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Abstract
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1. Introduction

Negative trions with one electron in the s-shell and another in the p-shell,
often referred to as p-shell trions or hot trions, have been proposed for optical
electron spin polarization and spin memory devices based on quantum dots
(QDs).[1, 2, 3] These applications rely on the fine structure of the triplet
sublevels, which are split by tens of µeV even at zero magnetic field due to
the electron-hole exchange interaction, each set of sublevels having a distinct
response to circularly polarized light.[1, 4]

The same fine structure was expected for positive trions,[5] but recent op-
tical measurements reveal the presence of an additional number of resonances
and large (∼ meV) splittings, which cannot be accounted for by the weak
electron-hole exchange interaction alone.[6, 7, 8] Warming and co-workers
showed that these splittings could be correctly reproduced if one considers
anisotropic hole-hole exchange interaction and Coulomb correlations.[6] The
underlying idea is that piezoelectric fields lower the otherwise circular symme-
try of self-assembled InAs/GaAs QDs. Because the valence band spin-orbit
interaction is significant, the hole-hole spin exchange interaction is sensitive
to the spatial asymmetry and hence degeneracies are lifted. Soon after it was
realised that single-hole p-shell energy levels in InAs/GaAs QDs also present
few-meV splittings.[9, 10] These splittings could be easily understood if the
lateral confinement was anisotropic, e.g. due to an elongation of the QD base
or to piezoelectric fields.[11, 12] However, the magnitude observed is too large
for the expected degree of anisotropy. Using an 8-band k·p Hamiltonian with
realistic simulation of the inhomogeneous QD composition, strain and piezo-
electric fields, it was then shown that heavy hole-light hole (HH-LH) coupling
was the main factor contributing to such a splitting.[9] Furthermore, it was
found that HH-LH coupling increased with the vertical aspect ratio, which
translated into enhanced p-shell splittings. These results were however of
numerical nature, and a more profound understanding is of interest to gain
control on the electronic structure of p-shell holes and positive trions in QDs.
This is the goal of the present work.

We study holes and trions in cylindrical InGaAs QDs. Circular dots are
not only of fundamental interest –realistic self-assembled QDs often present
but small deviations from this ideal limit–, but also of practical importance,
as highly symmetric QDs are desirable for spintronic applications to minimize
spin admixture through spin-orbit interaction.[13, 14, 15] Holes are described
as Luttinger spinors resulting from a 4-band k·p Hamiltonian. We find that
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HH-LH coupling gives rise to large splittings of the p-shell even if the QDs
have perfect circular symmetry, and show that this follows from the unequal
centrifugal energy of the minor components in p+ and p− states. The depen-
dence of the splitting on the vertical aspect ratio is then easily understood
from the different effective masses of HHs and LHs. We next show this p-
shell splitting gives rise to a non-negligible splitting of the two-hole triplet,
which is clearly reflected in the optical spectrum of hot trions, as noted in re-
lated experiments.[6, 7, 8] Because HH-LH coupling is so influential in these
systems, we also investigate whether it has a significant impact on the spin
purity of the hot trion, which could affect the performance of positive trions
in practical applications.[7] We find that the spin purity of the excited triplet
rapidly decreases with increasing aspect ratio, but that of the singlet remains
high. This has implications for optical spin control which we discuss. Last,
we show that the hole triplet splitting is also responsible for the appearance
of multiple resonances in the emission of doubly charged excitons.[23]

2. Theory

The general expression of our Hamiltonian can be written in the second
quantization as:
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∑

i
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i e

+

i ei +
∑

p
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p h

+

p hp +
1

2

∑

ijkl

〈ij|V |kl〉 e+i e
+

j ekel

+
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2

∑

pqrs

〈pq|V |rs〉h+

p h
+

q hrhs +
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+
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where Ee
i (Eh

p ) is the electron (hole) energy in the single-particle state |i〉
(|p〉), e+i /ei (h

+
p /hp) is the electron (hole) creation/annihilation operator, i.e.,

(e+i e+j . . . )(h+
p h+

q . . . ) |0h〉|0e〉 = |p q . . . 〉|i j . . . 〉, and 〈ij|V |kl〉, 〈pq|V |rs〉
and 〈ip|V |qj〉 are the electron-electron, hole-hole and electron-hole Coulomb
matrix elements respectively.

The single-particle electron and hole states are calculated as in Ref. [16].
Electrons are modeled using a single-band effective mass Hamiltonian. For
QDs with C∞v symmetry and negligible spin-orbit interaction, the states are
of the form:

|mz, n, σ〉 = fmz ,n(ρ, z) |σ〉, (2)
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where mz is the azimuthal angular momentum of the envelope function, n is
the main quantum number and σ =↑, ↓ the spin projection and fmz ,n(ρ, z)
the envelope function.

For holes, spin-orbit interaction is significant and the spin is no longer a
good quantum number. Instead, the Bloch total angular momentum Jz is
used.[17] For HHs, Jz = ±3/2 and the periodic Bloch functions are given by:

|Jz = +3/2〉 = −1√
2
|P+〉 | ↑〉, (3)

|Jz = −3/2〉 = 1√
2
|P−〉 | ↓〉. (4)

where P± = |X〉 ± i|Y 〉. For LHs, Jz = ±1/2 and the Bloch functions are:

|Jz = +1/2〉 =
√

2

3
|Pz〉 | ↑〉 −

1√
6
|P+〉 | ↓〉, (5)

|Jz = −1/2〉 =
√

2

3
|Pz〉 | ↓〉+

1√
6
|P−〉 | ↑〉. (6)

We use a four-band k·p Luttinger-Kohn Hamiltonian coupling HH and
LH subbands, so that hole states are described by four-component objects
(Luttinger spinors). Each component is given by a Bloch function |Jz〉 and an
envelope function fJz

mz ,n(r). In the presence of axial symmetry, the envelope
function has a well-defined angular momentum mz, and the spinor can be
classified by its total angular momentum Fz = mz+Jz. A general hole spinor
reads:

|Fz, n〉 =
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
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, (7)

where n is the main quantum number.
Coulomb matrix elements are calculated as 5-dimensional integrals which

we evaluate using adaptative Monte-Carlo routines.[18, 19] Many-body states
are then computed with a configuration interaction (CI) routine.[20]

We consider a cylindrical QD with radius R = 15 nm and variable height
H. InGaAs material parameters are taken for the numerical calculations:
the electron effective mass is m∗ = 0.05m0, where m0 is the free electron
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mass; γ1 = 11.01, γ2 = 4.18 and γ3 = 4.84 are the Luttinger parameters and
ε = 12.9 the dielectric constant.[21] The confining potential outside the QD
is set by the InGaAs/GaAs band-offset. We take V = 0.5 eV for electrons
and V = 0.3 eV for holes.

3. Results

3.1. Single carrier

We start by comparing the shell structure of single electrons and holes
in Figure 1. For electrons, Fig. 1a, the s-shell is formed by |mz, σ〉 = |0, ↑〉
and |0, ↓〉. The p-shell is formed by two p− states (| − 1, ↑〉, | − 1, ↓〉) and
two p+ states (|+1, ↑〉, |+1, ↓〉). This scheme reflects the usual degeneracies
resulting from circular and time-reversal symmetries.

For holes, if we take into account HH-LH coupling, spin-orbit interaction
lifts degeneracies and only Kramers-degenerate pairs are observed. The shell
structure now resembles that of Fig. 1b. The s-shell is given by Fz = ±3/2
states, whose spinors read:
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The first excited states are those with Fz = ±1/2, whose spinors are:
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Last, the second excited states are those with Fz = ±5/2, whose spinors
are:
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Boldface characters in the expressions above denote the dominant com-
ponent of each spinor (i.e. the HH with lowest angular momentum). If only
this component was present, as in usual single-band HH models, the shell
structure would be identical to that of electrons (note that |Jz = ±3/2〉
functions contain pure spin projections, Eqs. 3,4). For instance, Fz = 1/2
and Fz = −5/2 states would be equivalent to mz = −1 states with σ =↑, ↓,
respectively. Nonetheless, the minor components of the spinors are different
for each |Fz|. In particular, the minor components of Fz = −5/2 have larger
mz than those of Fz = 1/2. This results in larger centrifugal energy, which
is roughly given by 〈(mz/ρ)

2〉 (ρ is the radial coordinate). The lateral con-
finement of QDs leads to small 〈ρ〉 values, thus pushing | − 5/2, 1〉 higher in
energy. We stress this occurs in spite of the perfect circular symmetry. In
what follows, we refer to this zero-field p-shell splitting as ∆0.
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Figure 1: (a) Low-energy shell structure of a single electron. (b) Same of a single hole. Fz

quantum numbers are given. (c) Low energy holes states |Fz, n〉 as a function of the QD
height. All energies are referred to that of |3/2, 1〉.

To estimate the magnitude of ∆0, in Fig. 1c we plot the energy of the
|1/2, 1〉 and |5/2, 1〉 (solid lines) as a function of the QD height. At H = 20
Å, ∆0 = 0.4 meV and it increases with the aspect ratio, reaching ∆0 = 3.7
meV at H = 100 Å. These values of the p-shell splitting are of the same
order as, but smaller than, the ∼ 7 meV reported in Ref. [9]. This is because
the weight of the LH components in the idealized QDs we study (less than
6%) is lower than that estimated for the experimental samples (∼ 10%).[9]
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At any rate, the trend observed in Fig. 1c is consistent with that of more
sophisticated models, namelly the larger the aspect ratio the larger ∆0.[9] A
simple explanation follows from our interpretation of the origin of ∆0. The
effective mass of HHs along the [001] direction (growth direction) of zinc-
blende crystals is mhh = 1/(γ1 − 2γ2), which is heavier than that of LHs,
mlh = 1/(γ1 + 2γ2).[17] Thus, a strong vertical confinement implies large
kinetic energies for LHs, which then couple more weakly to HH. The low-
energy hole spinors have then largely dominant HH character. Conversely,
with decreasing vertical confinement strength, the LH character of the spinor
increases, which enhances ∆0.
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T 0
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 *

∆1

∆2
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∆
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T + T  0
*T +

 0.2
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 1
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 20  30  40  50  60  70  80  90  100

 (
m

eV
)

H (Ang)

Figure 2: (a) Electronic configuration of three non-degenerate triplet sublevels. (b) Energy
splitting between such sublevels as a function of the QD height.

3.2. Two holes

The p-shell splitting will certainly influence the hot trion energy structure.
To understand how this occurs we first study the two-hole triplet. In a single-
band picture, one hole would occupy a s-orbital and another a p+ or p−
orbital. The spin degeneracy would allow for the three triplet projections,
T+, T0 and T−. All in all, this yields six degenerate triplet sublevels at
zero field. The presence of ∆0 however splits the triplets into three two-fold-
degenerate sublevels. Fig. 2a illustrates the dominant electronic configuration
of three splitted triplet states. The lowest energy sublevels, T±, have total
(two-body) angular momentum F t

z = ±2, the T0 sublevels F t
z = ±1 and

the topmost sublevels, T ∗
+, F

t
z = 4. Fig. 2b shows the calculated magnitude
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of the splitting between triplet sublevels (∆1, ∆2) as a function of the QD
height. One can see that the splittings tend to increase with the aspect
ratio. Still, the magnitude is systematically smaller than that expected from
a single-particle picture, where ∆1 = ∆2 = ∆0/2. The deviation arises from
Coulomb correlations, which affect T±, T0 and T ∗

± with different intensity.
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Figure 3: (a) Hot trion energy levels, (b) single-hole energy levels and (c) trion emission
spectrum as a function of the QD height. All energies are referred to the lowest energy
states (dashed lines). The schematics represent the dominant hole configurations.

3.3. Hot trion

We are now in a condition to investigate the hot trion properties. The
emission spectrum is studied in Fig. 3. The initial positive trion states are
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shown in Fig. 3a, with schematics illustrating the dominant two-hole config-
uration. One can recognize the three split triplet sublevels well above the
singlet ground state (dashed line). After the electron-hole recombination, the
final state is given by a single hole, whose energy levels are shown in Fig. 3b.
The emission spectrum is then calculated within the dipole approximation,
as described in Ref. [22]. The resulting spectrum is plotted in Fig. 3c. The
fundamental transition -between the trion and single-hole ground states- is
labeled as A. The trion formed by a s-shell electron and the T± hole triplet
gives rise to transition B. That involving T0 gives rise to transitions C and D,
and that involving T ∗

± gives rise to transition E. It is worth noticing that the
resonances corresponding to transitions B-E are non-degenerate, contrary to
the spectrum expected from single-band models, and is consistent with op-
tical measurements of positive trions, which reveal various resonances under
the fundamental transition.[6, 7, 8] Note also that C and D resonances differ
only in the final hole state, so their splitting provides a direct measurement
of the p-shell splitting, ∆0. Yet, this resonance may be difficult to observe
experimentally because T0 tends to thermalize quickly to the singlet ground
state.[1, 3] The use of electrical charging control may facilitate this task.[4]

Electron-hole exchange, which has been disregarded here for simplicity,
will further split trion states with hole configurations T±, and T∗

± into dark
and bright states.[5] This will induce small (µeV) shifts in the energy of
resonances B and E in Fig. 3. Anisotropic electron-hole exchange involving
p-shell holes is negligible.[23]

Negatively charged hot trions have been proposed for optically controlled
spin devices.[1, 2, 3] These applications are supported by the high spin purity
of electrons in QDs, which gives rise to strict spin selection rules and long
spin lifetimes.[24] The suitability of positively charged trions is not clear a
priori, as the valence band spin-orbit interaction can lead to significant hole
spin mixing.[14, 25, 26] To address this question we calculate the expectation
value of the hole spin in single-hole and two-hole states. The results are shown
in Fig. 4a for different values of the QD height. Electronic configurations are
denoted by

(

eS , eP
hS ,hP

)

, where eS (eP ) stands for an electron in the s-(p-)shell and
hS (hP ) for a hole in the s-(p-)-shell (actually, |Fz| = 3/2 and |Fz| = 1/2). ↑
and ↓ are the positive and negative electron spin (σ) projections, while ⇑ and
⇓ are the positive and negative hole pseudospin (Fz) projections. One can
see that single holes in the s-shell (dashed lines) have expectation values near
〈Sz〉 ± 1/2 for all the range of geometries under study. This indicates that
the Luttinger spinor is essentially a HH, with well defined spin. Likewise,
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Figure 4: (a) Hole spin expectation value for different single-hole and two-hole states. The
schematics on the left show the dominant electronic configuration. (b) Sketch of optical
transitions from single-hole to positive trion T± states mediated by left (σ−) or right (σ+)
circularly polarized light. Unshaded (shaded) boxes represent s (p) states. In (b), dashed
lines correspond to spin-forbidden transitions, which are enabled by spin mixing in high
aspect ratio QDs.

the two-hole singlet
(

0,0
⇑⇓,0

)

has 〈Sz〉 = 0, also denoting high spin purity. T±

triplet states,
(

0,0
⇑,⇑

)

and
(

0,0
⇓,⇓

)

, behave however differently (see solid lines).
For small QD height, 〈Sz〉 = ±1, but large deviations are observed upon
increasing the height. This is because the LH components of the spinor gain
weight, and they have mixed spin up and spin down projections, see Eqs. 5,6.

The results in Fig. 4a imply that typical self-assembled InGaAs QDs
–where the aspect ratio is small– are suitable for spin-based operations re-
lying on the positive trion, just like in negative trions. In QDs with large
aspect ratio, however, the p-shell triplet suffers from severe spin mixing,
which translates into weak spin selection rules and coupling to states which
would otherwise require a spin flip mechanism. As sketched in Fig. 4b, one
can still perform spin selective s-shell excitations from single-hole states to
the trion singlet state using circularly polarized light, as done in Ref.[7]. This
can be exploited e.g. for non-destructive spin readout measurements via cy-
cling transitions.[15] By contrast, p-shell excitations to the hot trion are no
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longer as spin selective as in negative trions.[2] The large spin mixing renders

optically active otherwise dark trion states, e.g.
(

0,0
⇑,0

)

→
(

0,↓
⇑,⇑

)

(dashed lines

in Fig. 4b), and mixing between dark and bright subspaces leads to fast spin
relaxation.[26]

3.4. Doubly charged exciton

The splitting of the hole triplet discussed in Section 3.2 is not only re-
flected in the emission spectrum of hot trions, but also in the that of doubly
charged excitons. Ediger et al. compared the photoluminescence spectra of
X2− (3e + 1h) and X2+ (1e + 3h).[23] Clear differences were observed, which
could be understood from the combined effect of electron-hole exchange in-
teraction and a splitting of the final state of X2+, i.e. the p-shell triplet.
Theoretical simulations with an atomistic model confirmed numerically the
presence of such splitting. The physical origin of such splitting is that de-
scribed in this work.

To illustrate this, in Fig. 5 we plot the emission spectrum from the ground
state of X2− and X2+ in a QD of H = 5 nm. Electron-hole exchange is
neglected again to focus on the effect of the hole p-shell splitting. For X2−,
panel (a), the transition is schematically depicted in the inset. The final state
has one electron in the s-shell and another in the p-shell. When considering
spin degrees of freedom, the final state can be either singlet (S) or triplet
(T). This gives rise to two optical resonances, split by the electron-electron
exchange energy. The triplet resonance shows up at higher energies and
is more intense, in agreement with Ref. [23] experiments. For X2+, panel
(b), the triplet degeneracy is lifted (recall Fig. 2). Only T± and T0 are
optically accessible from the ground state, because the high-energy p orbitals
(Fz = ±5/2) are unoccupied. As a result, the triplet resonance splits into
two new resonances, a low-energy one associated with T0 and a high-energy
one associated with T±. The energy splitting, ∆1, is a fraction of meV and
the T± resonance is more intense than the T0 one. This is also in good
agreement with Ref. [23] experiments (see Fig.2 therein).

4. Conclusions

We have shown that the p-shell of holes in circular QDs is split due to
the valence band spin-orbit interaction coupling p+ and p− HHs to LHs of
different angular momenta. The larger the vertical aspect ratio, the larger
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Figure 5: Emission from the ground state of excitons charged with two additional electrons
(a) and two additional holes (b). The insets show the dominant electronic configurations
of the initial and final states. The labels next to the resonances indicate the spin configu-
ration. The energy excludes the bulk gap.

the splitting because the kinetic energy of LH decreases faster than that of
HH, so that the HH-LH coupling increases. This p-shell structure in turn
gives rise to a splitting of the two-hole triplet sublevels, whose magnitude is
also affected by electronic correlations. As a result, the optical spectrum of
positively charged excitons (hot X+, X2+) reveals multiple resonances even
in the absence of electron-hole exchange interaction. This is contrary to the
expectation one would naively expect from usual single-band HH models,
and agrees with experimental observations.

The spin of single holes and positive trions in InGaAs QDs with small
aspect ratio is of high purity, and thus suitable for spin-based applications.
In QDs with large aspect ratio, however, hot trions suffer from severe spin
admixture due to strong HH-LH coupling.
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