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Abstract. In this paper we deal with surjective linear isometries between spaces of scaler-valued

absolutely continuous functions on arbitrary (not necessarily closed or bounded) subsets of the

real line (with at least two points). As a corollary, it is shown that when the underlying spaces

are connected, each surjective linear isometry of these function spaces is a weighted composition

operator, a result which generalizes all the previous known results concerning such isometries.

1. Introduction

The Banach-Stone theorem is a classical result in the theory of function spaces which describes

all linear isometries from C(X) onto C(Y ) as weighted composition operators based on a homeo-

morphism between the compact spaces X and Y . Stemming from this result, linear isometries on

different contexts have been studied extensively. Indeed, the isometries of most of the well-known

function spaces and algebras whose underlying spaces are (locally) compact have been described, sim-

ilarly, as weighted composition operators (see, e.g., [4]). However, without assuming compactness,

a linear isometry from Cb(X) onto Cb(Y ) does not yield a homeomorphism between the Tychonoff

spaces X and Y (see [5, 4M]), a fact which might explain the scarcity of results concerning isometries

between function spaces in a noncompact framework (see [1] and [2]).

In this paper we study surjective linear isometries defined between spaces of scaler-valued ab-

solutely continuous functions on arbitrary subsets of the real line (with at least two points). We

use, following the direction of [7], a natural norm ‖ · ‖ in this context and show how ‖ · ‖-isometries

are related to supremum norm isometries. It should be noted that we provide an example which

shows that the space of absolutely continuous functions is not uniformly dense in the space of all

bounded uniformly continuous functions and, consequently, the known results concerning supremum

norm isometries cannot be used in this context. Indeed, we have to apply some technical lemmas to

obtain the description of the isometries, which turns out to be based on a homeomorphism between
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the closure of the domains. As a consequence, we get generalizations of [7, Example 5] and [6,

Corollary 4.4] to a noncompact framework.

2. Preliminaries

Let X be a subset of the real line R with at least two points. We recall that a scalar-valued

function f on X has bounded variation if the total variation V(f) of f is finite, i.e.,

V(f) := sup{
n∑
i=1

|f(xi)− f(xi−1)| : n ∈ N, x0, x1, ..., xn ∈ X,x0 < x1 < ... < xn} <∞.

Moreover, a scalar-valued function f on X is said to be absolutely continuous if given ε > 0, there

exists a δ > 0 such that
n∑
i=1

|f(bi)− f(ai)| < ε,

for every finite family of non-overlapping open intervals {(ai, bi) : i = 1, · · · , n} whose extreme points

belong to X with
∑n
i=1(bi−ai) < δ. We denote by ACb(X) the space of all scaler-valued absolutely

continuous functions of bounded variation on X, equipped with the norm ‖ · ‖ = max{‖ · ‖∞,V(·)},

where ‖ · ‖∞ denotes the supremum norm of a function. Let us remark that when X is bounded,

each absolutely continuous function is automatically of bounded variation, and in this case we simply

write ACb(X) = AC(X).

Given a scalar-valued function f on X, we denote the cozero set and the support of f by coz(f)

and Supp(f), respectively. For the case where f is bounded, we denote the maximum modulus set

of f by Mf = {x ∈ X : |f(x)| = 1 = ‖f‖∞}.

Meantime, for any f ∈ ACb(X), let f̃ be the unique extension of f to the Stone-Čech compacti-

fication, βX, of X.

3. The results

From now on, we shall assume that X and Y are arbitrary (not necessarily closed or bounded)

subsets of the real line with at least two points. Moreover, T will stand for a linear ‖ · ‖-isometry

from ACb(X) onto ACb(Y ) with respect to the norm ‖ · ‖ such that T1 is bounded away from zero,

which is to say that there exists t > 0 such that, for each y ∈ Y , we have |T1(y)| ≥ t. In particular,

this is clearly the case when T1 is a unimodular function. Furthermore, it is shown that if the

underlying spaces X and Y are connected, then T1 is bounded away from zero (see Corollary 3.15).

Note also that when the underlying spaces X and Y are compact, this condition that ”T1 is

bounded away from zero” coincides with property P in [2] and property Q in [3] (see also [6]).

Lemma 3.1. Each absolutely continuous function f on X has a unique absolutely continuous ex-

tension f to the closure X̄ of X.
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Proof. Since f is uniformly continuous, f has a unique uniformly continuous extension to the closure

X̄, which we denote by f . We claim that f is absolutely continuous. To this end, let ε > 0

and choose δ > 0 associated to the absolutely continuity of f with respect to ε
3 . Assume that

{(ai, bi) : i = 1, · · · , n} is a finite family of non-overlapping open intervals whose extreme points

belong to X̄ and
∑n
i=1(bi − ai) < δ

3 . With no loss of generality, assume that

a1 < b1 < a2 < b2 < · · · < an < bn.

Put

x1 = a1, x2 = b1, x3 = a2, · · · , x2n−1 = an, x2n = bn.

For each i ∈ {1, · · · , 2n}, consider x′i = xi if xi ∈ X, otherwise, if xi does not belong to X, we

choose x′i in X as follows:

If x1 /∈ X, select x′1 ∈ X such that |x1 − x′1| < δ
3n , |f(x1) − f(x′1)| < ε

3n , and we have either

x′1 < x1, or x1 < x′1 < x2. If x2 /∈ X, choose x′2 ∈ X such that |x2− x′2| < δ
3n , |f(x2)− f(x′2)| < ε

3n ,

and we have either

max{x′1, x1} < x′2 < x2, or x2 < x′2 < x3.

By continuing this process, for 2 ≤ i ≤ 2n − 1, if xi /∈ X, take x′i ∈ X such that |xi − x′i| < δ
3n ,

|f(xi)− f(x′i)| < ε
3n , and we have either

max{x′i−1, xi−1} < x′i < xi, or xi < x′i < xi+1.

Meantime, for i = 2n, if x2n /∈ X, we choose x′2n ∈ X such that |x2n−x′2n| < δ
3n , |f(x2n)−f(x′2n)| <

ε
3n , and also x2n < x′2n or max{x′2n−1, x2n} < x′2n < x2n.

We rename again x′i by a′i if i is odd, and by b′i if i is even. Hence we get a′1, · · · , a′n, b′1, · · · , b′n ∈ X

and {(a′i, b′i) : i = 1, ..., n} is a finite family of non-overlapping open intervals whose extreme points

belong to X. Also

n∑
i=1

(b′i − a′i) ≤
n∑
i=1

(|b′i − bi|+ |bi − ai|+ |ai − a′i|) <
n∑
i=1

δ

3n
+
δ

3
+

n∑
i=1

δ

3n
= δ.

Thus it follows that

n∑
i=1

|f(bi)− f(ai)| ≤
n∑
i=1

(|f(bi)− f(b′i)|+ |f(b′i)− f(a′i)|+ |f(a′i)− f(ai)|)

<

n∑
i=1

ε

3n
+
ε

3
+

n∑
i=1

ε

3n
= ε,

which implies that f is absolutely continuous. �

As a consequence of this lemma, the spaces of absolutely continuous functions defined on an

arbitrary subset of the real line and on its completion coincide. In the next lemmas, we shall assume

that X and Y are closed subsets of the real line.
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Lemma 3.2. If f ∈ ACb(X) and ‖Tf‖∞ > V(Tf), then V(f) ≤ ‖f‖∞.

Proof. Let f ∈ ACb(X) and y0 ∈ βY such that |T̃ f(y0)| = ‖Tf‖∞ > V(Tf). Suppose, contrary to

what we claim, that V(f) > ‖f‖∞. Let ε be a positive scalar such that ‖f‖∞ + ε < V(f).

As y0 ∈ βY , choose a net (yi)i in Y such that yi −→ y0. Since T1 is bounded away from zero,

there exists t > 0 such that for every i we have |T1(yi)| ≥ t. Then |T̃1(y0)| ≥ t because T̃1 is a

continuous function.

Meantime, since ‖f‖∞ + ε < V(f), it is clear that

‖f ± ε‖ = max{‖f ± ε‖∞,V(f ± ε)}

= max{‖f ± ε‖∞,V(f)}

= V(f) = ‖f‖.

On the other hand, we have ‖Tf ± εT1‖ = ‖f ± ε‖ and ‖Tf‖ = ‖f‖. Now it easily follows that

‖Tf ± εT1‖ = ‖Tf‖ = |T̃ f(y0)|, and so

|T̃ f(y0)± εT̃1(y0)| ≤ ‖Tf ± εT1‖∞ ≤ ‖Tf ± εT1‖ = |T̃ f(y0)|.

Then |T̃ f(y0) ± εT̃1(y0)| ≤ |T̃ f(y0)| which implies that T̃1(y0) = 0. This contradicts the fact

|T̃1(y0)| ≥ t. Therefore, V(f) ≤ ‖f‖∞. �

Lemma 3.3. If f ∈ ACb(X), then ‖Tf‖∞ = ‖f‖∞.

Proof. We divide the proof of this lemma into three parts as follows:

(i) First we show that for any f ∈ ACb(X), ‖Tf‖∞ ≤ ‖f‖∞. We verify this part by an argument

similar to the proof of [8, Proposition 1.3]. Let f ∈ ACb(X) and y0 ∈ βY with |T̃ f(y0)| = ‖Tf‖∞.

Assume, on the contrary, that ‖f‖∞ < ‖Tf‖∞. Let ε be a positive scalar such that ‖f‖∞ + ε <

|T̃ f(y0)|. Choose λ > 0 large enough so that (λ + 1)|T̃ f(y0)| = ‖λT̃f(y0) + Tf‖∞ > V(λT̃f(y0) +

Tf) = V(Tf). Then, taking into account Lemma 3.2, we have

‖λT−1(T̃ f(y0)) + f‖∞ ≥ V(λT−1(T̃ f(y0)) + f).

Hence, from the above relations it follows that

‖λT−1(T̃ f(y0)) + f‖∞ ≤ ‖λT−1(T̃ f(y0))‖∞ + ‖f‖∞

≤ λ‖T−1(T̃ f(y0))‖+ ‖f‖∞ = λ|T̃ f(y0)|+ ‖f‖∞

< λ|T̃ f(y0)|+ |T̃ f(y0)| − ε = (λ+ 1)|T̃ f(y0)| − ε

= ‖λT̃f(y0) + Tf‖ − ε

= ‖λT−1(T̃ f(y0)) + f‖ − ε

= ‖λT−1(T̃ f(y0)) + f‖∞ − ε,
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which is a contradiction showing that ‖Tf‖∞ ≤ ‖f‖∞.

(ii) We claim that for each x ∈ X, |T−11(x)| = 1. Suppose, contrary to what we claim, that there

exists x0 ∈ X and |T−11(x0)| < 1. Note that ‖T−11‖∞ = 1, because from the above part we have

1 = ‖1‖∞ ≤ ‖T−11‖∞ ≤ ‖T−11‖ = ‖1‖ = 1.

Define the function h by h(x) := 1 − |T−11(x)| for all x ∈ X. It is easy to see that h ∈ ACb(X).

Moreover, |h(x)|+ |T−11(x)| = 1 for all x ∈ X, h(x0) = 1− |T−11(x0)| and Th = T1− T (|T−11|).

Since Th 6= 0, we have 1 < max{‖1 + Th‖∞, ‖1 − Th‖∞}. On the other hand, again from (i) it

follows that

‖1± Th‖∞ = ‖T (T−11± h)‖∞ ≤ ‖T−11± h‖∞.

Thus there exists x′ ∈ βX with 1 < max{|h̃(x′) + T̃−11(x′)|, |h̃(x′) − T̃−11(x′)|}. Consequently,

1 < |h̃(x′)|+ |T̃−11(x′)| = 1, which is a contradiction. Hence the claim has been proved.

(iii) Finally, let f ∈ ACb(X). By (i), ‖Tf‖∞ ≤ ‖f‖∞. Next, taking into account (ii), an

assertion similar to the part (i) for T−1 shows that ‖f‖∞ = ‖T−1(Tf)‖∞ ≤ ‖Tf‖∞. Therefore,

‖f‖∞ = ‖Tf‖∞, as desired. �

Remark 3.4. From Lemma 3.3, one might think that all the results concerning || · ||-isometries on

ACb(X)-spaces could be deduced from similar ones concerning supremum norm isometries (see basi-

cally [1]) provided ACb(X) was uniformly dense in the space of all bounded (uniformly) continuous

functions on X. However, such density result is not true as the following example shows: let X = N,

M be the set of odd numbers, N be the set of even numbers, and define g(x) = 1 if x ∈ M , and

g(x) = 0 if x ∈ N . Then g is a bounded uniformly continuous function but there is no function f of

bounded variation with ‖f − g‖∞ < 1
3 .

Lemma 3.5. T1 is a unimodular constant function.

Proof. If |X| = 2, then it is easily seen that |Y | = 2 and so the result follows from [6]. Otherwise,

we can assume y1, y2, y3 are distinct points in Y such that y1 < y2 < y3. Define

f(y) =

(
y − y1
y2 − y1

χ[y1,y2](y) +
y − y3
y2 − y3

χ(y2,y3](y)

)
(y ∈ Y ).

Clearly, f ∈ ACb(Y ). Since ‖f‖ = V(f) = 2 > ‖f‖∞ = 1 and T is an isometry with respect to ‖ · ‖

and ‖ · ‖∞, we get ‖T−1f‖ = 2 > ‖T−1f‖∞ = 1. Hence V(f ± T 1
2 ) = ‖f ± T 1

2‖ = ‖T−1f ± 1
2‖ =
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V(T−1f) = 2. So it follows that

2 = V
(
f ± T 1

2

)
≥
∣∣∣∣(f ± T 1

2

)
(y1)−

(
f ± T 1

2

)
(y2)

∣∣∣∣
+

∣∣∣∣(f ± T 1

2

)
(y2)−

(
f ± T 1

2

)
(y3)

∣∣∣∣
=

∣∣∣∣±1

2
T1(y1)−

(
1± 1

2
T1(y2)

)∣∣∣∣+

∣∣∣∣1± 1

2
T1(y2)−

(
±1

2
T1(y3)

)∣∣∣∣
≥
∣∣∣∣2± (T1(y2)−

(
T1(y1)

2
+
T1(y3)

2

))∣∣∣∣ ,
which implies that T1(y2)−(T1(y1)

2 + T1(y3)
2 ) = 0. Hence T1(y2) = T1(y1)+T1(y3)

2 . Using an argument

similar to the part (ii) in the proof of Lemma 3.3, one can observe that |T1(y2)| = 1. Now, from

the fact that each point in the unit circle is an extreme point of the closed unit ball of C, it follows

that T1(y1) = T1(y2) = T1(y3). This argument shows T1 is a unimodular constant function. �

In the sequel, without loss of generality, we shall assume that T is unital, i.e., T1 = 1.

The next result may be considered as a version of the additive Bishop’s lemma for absolutely

continuous function spaces.

Lemma 3.6. (1) Let f ∈ ACb(X) and x0 ∈ X. If f(x0) = 0, then for any r > ‖f‖∞, there exists

h ∈ ACb(X) such that h(x0) = 1, Mh = {x0} and ‖|f |+ rh‖∞ = ‖f ± rh‖∞ = r.

(2) Assume that f ∈ ACb(X), x0 ∈ X, f(x0) 6= 0 and r ≥ ‖f‖∞
|f(x0)| . Then there exists a non-negative

function u ∈ ACb(X) such that u(x0) = 1, Mu = {x0} and ‖|f |+ ru|f(x0)|‖∞ = ‖f + ruf(x0)‖∞ =

|f(x0)|(1 + r).

Furthermore, for every scalar e with |e| ≥ |f(x0)| we have ‖|f |+ ru|e|‖∞ = |f(x0)|+ r|e|.

Proof. (1) We prove this first part following the ideas given in the proof of [9, Lemma 1]. Assume

that f(x0) = 0 and r > ‖f‖∞. Let {Vn} be a decreasing sequence of neighborhoods of x0 in X such

that each Vn is compact and
⋂∞
n=1 Vn = {x0}. Define

Un =

{
x ∈ Vn : |f(x)| < r − ‖f‖∞

2n+1

}
(n ∈ N).

It is apparent that for each n ∈ N, Un is a neighborhood of x0 in X, Un+1 ⊆ Un and
⋂∞
n=1 Un = {x0}.

For any n ∈ N, choose a function hn ∈ ACb(X), hn(x0) = 1, 0 ≤ hn ≤ 1, V(hn) ≤ 2, and hn = 0 on

X \Un. Put h = r
∑∞
n=1

hn

2n . First we note that since ‖h‖ ≤ r
∑∞
n=1

‖hn‖
2n ≤ 2r and h has a compact

support (Supp(h) ⊆ U1 ⊆ V1), the function h belongs to ACb(X). Clearly, 0 ≤ h ≤ 1 and h(x0) = 1.

Finally, by an argument similar to [9], it can be checked that ‖|f |+ rh‖∞ = ‖f ± rhe‖∞ = r.

(2) We prove the second part by an argument similar to the one in the proof of [6, Lemma

3.8]. Clearly, there is a decreasing sequence {Vn} of neighborhoods of x0 in X such that each Vn is
6



compact and
⋂∞
n=1 Vn = {x0}. Put e0 = f(x0). For any n ∈ N, we define

Un =

{
x ∈ Vn : ||f(x)| − |e0|| <

|e0|
2n+1

}
.

It is obvious that Un is a neighborhood of x0 in X and Un+1 ⊆ Un for all n ∈ N. For each n ∈ N,

choose un ∈ ACb(X) such that 0 ≤ un ≤ 1, un(x0) = 1, V(un) ≤ 2, and un = 0 on X \Vn. Now, set

u =
∑∞
n=1

un

2n . Since u has a compact support (Supp(u) ⊆ U1 ⊆ V1) and
∑∞
n=1

‖un‖
2n ≤ 2, u belongs

to ACb(X). By arguments similar to [6], one may observe ‖|f |+ru|e0|‖∞ = ‖f+rue0‖∞ = |e0|(1+r),

and that for every scalar e with |e| ≥ |e0| we have ‖|f |+ ru|e|‖∞ = |e0|+ r|e|. �

Lemma 3.7. T and T−1 are disjointness preserving maps, i.e., they map functions with disjoint

cozeros to functions with disjoint cozeros.

Proof. Taking into account Lemma 3.6 (2), the result can be obtained by an approach similar to [2,

Proposition 4.7] and [6, Lemma 3.9]. �

Given x ∈ X, we define

Fx = {f ∈ ACb(X) : f(x) = 1 = ‖f‖∞},

which is a non-empty set. We also set

Ix :=
⋂
{M

T̃ f
: f ∈ Fx},

where M
T̃ f

= {y ∈ βY : |T̃ f(y)| = 1 = ‖T̃ f‖∞}. Let us also recall that T̃ f denotes the unique

extension of Tf to the Stone-Čech compactification, βY , of Y .

Lemma 3.8. Given x ∈ X, the set Ix is non-empty.

Proof. It is a typical result in the context of supremum norm isometries, but we include its proof for

the sake of completeness. Since βY is compact, it is enough to show that the family {M
T̃ f

: f ∈ Fx}

has the finite intersection property. To see this, let f1, ..., fn in Fx. Define f =
∑n
i=1

fi
n . It is clear

that f ∈ Fx. By Lemma 3.3, ‖T̃ f‖∞ = ‖Tf‖∞ = ‖f‖∞ = 1, then there exists a point y in the

compact set βY such that |T̃ f(y)| = 1. Hence we have

1 = |T̃ f(y)| =

∣∣∣∣∣
n∑
i=1

T̃ fi(y)

n

∣∣∣∣∣ ≤
n∑
i=1

|T̃ fi(y)|
n

≤
n∑
i=1

‖T̃ fi‖∞
n

= 1,

which yields that |T̃ fi(y)| = 1 for i = 1, ..., n. Thus y ∈
n⋂
i=1

M
T̃ fi

. Therefore, we get Ix 6= ∅, as

desired. �
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In the next lemma we show that the subset Ix of βY is indeed a subset of Y . To this end, let us

first introduce two types of functions in ACb(X) as follows:

Type 1. There are a, b ∈ R such that a < b,

f(x) = χ[b,+∞)(x) +
x− a
b− a

χ[a,+∞) (x ∈ X),

and {0, 1} ⊆ f(X).

Type 2. There are a, b ∈ R such that a < b,

f(x) = χ(−∞,a](x) +
x− b
a− b

χ(a,b) (x ∈ X),

and {0, 1} ⊆ f(X).

Let also Si denote the set of all functions of type i (i = 1, 2).

Lemma 3.9. Given x ∈ X, Ix is a subset of Y .

Proof. If Y is compact, then the claim clearly holds. Otherwise, taking into account the closedness

of X and Y , we are in one of the following cases:

Case 1. X and Y are unbounded both from below and from above. We first prove the following

claim.

Claim 1. For each f ∈ S1 ∪ S2, {0, 1} ⊆ Tf(Y ) ⊆ [0, 1].

Let f ∈ S1. It is easy to find nonzero functions g, h ∈ ACb(X) such that coz(f)∩ coz(g) = ∅ and

coz(1− f) ∩ coz(h) = ∅. Hence coz(Tf) ∩ coz(Tg) = ∅ and coz(T (1− f)) ∩ coz(Th) = ∅ by Lemma

3.7. Now, since Tg 6= 0 and Th 6= 0, we conclude that there exist y, y′ ∈ Y such that Tf(y) = 0

and T (1 − f)(y′) = 0. Thus, from T1 = 1 it follows that Tf(y′) = 1. Therefore, {0, 1} ⊆ Tf(Y ).

Finally, if t ∈ Tf(Y ) and t /∈ [0, 1], then taking into account that |t|+ |1− t| > 1 we conclude that

V(Tf) > 1, which is impossible because ‖Tf‖ = 1 = ‖Tf‖∞. A similar discussion shows that the

result holds for any function in S2. Now, the proof of Claim 1 is completed.

Given f ∈ S1 ∪ S2, we have Tf is continuous and V(f) ≤ 1. Hence, thanks to Claim 1, it is not

difficult to check that there exists y0 ∈ R such that we have one of the following forms

Tf |(−∞,y0]∩Y = 0 and Tf |(y0,+∞)∩Y 6= 0,

or

Tf |(−∞,y0)∩Y 6= 0 and Tf |[y0,+∞)∩Y = 0.

For each x ∈ X, define

fx(z) =
z − a
x− a

χ(a,x)(z) +
z − b
x− b

χ[x,b)(z) (z ∈ X),
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for some a, b ∈ R with a < x < b.

We can find f1 ∈ S1 and f2 ∈ S2 such that coz(f1) ∩ coz(f2) = ∅ and coz(fi) ∩ coz(fx) = ∅

(i = 1, 2). From the argument after Claim 1, it follows that coz(Tfx) is included in a bounded

subset of R. Thus Supp(Tfx) is a compact subset of Y .

Now, since fx ∈ Fx and Supp(Tfx) is a compact subset of Y , one easily conclude that Ix ⊆

Supp(Tfx) ⊆ Y.

Case 2. X and Y are bounded below and unbounded above. In this case we first prove the

following claim.

Claim 2. For each f ∈ S1, we have 0 ∈ Tf(Y ) and 1 ∈ Tf(Y ) ⊆ [0, 1]. Moreover, for each f ∈ S2,

we have 1 ∈ Tf(Y ) and 0 ∈ Tf(Y ) ⊆ [0, 1].

Let f ∈ S2. We have

‖f + 1‖ = max{2, 1} = 2 = ‖f‖+ 1,

which, taking into account that T1 = 1, yields that ‖Tf + 1‖ = 2 = ‖Tf‖ + 1. Hence max{‖Tf +

1‖∞,V(Tf)‖} = max{‖Tf‖∞,V(Tf)‖}+ 1, which yields ‖Tf‖∞+ 1 = ‖Tf + 1‖∞ because ‖Tf‖ =

1 = ‖Tf‖∞. Thus there is a sequence {yn} in Y such that {Tf(yn)} is convergent and |Tf(yn) +

1| −→ 2. Now it is easily derived that Tf(yn) −→ 1. Therefore, 1 ∈ Tf(Y ).

Now, choose h ∈ ACb(X) such that coz(f) ∩ coz(h) = ∅. Then coz(Tf) ∩ coz(Th) = ∅ because

T is a disjointness preserving map by Lemma 3.7, and as a consequence, since Th 6= 0, we have

0 ∈ Tf(Y ). (Note that there is not necessarily such a function for 1 − f (compare with Claim 1).

For example, let X = [0,+∞) and define f(x) = (−x + 1)χ[0,1](x).) Similarly to Case 1, it can be

checked that Tf(Y ) ⊆ [0, 1].

Now take f ∈ S1. Clearly 1 − f is a function in S2. Then from above, we get 1 ∈ T (1− f)(Y )

and 0 ∈ T (1 − f)(Y ) ⊆ [0, 1], which show that 0 ∈ Tf(Y ) and 1 ∈ Tf(Y ) ⊆ [0, 1] because T1 = 1

and the proof of Claim 2 is done.

If x ∈ X and x 6= minX, then by considering fx as in Case 1 and using a similar reasoning, we

conclude that Ix ⊆ Y . Note that, for example, if X = [0,+∞), x = 0, and fx(x) = (−x+1)χ[0,1](x),

we cannot find f ∈ S2 with coz(fx) ∩ coz(f) = ∅ (compare with Case 1). Then we have to apply

another method for the minimum point of X as follows:

Suppose that x = minX. We first consider the case where x is a limit point of X. Define

fx(z) =
z − a
x− a

χ[x,a)(z) (z ∈ X),

where a ∈ R with x < a. Obviously, fx ∈ S2. Assume that there exists y0 ∈ R such that

Tfx|(−∞,y0]∩Y = 0 and Tfx|(y0,+∞)∩Y 6= 0.
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Then we can find a nonzero function G ∈ ACb(Y ) such that coz(G) ∩ coz(T (1 − fx)) = ∅. Then

we have coz(T−1G) ∩ coz(1 − fx) = ∅, by Lemma 3.7. Hence T−1G(z) = 0 for all z 6= x, which is

impossible. This contradiction implies Tfx|[y,+∞)∩Y = 0 for some y ∈ R. Especially, we get Tfx

has a compact support. Hence, as above, Ix ⊆ Y .

Now assume that x is an isolated point of X. Let fx = χ{x}. Then 1 − fx = χ(x,+∞)∩X .

Suppose that there exists y0 ∈ R such that Tfx|(y0,+∞)∩Y 6= 0. Then Tfx = χ(y0,+∞)∩Y and

T (1−fx) = χ(−∞,y0])∩Y because Tfx+T (1−fx) = 1 and coz(Tfx)∩ coz(T (1−fx)) = ∅. Since Y is

unbounded above, we can choose G ∈ ACb(Y ) such that coz(G)∩ coz(T (1−fx)) = ∅ and G 6= αTfx

for all α ∈ C. Thus coz(T−1G)∩ coz(1− fx) = ∅, by Lemma 3.7. Since 1− fx = χ(x,+∞)∩X , we get

T−1G = α0χ{x} for some α0 ∈ C, and so G = α0Tχ{x}, which is a contradiction.

The other following cases can be obtained in a similar manner.

Case 3. X is bounded but Y is unbounded.

Case 4. X (resp. Y ) is bounded below (resp. above) and unbounded above (resp. below).

Case 5. X (resp. Y ) is bounded above (resp. below) and unbounded below (resp. above). �

Lemma 3.10. Given x ∈ X, there exists a unique point y ∈ Y such that Tf(y) = 0 for any

f ∈ ACb(X) with f(x) = 0. Moreover, Ix = {y}.

Proof. Let x ∈ X and y ∈ Ix. Assume that f ∈ ACb(X) and f(x) = 0. We claim that Tf(y) = 0.

Contrary to what we claim, suppose that Tf(y) 6= 0. Take r > ‖f‖∞. Lemma 3.6 (1) allows us to

choose h ∈ ACb(X) such that h(x) = 1, 0 ≤ h ≤ 1 and ‖|f |+ rh‖∞ = ‖f ± rh‖∞ = r. Notice that

|Th(y)| = 1 because y ∈ Ix. Then it follows that

r = ‖f ± rh‖∞ = ‖T (f ± rh)‖∞

≥ |Tf(y)± rTh(y)| > r,

which is a contradiction showing that Tf(y) = 0.

Since T−1 is an isometry with T−11 = 1, then similarly, for y, there exists x1 ∈ X such that

T−1g(x1) = 0 for all g ∈ ACb(Y ) with g(y) = 0. These two claims combined imply that for each

f ∈ ACb(X) with f(x) = 0 we have f(x1) = 0, which easily implies that x1 = x because ACb(X)

separates the points of X.

Hence we have proved that y is the point in Y so that f(x) = 0 if and only if Tf(y) = 0 for

any f ∈ ACb(X). Apparently, taking into account that ACb(Y ) separates the points of Y , such y is

unique. Meantime, the argument clearly yields Ix = {y}. �

The above discusion allows us to define a function ψ : X −→ Y such that for each x ∈ X, ψ(x)

is the unique point obtained in the above lemma. Indeed, ψ(x) is the point with the property that
10



f(x) = 0 if and only if Tf(ψ(x)) = 0 for any f ∈ ACb(X), and we also have Ix = {ψ(x)}. Meantime,

it is clear that ψ is a bijective function. We set ϕ := ψ−1.

Lemma 3.11. For each f ∈ ACb(X) and y ∈ Y , Tf(y) = f(ϕ(y)).

Proof. Let f ∈ ACb(X) and y ∈ Y . Since (f − f(ϕ(y)))(ϕ(y)) = 0, from Lemma 3.10, we have

T (f − f(ϕ(y)))(y) = 0. Whence Tf(y) = T (f(ϕ(y)))(y) = f(ϕ(y)) since T is unital. Therefore,

Tf(y) = f(ϕ(y)). �

Lemma 3.12. ϕ is a monotonic function.

Proof. We consider two cases based on the cardinal number of Y . If |Y | = 2, it is plain that ϕ is

monotonic. Now, suppose that |Y | > 2. Without loss of generality, we assume that y, y′ ∈ Y , y < y′

and ϕ(y) < ϕ(y′). We verify that ϕ is increasing (a similar argument shows that ϕ is decreasing if

y′ < y). Let y1 ∈ Y . We consider the following cases:

(1) If y < y1 < y′, then we claim that ϕ(y) < ϕ(y1) < ϕ(y′).

(2) If y1 < y < y′, then we claim that ϕ(y1) < ϕ(y) < ϕ(y′).

(3) If y < y′ < y1, then we claim that ϕ(y) < ϕ(y′) < ϕ(y1).

Contrary to what we claim in (1), let us suppose that either ϕ(y1) < ϕ(y) < ϕ(y′), or ϕ(y) < ϕ(y′) <

ϕ(y1). Then defining

h(z) = χ(−∞,y](z) +
z − y1
y − y1

χ(y,y1](z) (z ∈ Y ),

or

h(z) = χ[y′,+∞)(z) +
z − y1
y′ − y1

χ[y1,y′)(z) (z ∈ Y ),

we get ‖T−1h‖ ≥ V(T−1h) > 1 while ‖T−1h‖ = ‖h‖ = 1, a contradiction. Thus the first claim is

derived. By a similar discussion, we can deduce the other two claims. Now, it is not difficult to see

that ϕ is increasing. Therefore, ϕ is a monotonic function. �

Meantime, taking into account the representation of T , it is not difficult to deduce that ϕ is a

homeomorphism.

Now we state our main result which is obtained immediately from the previous lemmas. Let us

recall here that, according to Lemma 3.1, for each f ∈ ACb(X), f denotes the extension of f to the

closure X̄ of X. A similar notation is used for functions in ACb(Y ).

Theorem 3.13. If T : ACb(X) −→ ACb(Y ) is a surjective linear isometry such that T1 is bounded

away from zero, then there exist a monotonic homeomorphism ϕ : Ȳ −→ X̄, and a scalar λ with

|λ| = 1 such that Tf(y) = λf(ϕ(y)) for all f ∈ ACb(X) and y ∈ Ȳ .
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Remark 3.14. (1) Note the surjective linear isometry T in the above result induces a homeomor-

phism between the closures of X and Y but not necessarily between X and Y . Indeed, since as

mentioned after Lemma 3.1, the absolutely continuous functions of a set and its completion are the

same, we can define a surjective linear isometry T : AC(0, 1) −→ AC[0, 1] whereas (0, 1) and [0, 1]

are not homeomorphic.

(2) It should be noted that, as the following example, borrowed from [6, Remark 4.2 (ii)], shows,

that there exists a surjectve linear isometry T for which T1 is not bounded away from zero, and of

course, T is not a weighted composition operator:

Let X = Y = {1, 2}. Define T : AC(X) −→ AC(Y ) by Tf(1) = f(1) and Tf(2) = f(1)− f(2).

However, the next result, which may be considered as a generalization of [7, Example 5] and [6,

Corollary 4.4], states that if the underlying spaces are connected then T1 is always a unimodular

function.

Corollary 3.15. If X (or Y ) is connected and T : ACb(X) −→ ACb(Y ) is a surjective isometry,

then there exist a monotonic homeomorphism ϕ : Ȳ −→ X̄, and a unimodular scalar λ such that

Tf(y) = λf(ϕ(y)) for all f ∈ ACb(X) and y ∈ Ȳ .

Proof. We assume, without loss of generality, that Y is connected. For simplicity, set

N = coz(T1) = {y ∈ Y : T1(y) 6= 0},

and Z = Y \ N . Clearly N 6= ∅ because T is an isometry, and also N is an open subset of Y . Take

y0 ∈ N . Choose an absolutely continuous function f on Y such that f(y0) = 2, Mf = {y0}, ‖f‖∞ =

‖f‖ = 2, V(f) ≤ 1, and |f | ≤ 3
2 on Y \K for some compact subset K of Y . An argument similar to

the proof of Lemma 3.2 shows that V(T−1f) ≤ ‖T−1f‖∞, which yields ‖T−1f‖ = ‖T−1f‖∞ = 2.

Hence there is a point x0 ∈ βX such that T̃−1f(x0) = 2eiθ for some θ ∈ (−π, π]. It is apparent that

3 = ‖eiθ‖+ ‖T−1f‖ ≥ ‖eiθ + T−1f‖ ≥ ‖eiθ + T−1f‖∞ = ‖eiθ + T̃−1f‖∞ ≥ |(eiθ + T̃−1f)(x0)| = 3,

and so ‖Teiθ + f‖ = ‖Teiθ + f‖∞ = 3. Then there exists an y ∈ βY with |T̃ eiθ(y) + f̃(y)| = 3.

Whence y = y0 because of the equation ‖T1‖ = 1 and the properties of f . Therefore, we can deduce

that |Teiθ(y0)| = 1. Consequently, we can write

N = {y ∈ Y : |T1(y)| = 1}.

Next, from the continuity of T1, it easily follows that N is a closed subset of Y . Then N is a

non-empty clopen subset of Y . Therefore, from the connectedness of Y , we have N = Y , which

especially shows that T1 is a unimodular function and hence the rest of the proof follows from

Theorem 3.13. �
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