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ABSTRACT 

Bonding orthodontic brackets to ceramic materials is a challenging procedure; 

femtosecond (FS) laser conditioning could provide improved results, but the ideal 

settings for effective bracket-zirconia bonding have never been established. This 

study aimed to: analyze the differences in surface roughness and shear bond 

strength (SBS) produced by different femtosecond laser settings and establish a 

protocol to prepare zirconia surfaces for optimal adhesion to metal orthodontic 

brackets. One hundred and eighty zirconia samples were assigned to six groups 

according to surface treatment: 1- control; 2- air-particle abrasion (APA); 3- FS 

laser irradiation (300mW output power, 60μm inter-groove distance); 4- FS laser 

irradiation (200mW, 100μm), 5- FS laser irradiation (40mW, 60μm), and 6- FS 

laser irradiation (200mW, 60μm). Surface roughness was measured. Orthodontic 

brackets were bonded to the zirconia specimens and SBS was measured. SBS in 

Groups 3 and 6 was significantly higher than the other groups (5.92 ± 1.12 MPa 

and 5.68 ± 0.94 MPa). No significant differences were found between groups 1, 

2, 4 and 5 (3.87 ± 0.77 MPa, 4.25 ± 0.51 MPa, 3.74 ± 0.10 MPa and 3.91 ± 0.53 
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MPa). Surface roughness was significantly greater for FS laser than for control 

and APA groups (p = 1.28 x 10-8). FS laser at 200mW, 60 μm can be 

recommended as the ideal settings for treating zirconia surfaces, producing good 

SBS and more economical energy use. 
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INTRODUCTION 

In recent years increasing demand for orthodontic treatment from adult patients 

has been developing. Many of these patients have ceramic dental restorations, 

but bonding brackets to these surfaces can present a challenge due to the 

properties of the ceramic materials, which are less porous than dental tissues, 

and, together with glazing, hinder the creation of microretention [1]. For this 

reason, it is necessary to determine a bonding protocol that will provide an 

efficient and durable bracket-porcelain bond meeting the requirements of 

orthodontic treatment, although bonding must be reversible with minimal damage 

to the surfaces. Reynolds established the optimal range for orthodontic bonding 

as between 5.9 and 7.8 MPa [2]. 

Zirconia is an effective and highly aesthetic dental ceramic and so there has 

been much interest in researching bracket bonding procedures to this surface [3]. 

A range of surface conditioning techniques have been proposed to enhance the 

bonding of different materials to ceramic, including sandblasting [3,4], silica 

coating [5], etching with hydrofluoric acid [6], CO2 and Er:YAG laser irradiation [7-

10].  
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The latest in vitro investigations have included femtosecond laser, which several 

authors have proposed for enhancing bond strength to enamel [11,12], dentin 

[13], and porcelain surfaces [14]. 

 

Ti:Sapphire Femtosecond (FS) laser emits ultrashort pulses in the femtoseconds 

range (1 fs = 10−15 s) [15], with a low transfer of heat to the irradiated material 

[16]. Other lasers used in dentistry present higher rates of heat transfer [17-19] 

as their pulse duration falls within the picosecond and nanosecond ranges.  

 

Femtosecond laser has been used in several recent in vitro investigations of 

ceramic surface conditioning in preparation for bonding [14,20]. Only two studies 

have evaluated the shear bond strength (SBS) of orthodontic metallic brackets 

bonded to ceramic surfaces treated with femtosecond laser [21,22]; both works 

used feldspathic ceramic. To date, no studies have analyzed the SBS of brackets 

bonded to zirconia, despite this being the most commonly used ceramic material 

for prosthetic restorations in adult patients. 

 

Previous research into FS lasers has employed various different settings, leading 

to a notable lack of consensus between results [14,20-22]. In this context, 

assaying different FS laser settings could determine a gold standard for optimal 

bracket to zirconia bonding, providing a benchmark for future research and for 

optimizing clinical outcomes. 

Moreover, establishing the most efficient processing conditions could help to 

address one of the biggest drawbacks of FS laser systems – their high cost [22].  
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Roughness tests performed by profilometers are a reliable method of assessing 

the effects of porcelain surface treatments [23] and several authors have studied 

the relationship between surface irregularities and shear bond strength [24]. Both 

surface roughness and shear bond strength could depend on the laser settings 

used. 

 

The purpose of this study was to determine the ideal femtosecond laser settings 

in terms of output power and inter-groove distance when preparing zirconia 

surfaces, to optimize the shear bond strength of orthodontic brackets.  

 

MATERIALS AND METHODS 

Specimen preparation 

This in vitro assay used a sample of 180 Y-TZP zirconia (Cercon®, Degudent, 

Hanau, Germany) square plates (9×9×1 mm).  

 

Experimental design 

All specimens were polished with 600-grit silicon carbide paper to remove 

imperfections and obtain uniform surfaces. The specimens were randomly 

divided into 6 groups (n=30) according to the surface treatment applied. After 

conditioning the samples with different surface treatments, each group was 

divided into two subgroups (n=15). One subgroup was analyzed for surface 

roughness, and the other for shear bond strength. Fig. 1 shows a diagram of the 

experimental design. 

 

Surface treatment groups 
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Group 1: (Control). No treatment applied to zirconia surfaces. 

Group 2: (Air Particle Abrasion [APA]) Surfaces were sandblasted with alumina 

particles (Al2O3) with an average size of 25 µm at a pressure of 0.25 MPa for 20 

seconds at a perpendicular distance of 10 mm from the specimen. The treatment 

was applied to the entire surface area. 

 

In Groups 3, 4, 5 and 6, zirconia surfaces were irradiated by femtosecond 

Ti:Sapphire laser (Femtopower Compact Pro, Femtolasers) with a pulse width of 

30 fs, full width at half maximum (FWHM) at a central wavelength of 800 nm, and 

a repetition rate of 1 kHz for 12 minutes. The whole surface (9×9 mm) was 

irradiated. A programmable acousto-optic filter (Dazzler, Fastlite) was used to 

ensure the time compression of laser pulses at the interaction spot between 

zirconia samples and laser radiation, by controlling the amplitude and pulse 

phase. As a standard feature of the laser system used, the acousto-optic filter 

was installed in the cavity of the multipass pulse amplification stage. The 

incoming laser beam passed through an iris diaphragm with a diameter of 6 mm 

at the 1/e2 width, and after using a plano-convex lens with a focal length of 75 

mm, the beam was focused onto the sample surface, and the irradiated spot was 

20.6 μm (FWHM). The samples were placed on the surface of a 2D motion 

controlled stage moving at a constant speed of 1.44mm/s in both X and Y 

directions in the plane of the laser beam focus, following a raster pattern. 

Different combinations of output power (mW) and inter-groove distances (µm) 

were applied as follows: 

 Group 3: output power of 300mW, inter-groove distance of 60μm. 

 Group 4: output power of 200mW, inter-groove distance of 100μm. 
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 Group 5: output power of 40mW, inter-groove distance of 60μm. 

 Group 6: output power of 200mW, inter-groove distance of 60μm. 

 

Surface roughness analysis 

Roughness measurements (Ra in kÅ) of the specimens were registered using a 

stylus profiler (6M Veeco Dektak, Plainview, NY), the Ra value representing the 

mean roughness of each surface. 

Four scans of 500μm were performed for each specimen placing the stylus at 

different locations. For the laser groups, the scanning direction was set 

perpendicular to the laser-traced lines.  

 

Bracket bonding procedure 

One upper incisor orthodontic metal bracket (Victory 3M Unitek, Monrovia, Calif, 

USA) measuring 3×4 mm, was bonded at the centre of each treated zirconia 

specimen using a total etch adhesive system (Transbond TM XT; 3M-Unitek). To 

polymerize both the primer and the adhesive layer, a curing light (XL 3000, 3M 

ESPE) at 500mW/cm2 intensity was applied to the bracket-zirconia sample 

directed at the occlusal and gingival bracket edges for 20 seconds. 

Samples were stored in distilled water at 37ºC for 24 hours. 

 

Shear Bond Strength (SBS) Test 

All bonded samples were mounted perpendicularly on acrylic resin bases and a 

shear load was applied using a universal testing machine (AGS-X Autograph, 

Shimadzu Corporation, Kyoto, Japan), at a crosshead speed of 0.5mm/min, until 

bracket-zirconia separation. SBS values were calculated in MPa by dividing the 
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maximum load recorded at the moment of bond failure (Newtons, N) by the 

bracket area (12mm2). 

 

Bond failure analysis 

After debonding, the zirconia surfaces were examined at 40× magnification using 

an Axio M1 light microscope (Carl Zeiss, Oberkochen, Germany). The 

adhesive remnant index (ARI), proposed by Årtun and Bergland [25] was used to 

classify each failure as one of four categories according to the amount of cement 

remaining on the ceramic surface: 1) No remaining cement; 2) < 50% of cement 

remaining; 3) >50% of cement remaining; 4) All the cement remaining. 

 

Scanning Electron Microscopy (SEM) Analysis 

One additional porcelain specimen was prepared for each experimental group to 

perform qualitative analysis of the surface using scanning electron microscopy 

(SEM) (JEOL-JSM-7001F, JEOL Ltd., Tokyo, Japan) at 350× magnification.  

 

Representative samples from each group were also examined by SEM at 75× 

magnification after debonding to compare morphological variations between the 

debonded surfaces in different treatment groups. 

 

Statistical analysis 

Surface roughness data (measured in kA) and SBS values (in MPa) were 

analyzed using SPSS v.16 software (Statistical Package for the Social Sciences, 

Chicago, IL, USA). 
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Descriptive statistics, means, standard deviation (SD), median, minimum and 

maximum surface roughness (kÅ) and SBS (MPa) were calculated; 95% 

confidence intervals were also included. 

Two-way analysis of variance (ANOVA), and Tamhane’s T2 multiple comparison 

test were used to determine the statistical significance of the differences in mean 

variables between groups and Spearman’s coefficient was used to calculate the 

non-linear correlation between SBS and surface roughness. Statistical 

significance was set at p<0.05. 

Lastly, Kruskal-Wallis and multiple Mann-Whitney tests applying Bonferroni 

correction were used to assess the homogeneity of ARI index data between 

groups. 

 

RESULTS 

Shear Bond Strength (SBS) 

Table 1 shows the SBS values (MPa) obtained in all groups. All surface 

treatments affected SBS, obtaining higher values in comparison with the control 

group except for Group 4. Groups 3 and 6 presented higher SBS but without 

significant differences between the two groups (5.92±1.12 MPa and 5.68±0.94 

MPa), while Groups 1 (control) and 4 showed lower values (3.87±0.77 MPa and 

3.74±0.10 MPa, respectively). No statistically significant differences were found 

between Groups 1, 2, 4 and 5. 

According to these results, higher output power values produced higher SBS, 

although the difference in SBS between 200mW and 300mW was not statistically 

significant (p = 0.128). 

 



 9 

Surface roughness 

Table 2 shows mean surface roughness values (Ra in kÅ) obtained in each 

treatment group.  

 

All treated groups showed rougher surfaces than the control group (p = 1.28 x 10-

8). Laser treatments produced significantly deeper grooves on the zirconia 

surfaces than air particle abrasion (p = 1.28 x 10-8), Group 4 showed the highest 

Ra (106.24±4.93 kÅ). No statistically significant differences were found between 

Groups 3 and 6 (p = 0.595). 

 

The results show that power outputs of 300 and 200mW produced significantly 

higher Ra values compared with 40mW (p = 1,25 x 10-6 and p = 1.28 x 10-8 

respectively); differences between 300 and 200mW roughness values did not 

show statistical significance (p = 0.051). 

 

 

Correlation between surface roughness and SBS  

In general terms, increases in surface roughness tended to increase SBS values. 

However, when Ra values exceeded a threshold value of 100 kÅ, SBS 

decreased (r = 0.217; p = 0.040) (Fig. 2). 

 

Bond failure 

Table 3 shows bond failure types in all groups. In three of the FS laser groups (3, 

4 and 6) 50-80% of the samples showed failure types 3 and 4. These results 

showed significant differences (p<0.001) compared with the failure modes 
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obtained by groups 1 (p = 1.28 x 10-8), 2 (p = 1.25 x 10-6, p= 2.04 x 10-5 and p = 

1.25 x 10-6 respectively) and 5 (p = 1.25 x 10-6, p= 2.04 x 10-5 and p = 1.25 x 10-6 

respectively), which presented types 1 and 2 only. 

SEM  

Differences in surface morphology can be observed in SEM images of the 

specimens at 350× magnification (Fig. 3a). The control group shows a smooth 

surface; the APA Al2O3 sample shows a granulated surface; and FS laser groups 

(3, 4, 5 and 6) show deep and precise grooves, which were especially marked in 

Group 4. 

Fig 3b shows SEM images of representative samples from each group after 

debonding. Groups 1, 2 and 5 show very small amounts of resin cement on the 

zirconia surface. But large amounts of cement remnant can be observed in 

groups 3, 4 and 6. 

 

DISCUSSION 

While many methods have been proposed for conditioning ceramic surfaces prior 

to bonding orthodontic brackets, conditioning protocols have not been 

standardized [3,5-8,10].  

 

The present study aimed to assess the surface roughness of zirconia surfaces 

treated with different femtosecond laser parameters, and to measure the SBS of 

metal brackets bonded to these surfaces, in order to determine which laser 

protocol obtains optimal bond strength.  
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Different lasers have been assayed as ceramic conditioners for bracket bonding: 

Nd:YAG, Er:YAG, CO2 and Ti:Sapphire, femtosecond lasers being the most 

commonly reported [1,21,22,26].  

 

Femtosecond lasers are considered to cause less damage to the irradiated 

surfaces since they have a null or only very slight heating effect [16]. Given that 

temperature increases greater than 5.5 ºC can produce irreversible damage to 

dental pulp [27], and ceramic materials have low temperature-shielding effects 

[28], femtosecond lasers constitute the ideal device for irradiating these surfaces. 

Nevertheless, Ti:Sapphire femtosecond laser is a very expensive instrument and 

its large dimensions make everyday use in medical clinics inconvenient. Fiber-

optic-based femtosecond lasers offer a cheaper, smaller and more resistant 

option than conventional Ti:Sapphire lasers and have partly overcome the 

drawbacks of the earlier equipment [29]. But the peak intensities do not reach the 

capabilities offered by Ti:Sapphire lasers, a key factor affecting processing depth, 

and so the SBS of metal brackets bonded to zirconia. 

 

Only two studies have investigated the effect of FS laser on the SBS of brackets 

bonded to porcelain [21,22]. In contrast to other lasers, research into FS laser 

surface treatment for orthodontic bonding on ceramics has not established the 

ideal output power settings for obtaining optimal shear bond strength. Akpinar et 

al. (2015) applied 750mW to condition samples [21], while Erdur and Basciftci 

(2015) applied output power of 400mW [22].  

The present study compared different mean power outputs to prepare zirconia 

surfaces. The trade-off between the speed of sample preparation and the most 
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advantageous laser powers was considered at a preliminary calibration stage, 

and three typical mean power values were chosen, ranging from the highest 

power achievable at the micromachining station, to the lowest, including a third 

intermediate power: 300 mW, 40 mW, and 200 mW, respectively. Displacement 

of the translation stage along the y direction was set at 60μm for the three mean 

power groups. For the 200mW setting, a 100μm step was also tested in an 

attempt to reduce preparation time. 

The highest SBS values were obtained in Groups 3 (300mW 60μm) and 6 

(200mW 60μm), with statistically significant difference in comparison with Groups 

4 (200mW, 100 μm) and 5 (40mW, 60μm). Akpinar et al. (2015) and Erdur and 

Basciftci (2015), obtained higher SBS values than the present study [21,22]. But 

while these authors used FS laser as in the present study, the conditioned 

ceramic was not zirconia. Moreover, the laser power settings chosen were higher 

than in the present assay. Excessive output powers may compromise the 

aesthetics of the ceramic surface irreversibly, so it is important to establish a 

balance between bond strength and minimal surface damage. These differences 

in study protocols could explain the different results obtained. According to the 

existing literature, the findings of these earlier studies exceed the optimal SBS 

range suggested for orthodontic adhesion [2], while the results obtained in the 

present investigation fall within the range considered adequate. 

To our knowledge, no other study has analyzed bracket adhesion to FS laser-

treated zirconia. Other authors have investigated other lasers used to condition 

zirconia [1,26]. These lasers have been reported to have adverse effects on 

surrounding structures (thermal damage, for example) [17,30]. The present study 

assayed femtosecond laser, as it is known to provide gentle, homogeneous and 
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precise surface etching, does not produce degradation of the surrounding 

materials [31], and does not raise the temperature of the ablated surface [16]. 

 

Other authors have analyzed the SBS of resin to femtosecond laser-irradiated 

zirconia surfaces. In agreement with the present findings, Vicente Prieto et al. 

obtained higher values for a femtosecond laser group compared with traditional 

surface treatment methods [32]. Kara et al. analyzed the SBS of resin to zirconia 

treated with different lasers, obtaining higher values with femtosecond laser [33].  

 

Regarding the effect of lasers other than FS on the SBS of resin to ceramic 

surfaces, studies have not obtained significant differences between lasers and air 

particle abrasion groups [34]. 

 

The present study also assessed surface roughness (Ra in kÅ) quantitatively. 

SEM was used to analyze surface morphology qualitatively. Several previous 

studies have analyzed the effects of different lasers on the surface roughness of 

dental materials [24,33,35,36]. Two works compared the effects of three lasers 

(femtosecond, Nd:YAG and Er:YAG) on the roughness of ceramic surfaces, both 

obtaining significantly greater roughness values in the femtosecond laser group 

[33,36]. In the present study, all FS laser groups showed significantly higher Ra 

values than the control and air particle abrasion groups, Group 4 (FS 200 mW 

100 μm) presenting the deepest irregularities. These characteristics were also 

observed in SEM images (Fig. 3a). 

Relating surface roughness to SBS values, a positive correlation was found for all 

laser groups except Group 4. Groups 1, 2 and 5 all showed low Ra and SBS 
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values, while Groups 3 and 6 (FS laser at 300mW 60μm, and 200mW 60μm) 

showed high Ra and SBS values. 

These results suggest that surface roughness depends on both average laser 

output power and inter-groove distance. A tendency for SBS to increase as Ra 

values increase was also observed. 

Erdur and Basciftci (2015) obtained similar Ra values to the present study [36]. 

 

Regarding bond failure, a high percentage of the samples in Groups 3, 4 and 6 

showed debond types 3 and 4 (bond failure between cement and bracket), 

findings that are consistent with the literature [21]. But Groups 1, 2 and 5 (FS 

laser at 40mW 60μm) presented bond failure types 1 and 2. These were probably 

caused by insufficient depth of surface irregularities preventing the adhesive from 

penetrating adequately, an observation confirmed by surface roughness analysis. 

Failure mode 4 is the most conservative for the porcelain, as no surface fracture 

occurs at debonding [37]. These findings concur with the present SBS results, 

since the groups obtaining higher SBS values were found to retain greater 

amounts of cement on the ceramic surfaces. This is an important fact to take into 

consideration when referring to bracket-zirconia bonding, which ideally should be 

reversible, as the porcelain surface will be exposed after bracket removal. 

According to our results, FS laser at 300mW 60μm and FS laser at 200mW 60μm 

(Groups 3 and 6) were the least damaging treatments in this regard. 

 

The irradiation time per sample reported in the present study (12 minutes) might 

represent a limitation. However, if only the area covered by the bracket base was 

to be irradiated, the estimated irradiation time would be 1.8 minutes, which is 
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acceptable for this matter. Furthermore, it would be possible to split the 

fundamental laser beam, thus multiple laser beams could be used to process 

more than one sample at a time, or reduce the processing time.  

 

This study of the SBS of brackets bonded to zirconia using different femtosecond 

laser settings could serve as a guide for further research. The present findings 

suggest that femtosecond laser at 200 mW mean power and 60 μm inter-groove 

distance are ideal parameters for conditioning zirconia surfaces before bonding 

metal brackets, as these settings provide adequate bond strength. Even though 

similar SBS results were obtained setting the FS laser at 300 mW and 60 μm, the 

differences between the two settings were not statistically significant, and as the 

latter option involves greater energy use, the former would appear to be the 

better option. These parameters would appear to represent ideal settings for the 

following reasons: firstly, they obtained adequate SBS outcomes (5.68±0.94 

MPa), which fall into the range proposed by Reynolds for orthodontic bonding 

(5.9 to 7.8 MPa) [2]; secondly, they obtained good results in terms of the amount 

of resin remnant, since 60% of the samples in Group 6 presented type 4 failure, 

which is the most conservative for the ceramic surface; thirdly, the patterns 

observed on the surfaces irradiated by the FS laser were homogeneous, as 

shown by roughness analysis and SEM images.  

 

Although in vitro research has shown that FS lasers offer advantages in terms of 

SBS, the conditioning technique has not been tested clinically due to current 

laser system costs and dimensions. Further research and development are 

required before they can be introduced routinely in dental practice.  



 16 

 

CONCLUSIONS 

- Femtosecond laser at 300mW and 200mW mean power and 60 μm step 

provides higher SBS for metal brackets bonded to zirconia. 

- The surface roughness of zirconia conditioned with FS laser is directly 

correlated to SBS, providing Ra values do not exceed 100kÅ. 

- Femtosecond laser irradiation settings at 200mW, with an inter-groove distance 

of 60μm are proposed as the optimal settings for treating zirconia surfaces for 

maximum orthodontic bracket SBS.  
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FIGURES 

 

Figure 1. Experimental design diagram. 

 

Figure 2. Matrix plot relating SBS to surface roughness. 

 

Figure 3. a) SEM images of zirconia after surface conditioning, at 350 × 

magnification; 

b) SEM images of zirconia after debonding, at 75× magnification.  
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TABLES 

Table 1. SBS values (MPa) for each experimental group  

 
* values with the same letter are not statistically different  (p>0.05) 
  

 EXPERIMENTAL GROUPS 

  Total 

         
        1 
CONTROL 

 

          
       2 
APA Al2O3 

            3 
FS 300mW 60μm 

               4 
FS 200mW 100μm 

            5 
FS 40mW  60μm 

            6 
FS 200mW  60μm 

N 90 15 15 15 15 15 15 

Mean 4.56 3.87 4.25 5.92 3.74 3.91 5.68 

Standard Deviation (SD) 1.38 0.77 0.51 1.12 0.10 0.53 0.94 

*  c bc ab c c a 
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Table 2. Surface roughness values (Ra in kÅ) for each experimental group. 

 
* values with the same letter are not statistically different  (p>0.05) 
  

 EXPERIMENTAL GROUPS 

  Total 
1 

Control 
2 

APA Al2O3 

3 
FS 300mW  60μm 

4 
FS  200mW 100μm 

5 
FS 40mW  60μm 

6 
FS 200mW  60μm 

N 90 15 15 15 15 15 15 

Mean 45.93 2.87 8.52 67.51 106.24 27.97 62.50 

Standard Deviation (SD) 38.43 0.90 2.42 26.77 4.93 2.95 10.44 

*  e d b a c b 
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Table 3. Bond failure mode results 
 
 

 
* groups with different letters are statistically different  (p<0.001) 
 
 
 

 

 

 

    GROUPS    

  Total 
1 

Control 
2 

APA Al2O3 

3 
     FS  300mW  60μm 

                  4 
FS  200mW  100μm 

5 
FS 40mW  60μm 

6 
FS 200mW  60μm 

  N % N % N % N % N % N % N % 

Total 90 100% 15 100% 15 100% 15 100% 15 100% 15 100% 15 100% 

Type 1 33 36,7% 15 100% 8 53.3% 0 0% 0 0% 10 66.6% 0 0% 

Type 2 24 26,7% 0 0% 6 40% 3 20% 7 46.7% 5 33.3% 3 20% 

Type 3 16 16,7% 0 0% 1 6.7% 4 26.7% 8 53.3% 0 0% 3 20% 

Type 4 17 20,0% 0 0% 0 0% 8 53.3% 0 0% 0 0% 9 60% 

*   b  b  a  a  b  a  


