
Journal of Supercomputing manuscript No.
(will be inserted by the editor)

Using graphics processors to accelerate the

computation of the matrix inverse

P. Ezzatti · E. S. Quintana-Ort́ı · A. Remón

Received: date / Accepted: date

Abstract We study the use of massively parallel architectures for computing a ma-
trix inverse. Two different algorithms are reviewed, the traditional approach based on
Gaussian elimination and the Gauss-Jordan elimination alternative, and several high
performance implementations are presented and evaluated. The target architecture is a
current general-purpose multi-core processor (CPU) connected to a graphics processor
(GPU). Numerical experiments show the efficiency attained by the proposed imple-
mentations and how the computation of large-scale inverses, which only a few years
ago would have required a distributed-memory cluster, take only a few minutes on a
hybrid architecture formed by a multi-core CPU and a GPU.

Keywords linear algebra · matrix inversion · graphics processors

1 Introduction

Matrix inversion appears in a few scientific applications of different areas (e.g., model
reduction, polar decomposition, optimal control and prediction, . . .) and requires an
important computational effort in terms of execution time and memory. Thus, matrix
inversion is a suitable operation for new highly parallel architectures, like GPUs or
general-purpose multi-core processors.

In this paper we evaluate a variety of high performance implementations for matrix
inversion that exploit all the computational capabilities offered by an hybrid architec-
ture formed by a multi-core CPU and a GPU. The study includes the revision of
two methods for the computation of a matrix inverse and several high-performance

P. Ezzatti
Centro de Cálculo–Instituto de Computación
Universidad de la República, 11.300–Montevideo, Uruguay
E-mail: pezzatti@fing.edu.uy

E. S. Quintana-Ort́ı · A. Remón
Dept. de Ingenieŕıa y Ciencia de Computadores
Universidad Jaime I, 12.071–Castellón, Spain

E. S. Quintana-Ort́ı E-mail: quintana@icc.uji.es · A. Remón E-mail: remon@icc.uji.es

2

implementations for each method. The numerical experiments illustrate the efficiency
attained by the Gauss-Jordan elimination implementations on the target architecture.

The rest of the paper is structured as follows. In Sections 2 and 3 we describe
different algorithms and implementations for matrix inversion. This is followed by
experimental results in Section 4. Finally, in Section 5, a few concluding remarks and
open questions are exposed.

2 High-Performance Matrix Inversion

This section presents two strategies to compute the inverse of a general unsymmetric
matrix, the traditional technique based on Gaussian elimination (i.e., the LU factor-
ization) and the Gauss-Jordan elimination method.

2.1 Matrix inversion via the LU factorization

The traditional approach to compute the inverse of a matrix A ∈ R
n×n is based on

the LU factorization, and consist of the following four steps:

1. Compute the LU factorization PA = LU , where P ∈ R
n×n is a permutation matrix,

and L, U ∈ R
n×n are, respectively, unit lower and upper triangular factors [6].

2. Invert the triangular factor U → U−1.
3. Solve the lower triangular system XL = U−1 for X.
4. Undo the permutations A−1 := XP .

The computational cost of computing a matrix inversion following the previous
four steps is 2n3 flops (floating-point arithmetic operations).

2.2 Matrix inversion via the Gauss-Jordan elimination

The Gauss-Jordan elimination algorithm [5] (gje) for matrix inversion is, in essence,
a reordering of the computations performed by matrix inversion methods based on
Gaussian elimination, and hence requires the same arithmetic cost.

Figure 1 illustrates a blocked version of the gje procedure for matrix inversion
using the FLAME notation [7,4]. There m(A) stands for the number of rows of matrix
A. We believe the rest of the notation to be intuitive; for further details, see [7,4]. A
description of the unblocked version, called from inside the blocked one, can be found
in [8]; for simplicity, we hide the application of pivoting during the factorization, but
details can be found there as well.

The bulk of the computations in procedure GJEblk can be cast in terms of the
matrix-matrix product, an operation with a high parallelism. Therefore, GJEblk is
a highly appealing method for matrix inversion on emerging architectures like GPUs,
where many computational units are available, specially if a tuned implementation of
the matrix-matrix product is available.

3

Algorithm: [A] := GJEblk(A)

Partition A →

„

ATL ATR

ABL ABR

«

where ATL is 0 × 0 and ABR is n × n

while m(ATL) < m(A) do
Determine block size b

Repartition
„

ATL ATR

ABL ABR

«

→

0

@

A00 A01 A02

A10 A11 A12

A20 A21 A22

1

A

where A11 is b × b

2

4

A01

A11

A21

3

5 := GJEunb

0

@

2

4

A01

A11

A21

3

5

1

A Unblocked Gauss-Jordan

A00 := A00 + A01A10 Matrix-matrix product
A20 := A20 + A21A10 Matrix-matrix product
A10 := A11A10 Matrix-matrix product
A02 := A02 + A01A12 Matrix-matrix product
A22 := A22 + A21A12 Matrix-matrix product
A12 := A11A12 Matrix-matrix product

Continue with
„

ATL ATR

ABL ABR

«

←

0

@

A00 A01 A02

A10 A11 A12

A20 A21 A22

1

A

endwhile

Figure 1 Blocked algorithm for matrix inversion via GJE without pivoting.

3 High-Performance Implementations

3.1 Implementations via the LU factorization.

The algorithm presented in Section 2.1 is composed of four steps, that have to be
computed in that strict order. We can identify in this algorithm two drawbacks from
the parallel computing viewpoint:

– The algorithm sweeps through the matrix four times (one time per step), so there
are many repeated memory accesses.

– Operating with triangular factors may be a source of load imbalance.

LAPACK [2] is a high-performance linear algebra library, for general-purpose pro-
cessors that comprises routines covering the functionality required by this algorithm.
In particular, routine getrf obtains the LU factorization (with partial pivoting) of a
general matrix (Step 1), while routine getri computes the inverse matrix of A using
the LU factorization obtained by getrf (Steps 2–4).

3.1.1 Implementation on a multi-core CPU: lu(CPU).

MKL offers a multi-threaded version of blas for multi-core CPUs. The thread-level
parallelism of blas carries over to the implementation of lapack in MKL. Thus, the
simple use of the multi-threaded implementation of MKL exploits the parallelism inside
the blas calls performed from routines getrf and getri.

4

3.1.2 Implementation on a many-core GPU: lu(GPU).

For this implementation, we developed GPU versions of routines getrf and getri, as
well as getf2 and trtri which are invoked from the former two. All the codes extract
fine-grained parallelism using specific blas kernels for the GPU (e.g. cublas). This
implementation also requires that the matrix is initially sent to the GPU and the
inverse is retrieved from there once it has been computed.

3.1.3 Hybrid implementation: lu(magma).

This is the implementation based on the use of computational kernels from the magma

library. In this version, routines getrf, trsm, and gemm from magma [1] are used to
obtain the LU factorization of the matrix, solve the triangular system, and compute the
product of matrices, respectively. As routine trtri, needed to compute the inverse of a
triangular matrix, is not implemented in magma, we have employed a high-performance
implementation developed by researchers at AICES-RWTHD. As in the previous case,
this variant also requires the initial transfer of data from CPU to GPU and the final
communication of the result in the inverse direction.

3.2 Implementations via the Gauss-Jordan elimination.

In this subsection we describe four implementations for the gje method (with partial
pivoting) on the two parallel architectures (multi-core CPU and a GPU from nvidia).
The variants differ, mainly, on which parts of the computation are performed on the
CPU (the general-purpose processor or host), and which operations are off-loaded to
the hardware accelerator (the GPU or device). They all aim at reducing the number
of communications between the memory spaces of the host and the device.

3.2.1 Implementation on a multi-core CPU: gje(CPU).

In this implementation all operations are performed on the CPU. Parallelism is ob-
tained from a multi-threaded implementation of blas. Since most of the computations
are cast in terms of matrix-matrix products, high performance can be expected.

3.2.2 Implementation on a many-core GPU: gje(GPU).

This is the GPU-analogue to the previous variant. The matrix is first transferred to the
device; all computations are performed there, and finally the result (the matrix inverse)
is retrieved to the host. Again, all the parallelism is extracted from a multi-threaded
implementation of blas on a GPU(e.g. the implementation from nvidia, cublas).

3.2.3 Hybrid implementation: gje(Hybrid).

While most of the operations performed in the gje algorithm are well suited for the
GPU, a few are not. This is the case for fine-grained operations, where the low com-
putational cost and data dependencies deliver little performance on massively parallel
architectures like GPUs. To solve this problem, Benner et al. [3] proposed a hybrid

5

version in which operations are performed in the most convenient device, exploiting
the capabilities of both architectures.

In this variant, the matrix is initially transferred to the device, then the iterative
algorithm in Figure 1 is computed jointly by both architectures and, finally, the inverse
is moved back to the host. In particular, only the factorization of the current column
panel, composed of [AT

01; AT
11; AT

21]
T , is executed on the CPU, since it involves a

reduced number of data (limited by the algorithmic block size), pivoting and level-
1 blas operations which are not well suited for the architecture of the GPU. The
matrix-matrix products and pivoting of the columns outside the current column panel
are performed on the GPU using blas kernels (e.g. in the cublas library).

3.2.4 Multilevel Hybrid implementation: gje(Hyb-ML).

Although gje(Hybrid) attains an important computational efficiency due to the fact
that each operation is executed on the most convenient architecture, all stages are
performed sequentially. Variant gje(Hyb-ML) targets the concurrent execution of op-
erations in both architectures.

In order to achieve this, we apply some minor changes to obtain a look-ahead
variant [9] of the algorithm in Figure 1, that enables concurrent computations on CPU
and GPU:

1. The first column panel ([AT
01; AT

11; AT
21]

T) is factored on the CPU.
2. The active column panel is transferred to the GPU.
3. The first b columns of block [AT

02; AT
12; AT

22]
T (that is, block [ÂT

01; ÂT
11; ÂT

21]
T of

the next iteration) are updated and transferred to the CPU.
4. While the GPU update blocks [AT

00; AT
10; AT

20]
T , and the remaining part of

[AT
02; AT

12; AT
22]

T , the CPU factorizes [ÂT
01; ÂT

11; ÂT
21]

T .
5. Move the factorization forward by b columns and repeat steps b)–d) until the full

matrix inverse is computed.
6. All the GPUs transfer their corresponding column block to the host.

The efficiency of the look-ahead variant can be limited by the algorithmic block
size (b). The optimal block size for the GPU is usually larger than that for the CPU;
in other words, if we set b to the optimal block size for the GPU, we will slow down the
execution on the CPU. Therefore, we introduce an additional modification to simulta-
neously optimize the efficiency in both architectures operating with two different block
sizes (one for the CPU and one for the GPU). Specially, as in gje(Hybrid), a blocked
implementation of the gje method is applied to matrix A but, this time, the CPU
factorizes [ÂT

01; ÂT
11; ÂT

21]
T using a blocked algorithm (i.e. GJEblk) instead of its un-

blocked version. Thus the CPU executes algorithm GJEblk on panel [ÂT
01; ÂT

11; ÂT
21]

T

using its optimal block size (bc) while, at a higher level, algorithm GJEblk is executed
with the optimal block size for the GPU.

4 Experimental results

In this section we evaluate the parallel implementations described in Section 3 for the
computation of a matrix inverse.

Two target platforms consisting of a multi-core CPU connected to a GPU have been
tested. The first platform, peco, consist of two Intel Xeon E5520 (Nehalem) QuadCore

6

Platform Processors #cores Frequency L2 cache Memory
(GHz) (MB) (GB)

peco Intel Xeon QuadCore E5520 8 2.27 8 24
Nvidia TESLA c1060 240 1.3 – 4

zape AMD Phenom QuadCore 9550 4 2.20 0.5 4
Nvidia GTX 480 480 1.4 – 1.5

Table 1 Hardware employed in the experiments.

processors at 2.27GHz connected to an nvidia Tesla C1060 GPU. The second platform,
zape, consist of an AMD 9550 (Phenom) QuadCore at 2.2GHz connected to an nvidia

GTX480 (Fermi) GPU. Notice that, in general, the CPU in peco is faster than that in
zape, but the GPU in the latter platform outperforms that of peco. Intel MKL 10.1
implementation of blas and lapack is employed to compute most of the operations on
the general-purpose processors, while the nvidia cublas (version 2.1 for peco; 3.0.14
for zape) and magma (version 0.2) libraries are employed on the GPUs.

We set omp num threads to the number of cores on the CPU, so that one thread
is employed per core in the parallel execution of the MKL routines.

The different implementations of matrix inversion were evaluated for a variety of
matrix dimensions (n = 1000 − 14000 on peco and n = 1000 − 13000 on zape).
For each matrix dimension, several block sizes (b = 32, 64, 96, 128, 256, 384, 512) were
tested. In the case of the the gje(Hyb-ML) implementation, three values for the CPU
block size (bc = 8, 16, 32) were employed. For simplicity, only the results obtained with
the optimal pair (b, bc) are reported.

All experiments employ single precision floating-point arithmetic, and the results
include the communication times between the host and the device memory spaces.
Performance is reported in terms of GFLOPS (109 flops/s)

 0

 50

 100

 150

 200

 250

 300

 0 2000 4000 6000 8000 10000 12000 14000 16000

G
FL

O
PS

Matrix size

lapack

lu(GPU)

gje(GPU)

gje(CPU)

gje(Hybrid)

gje(Hyb-ML)

lu(magma)

Figure 2 Performance (GFLOPS) attained by matrix inversion on peco.

Figure 2 shows the results for peco. Implementations based on the Gauss-Jordan
elimination are very efficient, specially for the inversion of large matrices. The highly

7

tuned implementation from lapack is clearly the best option for small matrices, but
it is also the slowest for medium/large matrices. Due to the large number of cores,
the GPU implementations are very efficient on the inversion of large matrices, but
the time required by the CPU-GPU transfers makes them inefficient for small matrices
(e.g., for the gje(GPU) version, this approximately represents 15% of the total time for
matrices of dimension 1024, but less than 4% for matrices of dimension 14016). Hybrid
approaches (lu(magma) and gje(Hyb-ML)) obtain the best results for matrices with
n > 2000. They exploit the capabilities of the underlying platform and, simultaneously,
keep under control the overhead introduced by communications. Both implementations
obtain similar results for small/medium matrices, but variant gje(Hyb-ML) is faster
for the inversion of large matrices.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2000 4000 6000 8000 10000 12000 14000

G
FL

O
PS

Matrix size

lapack

lu(GPU)

gje(GPU)

gje(CPU)

gje(Hybrid)

gje(Hyb-ML)

lu(magma)

Figure 3 Performance (GFLOPS) attained by matrix inversion on zape.

Figure 3 shows the results obtained on zape. Again, the hybrid implementations ob-
tain the best results, and the gje-based algorithms clearly outperform the alternatives
based on Gaussian elimination. The gap between the GPU and the CPU capabilities
in zape is larger than in peco, as:

– Hybrid and GPU implementations are faster than CPU implementations even for
small matrices.

– The best implementation is 10x faster than lapack, while in peco the best imple-
mentation is only 3x faster.

– The performance partially stabilizes for large matrices, because it is limited by the
highest performance offered by the gemm routine in cublas.

In summary, the gje(Hyb-ML) implementation clearly outperforms the rest, except
for small matrices on peco, where lapack attains the best performance. Thus, we
can conclude that variant gje(Hyb-ML) can be easily adapted to the target platform
and the specific matrix dimension, providing high performance for all the CPU-GPU
platforms and matrix sizes.

8

5 Concluding Remarks

This paper reviews inversion of general large-scale matrices on hybrid CPU-GPU plat-
forms. Two methods and several implementations are presented and evaluated, result-
ing in the following conclusions:

– The gje method is a well-suited procedure for parallel computing, reaching better
performance than the traditional Gaussian elimination approach.

– Hybrid implementations can efficiently exploit the underlying platform features,
and perform well for small and large matrices.

– The GPU implementations are efficient for large matrices, but inefficient for small
matrices due to the communication overhead.

– The gje(Hyb-ML) implementation obtains high performance for all the matrix
dimensions and platforms evaluated.

The study has introduced some questions that should be addressed in the future.

– Double precision arithmetic is required in some applications, but pose some chal-
lenges to our implementations.
– The cost of data transfers is higher.
– The gap between the CPU and GPU performance is reduced even for the late

genaration of GPUs.
– An automatic procedure to obtain the optimal block size for a given matrix and

platform can significantly decrease the evaluation time.
– Platforms with multiple CPUs and GPUs should be addressed.

Acknowledgements We thank D. Fabregat and P. Bientinesi from the Aachen Institute for
Advanced Study in Computational Engineering Sciences (AICES) from the RWTH Aachen
University, for their collaboration and their high performance routines for the triangular matrix
inversion on GPUs. This work was partially supported by the Spanish Ministry of Science and
Innovation/FEDER (contract TIN2008-06570-C04-01).

References

1. Agullo, E., Demmel, J., Dongarra, J., Hadri, B., Kurzak, J., Langou, J., Ltaief, H., Luszczek,
P., Tomov, S.: Numerical linear algebra on emerging architectures: The PLASMA and
MAGMA projects. Journal of Physics: Conference Series 180(1), 012,037 (2009)

2. Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A.,
Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide. SIAM, Philadelphia,
PA, third edn. (1999)

3. Benner, P., Ezzatti, P., Quintana, E.S., Remón, A.: Using hybrid cpu-gpu platforms to
accelerate the computation of the matrix sign function. In: LNCS, 7th Int. Workshop on
Algorithms, Models and Tools for Parallel Computing on Heterogeneous Networks (2009)

4. Bientinesi, P., Gunnels, J.A., Myers, M.E., Quintana-Ort́ı, E.S., van de Geijn, R.A.: The
science of deriving dense linear algebra algorithms. ACM Trans. Math. Soft. 31(1), 1–26
(2005)

5. Gerbessiotis, A.V.: Algorithmic and Practical Considerations for Dense Matrix Computa-
tions on the BSP Model. PRG-TR 32, Oxford University Computing Laboratory (1997)

6. Golub, G., Loan, C.V.: Matrix Computations, 3rd edn. The Johns Hopkins University
Press, Baltimore (1996)

7. Gunnels, J.A., Gustavson, F.G., Henry, G.M., van de Geijn, R.A.: FLAME: Formal linear
algebra methods environment. ACM Trans. Math. Soft. 27(4), 422–455 (2001)

8. Quintana-Ort́ı, E., Quintana-Ort́ı, G., Sun, X., van de Geijn, R.: A note on parallel matrix
inversion. SIAM J. Sci. Comput. 22, 1762–1771 (2001)

9. Strazdins, A.: A comparison of lookahead and algorithmic blocking techniques for parallel
matrix factorization. TR-CS-98-07 07, The Australian National University (1998)

