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Abstract

The objective of this study is to evaluate the vibratory response of two-span continuous beams subjected

to moving loads and, in particular, to investigate the maximum resonance and cancellation of resonance

phenomena. The main practical interest is the evaluation of the maximum acceleration response in railway

bridges, which is one of the most demanding Serviceability Limit States for traffic safety according to current

regulations. Two-span continuous bridges, in their simplest version (i.e. uniform identical spans), present

antisymmetric and symmetric modes with closely spaced natural frequencies, leading to a more involved

dynamic behaviour than that of simply-supported bridges. First, the free vibration response of a Bernoulli-

Euler two-span beam after the passage of a single load at constant speed is formulated analytically, and

non-dimensional speeds leading to cancellation or maximum response in free vibration are obtained for each

mode. Then, these conditions are equated to resonant speeds induced by equidistant load series, and span

length-to-characteristic distance ratios causing cancelled out resonances, or remarkably prominent ones,

are obtained. Based on the previous derivations, a methodology for detecting which could be the most

aggressive trains for a particular structure based on pure geometrical considerations is discussed. Finally,

the applicability of the theoretical derivations is shown through the numerical analysis of two real bridges

belonging to the Swedish railway network.
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1. Introduction

The progressive increase in operating speeds on railway lines constitutes a challenge for administrations,

rolling stock manufacturers and engineers as vibration levels that are admissible for passengers, vehicles,

infrastructures and surrounding structures must be guaranteed. In this regard, railway bridges have received

considerable attention during the last decades. The periodic excitation caused by the axle loads crossing a5
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bridge or a viaduct at constant speed may induce significant levels of vertical oscillations on the deck, which

can lead to adverse consequences such as ballast deconsolidation, track misalignment, passenger discomfort

or even wheel-rail contact loss and associated risks [1],[2],[3].

Among the longitudinal typologies of railway viaducts, both bridges with continuous decks resting on

multiple supports and bridges composed of simply-supported (SS) spans coexist. The former, common10

in countries such as Spain, Sweden or France, are structurally more efficient and able to transmit the

horizontal break and acceleration forces to the ground with the collaborative action of the substructure

elements. The latter, frequently found in countries like Germany or China, may be constructed in a rather

systematic way, allow possible prefabrication, partial replacement of the SS decks and facilitate continuous

rails. Nevertheless, the higher number of joints and supporting devices increases the maintenance costs and15

these structures are usually appropriate only when piers have a limited height [4],[5]. Simply-supported

bridges have received considerably more attention than continuous structures. This work is devoted to two-

span continuous bridges, as the simultaneous contribution to the transverse vibrations of antisymmetric and

symmetric modes constitutes a more complex problem and these structures may still experience important

amplifications under railway traffic [6],[7].20

The basic phenomenon governing the level of vibrations induced in a bridge by a railway convoy is

the amplitude of the free vibrations that each axle leaves on the structure after its passage, as these free

vibration waves accumulate and may add in phase for certain speeds. Depending on the ratio between the

travelling time of the load and the natural period of the structure, the amplitude of the free vibrations in

that particular mode may be maximum or may be cancelled out, implying that the structure will remain25

at rest under certain ideal conditions (i.e. in the absence of structural damping). This basic problem has

been analysed in detail by authors such as Yang et al. [8],[9], Savin [10], Museros et al. [11] and Kumar

et al. [12] for simply- and elastically-supported beams. The interest of knowing these conditions a priori

is that when resonance, caused by series of loads, takes place at a maximum free vibration velocity or, on

the contrary, close to a cancellation condition, the train will induce either a very prominent response or an30

almost imperceptible one, respectively.

The problem of a continuous uniform beam with two equal spans traversed by a concentrated force

moving at constant speed was first solved by Ayre et al. [13], who described the moving load as a series of

pulsating forces. The early works on the problem of moving loads acting on simple structures is described in

detail in the classic reference by Frýba [14]. In the 1990s, Zheng et al. [15] and Cheung et al. [16] analysed35

the vibrations of multi-span beams subjected to moving forces and oscillators, respectively, using modified

beam vibration functions as the assumed modes. The authors showed fast convergence of the method with

a small number of unknowns when compared to Finite Element (FE) solutions. Yau [7] investigated the

effect of the number of spans in the dynamic response of multi-span uniform beams subjected to train loads.

The author concluded that the increase in the number of spans results in the appearance of more resonant40
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peaks as the speed increases, but also in a reduction in the impact response. This is attributed to the

transmission of the vibration energy to the neighbouring spans and to the higher restraining effect of the

supports on the transverse displacement. Dugush and Eisenberger [17] obtained the exact solution of the

moving load problem on multi-span non-uniform beams for any polynomial variation in the cross-section

properties using the exact element method. Johansson et al. [18] derived a closed-form exact solution for45

evaluating the dynamic behaviour of a general multi-span Bernoulli-Euler (BE) beam under constant moving

loads, considering stepped sections and elastic boundary conditions.

Publications devoted to resonance or its cancellation in two-span beams or bridges are rather scarce and

recent. Yau [7] investigated the impact response of continuous beams and, considering moving loads, detected

multiple resonant peaks due to the coincidence of the excitation frequency with the beam frequencies. Kwark50

et al. [19] presented one of the first experimental studies on the dynamic behaviour of a two-span continuous

bridge under the circulation of Korean High-Speed trains along with FE predictions including vehicle-bridge

interaction. Resonances of only the fundamental antisymmetric mode were captured for the particular design

speed. The authors focused on the effect of damping and vehicle-structure interaction on the transverse

displacement response. Wang et al. [20] analysed the resonant response of two-span bridges modelled as BE55

uniform beams subjected to trains of moving oscillators. The authors focused on the vertical response in

terms of displacements, and on the appearance of two critical speeds causing resonance associated to the first

antisymmetric and first symmetric modes of vibration. Wang et al. [6] numerically investigated the vertical

acceleration of two-span continuous bridges with long spans (40 and 45 m) and uniform cross-sections under

the action of High-Speed trains, modelled as equally spaced 2-degrees-of-freedom mass-spring-damper units.60

This is one of the few publications to focus on the acceleration response of the bridge rather than on the

displacement. The authors concluded that the resonant acceleration response in bridge and vehicle may be

amplified to a fairly high degree, especially for the first two resonant speeds that may fall within the range

of operating speeds of High-Speed trains. Moreover, due to the presence of sub-resonant speeds of higher

modes, the maximum acceleration may occur at sections other than mid-span.65

In the authors’ opinion, what it is presented herein is useful, novel and contributes to the knowledge on

the dynamic performance of railway bridges as (i) it provides a comprehensive study on the cancellation

and maximisation of resonance in two-span continuous bridges based of the free vibration response of the

structures; (ii) previous publications generally address specific structures and trains and, in the opinion of

the authors, the problem should be formulated non-dimensionally, in order to reach general conclusions; (iii)70

most of the previous contributions focus on the displacement response of the bridge, generally governed by

only a few modes [21]-[22], and not on the acceleration, which is a far more restrictive Serviceability Limit

State for these structures according to current regulations [23]; and (iv) being able to predict velocities

leading to maximum free vibration or cancellation is of practical interest as not only the most and least

aggressive trains may be detected for a particular structure but, in addition, this information could also be75
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useful when planning experimental campaigns on bridges with the aim of identifying amplitude-dependent

magnitudes (e.g. modal damping).

The objectives of this study are to (i) investigate analytically the problem of free vibrations in two-span

continuous beams; (ii) verify whether maximum free vibration and cancellation conditions take place and, if

so, to determine their value for any longitudinal bending mode and for any structure; (iii) obtain geometrical80

ratios leading to maximum resonance and cancellation of it for symmetric and antisymmetric modes and to

prove their applicability when ideal conditions are not met; and (iv) apply the former theoretical derivations

to the application of two-span bridges under High-Speed traffic by proposing a methodology to detect which

could be the most and least aggressive trains for a particular design speed of the line, and what kind of

resonance (order and mode) is responsible for it.85

The contents of the manuscript are organised as follows. In section 2 the free vibration response of a

BE two-span continuous beam under a single moving load is formulated analytically, and maximum free

vibration and cancellation non-dimensional speeds are presented and obtained for each mode. In section

3 the excitation caused by trains of equidistant loads is considered and length-to-characteristic distance

ratios are derived leading to maximum or cancelled different order resonances of any mode of the beam.90

In section 4 a methodology is proposed so as to be able to compare the effect of different trains on the

maximum acceleration response of the bridge admitting a maximum operational speed for the line. Finally,

two bridges from the Swedish railway network are evaluated in order to show the applicability of the former

theoretical derivations. Conclusions are presented in section 5.

The derivations and conclusions presented herein are limited to the effect of the geometry of the trains95

on the bridge response. Additional phenomena conforming the train-induced vibration problem may affect

the maximum acceleration response, such as vehicle-track-bridge ([24],[25],[26]) or soil-structure interaction

([27],[28]). The influence of these effects on the maximum response of the bridge may or may not be

relevant depending on the level of coupling between the subsystems. This study pretends to constitute a

firm theoretical base on which additional interaction effects, as those previously mentioned which entail an100

important level of uncertainty, may be evaluated in subsequent investigations.

2. Free vibrations of a two-span continuous beam under a single moving load

2.1. Amplitude of free vibrations in undamped case

The partial differential equation governing the undamped transverse vibrations of a BE beam, neglecting

shear deformation and rotatory inertia, traversed by a constant-valued load P moving at constant speed105

(see Fig. 1(a)) is given by

ρA(x)
∂2w(x, t)

∂t2
+

∂2

∂x2
EI(x)

∂2w(x, t)

∂x2
= −Pδ (x− V t)

[
H (t)−H

(
t− 2L

V

)]
(1)
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where w(x) is the transverse displacement of a generic section x at time t, ρA(x) is the mass per unit of

length of the beam and EI(x) represents the cross-section bending stiffness. In Eq. 1, δ and H stand for

Dirac Delta and Heaviside unit functions, respectively. The solution to Eq. 1 may be expressed as a linear

combination of the beam normal modes of vibration φi(x) as per110

w(x, t) =

∞∑
i=1

ξi(t)φi(x) (2)

For the simplest case of a two-equal-span uniform beam with total length 2L (see Fig. 1(a)), applying

appropriate boundary conditions and performing a free vibration analysis [29], the analytical normal modes

are obtained for antisymmetric and symmetric modes, φai and φsi , respectively, and can be expressed as

φai (x) = sin
λai x

L
0 ≤ x ≤ 2L λai =

i+ 1

2
π i = 1, 3, 5, ... (3a)

φsi (x) =


sin

λsix

L
− sinh

λsix

L

sinλsi
sinhλsi

0 ≤ x ≤ L

sin
λsix
′

L
− sinh

λsix
′

L

sinλsi
sinhλsi

0 ≤ x′ ≤ L
λsi =

i+ 0.5

2
π i = 2, 4, 6, ... (3b)

where x′ = 2L − x. In Eqs. 3a-3b and in what follows, superscripts a and s are used to differentiate

antisymmetric and symmetric modes when considered necessary. λai and λsi are the roots of the frequency115

equation (Eq. 4a) and are related to the circular frequencies as per Eq. 4b

sin (λ) (cos (λ)− coth (λ) sin (λ)) = 0 ⇒ λai , λ
s
i (4a)

ωa
i =

(
λai
L

)2
√
EI

ρA
ωs
i =

(
λsi
L

)2
√
EI

ρA
(4b)

In Figs. 1(c)-(d) the first three antisymmetric and first three symmetric modes are represented for equal

maximum displacement normalisation. Antisymmetric and symmetric modes alternate with the frequency

number, and each modal frequency increases in relation to the fundamental one according to the factors

fi = fa1 · {1, 1.56,4, 5.06,9, 10.56,16, 18.06, ...} (5)

where bold numbers correspond to antisymmetric modes frequencies.120

By substitution of Eqs. 3a, 3b and 2 into 1, multiplication by the n-th mode, integration along the beam

length, and in virtue of the orthogonality condition of the modes, the uncoupled equation governing the

n-th modal amplitude is obtained:

ξ̈n (t) + ω2
n ξn (t) = − P

Mn
φn (x = V t) Mn =

∫ 2L

0

ρAφn(x)2dx = ρAL (6)

5



L

x,u x’ x’x,u

z,w

P

(a)

(c)

(b)

(d)

Vt

d d d

PkPkPk+1
Pk+1Pk+2

Pk+2 Pk-1

1

s
l 1.25p=

2

s
l 2.25p=3

s
l 3.25p=

2

a
l 2p=

1

a
l p=

3

a
l 3p=

z,w

LL L

Figure 1: Two-span uniform beam under moving loads travelling at constant speed (a)-(b). First three (c) antisymmetric and

(d) symmetric normal modes.

In order to determine the amplitude of the free vibrations once the load P leaves the structure, the

previous equation and its first derivative are solved by convolution for the particular instant t = 2L/V125

ξn(t =
2L

V
) =

−P
ωnMn

∫ 2L
V

0

φn (V τ) sin [ωn (t− τ)] dτ ξ̇n

(
t =

2L

V

)
=
dξn(t)

dt

∣∣∣∣
t= 2L

V

(7)

Finally, the amplitude of the free vibrations in each mode is obtained and non-dimensionalised by the

modal static displacement as per Eq. 8. By doing so, the so-called normalised amplitude of the free

vibrations, Rn, can be obtained for antisymmetric and symmetric modes in terms of a single non-dimensional

velocity, Kn. This speed parameter has also been used by previous authors [9]. In Eq. 9 the particular closed

form expression for the antisymmetric modes is provided. For the symmetric case the analytical expression130

is rather involved and it is not included for the sake of conciseness. Nonetheless, Rn may be computed for

any mode either analytically or by numerical evaluation of Eq. 7. Notice that the amplitude of the free

vibrations does not decay, as damping is not considered in this section.

Rn =
ω2
nMn

−P

√√√√ ξ̇2n
∣∣
t= 2L

V

ω2
n

+ ξ2n
∣∣
t= 2L

V

⇒ Rn = f

(
Kn =

λnV

ωnL

)
(8)

Rn =

√
2Kn

1−K2
n

√
1− cos

[
(1 + n)π

Kn

]
n = 1, 3, 5, ... (9)
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In Figures 2(a) and 2(b), the evolution of Rn is presented versus the speed parameter corresponding

to the fundamental mode, K1, for the first antisymmetric (n = 1) and the first symmetric (n = 2) modes

of the two-span uniform beam, respectively. Fig. 2(c) also represents Rn versus K1 but for the first three

antisymmetric modes (i.e. n = 1, 3, 5). As both Rn and Kn are non-dimensional, these representations

and the conclusions derived hereafter are applicable to any two-equal-span uniform beam. Representing the

response with respect to the same speed parameter (K1 instead of Kn) allows direct comparison in terms

of the speed V for the different modal responses. The relation between any modal speed parameter Kn and

the one referred to the fundamental mode can easily be deduced for antisymmetric and symmetric modes

as

Kn =


2

n+ 1
K1 n = 1, 3, 5, ...

2

n+ 0.5
K1 n = 2, 4, 6, ...

(10)

From the analysis of Fig. 2 the following can be concluded:

• Depending on the travelling speed, the amplitude of the free vibrations that a particular beam under-135

goes in a certain mode once the load leaves the structure can be maximum or cancelled out, taking

into account that no damping is present in the system. The speed parameters for these cancellation

and maximum free vibration conditions, Kci
1 and Kmi

1 , can be obtained analytically and are pointed

out in Figures 2(a)-(b) for the first antisymmetric (n = 1) and the first symmetric (n = 2) modes,

respectively. Notice that index i refers to a particular cancellation or maximum free vibration event,140

and that i = 1 corresponds to the event taking place at the highest velocity.

• The velocities cancelling out the free vibrations of the fundamental mode also cancel out the response

of the remaining antisymmetric modes (see Fig. 2(c)). This does not occur among the symmetric

modes or among these and the fundamental mode.

• When damping is present and for moderate levels of it, like those usually identified in railway bridges145

[1], Rn presents a similar evolution in terms of the speed parameter Kn. The main differences in

the damped case are that (i) amplitudes at local maxima are lower, and that (ii) the response is not

completely cancelled out at cancellation speeds, although the response is remarkably low. The effect

of damping will be accounted for in sections 3 and 4.

Finally, it is of interest to note that, due to the selected normalisation and to the relation between

displacement and acceleration amplitudes in the undamped case, the dimensional vertical displacement and

acceleration amplitudes in a particular section of the two-span beam in the free vibration phase induced by

a load P is related to Rn according to

wfree
n (x) = Rn ·

P

ω2
n ρAL

· φn(x) afreen (x) = Rn ·
P

ρAL
· φn(x) (11)
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Figure 2: Rn for (a) first antisymmetric mode, (b) first symmetric mode, and (b) first three antisymmetric modes vs. K1.

From Eq. 11 it is seen that the relative differences between Rn values in Fig. 2 are proportional to150

the relative differences between the acceleration amplitudes in free vibration in a certain mode and in a

particular section.

2.2. Cancellation and maximum free vibration speeds

From the solution of Rn = f(Kn) (Eq. 8) cancellation and maximum free vibration non-dimensional

speeds may be calculated as

Rn(Kn) = 0⇒ Kci
n

∂Rn(Kn)

∂Kn
= 0⇒ Kmi

n i = 1, 2, 3, ... (12)

From now on, Kci
n and Kmi

n stand for the speed parameters leading to the i-th cancellation and i-th maximum

free vibration conditions in mode n, respectively. In Table 1 the values for the first four cancellation and155
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maximum free vibration speeds are included for the first two antisymmetric and the first two symmetric

modes. As should be expected, the values for the fundamental mode coincide with those of the SS beam for

the second bending mode if L is the span length [11].

n
Kci

n Kmi
n

i = 1 i = 2 i = 3 i = 4 i = 1 i = 2 i = 3 i = 4

1 0.5000 0.3333 0.2500 0.200 0.8883 0.4094 0.2886 0.2235

3 0.6667 0.5000 0.4000 0.3333 0.9653 0.5812 0.4478 0.3652

2 0.4835 0.3624 0.2758 0.2282 0.7312 0.4202 0.3157 0.2509

4 0.6201 0.5107 0.4044 0.3488 0.8409 0.5625 0.4542 0.3758

Table 1: Values for the first four cancellation and maximum free vibration speed parameters for the first two antisymmetric

(n = 1, 3) and first two symmetric (n = 2, 4) modes.

As the main practical interest of this research is the evaluation of railway-induced vibrations in two-span

bridges, it is worth mentioning that a realistic upper limit for K1, which will always present the highest value160

of Kn according to Eq. 10, can be estimated. Admitting an average bridge fundamental frequency in terms

of the span length as per [30], considering a maximum operational speed of 500 km/h and a minimum span

length of 15 m, a maximum value K1 ' 0.5 is obtained. Therefore, the overall first maximum corresponding

to i = 1 will never be reached in a realistic situation.

3. Forced vibrations under equidistant loads: maximum resonance and cancellation165

3.1. Span length-to-characteristic distance ratios for maximum resonance and cancellation of resonance

In this section the dynamic response of the two-span beam is investigated under trains of equidistant

loads travelling at constant speed V (see Fig. 1(b)). When the time interval between the passage of two

consecutive loads is a multiple of one of the beam natural periods, resonance is induced. At resonance, the

free vibrations left by every single load add in phase. Therefore, depending on the amplitude of the free170

vibrations studied in section 2, resonance could result in a remarkably amplified response (if the resonant

speed coincides with a maximum free vibration speed) or may not even be perceptible (if it coincides with

or is close to a cancellation condition). Ideally, a train of equidistant loads with characteristic distance d

induces a j-th order resonance of the n-th mode when travelling at V r
nj , as per Eq. 13, [9]. Moreover, the

resonant speed may be expressed non-dimensionally, according to the speed parameter definition in Eq. 8,175

as

V r
nj =

d fn
j
⇒ Kr

nj =
λn
ωnL

d fn
j

(13)
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By equating Eq. 13 to the cancellation or maximum free vibration speed parameters included in Table

1, for any mode n and cancellation or maximum event i, L/d ratios leading to the cancellation or maximum

of the j-th resonance of the n-th mode of the two-span continuous beam are obtained according to

Kr
nj = Kci

n ⇒
(
L

d

)ci

nj

=
λn
2πj

1

Kci
n

Kr
nj = Kmi

n ⇒
(
L

d

)mi

nj

=
λn
2πj

1

Kmi
n

(14a)

where
λn
2πj

=


n+ 1

4j
n = 1, 3, 5, ...

n+ 0.5

4j
n = 2, 4, 6, ...

(14b)

In Tables 2 and 3 these ratios are given for the first two normal modes n = 1, 2, i.e. first antisymmetric180

and first symmetric modes, which will have the highest participation in the transverse acceleration, as will

be shown later on. Ratios for higher modes could also be obtained analytically by applying Eq. 14a. These

ratios are valid for any beam or bridge due to the non-dimensional nature of the formulation.

j
(L/d)

ci
1j (L/d)

mi
1j

i = 1 i = 2 i = 3 i = 4 i = 1 i = 2 i = 3 i = 4

1 1.000 1.500 2.000 2.500 0.563 1.221 1.733 2.238

2 0.500 0.750 1.000 1.250 0.281 0.611 0.866 1.119

3 0.333 0.500 0.667 0.833 0.188 0.407 0.578 0.746

4 0.250 0.375 0.500 0.625 0.141 0.305 0.433 0.559

Table 2: L/d ratios leading to cancellation of resonance and maximum resonance of the first mode (antisymmetric).

j
(L/d)

ci
2j (L/d)

mi
2j

i = 1 i = 2 i = 3 i = 4 i = 1 i = 2 i = 3 i = 4

1 1.293 1.725 2.266 2.739 0.855 1.487 1.980 2.491

2 0.646 0.862 1.133 1.369 0.427 0.744 0.990 1.246

3 0.431 0.575 0.755 0.913 0.285 0.496 0.660 0.830

4 0.323 0.431 0.567 0.685 0.214 0.372 0.495 0.623

Table 3: L/d ratios leading to cancellation of resonance and maximum resonance of the second mode (symmetric).

3.2. Maximum displacement and acceleration numerical response: contour plots.

In the previous sections, the cancellation and maximum free vibration phenomena for two-span B-E185

continuous beams have been formulated analytically. In addition, the L/d ratios for cancellation of resonance

and maximum resonance have been depicted when series of equidistant loads traverse the beam. In what
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follows, these phenomena are exemplified through numerical parametric analyses including the presence

of structural damping and considering the simultaneous contribution of several modes of vibration in the

computation of the transverse response.190

A particular beam is selected with the properties of an existing railway bridge that will be analysed

in section 4. In particular L = 23.5 m, EI = 7.14 · 1010 Nm2, ρA = 23010 kg/m and modal damping

ζn = 1 %. The bridge vertical response is obtained in the time domain by numerical integration applying

the Newmark-β linear acceleration algorithm [31] under the circulation of artificial trains of equidistant loads.

The analytical expressions for the normal modes (Eqs. 3a-3b) are used to represent the deformation of the195

beam and, therefore, no spatial discretisation is needed. The vertical response of the bridge is obtained under

the circulation of 201 independent trains each composed of 25 loads of 210 kN separated by a distance d.

Characteristic distances, d, are selected so that the range (L/d) ∈ [0.5, 2.5] is covered using a fine increment

∆(L/d) = 0.01. For each of the trains, the maximum displacement and acceleration are obtained at different

sections of the beam in a range of circulating velocities such that the first three resonances (j = 1, 2, 3) of200

the first and of the second modes are excited. In particular, the minimum, maximum and increment of the

velocity analysed for each particular train are obtained from the conditions

(
V

f1d

)
min

= 0.1

(
V

f1d

)
max

= 2.0 ∆

(
V

f1d

)
= 0.005 (15)

Finally, the maximum transverse response is computed in two scenarios: considering the contribution of

the first two modes, and considering the contribution of the first six modes of vibration (modes with natural

frequencies up to 60 Hz). The natural frequencies of the modes in the particular case under study are the

following:

fn = {5.01, 20.04, 45.09} [Hz] n = 1, 3, 5 fn = {7.83, 25.37, 52.92} [Hz] n = 2, 4, 6 (16)

In Fig. 3, contour plots of the maximum transverse response of the beam in absolute value due to the con-

tribution of the first two modes (N = 2) are included. Each point in the contour representation corresponds

to a particular train, defined by its characteristic distance d, and a particular circulating velocity V of that205

train. A similar form of representation was used as well in the past by Yang et al. [9] and by Yau [7] for

different types of beams. Figures (a) and (c) correspond to the mid-span of the first span, and figures (b)

and (d) to the central section of the second span. Maximum displacements are included in the first row,

while maximum accelerations are represented in the second row. The maximum response for each train and

velocity is plotted in terms of two ratios: L/d and the speed V divided by the product of the fundamental210

frequency times the characteristic distance. This representation is not only non-dimensional, but it also

facilitates the visualisation of a particular mode resonant order, as the corresponding peaks appear verti-

cally aligned for each value of j. In all the plots a series of maxima appear at V/f1d = 1, 0.5, 0.333, ... for

different L/d values corresponding to resonances of the fundamental antisymmetric mode for j = 1, 2, 3, ...
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Series of peaks are also visible in the vicinity of V/f1d = 1.56, 0.78, 0.52, ..., coinciding with resonances of215

the second mode (first symmetric mode), as well for j = 1, 2, 3, ... These values are consistent with the fact

that f2 = 1.56f1 (Eq. 5).
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2a L(0.5 )        [m/s  ]

max

Figure 3: Maximum displacement and acceleration at x = 0.5L and x = 1.5L contour plots for N = 2.

At resonance, as L/d increases maximum resonance peaks and cancelled resonances take place alterna-

tively. In Fig. 4(a) maximum acceleration envelopes at x = 1.5L are plotted for V/f1d = 1, 1.56 and 1.25

(see vertical dashed lines in Fig. 3(d)). The first two correspond to first resonances of the fundamental and220

the second mode. The latter is not a resonant condition for either of the two modes. It is worth noting

that as L/d increases, the amplification at resonance reduces, since shorter characteristic distance trains

excite the same resonance at a lower velocity, and lower velocities imply lower amplitude local maxima of

the free vibration response, as shown in section 2. Fig. 4(b) shows the same maximum acceleration curves

but computed with 6 modes. It can be seen how the contribution of higher modes is not very relevant for225

these speed ratios, as will be shown in more detail in what follows.

The actual value of the maximum response in Fig. 3 is not relevant for this study, as no upper limit
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for the train speed is considered. In all plots and for the first resonance order (j = 1) of the first two

modes, corresponding to V/f1d = 1 and 1.56, L/d analytical ratios for maximum resonance and cancellation

of resonance have been highlighted in thick and discontinuous horizontal segments along with the specific230

value, which is that included in Tables 2 and 3. The analytical predictions are accurate, even though the

two modes contribute simultaneously to the total response and despite the presence of structural damping.

It is also worth mentioning that these ratios predict cancelled and maximum resonances adequately both in

the displacement and in the acceleration response.

N=2max

2
a L(1.5 )       [m/s  ]

N=6max

2
a L(1.5 )       [m/s  ]

L/dL/d

V/f d = 1.00
1

V/f d = 1.25
1

V/f d = 1.56
1

(b)
V/f d = 1.00

1

V/f d = 1.25
1

V/f d = 1.56
1

(a)

Figure 4: Maximum acceleration at x = 1.5L vs. L/d for V/f1d = {1, 1.25, 1.56}. (a) N = 2, (b) N = 6.

In order to evaluate the effect of higher modes, the same analysis is performed but including the con-235

tribution of the first six modes of vibration, N = 6, (first three antisymmetric and first three symmetric),

and it is represented in Fig. 5. Again, L/d analytical ratios for maximum resonance and cancellation are

accurate estimates for real values. The effect of higher modes is visible far from resonance, for moderate

values of the response, especially in the acceleration plots. The displacement response is mildly affected by

modes higher than n = 2, which is to be expected and consistent with previous works [21],[22]. The overall240

maximum acceleration takes place at the first resonance of the second mode (V/f1d = 1.56) in the vicinity

of the first theoretical maximum, i.e. L/d = 0.855, leading to 17.59 m/s2 and 17.72 m/s2 when two and six

modes are taken into account, respectively.

Finally, in order to visualise the phenomenon of maximum resonance and cancellation of it, five particular

L/d ratios are selected, and maximum acceleration envelopes at x = 1.5L are plotted versus the dimensionless245

velocity of the particular train with characteristic distance d (see Fig. 6). The selected ratios along with

the mode number n, resonance order j and corresponding maximum or cancellation event i are included in
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Figure 5: Maximum displacement and acceleration at x = 0.5L and x = 1.5L contour plots for N = 6.

Table 4. Selected L/d ratios are marked in Fig. 5(d) using a black horizontal continuous trace. The response

is calculated considering the contribution of the first six modes of vibration in all the cases. Figs. 6(a) and

6(b) correspond to a train that induces a first maximum resonance of the fundamental mode first resonance;250

that is, the remaining equidistant trains will also induce this resonance (at different speeds) but leading to

lower acceleration amplitudes. Fig. 6(b) represents the time-history for the corresponding resonant velocity

marked with a discontinuous vertical trace in Fig. 6(a). Figs. 6(c) and 6(d) represent the acceleration

associated to a train with a characteristic distance d such that when inducing a first resonance of the second

symmetric mode, this also takes place at the most prominent maximum (i = 1). Again, no other train will255

lead to a higher acceleration response at this particular resonance. Figs. 6(e)-(f) and 6(g)-(h) correspond to

the first and second cancellation of the first resonance of the fundamental and second modes first resonance,

respectively. It is obvious that the resonant peaks that should appear at V/f1d = 1 and at 1.56, respectively,

vanish due to the cancellation event in both cases. Finally, Figs. 6(i) and (j) correspond to a train for which,

when inducing a first resonance of the fundamental mode, this happens at a third cancellation condition260
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Figure 6: Maximum acceleration and acceleration time history at x = 1.5L vs. V/f1d for different L/d ratios.
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and, therefore, does not take place either. It is important to stress that the response is calculated including

the contribution of six modes and in the presence of damping. For these two reasons, the suppression of the

response is not complete.

(L/d) n j i m/c Event Fig. 6

0.563 1 1 1 m 1st maximum of 1st mode 1st resonance (a)-(b)

0.855 2 1 1 m 1st maximum of 2nd mode 1st resonance (c)-(d)

1.000 1 1 1 c 1st cancellation of 1st mode 1st resonance (e)-(f)

1.725 2 1 2 c 2nd cancellation of 2nd mode 1st resonance (g)-(h)

2.000 1 1 3 c 3nd cancellation of 1st mode 1st resonance (i)-(j)

Table 4: L/d ratios and associated events represented in Fig. 6.

From the previous analysis it can be concluded that when resonance is induced on a two-span continuous

beam or bridge by a train of equidistant loads, its amplification will depend on the level of free vibrations265

associated with the particular velocity. Resonances of either the first (antisymmetric) or second (symmetric)

mode are prone to be responsible for the overall maximum vertical acceleration of the bridge. The same

train will require a higher speed in order to induce the same resonance of the second mode (when compared

to that of the fundamental), with a higher level of free vibrations left by each axle load. Therefore, the

second mode can be the one responsible for the maximum response as long as the train speed is sufficiently270

high. In other words, the mode causing the maximum overall response of the bridge will depend on the

maximum train speed.

Depending on the ratio between the length and the train characteristic distance, the response at resonance

may be rather prominent or almost imperceptible. Furthermore, the analytical predictions of these L/d ratios

leading to maximum resonance or cancellation of it, which were obtained in closed form in the absence of275

damping and admitting separate modal contributions, show themselves to be good estimates of the real

values. This is due to the moderate damping values in railway bridges and also to the fact that, at resonance,

the contribution of modes other than the one undergoing resonance is very limited.

4. Case studies

In the previous section, the conditions for maximum resonance and its cancellation have been analysed280

in the ideal case of perfectly equidistant trains of loads and unlimited train speeds in order to investigate the

evolution of the resonant amplitudes in the complete domain of non-dimensional speeds and L/d ratios. In

this section, the analysis of the dynamic performance of two real bridges is presented under the circulation

of articulated load trains considering realistic upper-limit design speeds.
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The bridges of interest, described in subsections 4.1 and 4.2, belong to the Swedish railway network, in285

particular, to the Bothnia and to the West Coast lines, respectively. The maximum train speed at both

sites is at present 200 km/h. The possibility of increasing the operating speed on these lines with a target

of 250 km/h is currently under study, and the evaluation of the performance of the bridges if these lines are

upgraded is a topic of major interest for the Swedish railway administration [32], [33].

The structures under study are single-track and, in a first approach, the contribution of modes other than290

the longitudinal bending ones (e.g. torsion, transverse bending) is disregarded. The response of the bridges

under the circulation of the High Speed Load Model-A (HSLM-A) from Eurocode [30] (see Appendix A for

train model definition) is obtained by time integration, admitting that the total response can be expressed

as a combination of the analytical modes of the two-span continuous BE beam as described in section 3

(i.e. the natural frequencies and mode shapes are obtained applying Eqs. 3a, 3b and 4b). The design speed295

considered for both bridges is 300 km/h (i.e. 1.2 times the target operating speed).

4.1. Case 1. Bridge over River Lögde in Västerbotten, Sweden

The first structure under study is a bridge crossing the River Lögde on the Bothnia railway line, between

the cities of Örnsköldsvik and Gimonäs. It is a continuous bridge with two 43 m identical spans and a

uniform steel-concrete composite deck, as shown in Fig. 7. The deck accommodates a single ballasted track.300

The main properties of the beam model for this bridge are those also used in [33], and are summarised in

Table 8. A modal damping ratio of 0.5% is admitted as recommended in [30] for composite bridges of the

aforementioned span length.

3.735 m 3.735 m

Figure 7: Bridge over the Lögde river. Elevation view and cross-section.

The first two bending frequencies of the bridge are 2.34 and 3.66 Hz. Table 6 presents the critical speeds

for the ten HSLM-A trains’ characteristic distances for the lowest resonance order attainable given the design305

speed, and for the first two modes, which will be the ones that contribute most to the acceleration response,

as shown later on. From now on, dk stands for the characteristic distance of the k-th train. The dimensional

resonant speeds are computed applying Eq. 13, and the non-dimensional ones refer to the fundamental mode

for both resonant velocities of the first and the second mode, for convenience. All the trains induce first
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Lögde bridge Förslöv bridge

L (m) 43.00 23.50

EI
(
Nm2

)
1.05 · 1011 7.14 · 1010

ρA (kg/m) 13816 23010

ζn (%) 0.50 1.00

f1, f2 (Hz) 2.34, 3.66 5.01, 7.83

Table 5: Properties of the Lögde and Förslöv bridges.

resonance of the fundamental mode under 300 km/h. Nonetheless, only the first five trains, with smaller310

characteristic distances, are able to do so in the case of the second mode, due to its higher frequency. The

lowest resonance order attainable for this second mode for trains A6 to A10 is then second order (j = 2).

Tr dk (m) L/dk
n = 1 n = 2

j V r
1j(

km
h ) Kr

1j R1FPk R1FPk/ω
2
1 j V r

2j(
km
h ) Kr

1j R2FPk R2FPk/ω
2
2

A1 18 2.39 1 151.8 0.209 0.28 1.30 · 10−3 1 237.1 0.327 0.39 7.38 · 10−4

A2 19 2.26 1 160.2 0.221 0.54 2.52 · 10−3 1 250.3 0.345 0.01 2.00 · 10−5

A3 20 2.15 1 168.6 0.233 0.42 1.95 · 10−3 1 263.5 0.363 0.48 9.05 · 10−4

A4 21 2.05 1 177.1 0.244 0.17 7.90 · 10−4 1 276.7 0.382 0.83 1.56 · 10−3

A5 22 1.95 1 185.5 0.256 0.15 7.12 · 10−4 1 289.8 0.400 0.79 1.50 · 10−3

A6 23 1.87 1 193.9 0.267 0.45 2.06 · 10−3 2 151.5 0.209 0.01 2.20 · 10−5

A7 24 1.79 1 202.4 0.279 0.65 3.02 · 10−3 2 158.1 0.218 0.34 6.45 · 10−4

A8 25 1.72 1 210.8 0.291 0.70 3.22 · 10−3 2 164.7 0.227 0.38 7.22 · 10−4

A9 26 1.65 1 219.2 0.302 0.68 3.12 · 10−3 2 171.3 0.236 0.15 2.89 · 10−4

A10 27 1.59 1 227.6 0.314 0.47 2.18 · 10−3 2 177.9 0.245 0.23 4.37 · 10−4

Table 6: Lögde bridge highest attainable resonant speeds and free vibration amplitudes for n = 1, 2 under HSLM-A trains.

In order to compare the level of free vibrations associated to each train at the resonant speeds, the

values of Kr
1j are superimposed to the normalised amplitude of the free vibrations for the first two modes,

R1 and R2 in Fig. 8. The vertical black lines stand for the resonant speeds of the fundamental mode and315

the grey vertical ones to those of the second mode. The intersection of each vertical line with either R1(K1)

or R2(K1) (only intersections of traces of the same colour should be considered) provides an estimation of

the level of acceleration experienced by the bridge due to the accumulation of free vibrations in a certain

mode at resonance. Moreover, as per Eq. 11, the amplitude of either R1 or R2 is multiplied by the factor

FPk = Pk/P1 in order to account for the different axle load modulus of the HSLM-A trains, Pk being the320

axle load of the k-th train and P1 = 170kN, which is the minimum value. This corrected product is shown
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with a red circle that has a black border in the case of resonances of the first antisymmetric mode and a

grey border in the case of resonances of the second mode. Admitting that the number of loads is sufficient

and that the resonance state has reached a constant amplitude due to the presence of damping, this may be

used to compare the relative amplitudes of the acceleration at resonance induced by different trains on the325

first two modes of vibration. This is of course an estimation that only takes into account the geometry of

the compositions (i.e. the lengths of the passengers’ coaches) and admits similar modal damping ratios for

both modes, but it allows a preliminary prediction of which train will induce the most detrimental resonance

and which mode will be the one undergoing it, taking into consideration all cancellation and maximum free

vibration situations. In Table 6 the values of RnFPk and RnFPk/ω
2
n are included as well for each train and330

resonance speed. Notice that the first is proportional to the amplitude of the accelerations in free vibration

and the latter to the amplitude of the displacements as per Eq. 11. Also, the overall maximum value for

each of these ratios is highlighted in bold. According to this, the maximum displacement could occur when

train A8 induces first resonance of the fundamental mode (j = 1, n = 1), while the maximum acceleration

may take place at first resonance of the second mode induced by train A4. This train should be one of335

the most aggressive trains for the particular structure and speed limit according to the Serviceability Limit

State for traffic safety.
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Figure 8: Lögde bridge. Rn vs. K1 for n = 1, 2 and the most critical resonant non-dimensional speeds from HSLM-A trains

under 300 km/h.

The response of the Lögde bridge to the circulation of the ten HSLM-A trains is now calculated and

presented in the range of travelling speeds [20, 83.33] m/s with ∆V = 0.5 m/s (i.e. [72, 300] km/h with

∆V = 1.8 km/h). The maximum response is obtained considering the contribution of the first two modes340

and the first six modes at sections x/L = [0.25, 0.5, 0.75, 1.25, 1.5, 1.75]. The overall maximum acceleration

takes place at mid-span of the second span x/L = 1.5 in both cases. In Fig. 9 the maximum transverse

displacement and acceleration are plotted in absolute values at this most critical section versus the non-
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dimensional speed V/f1d for the ten HSLM-A trains. Plots (a) and (b) are calculated taking into account

the first two modal contributions (N = 2), while plots (c) and (d) represent the response calculated with345

six modes (N = 6). The maximum response induced by the HSLM-A4 is represented with a red trace.

The overall maximum acceleration reaches 6.01 m/s2 for N = 2, exceeding the limit for ballasted tracks

according to standards [23]. Therefore, this bridge may need to be improved in order to allow increased

train speeds. These results are consistent with those presented by Andersson [33]. As predicted, for the

admitted design velocity the maximum response in terms of accelerations is due to a first resonance of the350

second mode (V/f1d = 1.56), and it is induced by the HSLM-A4 train (red trace). As per the displacement,

train A8 (green trace), together with A7 and A9, lead to the maximum displacement at first resonance of

the fundamental mode. Notice in Table 6 that the three trains (A7, A8 and A9) present a very similar

value of R1FPk/ω
2
1 . In Fig. 9 it can also be observed that train A2 does not induce first resonance of the

symmetric mode. For this train L/dk = 2.26, very close to the theoretical value 2.266 for cancellation of the355

second mode first resonance (see Table 3). Finally, it should be noted that the effect of modes higher than

the second one is very low, especially at resonance. In the displacement response, the difference is almost

imperceptible.
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Figure 9: Lögde bridge. (a)-(b) Maximum displacement and acceleration at x = 1.5L (N = 2). (c)-(d) Maximum displacement

and acceleration at x = 1.5L (N = 6). HSLM-A trains, Vmax = 300 km/h.
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4.2. Case 2. Förslöv bridge in Sk̊ane, Sweden

As a second example, the case of a pre-stressed concrete railway bridge from the West Coast line located360

between the cities of Gothenburg and Copenhagen is presented. A modified version of the real structure is

analysed, with two identical spans of 23.5 m and a uniform cross-section with the properties listed in Table

8. The bridge is composed of two structurally independent single-track decks as shown in Fig. 10. A modal

damping ratio of 1% is assigned to each mode as per [30].

3.5 m 2.25 m0.2

Figure 10: Förslöv bridge. Elevation view and cross-section.

The first two natural frequencies of the bridge calculated analytically are 5.01 Hz and 7.83 Hz, respectively.365

Again, the theoretical resonant frequencies are computed for the first two modes and the first resonant orders.

In this case study the natural frequencies are higher than in the previous one. For this reason, the critical

velocities leading to first resonance of the first two modes exceed the maximum design speed of 300 km/h

assumed for all the HSLM-A trains. Again, in Table 7 the highest attainable resonant velocities for the first

and second modes have been included, along with the ratios RnFPk and RnFPk/ω
2
n, proportional to the370

acceleration and displacement amplitudes in free vibration, respectively. The highest values for these two

ratios are highlighted in bold. In this case when train A10 induces a second resonance of the fundamental

mode, for that particular speed the free vibration amplitudes both for the displacements and the accelerations

are maximum. Therefore this train could be one of the most aggressive.

In Fig. 11 the highest attainable non-dimensional resonant speeds for each train are represented with375

vertical solid traces for modes n = 1 (black) and n = 2 (grey). Again, the non-dimensional amplitude of the

free vibrations, Rn for each train in each mode, is marked with a circle after applying the correcting factor

FPk. In this case, all the trains in the HSLM model are capable of inducing a second-order resonance of

the first antisymmetric mode, but only the first four have a sufficiently low characteristic distance to induce

second-order resonance of the first symmetric mode below 300 km/h. It can be verified graphically that train380

HSLM-A10 is the one leading to a highest value of RnFPk, in particular for the first mode (n = 1), as its

associated second resonance speed coincides with the third local maximum of the free vibrations for n = 1.

In what follows, the response of the bridge is obtained numerically under the ten HSLM-A trains. Fig.
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Tr dk (m) L/dk
n = 1 n = 2

j V r
1j(

km
h ) Kr

1j R1FPk R1FPk/ω
2
1 j V r

2j(
km
h ) Kr

1j R2FPk R2FPk/ω
2
2

A1 18 1.31 2 162.3 0.191 0.26 2.58 · 10−4 2 253.7 0.299 0.36 1.49 · 10−4

A2 19 1.24 2 171.4 0.202 0.08 8.24 · 10−5 2 267.7 0.316 0.59 2.43 · 10−4

A3 20 1.18 2 180.4 0.213 0.38 3.85 · 10−4 2 281.8 0.332 0.31 1.27 · 10−4

A4 21 1.12 2 189.4 0.223 0.52 5.29 · 10−4 2 295.9 0.349 0.12 5.00 · 10−5

A5 22 1.07 2 198.4 0.234 0.37 3.78 · 10−4 3 206.7 0.244 0.14 5.71 · 10−5

A6 23 1.02 2 207.4 0.245 0.15 1.50 · 10−4 3 216.1 0.255 0.45 1.86 · 10−4

A7 24 0.98 2 216.4 0.255 0.16 1.59 · 10−4 3 225.5 0.266 0.50 2.08 · 10−4

A8 25 0.94 2 225.5 0.266 0.44 4.42 · 10−4 3 234.9 0.277 0.26 1.08 · 10−4

A9 26 0.90 2 234.5 0.277 0.69 6.98 · 10−4 3 244.3 0.288 0.11 4.34 · 10−5

A10 27 0.87 2 243.5 0.287 0.77 7.79 · 10−4 3 253.7 0.299 0.44 1.84 · 10−4

Table 7: Förslöv bridge highest attainable resonant speeds and free vibration amplitudes for n = 1, 2 under HSLM-A trains.

12 shows the maximum displacement and acceleration responses of the Förslöv bridge. The response is

obtained for the ten HSLM-A trains at sections x/L = [0.25, 0.5, 0.75, 1.25, 1.5, 1.75]. The response of the385

bridge is evaluated for each train in the range of speeds [20, 83.33] m/s in speed increments of ∆V = 0.5 m/s

(i.e. [72, 300] km/h and ∆V = 1.8 km/h). The overall maximum acceleration takes place at the mid-span

section of the second span, as in the previous example. In Fig. 12 the maximum transverse displacement

and acceleration are plotted in absolute values at this most critical section versus the non-dimensional

speed V/f1d for the ten trains. The response in Fig. 12(a) and 12(b) is calculated taking into account the390

contribution of the first two modes, while that in Fig. 12(c) and 12(d) is computed taking into consideration

the contribution of the first six modes of vibration.

The maximum acceleration reaches 2.89 m/s2 when taking into account six modes (2.86 m/s2 if only the

first two are considered), below the recommended limit for traffic safety on ballasted tracks. The maximum

acceleration is associated to a second resonance of the fundamental mode (i.e. V/f1dk = 0.5), as predicted395

in the previous analysis of the level of free vibrations. The train leading to the maximum acceleration

response is A10, with L/dk = 0.87, close to the theoretical ratio for the maximum second resonance of the

fundamental mode (see Table 2) and also consistent with what is shown in Table 7 and Fig. 11. This train

is also the one responsible for the maximum displacement, which is also caused by the second resonance

of the fundamental mode. Only a few trains are able to induce second resonance of the second mode (i.e.400

V/f1d = 0.78) and the response in terms of accelerations is much lower than that induced by the most

aggressive train in the first mode. In Fig. 12 it can also be observed that train A2 does not induce second

resonance of the fundamental mode. For this particular train and bridge L/dk = 1.24, very close to the
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Figure 11: Förslöv bridge. Rn vs. K1 for n = 1, 2 and the most critical resonant non-dimensional speeds from HSLM-A trains

under 300 km/h.

theoretical value of 1.25 of cancellation of this particular resonance (see Table 2). It is important to state,

again, that the maximum response is mainly governed by the first two modes of vibration of the two-span405

beam, and that the contribution of higher modes in the acceleration response at resonance is negligible.

Finally, in order to summarize the steps applied in this section to propose the particular train leading to

the maximum displacement and acceleration of the bridges at resonance a flow chart is included in Fig. 13.

5. Conclusions410

In this work the vertical response of two-span uniform continuous beams under moving equidistant loads

is investigated. The main practical application is to assess the maximum acceleration in railway bridges

induced by trains travelling at resonant speeds, and its relation with the level of free vibrations left by each

axle load and governed by the existence of cancellation and maximum free vibration phenomena.

First, the problem of a uniform two-span continuous beam is formulated, and a unitless expression for415

the free vibration amplitudes left by the circulation of a single load travelling at constant speed in a generic

mode is obtained in terms of a speed parameter. The existence of cancellation and maximum free vibration

conditions is proven, both for symmetric and antisymmetric modes, and the conditions for both situations

are presented and analysed. Second, the forced vibrations of the beam under sequences of equidistant

trains are analysed numerically, and L/d ratios are derived leading to cancelled or maximum amplitude420

resonances. Due to the non-dimensional nature of the formulation used, these ratios are applicable to any

structure. The above mentioned derivations enable us to understand what type of resonance will lead to

the highest acceleration response of the bridge and what type of train may be the most detrimental for a

certain design velocity, limiting the analysis to exclusively geometrical considerations. Finally, the previous
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Figure 13: Steps applied to identify trains leading to the maximum displacement and acceleration at resonance.
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theoretical derivations are applied to two case studies of two bridges from the Swedish railway network and425

their applicability is shown.

The main conclusions derived from the research conducted are:

• When a load moving at constant speed travels on a two-span continuous beam, the level of free

vibrations left by the load in a certain mode may be maximum or negligible, depending on the ratio

between the load velocity and the beam frequency. These conditions for maximum free vibration and430

cancellation can be obtained analytically in a non-dimensional format.

• Linear velocities that cancel out the free vibrations in the first antisymmetric mode also cancel out the

response of the remaining antisymmetric modes. This does not occur among the symmetric modes or

among these and the fundamental one.

• When resonance is induced on a two-span continuous beam or bridge by a train of equidistant loads,435

its amplification will depend on the level of the free vibrations associated to the particular velocity.

Moreover, depending on the ratio between the length and the train characteristic distance, the response

at resonance may be rather prominent or almost imperceptible.

• The analytical predictions of the L/d ratios leading to maximum resonance or its cancellation, obtained

in the absence of damping and admitting separate modal contributions, show themselves to be excellent440

estimates of the real values when several modal contributions and modal damping are considered.

• The maximum acceleration response in a two-identical-span railway bridge is mostly governed by

the first antisymmetric and first symmetric modes. If a bridge undergoes resonance of the first two

modes, the one leading to the maximum acceleration will depend on the maximum design speed. The

non-dimensional free vibration amplitudes at the actual resonant speeds may be used to estimate445

the particular train, resonance order and mode number leading to the overall maximum acceleration

response in the structure.

The previous conclusions constitute a theoretical basis limited to the effect of the train axles distribution.

Additional phenomena may modify the maximum acceleration response, such as the effects of vehicle-track-

bridge or soil-structure interaction, which are beyond the scope of this study.450

Appendix A

Definition of High Speed Load Model-A from Eurocode [30]:
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Figure 14: HSLM-A loading scheme.

Train N dk (m) b (m) Pk (kN) Train N dk (m) b (m) Pk (kN)

A1 18 18 2.0 170 A6 13 23 2.0 180

A2 17 19 3.5 200 A7 13 24 2.0 190

A3 16 20 2.0 180 A8 12 25 2.5 190

A4 15 21 3.0 190 A9 11 26 2.0 210

A5 14 22 2.0 170 A10 11 27 2.0 210

Table 8: HSLM-A train axle loads (Pk), coach lengths (dk) and bogie axle spacings (b).
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