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Abstract

The Magnus expansion is a frequently used tool to get approximate
analytic solutions of time-dependent linear ordinary differential equations
and in particular the Schrödinger equation in quantum mechanics. How-
ever, the complexity of the expansion restricts its use in practice only to
the first terms. Here we introduce new and more accurate analytic ap-
proximations based on the Magnus expansion involving only univariate
integrals which also shares with the exact solution its main qualitative
and geometric properties.
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1 The Magnus expansion

Non-autonomous systems of linear ordinary differential equations of the form

Y ′ = A(t)Y, Y (0) = I (1)

appear frequently in many branches of science and technology. Here A(t), Y
are n × n matrices and, as usual, the prime denotes derivative with respect to
time.

In a much celebrated paper [14], Magnus proposed to represent the solution
of (1) as

Y (t) = exp(Ω(t)), Ω(0) = 0, (2)
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where the exponent Ω(t) is given by an infinite series

Ω(t) =
∞
∑

m=1

Ωm(t) (3)

whose terms are linear combinations of integrals and nested commutators in-
volving the matrix A at different times. In particular, the first terms read
explicitly

Ω1(t) =

∫ t

0
A(t1) dt1,

Ω2(t) =
1

2

∫ t

0
dt1

∫ t1

0
dt2 [A(t1), A(t2))] (4)

Ω3(t) =
1

6

∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3 ([A(t1), [A(t2), A(t3)]] + [A(t3), [A(t2), A(t1)]])

where [X,Y ] ≡ XY − Y X is the commutator of X and Y . Equations (2) and
(3) constitute the so-called Magnus expansion for the solution of (1), whereas
the infinite series (3) is known as the Magnus series.

An intuitive way of interpreting the Magnus approach could be the following.
Given the matrix linear system (1), we know that Y (t) = exp(Ω1(t)) is the exact
solution wherever A commutes with its time integral Ω1(t) =

∫ t
0 A(s)ds. In the

general case, however, if one insists in having an exponential solution, then one
needs to ‘correct’ the exponent. The successive terms Ωm(t), m > 1, in (3)
stand precisely for this correction.

Magnus proposal has the appealing feature of providing approximations
which preserve important qualitative properties of the exact solution at any
order of truncation. Such properties include, in particular, the unitary character
of the evolution operator when dealing with quantum mechanical problems.
It is perhaps for this reason that, since the 1960s the Magnus expansion has
been successfully applied as an analytic tool in numerous areas of physics and
chemistry, from atomic and molecular physics to quantum electrodynamics (see
[1, 2] for a list of references). Nevertheless, only the first terms in the series
(3) have been usually considered, not least due to the increasing complexity of
evaluating the expressions appearing in Ωm for m > 2 (e.g., eq. (4)).

An important issue of the Magnus expansion as an analytic tool concerns its
convergence. In other words, given a certain A(t), the problem is to determine
the time interval where the operator Ω(t) in (2) can be obtained as the sum
of the series (3). This issue has been extensively treated in the literature and
here we will present some of the most recent developments in the field, as well
as their implications when the Magnus approach is applied in practice.

Despite the long history and multiple applications of the expansion, the ex-
plicit time dependency of each term Ωk is an aspect that has only been recently
analyzed, in particular the order of approximation in time to the exact solution
when the series (3) is truncated. This has been done in a systematic way by
Iserles and Nørsett in [10] with the aim of constructing numerical integration
algorithms for equation (1). These constitute prototypical examples of geomet-
ric integrators: numerical methods for discretizing differential equations which
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preserve their known qualitative features, such as invariant quantities and geo-
metric structure [8]. By sharing such properties with the exact solution, these
methods provide numerical approximations which are more accurate and more
stable for important classes of differential equations, for instance those evolving
on Lie groups [11]. If the differential equation (1) is defined in a Lie group
G, then the approximation (2) obtained when the series (3) is truncated also
stays in G, and thus qualitative properties linked to this fact are automatically
preserved by the approximation. For instance, if the Lie group is SU(n), then
unitarity is preserved along the evolution, as long as exp(Ω) is conveniently
approximated.

In nuclear magnetic resonance (NMR) in general and solid-state NMR in
particular, it is of paramount interest to obtain the spin evolution and the final
state of the density matrix leading to the spectral response. This requires, of
course, to solve the time-dependent Schrödinger equation. The Magnus expan-
sion is commonly applied in this setting, thus leading to the so-called average
Hamiltonian theory (AHT) [7]. To carry out certain triple-resonance experi-
ments it is necessary to correct a non-linear Bloch-Siegert phase-shift, and so
the first step is to compute this phase-shift, which is usually done analytically
with AHT or the Magnus series, but only up to the second term [23] due to the
complexity of the expansion. It is clear that in this and other settings, having
a systematic procedure for constructing the relevant terms appearing at higher
orders could be advantageous when carrying out analytic computations.

In this paper we propose to use new analytic approximate solutions of equa-
tion (1) involving terms Ωm with m ≥ 3 which are more feasible to compute in
practical applications. The new approximations are then illustrated on some
examples involving 2× 2 and 4× 4 matrices in comparison with other standard
perturbative procedures.

The paper is organized as follows. In section 2 we review the main features
of the Magnus expansion, including its convergence. In section 3 we obtain
the new analytic approximations and analyze their main features in connection
with time dependent perturbation theory. Additional illustrative examples are
collected in section 4. Finally, section 5 contains some concluding remarks.
The reader is referred to [2] for a comprehensive review of the mathematical
treatment and physical applications of the Magnus expansion.

2 Magnus series and its convergence

Although explicit formulae for Ωm of all orders in the series (3) have been
obtained in [10] by using graph theory, in practice it is much more convenient
to construct recursive procedures to generate the successive terms. The one
proposed in [12] is particularly well suited for carrying out computations up to
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high order:

S(1)
m = [Ωm−1, A], S(j)

m =

m−j
∑

n=1

[Ωn, S
(j−1)
m−n ], 2 ≤ j ≤ m− 1

Ω1 =

∫ t

0
A(t1)dt1, Ωm =

m−1
∑

j=1

Bj

j!

∫ t

0
S(j)
m (t1)dt1, m ≥ 2 (5)

where Bj stand for Bernoulli numbers. Notice that this formalism can be di-
rectly applied to obtain approximate solutions of the time-dependent Schrödinger
equation, since it constitutes a particular example of equation (1). In this set-
ting it is some times called exponential perturbation theory. There is one im-
portant difference with the usual time-dependent perturbation theory: whereas
in the later approach the truncated evolution operator is no longer unitary, the
Magnus expansion furnishes by construction unitary approximations, no matter
where the series is truncated.

A critical issue in this setting is, of course, to establish the range of validity of
the Magnus series or, in other words, the convergence domain of the expansion:
one expects that within this domain higher order terms in the Magnus series
will provide more accurate approximations.

It is clear that if
[

A(t),

∫ t

0
A(s)ds

]

= 0

identically for all values of t, then Ωk = 0 for k > 1, so that Ω = Ω1. In
general, the Magnus series does not converge unless A is small in a suitable
sense. Several improved bounds to the actual radius of convergence in terms
of A have been obtained along the years [18, 1, 15, 17]. In this respect, the
following result is proved in [6]:

Theorem 2.1 Let the equation Y ′ = A(t)Y be defined in a Hilbert space H,
2 ≤ dim(H) ≤ ∞, with Y (0) = I. Let A(t) be a bounded operator on H. Then,
the Magnus series Ω(t) =

∑∞
m=1 Ωm(t), with Ωm given by (5), converges in the

interval t ∈ [0, T ) such that

∫ T

0
‖A(s)‖ ds < π

and the sum Ω(t) satisfies expΩ(t) = Y (t).

This theorem, in fact, provides the optimal convergence domain, in the sense
that π is the largest constant for which the result holds without any further
restrictions on the operator A(t). Nevertheless, it is quite easy to construct
examples for which the bound estimate rc = π is still conservative: the Magnus
series converges indeed for a larger time interval than that given by the theorem.
Consequently, condition

∫ T
0 ‖A(s)‖ds < π is not necessary for the convergence

of the expansion.
A more precise characterization of the convergence can be obtained in the

case of n × n complex matrices A(t). More specifically, in [6] the connection
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between the convergence of the Magnus series and the existence of multiple
eigenvalues of the fundamental solution Y (t) has been analyzed. Let us intro-
duce a new parameter ε ∈ C and denote by Yt(ε) the fundamental matrix of
Y ′ = εA(t)Y . Then, if the analytic matrix function Yt(ε) has an eigenvalue
ρ0(ε0) of multiplicity l > 1 for a certain ε0 such that: (a) there is a curve in
the ε-plane joining ε = 0 with ε = ε0, and (b) the number of equal terms in
log ρ1(ε0), log ρ2(ε0), . . . , log ρl(ε0) such that ρk(ε0) = ρ0, k = 1, . . . , l is less
than the maximum dimension of the elementary Jordan block corresponding to
ρ0, then the radius of convergence of the series Ωt(ε) ≡

∑

k≥1 ε
kΩt,k verifying

expΩt(ε) = Yt(ε) is precisely r = |ε0|. Notice that this obstacle to convergence
is due just to the logarithmic function. If A(t) itself has singularities in the
complex plane, then they also restrict the convergence of the procedure.

In addition to these estimates on the convergence of the expansion, it is also
important for practical applications to have bounds on the individual terms
Ωm of the Magnus series, in particular for estimating errors when the series is
truncated. Thus, it can be shown [16] that

‖Ωm(t)‖ ≤
fm
2

(

2

∫ t

0
‖A(s)‖ds

)m

, (6)

where fm are the coefficients of

G−1(x) =
∑

m≥1

fm xm = x+
1

4
x2 +

5

72
x3 +

11

576
x4 + · · · ,

the inverse function of

G(s) =

∫ s

0

1

2 + t
2 (1− cot t

2)
dt.

To improve the accuracy and the bounds on the convergence domain of the
Magnus series for a given problem, it is quite common to consider first a linear
transformation on the system in such a way that the resulting equation is more
appropriate in a certain sense. The idea is to choose a transformation Y0(t)
and factorize the solution of (1) as Y (t) = Y0(t)YI(t), where the unknown YI

satisfies the equation
Y ′
I = AI(t)YI ,

with AI(t) depending on A(t) and Y0(t). A typical example is the transforma-
tion to the interaction picture in quantum mechanics. In the context of the
Magnus expansion, this general transformation is useful if ‖AI(t)‖ < ‖A(t)‖,
since then the convergence domain provided by Theorem 2.1 can be enlarged.

To illustrate all these features we next analyze two simple examples.

Example 1. As a first case, we take equation (1) and A(t) = A0 + tA1, with

A0 =

(

−117 −168
80 115

)

, A1 =

(

−202 −294
140 204

)

. (7)
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As a matter of fact, this system has been recently used to check how different
analytic and numerical approximations behave in practice [21, 23]. Applying
recurrence (5) we get

Ω1(t) = tA0 +
1

2
t2A1, S

(1)
2 = [Ω1(t), A(t)] = 0

since A0 and A1 commute. In consequence, Ωk = 0 for k ≥ 2 and the Magnus
series terminates just at the first term. In other words, exp(Ω1(t)) already
provides the exact solution of the problem:

Y (t) = exp(Ω1(t)) =

(

15 e−(5+3t)t − 14 e(3+4t)t 21 (e−(5+3t)t − e(3+4t)t)

−10 (e−(5+3t)t − e(3+4t)t) −14 e−(5+3t)t + 15 e(3+4t)t

)

.

Example 2. Let us compute now the Magnus series in a simple physical
model: the quantum two-level system described by the Hamiltonian

H(t) = H0 +H1 =
1

2
~ω0 σ3 + f(t)σ1 (8)

in terms of the Pauli matrices, with f = 0 for t < 0 and f = V0 for t ≥ 0. The
corresponding Schrödinger equation for the evolution operator,

i~
dU

dt
= H(t)U(t), U(0) = I

can be recast in the form (1) with coefficient matrix A(t) = − i
~
H(t). For this

problem the exact solution reads

U(t, 0) = exp

(

−i

(

ω0

2
σ3 +

V0

~
σ1

)

t

)

, (9)

whence one can compute the transition probability between eigenstates |+〉 ≡
(1, 0)T and |−〉 ≡ (0, 1)T of H0 = (~/2)ω0σ3 as

Pex =
4γ2

4γ2 + ξ2
sin2

√

γ2 + ξ2/4 (10)

in terms of γ ≡ V0t/~ and ξ ≡ ω0t.
A simple calculation shows that the estimate given by Theorem 2.1 for the

convergence of the Magnus expansion is

∫ t

0

∥

∥

∥
−

i

~
H(s)

∥

∥

∥
ds =

√

γ2 +
ξ2

4
< π.

In addition, by analyzing the eigenvalues of the exact solution, it can be shown
that this estimate is optimal, i.e., the boundary of the convergence domain
corresponds exactly to

√

γ2 + ξ2/4 = π.
Since H0 is diagonal, an obvious linear transformation to be done here is

defined by the explicit integration of H0, so that we factorize

U = U0 UI = exp(−iξσ3/2)UI . (11)
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This is nothing but the usual Interaction Picture in quantum mechanics, with
UI denoting the time evolution operator in the new picture and obeying

U ′
I = −

i

~
HI(t)UI , UI(0) = I (12)

with
HI(t) = U−1

0 H1(t)U0 = f(t)(σ1 cos ξ − σ2 sin ξ). (13)

Now the transition probability between eigenstates is just P (t) = |〈+|UI(t)|−〉|2.
For the Hamiltonian (13) it is quite straightforward to implement the recur-

rence (5) in a symbolic algebra package and compute any term in the Magnus
series corresponding to UI(t) = exp(Ω(t)), solution of (12). The truncation
Ω(p)(t) ≡

∑p
m=1 Ωm(t) can be written as

Ω(p)(t) = iω(p)(t) · σ (14)

in terms of the vector ω
(p)(t) = (ω1, ω2, ω3) and σ = (σ1, σ2, σ3), so that the

corresponding transition probability is given by

P
(p)
M =

(

sinω

ω

)2
(

ω2
1 + ω2

2

)

, (15)

where ω ≡ ‖ω(p)‖.
On the other hand, since ‖HI(t)‖ = |f(t)|, then

∫ t
0 ‖(−i/~)HI (s)‖ ds = γ,

and thus Theorem 2.1 guarantees that the Magnus expansion in the Interaction
Picture is convergent if γ < π. Notice that a change of picture allows us to
improve a great deal the convergence of the expansion.

How these features manifest in practice? We have computed with Mathe-
matica the first 16 terms in the Magnus series and then formed the approximants
Ω(p)(γ, ξ), p = 1, . . . , 16 in order to determine the corresponding transition prob-
abilities with eq. (15). Finally, we have compared with the exact result (10) and
represented the error as a function of p for several values of the parameters. In
this way we have obtained Figure 1, where this error is depicted in logarithmic
scale for γ = 0.5, 1.5, 3.5 and ξ = 1. For reader’s convenience, the corresponding
code can be found at the website www.gicas.uji.es/Research/Magnus.html.

Observe that for small values of γ in the convergence domain, the error in the
transition probability decreases rapidly with the number of terms included in
the Magnus approximation. For higher values of γ (e.g., γ = 1.5) one needs more
terms to get a similar accuracy, whereas for γ > π the error is approximately
constant with p.

Next we analyze the rate of convergence of the Magnus series for the Hamil-
tonian (13). To do that we determine the norm of each term Ωm for m =
1, . . . , 16 and compare with the theoretical estimate (6), which in this case
reads

‖Ω‖m ≤ π

(

γ

rc

)m

with rc = G(2π)/2 = 1.08686869 . . .
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Figure 1: Error in the transition probability (in logarithmic scale) obtained by
the truncated Magnus series Ω(p) =

∑p
i Ωi for the 2-level quantum system with

rectangular step and ξ = 1.

Since, according with our previous comments, each Ωm can be expressed as
Ωm(γ, ξ) = iωm(γ, ξ)·σ, we represent in Figure 2 ‖ωm‖ (in logarithmic scale) as
a function of m for the values of γ considered in Figure 1. In this case the norm
is taken as the maximum value obtained for each γ in the interval 1 ≤ ξ ≤ 15.
Dashed curves correspond to the estimate (6) for γ = 0.5, 1.5. Notice how
the rate of convergence varies with γ within the convergence domain, whereas
for γ = 3.5 there is no convergence at all. The conservative character of the
theoretical bound (6) is evident from this figure.

These examples clearly show that (a) the Magnus expansion leads in some
cases to the exact solution of the problem (1); (b) it provides an accurate
approximation within its convergence domain; (c) the rate of convergence is
quite remarkable, and thus it is not necessary to compute many terms in the
Magnus series for practical perturbative calculations.

3 Analytic approximations for the Magnus series

3.1 Approximations in terms of univariate integrals

Although the Magnus expansion has been extensively used as a perturbative
tool, only the first terms have usually been considered, due to the increasingly
intricate structure of Ωm in the Magnus series. This is already evident from the
first terms in (4): unless the elements of A and its commutators are polynomial
or trigonometric functions, there is little hope that the terms of the Magnus
series can be explicitly and exactly computed for m > 2. In this sense, some
procedure designed to approximate the multivariate integrals and reduce the
complexity of the expression would be of great help.
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Figure 2: Maximum value of ‖Ωm‖ (in logarithmic scale) for several γ in the
interval 1 ≤ ξ ≤ 15 for the first 16 terms of the Magnus expansion applied to the
problem (12)-(13). Dashed curves correspond to the corresponding theoretical
estimate (6) (only for γ = 0.5 and γ = 1.5).

Our aim in this section consists precisely in replacing the multivariate in-
tegrals appearing in the formalism by conveniently chosen univariate integrals
involving only the matrix A. We also reduce the number of commutators to a
minimum, so that the new expressions can be applied even the time dependency
in A(t) is non-trivial and the resulting approximations are consistent with the
truncated Magnus series.

The first step is of course to analyze the time dependence of each term in the
Magnus series. This can be achieved, in particular, by considering the Taylor
expansion of the coefficient matrix A(t) and then applying the recurrence (5)
to get the successive terms Ωm of the series. To take advantage of the time-
symmetry of the expansion, it is more convenient to expand A(t) around the
midpoint t1/2 = tf/2 of the time integration interval [0, tf ], so that

A(t1/2 + t) = a1 + a2t+ a3t
2 + · · · (16)

where ai =
1

(i− 1)!
di−1A(t)

dti−1

∣

∣

t=t1/2
, and insert this expression into (5). Thus

we get

Ω1 = α1 +
1

12
α3 +

1

80
α5

Ω2 =
−1

12
[α1, α2]−

1

80
[α1, α4] +

1

240
[α2, α3]

Ω3 =
1

360
[α1, α1, α3]−

1

240
[α2, α1, α2] (17)

Ω4 =
1

720
[α1, α1, α1, α2]
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up to order t6, whereas Ω5 = O(t7), Ω6 = O(t7) and Ω7 = O(t9). Here αi ≡ tiai
and [αi1 , αi2 , . . . , αil−1

, αil ] ≡ [αi1 , [αi2 , [. . . , [αil−1
, αil ] . . .]]].

Next we introduce the averaged (or generalized momentum) matrices

A(i)(t) =
1

ti

∫ t

0
(s− t/2)iA(s)ds, i = 0, 1, . . . , s− 1. (18)

Notice that A(0) = Ω1 and, from the definition, A(i)(−t) = (−1)i+1A(i)(t). By
inserting (16) into (18) we find (neglecting higher order terms)

A(i) =

s
∑

j=1

(

T (s)
)

ij
αj ≡

s
∑

j=1

1− (−1)i+j

(i+ j)2i+j
αj , 0 ≤ i ≤ s− 1. (19)

If this relation is inverted we can express αi in terms of the univariate integrals
A(i) as αi =

∑s
j=1

(

R(s)
)

ij
A(j−1), where R(s) = (T (s))−1. Specifically, for s = 2

and s = 3 one has

R(2) ≡ (T (2))−1 =

(

1 0
0 12

)

, R(3) =





9
4 0 −15
0 12 0

−15 0 180



 (20)

respectively. In consequence we can write Ω(t) in terms of the univariate in-
tegrals (18) and construct the desired approximation to Ω up to order 2s. In
particular,

Ω[4](t) ≡ A(0) − [A(0), A(1)] (21)

Y (t) = exp(Ω[4](t)) +O(t5)

provides a 4th-order approximation to the exact solution of (1), whereas the
scheme

C1 = [α1, α2],

C2 = −
1

60
[α1, 2α3 + C1] (22)

Ω[6](t) ≡ A(0) +
1

240
[−20α1 − α3 + C1, α2 + C2],

with

α1 =
9

4
A(0) − 15A(2)

α2 = 12A(1) (23)

α3 = −15A(0) + 180A(2)

verifies that Ω[6](t) = Ω(t) +O(t7). In other words, Ω[6](t) reproduces exactly
the sum

∑4
m=1 Ωm collected in (17) up to order t6 (even the term − 1

80 [α1, α4])

when A(0), A(1) and A(2) are evaluated exactly, and thus Y (t) = exp(Ω[6](t)) +
O(t7).

Notice that the approximation (22) only requires the computation of three
commutators, instead of the eight commutators present in (17). This is in fact
the minimum number [4].
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At this stage some comments are in order. First, although it has been
assumed that A(t) is sufficiently regular so that its Taylor expansion is well
defined, it is clear that the final expressions, both for the Magnus series and
for the approximations in terms of univariate integrals we have constructed,
are still valid even if A(t) is only integrable. Second, we have considered an
expansion around the midpoint t1/2 only for the shake of simplicity. The same
results follow if one expands around t = 0. Third, when the exact evaluation
of the univariate integrals A(i) is not possible, a numerical quadrature may be
used instead. In this way, several numerical integration methods especially well
adapted to equation (1) can be designed [3, 4].

3.2 Applicability in perturbation theory

In time perturbation theory in Quantum Mechanics one usually ends up with
an equation of the form (1) where the matrix A is replaced by εA, for some
(small) parameter ε > 0. For instance, if the Hamiltonian of the system is
H(t) = H0 + εH1(t) and the dynamics corresponding to H0 can be solved,
then a transformation to the interaction picture is carried out, so that the new

equation to be solved is (12), with HI(t) = ε e−
i
~
H0tH1(t) e

i
~
H0t.

When the Magnus expansion is applied to this equation, it is clear that each
term Ωm(t) in the series (3) is of order εm, and thus the approximate solution
obtained by taking only into account the first p terms of the Magnus series
has error of order εp+1. Since the previous analytic approximations in terms
of univariate integrals can obviously also be applied in perturbation theory, it
makes sense to analyze their dependence on the perturbation parameter ε.

Let us start with the approximation Ω[4] given by (21) when the functions
(18) are taken into account. Since A(0)(t) = Ω1(t), then

Ω[4](t) = A(0)(t)− [A(0)(t), A(1)(t)] = Ω1(t) + Ω̃2(t), (24)

with
Ω̃2(t) = Ω2(t) +O(t5).

In other words, the difference between the exact solution Yex(t, ε) and the ap-
proximation obtained by considering (24) is a double asymptotic series in ε and
t whose first terms read

Yex(t, ε)− eΩ
[4](t) = ε2(u

[4]
25t

5 + u
[4]
26t

6 + · · · ) + ε3(u
[4]
35t

5 + u
[4]
36t

6 + · · · ) +O(ε4t5).

With respect to the approximation Ω[6] given by (22) with (23) and (18), we
get analogously

Ω[6](t) = Ω1(t) +

4
∑

i=2

Ω̃i(t) =

4
∑

i=1

Ωi(t) +O(ε2t7),

so that

Yex(t, ε)− eΩ
[6](t) = ε2(u

[6]
27t

7 + · · · )+ ε3(u
[6]
37t

7 + · · · )+ ε4(u
[6]
47t

7 + · · · )+O(ε5t7)
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for certain error coefficients u
[6]
ij . In general, for an approximation of order t2p

in terms of the functions (18) one has

Ω[2p](t) = Ω1(t) +

2p−2
∑

i=2

Ω̃i(t) =

2p−2
∑

i=1

Ωi(t) +O(ε2t2p+1) ≡ Ω(2p)(t) +O(ε2t2p+1)

and thus

Yex(t, ε)− eΩ
[2p](t) = ε2(u

[2p]
2,2p+1t

2p+1+ · · · )+ε3(u
[2p]
3,2p+1t

2p+1+ · · · )+O(ε4t2p+1).
(25)

Notice that since in general Ω̃2(t) does not reproduce the whole expression of
Ω2(t) there is always an error term of order ε2. By contrast, when the expression
of Ω(2p−2)(t) is computed exactly one has instead

Yex(t, ε) − eΩ
(2p−2)(t) = ε2p−1

(

w
(2p−2)
2p−1,2p+1t

2p+1 + w
(2p−2)
2p−1,2p+2t

2p+2 + · · ·
)

+

ε2p
(

w
(2p−2)
2p,2p+1t

2p+1 + w
(2p−2)
2p,2p+2t

2p+2 + · · ·
)

+ · · · (26)

In any case, for small values of the parameter ε relative to t, one expects
that the previous analytic approximations be fairly accurate in the convergence
domain of the Magnus expansion.

To put these results in perspective, let us briefly review the approach com-
monly used in standard time-dependent perturbation theory to solve the cor-
responding problem (1) with εA. When Dyson perturbation series is applied,
the solution is given by

Y (t, ε) = I +

∞
∑

n=1

Pn(t, ε), (27)

where Pn is the multivariate integral

Pn(t, ε) = εn
∫ t

0
dt1 . . .

∫ tn−1

0
dtnA(t1)A(t2) . . . A(tn). (28)

The series (27) is convergent for any t > 0, but it only shares the qualita-
tive properties of the exact solution when all the infinite terms are taken into
account. In particular, for the Schrödinger equation (12), any truncation of
the series provides a solution which is no longer unitary, in contrast with the
Magnus expansion or any of the analytic approximations considered previously.

If a power series for A(t) is considered, then clearly

Pn(t, ε) = εn
∑

i≥n

pni t
i,

so that, by denoting

Y (p)(t, ε) ≡ I +

p
∑

i=1

Pn(t, ε)

12



one has

Yex(t, ε)−Y (p)(t, ε) = εp+1(x1,p+1t
p+1+x1,p+2t

p+2+· · · )+εp+2(x2,p+2t
p+2+· · · )+· · ·

(29)
for certain coefficients xij . Thus, in particular, if an approximation to the
exact solution up to order, say, t5 is desired within this framework, one has to
compute all the integrals involved in Pn, n = 1, . . . , 4 and form Y (4)(t, ε), since
in that case Yex(t, ε)− Y (4)(t, ε) = O(ε5t5). Notice that for achieving the same
order of approximation in t only the first two terms in the Magnus series have
to be considered, according to (26) and the simpler expression eΩ

[4](t) may be
used for this purpose.

It is in fact possible to establish a connection between Magnus and Dyson
series, as shown in [5, 20]. For the first terms one gets explicitly

P1 = Ω1,

P2 = Ω2 +
1

2!
Ω2
1, (30)

P3 = Ω3 +
1

2!
(Ω1Ω2 +Ω2Ω1) +

1

3!
Ω3
1

and so on. The general term reads

Ωn = Pn −
n
∑

j=2

1

j
Q(j)

n , n ≥ 2, (31)

where Q
(j)
n can be obtained recursively from

Q(j)
n =

n−j+1
∑

m=1

Q(1)
m Q

(j−1)
n−m , (32)

Q(1)
n = Ωn, Q(n)

n = Ωn
1 .

Based on this relationship it is possible, in particular, to derive new, simpler
expressions for Pi in terms of the univariate integrals appearing in the approx-
imations to Ωk considered here.

4 Illustrative examples

The purpose of this section is to illustrate the applicability of our technique to
obtain new analytic approximations in time dependent perturbation theory. In
particular, we integrate the Schrödinger equation with two different Hamilto-
nians.

4.1 Example 1: Two-level system in a rotating field

Our first problem is defined by the Hamiltonian

H(t) =
1

2
~ω0σ3 + β(σ1 cosωt+ σ2 sinωt), (33)

13



where β is a coupling constant, playing here the role of the perturbation param-
eter ε. This system constitutes a truncation in state space of a more general one,
namely an atom or freely rotating molecule in a circularly polarized radiation
field [19, 13].

The exact time-evolution operator can be obtained in closed form by trans-
forming into a rotating frame. Specifically, one has (~ = 1)

U(t) = exp

(

−
1

2
iωtσ3

)

exp

(

−it

(

1

2
(ω0 − ω)σ3 + βσ1

))

, (34)

so that the quantum mechanical transition probability is given by

|(U(t))21| =

(

2β

ω′
sin

ω′t

2

)2

(35)

in terms of ω′ =
√

(ω0 − ω)2 + 4β2.
It has been rigorously established that the Magnus expansion converges for

t < 2π/ω0 and diverges otherwise [6]. For this example we compute the error in
the transition probability obtained by the truncated Magnus series Ω(m)(t) with
m = 2, 4, 8, thus providing approximations of the exact solution up to order
4, 6 and 10, respectively and then compare with the corresponding schemes
involving only the univariate integrals (18). We plot in Figure 3 these errors as
functions of time for ω = 4, ω0 = 1 and β = 0.4. For clarity, we have collected
only the results achieved by the 4th- and 6th-order schemes with Ω[4] and Ω[6]

computed with the integrals (18) (dashed curves). From the figure it is clear that
the relative error committed when replacing the exact expression of Ω(2p−2)(t)
by Ω[2p](t) is fairly small, as expected from our analysis. This is so although
we have carried out all the computations without previously transforming the
system to the interaction picture. Again, the file containing the computation
can be downloaded from www.gicas.uji.es/Research/Magnus.html.

4.2 Example 2: A 4× 4 matrix

For our second problem we take the following 4× 4 matrix:

H(t) =









t+ 1 δ 0 0
δ 3− t 2 0
0 2 t− 3 1
0 0 1 h44(t)









with h44(t) = −4+cos((2t−1)π/2) and the parameter δ is fixed to 0.1 (although
the results do not change very much with the particular value of δ).

Theorem 2.1 (with A(t) = −iH(t)) guarantees that the Magnus expansion
converges for t < tc ≈ 0.79273. For this example we compare the evolution with
time of the norm of the (4, 4) element of the solution matrix obtained with: (i)
Ω(4)(t), i.e., the first four terms of the Magnus series computed exactly (M6
curve in Figure 4); (ii) Ω[6](t), i.e., the new analytical approximation in terms
of univariate integrals, which is exact up to O(t6) (M6-approx), and (iii) the
first six terms in the Dyson expansion (27) (P6). We have also included the
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Figure 3: Error in the transition probability for the Hamiltonian (33) with
ω = 4, ω0 = 1 and β = 0.4 obtained with the truncated Magnus series up to
order 4, 6 and 10 (thick curves) and the new analytic approximations of order
4 and 6 (dashed curves). The Magnus expansion converges for t < 2π.

result provided by a direct numerical integration carried out by the function
NDSolve of Mathematica, which we take as the exact solution (Ex).

Observe in Figure 4 how standard perturbation theory, although with the
same order of precision in time, fails to provide an accurate description of the
evolution (the norm of the corresponding approximation Y (6) is already 1.00103
for t = 0.3), whereas the result obtained by exp(Ω(4)(t)) (M6) coincides with the
exact solution for the whole range of times considered. On the other hand, the
new analytic approximation exp(Ω[6](t)) in terms of univariate integrals only
differs from both the exact result and M6 at times larger than the convergence
domain, and it is much simpler to compute. It is also work noticing that
Ω(2)(t) = Ω[4](t) for this example.

5 Concluding remarks

The Magnus expansion was initially intended as a tool to get analytic approx-
imation to the solution of linear systems of differential equations. Although
since its conception it has been widely used in the perturbative treatment of
numerous problems appearing in physics and chemistry, certain aspects related
with its convergence and the approximation in time once the series is truncated
have been addressed only during the last years. Although, as we have shown
here, taking more terms in the Magnus series provides more accurate approxi-
mations within the convergence domain, in practical applications only the first
terms in the expansion are usually computed, due to the increasing complexity
of the successive terms.

In this work we have shown how it is possible to design new analytic ap-
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Figure 4: Norm of the (4, 4) element of the solution of Example 2 with δ =
0.1 computed with standard perturbation theory (P6), the first 4 terms in
the Magnus series (M6) and the new analytical approximation (M6-approx).
The curve corresponding to the exact result (Ex) is over-imposed to M6. The
Magnus expansion converges at least for t < 0.79273.

proximations based on generalized momenta of the coefficient matrix which
incorporate more contributions of the expansion. They only require the evalu-
ation of unidimensional integrals and thus are quite affordable to compute for
general matrices A(t), the only requisite being that A(t) has to be an inte-
grable function. In addition, in the convergence domain of the Magnus series,
they furnish good approximations to both the exact terms of the series and the
exact solution. We have studied where the series has to be truncated to get
the required order of approximation and we have illustrated how the these new
approximations behave in practice in comparison with the exact terms in the ex-
pansion and the standard time dependent perturbation theory. One important
feature is that this scheme provides by construction closed form approximations
which preserve the main qualitative properties of the exact solution.

This convergence domain of the Magnus expansion is affected both by the
singularities of the A(t) matrix in the complex plane and by the peculiarities
of the logarithm of a matrix function in a way we have summarized here. As
a matter of fact, the analysis of the effects of complex singularities of A(t) on
the exact dynamics of the differential system constitutes a fascinating subject
by itself [9, 22], and remains largely an open problem in the particular case of
the Magnus expansion and the analytical approximations considered here.
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