web resource ws; as the
probability given by the mixture of topic models?*:

P(glws;) = H ZP(Ci|tk) - P(tr|ws;)

ciE€q i

4 We also assume the independence of concepts c; € g.
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However, now we do not know the probability P(t;|ws;) because ws; can be
out of RTy. Applying Bayes, we can calculate P(tx|ws;) as:

P(ws;,tk)

P(tr|ws;) = Plws,)

If we assume that all the web resources have the same chance to be retrieved,
then P(ws;) is an unknown constant (we do not know how many web resources
exist) for all the web resources. Thus, we can rewrite the formulas above as
follows:

P(tg|ws;) a P(ws;,tx)
P(qlws;) o H ZP(ci|tk) - P(wsj, ty)

ci€q ty

Thus, the joint probability of web resources and base tasks can be estimated as
follows:

P(wsj,ty) = Y Plalte) - Plei|ws;)
ciEtk m’ij

4. Evaluation

The effectiveness of a discovery system can be evaluated by measuring the quality
of the results obtained for a representative set of heterogeneous queries, consider-
ing as the relevant results those included in a well-designed gold standard. In this
section, we explain how to use this method in order to evaluate our approach.
The evaluation is focused on the Bioinformatics domain and we have selected
BioCatalogue® as the reference web resource catalogue. At the end of the section,
there is a discussion of the results of this evaluation.

BioCatalogue contains 2081 registered services (as of November 2011). Al-
though some services are described through a set of predefined categories, most
of them have no metadata and just provide a free text description and/or the
web service documentation. Some services do not provide any kind of informa-
tion but just the URL to their web sites. For these cases, we have downloaded
the web site main pages and used them as the service descriptions. We remark
that these limitations motivate the use of our approach.

To build the topic based model, we have defined 13 base tasks and, for each
base task t;, we have specified a series of key concepts with which the rele-
vant resources for the RT}, sets are selected. For example, the concept phylogeny
is deemed relevant for task 77, shown in Table 4. It is worth mentioning that
these concepts can be automatically gathered from existing documents such as
Wikipedia pages related to each base task. With these concepts we have auto-
matically retrieved the top-10 ranked resources by using the cosine measure over
their ¢f x idf semantic vectors (see Section 3.2.2).

Table 4 shows the cardinality of each RT} and the most frequent Biocatalogue
categories assigned to their resources. Notice that there are highly frequent base

5 http://www.biocatalogue.org/
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Task |RTy,| Top BioCatalogue categories
T Search proteins with a 58 Domains
functional domain
Ts Localize protein expression 3 N/A
T3 Search similar sequences 71 Protein sequence similarity
Nucleotide sequence similarity
Ty Identify and characterize genes 21 N/A
linked to a phenotype
Ts Analyze transgenic model organism 44 Microarrays, Biostatistics
Data retrieval
Ts Find genes with functional 60 Pathways, protein interaction
relationships
T Find common motifs in genes 9 Function prediction, motifs
T3 Predict structure 103 Protein secondary structure

Protein tertiary structure
Protein structure prediction

Ty Identify putative function of gene 33 Functional genomics
Function prediction
Domains

Tio  Gene prediction 18 Genomics

Sequence analysis
Gene Prediction
Th1  Analyze phylogeny 99 Phylogeny
Ti2  Align sequences 229 Protein sequence alignment
Nucleotide multiple alignment
Protein multiple alignment
Nucleotide sequence alingment. . .
Ti3  Protein identification and 12 Chemoinformatics
characterization

Table 4. Number of different resources in the RT} of each base task and the most frequent
BioCatalogue categories.

tasks like align sequences and predict structure, whereas others are hardly covered
by BioCatalogue, like localize protein expression. Notice also that the proposed
model finds out non trivial associations between the base tasks and the BioCat-
alogue categories. For example, the base task analyze transgenic model organism
is related to the category data retrieval.

Once the topic-based model is created, the evaluation of the approach is
carried out by executing a set of heterogeneous queries (i.e. task description
examples) that captures different ways to describe bioinformatics tasks, thus
reflecting the variability in the users’ information needs. To create the query
pool®, we have selected more than 250 short descriptions extracted from other
Life Sciences resource catalogues such as OBRC 7 and ExPaSy 8.

These queries are evaluated over a gold standard due to the difficulties to
determine the whole set of relevant results for each query. The gold standard®
has been built with 443 resources (out of 2081 registered resources), but only for
the 7 base tasks that can be unambiguously related to BioCatalogue categories.
Additionally, we have manually revised the gold standard in order to ensure the
quality of the final set.

6 http://krono.act.uji.es/KAIS/pool_queries.xml
7 http://www.hsls.pitt.edu/obrc/

8 http://expasy.org/

9 http://krono.act.uji.es/KAIS/gold_standard.xml
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Task Number P@5 P@l10 P@20 P R
of queries
T Search proteins with 21 0.75 0.65 0.54 0.34 0.93
a functional domain
T3 Search similar 27 0.89 0.91 0.92 0.57 0.74
sequences
Ts Analyze transgenic 38 0.77 0.75 0.71 0.53  0.57
model organism
Te Find genes with 51 0.77 0.75 0.71 0.45 0.57
functional
relationships
Ty Predict structure 38 0.71 0.63 0.61 0.39 0.7
Th1 Analyze phylogeny 12 0.96 0.92 0.9 0.57  0.99
Ti2 Align sequences 33 0.98 0.98 0.95 0.59 0.84
Average 314 0.85 0.82 0.79 0.49 0.81

Table 5. Precision (P) and recall (R) for the gold standard, including the precision for the
top-5, top-10 and top-20 results

With this gold standard, we have evaluated the results obtained for each
one of the queries from our query pool with the traditional precision and recall
quality measures:

|relevant_resources N retrieved_resources|

precision = -
|retrieved_resources|

|relevant retrieved_resources|

recall =
|relevant_resources|

Table 5 shows the precision and recall of the results obtained for the queries,
taken from the above mentioned query pool, associated to the 7 base tasks of the
gold standard. The results show that the discovered web resources are in most
cases adequate matches for the user requirements.

In Table 6, we show the precision at top-10 for some queries randomly selected
from the gold standard results, calculated over the whole BioCatalogue.

The results of this evaluation indicate that our approach is an improvement
over searching web resources by category, because it discovers web resources that
are not categorized in BioCatalogue. The reason is that discovery is based on
all the available metadata of the web resources. For example, Table 7 shows
the top-10 resources for the query calculate the mazimum likelihood phylogenies
from nucleotide and it can be shown that only one is categorized in BioCatalogue.
All of them except INB:inb.bsc.es:runPhylipDnapars and Clustal W2 Phylogeny
calculate phylogenies using the maximum likelihood algorithm over nucleotide
sequences.

Moreover, if a user sends these queries to BioCatalogue, most of them do
not produce any answer. The reason is that BioCatalogue implements the search
as a string matching procedure instead of using an information retrieval engine.
Therefore, one of the main advantages of our approach is that it allows users to
express their requirements in free text. It is also important to note that some
queries involve vocabulary related to more than one base task, which is prob-
lematic for the discovery of the most appropriate resources. However, thanks to
the topic-based model, the most relevant concepts are the ones that guide the
discovery.
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Task Query P@10 GS P@10 All
T Search for information 0.8 1.0
on protein domain familiy
T Localize protein domains situated 0.8 1.0
at the surface of virus particles
Ty Find information about protein domains 0.8 1.0
in protein function and interaction evolution
T3 The sequence similarity of the mandarin fish 1.0 1.0
domain with those of higher vertebrates 1.0 1.0
Ts Analyze microarray gene expression 1.0 1.0
and other functional genomics-related data
Ts Interpret microarray gene expression data 1.0 1.0
Ts Analyze gene expression profiles 1.0 1.0
Ts Interpret gene expression data 1.0 1.0
obtained from microarray experiments
Ts Search for microarray data of Arabidopsis 1.0 1.0
Ts Find similar protein interaction networks 0.8 1.0
between species
Ty Predict transmembrane protein helices 0.7 0.9
Ts Perform secondary structure predictions 1.0 1.0
on protein sequences
T11 Perform pipeline phylogenetic analysis 0.6 1.0
of protein or DNA sequences
T2 Conduct protein alignment analysis 1.0 1.0
Tha Align multiple DNA or protein sequences 1.0 1.0

Table 6. Precision at top-10 in the gold standard (GS) and regarding all the resources.

Resource BioCatalogue categories
BuildPhylogeneticTreeFromFastaAlignmentService N/A
INB:inb.bsc.es:runPhylipDnamlk N/A
PhylipService N/A
INB:inb.bsc.es:runPhylipDnapars N/A
INB:inb.bsc.es:runPhylipDnaml N/A
INB:inb.bsc.es:runPhylipDnapenny N/A
ClustalW2 Phylogeny Phylogeny
EMBOSS fdnamlk N/A
EMBOSS fdnaml N/A
EMBOSS fproml N/A

Table 7. Top-10 results of the query “Calculate maximum likelihood phylogenies from nu-
cleotide sequences”.

From these results, we can conclude that using semantic technologies provides
a satisfactory solution to the discovery of web resources in the context of the
Life Sciences. This assertion is based on the following observations. First of all,
the emergence of metadata-based repositories such as BioCatalogue. Second,
the existence of broad semantic resources, such as UMLS, that can be used
to characterize the researcher’s requirements with a high degree of precision.
However, it is not realistic to assume that Life Sciences researchers will manually
create formalized requirement specifications, which could be a costly and tedious
process. Instead, our approach proposes the automatic semantic annotation of
free-text description of resources and users requirements.
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4 service_components_model.uml 52

g ey

] <<specific_task>> <Class> Build phylogenetic trees

E <<service_component=> <Class> RunSifterService

H <<service_component>> <Class> INB:inb.bsc.es:runPhylipFitch

H <<service_component>> <Class> INE:www.bicinfo.uma.es:runCreateTreeFromcClustalw
] <<service_component=> <Class> INB:inb.bsc.es:runPhylipNeighbor

& <<service_component=>> <Class> BuildPhylogeneticTreeFromFastaAlignmentService
H <<senvice_component>> <Class> INB:inb.bsc.es:runPhylipbnaml

| <<service_component>> <Class> INB:inb.bsc.es:runPhylipDnapenny

service_component>> <Class> rocilmplementationService

] <<service_component>> <Class> INB:inb.bsc.es:runPhylipDnapars

H <<service_component>> <Class> INB:inb.bsc.es:runPhylipbnamlk

El Properties 32

Property Walue
Cperations I= ['getVersions', Tequest_orig', 'response_orig']
Quality score =00
Score 1= 154605260622e-12
Service categories ['Phylogeny']
Tags = ['gene’, 'bicinformatics', 'Phylogenetic', 'bicinformatics']
Task category I= Phylogeny

Fig. 3. Screen showing the ranked list of web resources discovered by the prototype for the
task build phylogenetic trees.

5. Prototype

In order to demonstrate the usefulness of the proposed web resource discovery
system, we have implemented a prototype which consists of several components.
First, the requirement specification step is supported by an Eclipse-based add-in,
built on the Eclipse EMF modelling framework '°, which supports i*-based task
specification. As an example, Figure 3 shows the ranked list of web resources
discovered by the prototype for the task build phylogenetic trees. The user is
provided with relevant metadata, such as the BioCatalogue categories, the tags
or the name of the operations of the resource. While the current implementation
provides access to the full modeling capabilities of the Eclipse EMF, a simplified
graphical editor is under development.

The core matching functions between web resources and requirements are
implemented as a set of Python modules. The associated semantic resources
are available either as off-the-shelf databases (e.g. MySQL) or, when required
for performance, as customized indexes. For easy programmatic access, this has
been encapsulated as a web service. A simple search interface for testing and
evaluation purposes built on top of this web service is publicly available 1. As
an example, Figure 4 shows the results of a matching operation for a simple task.
In addition to the ranked list of web services, additional information is presented:
the annotation of the input task, and the probabilities that each service is related
to each of the 13 base tasks on which our topic model is built.

10 http://www.eclipse.org/modeling/emf/
I http://krono.act.uji.es/biocat/BioCatClient.html
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OO0 a. N
Y %Blotatalogue task-oriented N2

€& = C (O krono.act.uji.es/biocat/BioCatClient.html ke X

™

BioCatalogue task-oriented service search |

Specify your task using natural language:

identify allele specific motifs Find <

Select a sample task...

Annotated Query: identify allele specific motifs

INB:inb.bsc.es:runPPSearchAgainstProsite
Task probabilities:

Proteins with a functional domain: 0.001791022634485
W

0.0000 0.0007 0.0014 0.0021 0.0028
Authority: inb.bsc.es - Search your query sequence for protein motifs, rapidly compare your query |
protein sequence against all pattens stored in the PROSITE pattemn database.

INB:inb.bsc.es:runPratt

Task probabilities:

0.0000 0.0007 0.0014 0.0024 0.0028

Authority: inb.bsc.es - Search for patterns conserved in a set of protein sequences.

INB:inb.bsc.es:searchinterPro 4
Task probabilities:

v

1 A

Fig. 4. The results of matching of a user-specified task with the annotated BioCatalogue-
indexed web resources.

6. Conclusions

We have presented a semi-automatic approach that guides researchers in the Life
Sciences in the discovery of the most adequte web resources for their well-defined
requirements. With this approach, users can easily find out web resources that
were previously unknown to them because fell out the scope of their main field
of interest, or were poorly categorized with existing tags. We exploit two specific
characteristics of the domain: the availability of broad semantic resources that
allow the annotation of plain text, and the emergence of web-based repositories
of web resources metadata.

Due to the importance of the semantic normalization, we have considered it
appropriate to annotate the available information of all the resources registered
in BioCatalogue. To achieve this, we have used a biomedical semantic annotator
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that applies several ontologies to normalize biomedical texts. The user require-
ments are also annotated with the same ontologies, thus allowing the applica-
tion of a semantic search technique to find mappings between requirements and
resources. However, we have noticed that not all the concepts have the same rel-
evance in different contexts and, therefore, we have defined a topic-based model
for web resources to take into account the relevance of a concept in each task.
The result of the process is that users are provided with a set of ranked lists of
web resources that are relevant for their stated information needs.

The intended end user of our approach is assumed to be an expert on her
field, with the ability to recognise which web resources are the most appropriate
for a task once they have been discovered and characterised with enough metain-
formation. In this context, one of the main benefits of our approach is that it is
a semi-automatic process. In practice, we consider it necessary to allow the user
to be able to change parameters, annotations or automatic selections in each of
the phases, based on her own knowledge and experience, or on previous results.
Thus, the process described in this paper is an instance of exploratory search,
advising the user in each step, and taking advantage of her previous knowledge.

Some direct follow-ups of this work are the refinement of the particular details
of the semantic techniques used in our approach, and the creation of a GUI to
facilitate its application. In this context, one future improvement is the integra-
tion of the different knowledge resources used for semantic annotation. Ontology
matching techniques will be studied to perform such an integration (Martinez
and Aldana, 2011). This will reduce the number of generated annotations as
well as the ambiguity of some concepts. Moreover, we are also considering the
use of non-functional requirements to evaluate the quality of the candidate re-
sources. From a broader perspective, the study of the emerging metadata repos-
itories shows opportunities for further research. Some of the promising avenues
we are beginning to work on are the exploitation of as many different sources
of metadata as possible, in order to improve the assessment of the relevance
of a given web resource. For example, we are exploring the use of external data
(bibliographical information, referenced web pages) to complete the limited user-
provided metadata; another option is the automatic sampling of the output of
web services in order to obtain accurate information on their semantic cover-
age. We are also considering the possibility of using faceted search to exploit the
available information of the resources; in this respect, (Pérez-Cataldn et al, 2011)
shows some promising preliminary results. Finally, we intend to explore how to
exploit the social data available in web-based repositories of web services (e.g.
BioCatalogue’s social networking and crowdsourcing aspects), by incorporating
techniques such as social network analysis into our approach.
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