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15 The interactions of silver chromate (Ag,CrO4) with a femtosecond (fs) laser and electron beam 15
irradiations were investigated. For the first time, the growth and coalescence of metallic Ag
nanoparticles (NPs) on an Ag,CrO, surface via fs laser irradiation can be reported. Furthermore, electron
beam irradiation causes a segregation process of Ag NPs in which Ag nanofilaments are obtained. The
Ag,CrOy4 particles were characterized using X-ray diffraction (XRD), micro-Raman spectroscopy (Raman),
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25 rscli/peep difficult to synthesize using conventional chemical and physical methods. 25
Introduction nanomaterials and nanostructures have been successfully fab-
ricated wusing fs laser treatment for several practical
30 Nanoscale-manipulations of atoms are possible through the applications.>’*"® Both techniques have gained enormous 30
ever-increasing advances of modern technologies, such as attention owing to their ability to investigate the structure-
electron microscopy' and ultra-short laser radiation,® which property relation of nanomaterials and their chemical interac-
open up a number of exciting possibilities for the nanoscale- tions with solid surfaces.
controlled in situ fabrication of nanoparticles (NPs). When a Recently, fs laser and electron beam irradiation have been
35 material is subjected to external perturbation, e.g., an electron widely employed to grow metallic NPs of Ag,>*>° Au NPs,**** Bi 35
beam or femtosecond (fs) pulse laser irradiation, a large NPs,**** Os NPs,*> Cu NPs,***” pt NPs,*® Li NPs,*® Na NPs,*°
amount of energy is interchanged through nonequilibrium Mg NPs,"' Ca NPs,”* and Ba NPs."' Moreover, electron beam
processes, thereby altering the geometry, electronic structure, and fs laser irradiation do not require the addition of any
and morphology of the irradiated material.*” These changes solvent or chemistry component during the formation process
40  cause unexpected effects on their physical and chemical prop- of nanostructures. Thus, these techniques can be considered as 40
erties, e.g., photoluminescence emission,® photodegradation,” environmentally friendly according to the principles of green
antimicrobial activity,’® and the growth of nanostructures.'®'"  chemistry"® and the resulting nanomaterials could be applied
Excellent studies have been published on electron beam- to a wide range of technological applications.
induced syntheses'>® and how different functional Our research group investigates Ag-containing semiconductors
45 that have attracted significant attention owing to their rich history 45
@ INCTMN-CDMF, Universidade Federal de Sdo Carlos, P.O. Box 676, 13565-905 in technical applications, e.g., in catalysis,44 photocatalysis,45 for
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(UJD), Castellé 12071, Spain form Ag NPs under electron beam irradiation. The Ag NPs’ growth
“Department of Analytical and Physical Chemistry, University Jaume I (UJ1) on the semiconductor templates could enhance the surface plas-
Castello 12071, Spain . . .
JINCTMN-UNESP, Universidade Estadual Paulista, P.O. Box 355, 14801-907 mon resonance effeCt’ which can dramatlcally amphfy the absorp-
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photocatalytic activity.* In this context, recently, we have presented
the scale-up of the formation of Ag NPs on o-Ag,WO, with
bactericidal properties via fs laser irradiation,” the laser-induced
formation of Bi NPs with different crystallographic structures,®
and the formation of In NPs provoked by laser/electron beam
irradiation.””

In the current work, the semiconductor under study is
Ag,CrO,, which is a promising inorganic material because of
its unique electronic and crystal structure that enables it to be a
good photocatalyst.’®*®> Our group performed the synthesis,
characterization, and determination of the photoluminescence
properties of Ag,CrO, microcrystals.®® In addition, the for-
mation and growth of Ag NPs on Ag,CrO, induced by electron
irradiation on an electron microscope was investigated.*® It is
well known that the photo- and electrochemical properties of
semiconductor films used in photovoltaics, photocatalysis, and
photoelectrolysis are greatly enhanced by the deposition of Ag NPs
onto their surfaces. The Ag NPs are employed as a high visible-light-
driven photocatalyst and microbial agent'®****°>%” to enhance the
performance. The improved properties appear owing to the surface
plasmon resonance (SPR) effect and extended visible-light absorp-
tion that is present in metallic Ag NPs. Hence, a plasmon band is
created, the charge recombination reduced, and their response
improved.®®®® This study is intended to complement our previous
studies. The goal is two-fold: (i) to demonstrate, for the first time,
that fs laser irradiation can be used for the formation of Ag NPs on
Ag,CrO, surfaces, and (ii) to study the evolution behavior and
growth mechanisms of Ag NPs induced by electron beam and fs
laser irradiation.

Experimental
Synthesis of Ag,CrO, microparticles

Two Ag,CrO, samples were synthesized using the precipitation
method without any surfactants. The chromate precursor
solution was prepared in 50 mL of distilled water, to which
1.0 x 10 mol of K,CrO, was added (99.5% purity; Quimica
Especializada Erich Ltda-QEEL). The solution was magnetically
stirred until it turned homogeneous and yellow. The silver
precursor solution was prepared with 2.0 x 10~* mol of AgNO;
(99.8% purity; Alfa Aesar) in 50 mL distilled water. The solution
was magnetically stirred until it turned homogeneous and
transparent. The addition of the silver precursor solution to
the chromate precursor solution was carried out with dropwise
additions with a rate of 10 mL min~". The resultant solution
was magnetically stirred for 20 minutes. The precipitate was
washed four times with water and once with acetone and
afterward dried in a stove at 60 °C for 4 hours.

Structural characterization of Ag,CrO, microparticles

The Ag,CrO, was structurally characterized by X-ray diffraction
(XRD) using a D/MAX-2500 PC diffractometer (Rigaku) with Cu
Ko radiation (1 = 1.5406 A). The data were recorded in the
normal routine for 20 values ranging from 15° to 60° with a
scanning velocity of 2° min~'. Micro-Raman measurements
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were conducted using an iHR550 spectrometer (Horiba Jobin
Yvon, Japan) coupled to a CCD detector and an Ag ion laser
(MellesGriot, USA) operating at 514.5 nm with a maximum
power of 200 mW and a fiber microscope. The measurements
were performed in the range of 30-1000 cm™".

Fs laser irradiation

To perform the fs laser irradiation, the sample had to be
compressed into a pellet form. The resulting Ag,CrO, pellets
were irradiated with a Ti:sapphire laser (Femtopower Compact
Pro, Femtolasers), which delivers 30 fs full-width at half-
maximum (FWHM) pulses at a central wavelength of 800 nm
and a repetition rate of 1 kHz. In addition, a programmable
acousto-optic filter (Dazzler, Fastlite) was used to ensure a
precise pulse compression at the sample. A laser beam with a
mean power of 200 mW was focused onto the surface of the
pellet target with a 75 mm lens to obtain a focal spot with a
diameter of 20.6 pm FWHM. The silver chromate sample was
placed at the top of a quartz slide attached to a two-
dimensional motion-controlled stage moving at a constant
speed of 0.45 mm s ' in the focus plane perpendicular to the
laser beam. Fig. 1a and b present a scheme of the experimental
procedure and obtained results, where the interaction between
the fs laser radiation and Ag,CrO, promotes the creation of a
plasma plume that leads to the segregation of Ag nanoparticles.
The selected parameters of the laser irradiation are similar to
those previously reported for the most efficient segregation of
metal NPs from semiconductor networks.>>>” In addition,
when we are dealing with pulsed laser sources that interact
with a moving target, as the light is not delivered in a contin-
uous way, it is more common to talk about the overlapping
between the pulses on the sample. In this way, a large overlap
means more investment of energy delivered to a single area in a
long period of time, and a minimal overlap means a minor
investment of energy delivered to a single area but in a short
period of time. For the current experiment, the irradiation time
is controlled by the size of the beam and the speed of the
platform. The size of the focal spot on the sample surface was
about 20.7 microns. The laser has a 1 KHz repetition rate and
the motion velocity of the platform was 0.45 mm s '. These
parameters indicate that there is an overlapping of the spot size
of around 95% between consecutive pulses. Considering the
large overlapping used in the current experiment, in compar-
ison with electron beam excitation, while using fs laser irradia-
tion there is still plenty of room towards crossing the line
between basic research and the final industrialization of the
process.

Morphological characterization of the samples

The morphology of fs laser-irradiated and non-irradiated sam-
ples was observed using a field-emission scanning electron
microscope (FE-SEM) (Inspect F50 model; FEI Company, USA)
working at 5 kV. Transmission electron microscopy (TEM)
images are obtained using a high-resolution (HR) JEM-2100
LaB6 (Jeol) microscope with an acceleration voltage of 200 kv
coupled with INCA Energy TEM 200 (Oxford Instruments) to
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Fig. 1 Representation of the procedure employed to irradiate Ag,CrO4, where the generation of the plasma plume takes place (left), with formation of
Ag,_CrO4:Ag (right). (a) Experimental procedure and (b) schematic representation of the obtained results.

perform energy-dispersive X-ray spectroscopy (EDS). For both
the non-laser irradiated powder and the laser irradiated pow-
der, in the case of FE-SEM, the samples were prepared by
depositing a small amount of powder directly onto the FE-
SEM sample holder, and for the TEM the powder was sus-
pended in water and a droplet of the mixture was deposited
onto the carbon-coated Cu grid (TEM grid). After the evapora-
tion of water, it was submitted to high vacuum and analyzed
via TEM.

Results and discussion
XRD patterns

Fig. 2 presents the XRD patterns of the Ag,CrO, microparticles
prepared using the aforementioned methodology. All diffrac-
tion peaks can be perfectly indexed to an orthorhombic
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structure with space group Pnma and without any deleterious
phases within the detection limits of the diffractometer. The
well-defined peaks indicate long-range structural order and
crystallinity. The XRD patterns are in good agreement with
the Inorganic Crystal Structure Database (ICSD) Card no. 16298
and literature.”>”°

Fig. 3 illustrates the orthorhombic structure of the Ag,CrO,
microparticles. The figure is produced using the Visualization
for Electronic and Structural Analysis (VESTA) program, version
3.3.2., using lattice parameters and atomic positions obtained
from the crystallographic information file (CIF) no. 16298.

According to Silva et al,*® the Ag,CrO, structure is
composed of elongated octahedral [AgOs] clusters and distorted
off-centered [AgO,] tetrahedra and [CrO,] clusters. The tetra-
hedral clusters interact with the octahedral [AgO¢] ones, gen-
erating polarization at the short and medium distance, which is
reflected throughout the crystalline lattice. These structural
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Fig. 2 XRD pattern of the non-irradiated Ag,CrO,4 microcrystals.
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Fig. 3 A schematic representation of the orthorhombic structure of
Ag>CrO4 microparticles. The [CrO4], [AgO,4] and [AgOg] clusters, as build-
ing blocks of Ag,CrOy, are depicted.
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and electronic displacements promote the formation of
induced and permanent dipoles between the different clusters,
enhancing domains of different electron density distributions
(low and high) in the crystalline network.””

Raman spectra

Furthermore, a micro-Raman analysis was performed to inves-
tigate the degree of structural order-disorder in the short-range
(Fig. 4). The micro-Raman spectrum presents three peaks in the
high-frequency region at 781, 812, and 855 cm ™ '. These peaks
are related to the symmetric stretching vibrations of Cr-O
bonds in the [CrO,4] clusters and their positions are in good
agreement with the literature.”” The orthorhombic structure of
Ag,CrO, has 36 Raman-active modes with mechanical repre-
sentation I' = 11A, + 7B1, + 11B2; + 7B3,, of which 18 are
internal modes [2v4, 4v,, 6v3, 6v4] and 18 are external modes [6
rotational (R) and 12 translational (T) modes].>® Not all Raman-
active modes were experimentally observed owing to weak
intensity and/or merging of modes with close wavenumbers.

FE-SEM images

To investigate the morphological alterations resulting from the
fs laser irradiation, FE-SEM micrographs were analyzed. The
non-irradiated particles present a high agglomeration rate
when observed under low magnification (Fig. 5a). However,
when these particles are analyzed at medium and high magni-
fications (Fig. 5b and c), they appear faceted and formed mainly
by irregular polyhedrons. The particles of the fs laser-irradiated
sample (Fig. 5d-f) are faceted and present irregular polyhedra
(slightly different from those observed in the non-irradiated
sample).

To analyze the effects of fs laser irradiation on the morphol-
ogy and the particle size distribution more deeply, a count of
200 particles of each sample was taken, and the results are
presented in Fig. 6. The distribution curve in each histogram,

mmmm Ag,CrO, No Irradiated A
812 cm?

781 cm? 855 cm?

L

Intensity (arb. units)

| T £ L E ¥ mr | T L | ® N

100 200 300 400 500 600 700 800 900 1000

Raman shift (cm™)

Fig. 4 Raman scattering spectrum of the non-irradiated Ag,CrO,4 sample.
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Fig. 5 (a) Low-, (b) medium-, and (c) high-magnifcation FE-SEM images
of the non-irradiated Ag,CrO,4 sample. (d) Low-, (e) medium-, and (f) high-
magnification FE-SEM images of the fs laser-irradiated Ag,CrO,4 sample.
*Numbers 1, 2 and 3 in (f) indicate the initial stage of the sintering process.
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Fig. 6 Average height and width distribution of Ag,CrO4 microparticles
non-irradiated (a and b) and fs laser-irradiated (c and d).

the mean height, and the width of the particles were calculated
using a log-normal distribution curve. The non-irradiated sample
(Fig. 6a and b) showed a very narrow particle size distribution.
The particles have a size distribution range between 0.10 pm
and 0.60 pum. In addition, the non-irradiated particles exhibit a
mean height and a width of (0.39 + 0.09) pm and (0.30 & 0.07)
pum, respectively. On the other hand, the fs laser-irradiated
sample (Fig. 6¢c and d) presented a particle size distribution
ranging from 0.45 um to more than 2.0 um, and a mean height
and a width of (0.92 4+ 0.31) um and (0.76 £ 0.24) um,
respectively. These values show that a significant increase in
the particle size distribution of the fs laser-irradiated sample
relative to the non-irradiated sample has occurred. The results
reveal that the coalescence process has taken place and that the
particles’ growth has been stimulated by fs laser-irradiation.
By plotting the height of each particle with its own width
(Fig. 7), a considerable increase in the dispersion of particles
from the non-irradiated to fs laser-irradiated samples can be
observed. In addition, the width/height ratios of the particles
are similar (0.77 for the non-irradiated particles and 0.83 for
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Fig. 7 Height versus width of non-irradiated Ag,CrO, particles (green

circles) and height versus width of fs laser-irradiated Ag,CrO4 particles (red
triangles).

the irradiated particles), which suggests that the coalescence
process did not occur along a preferable unidirectional orienta-
tion or oriented attachment.”

The coalescence process could be observed using micro-
scopes. In Fig. 5f, the numbers 1, 2, and 3 present the neck
growth between contacting particles, which indicate an early
stage of the sintering process.”* As other groups have previously
reported, the interaction between high intensity fs laser radia-
tion and a semiconductor powder may promote a microsinter-
ing process.”” The whole interaction can be thought to occur in
three stages: In the first stage, the laser irradiation promotes

Paper

the detachment of electrons, ions and another bigger species
out of the surface of the microparticles that interact with the
laser radiation, leading to the creation of a plasma plume. In
the second stage, there is no more interaction with the laser
because the temporal width of the pulses used in the current
article is 30 fs, but in the counterpart, the plasma plume still
exists (lifetime in the region of ns), which interacts with the
remaining powder bed. The plasma plume can reach extremely
high temperature and pressure values, 1000 K and 10" Pa,
respectively.”® As the melting temperature of Ag,CrO, is around
938 K,”” such conditions can promote the melting of the
microparticles in the powder bed that interact with the plasma.

In the third stage, the plasma plume gets extinguished and
the species that formed the plasma plume cool down and form
nanostructures, and the melted microparticles belonging to the
powder bed also cool down and solidify forming bigger micro-
particles. A graphical representation of these stages can be
found in the ESIL.f

HR-TEM images

In order to investigate the effects of fs laser irradiation on the
nanostructure growth and stoichiometric modifications of the
original material, HR-TEM images were analyzed. Fig. 8 depicts
a representative micrograph of the laser-treated samples. Four
different regions are highlighted. Region (b) shows a zoomed-in
particle near the stems. Through the zoom, it was possible to
examine the lattice planes, which show that the reciprocal
distances corresponding to the strongest reflections have the
diffraction index (111). This matches with Ag according to the
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Fig. 8

(Region a) TEM images of the Ag,CrO,4 microparticles irradiated with fs laser, (Region b) high resolution of the structure formed by fs laser

radiation, (Region c) EDS characterization of the stems, (Region d) EDS characterization between the stems and the Ag,CrO4 microparticle and (Region e)

EDS characterization of the Ag,CrO4 microparticle.
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Joint Committee on Powder Diffraction Standards (JCPDS) No. 65-
2871. Region (c) corresponds to the stems formed via fs laser
irradiation. The EDS spectra indicate that this region exhibits
80.6% of Ag, 1.8% of Cr and 17.6% of O in its atomic
composition. By contrast, region (d) exhibits only the presence
of Ag (100%). Region (e) shows the lowest concentration of Ag
(63.1%) and the highest concentration of Cr (24.6%). After a
conversion of the elementary percentages into molar fractions
to estimate the stoichiometry of the material, we noticed that in
all regions, the stoichiometric coefficients do not match the
Ag,CrO, coefficients. These results suggest that in addition to
metallic silver, fs laser-irradiation may form other products,
such as simple metal oxides of silver (Ag,O,) and chromium
(Cr,0,).

v

hv Ag0.53Cr0.01900.19=—> Region (c)

Ag,CrO, > Ag® —» Region (d)

v

Agy.76Cr0.3000.15 = Region(e)

The morphology of the sample irradiated by the fs laser
remained unchanged during the observation via TEM. This
indicates that the stem growth is a consequence of the inter-
actions between the sample and the fs laser irradiation. Since
the fs laser-irradiated sample remained unchanged during the
presence of the electron beam of the TEM, it can be assumed
that the stems are thermodynamically stable because the
sample received inside the TEM high-vacuum chamber energy
doses of the order of 1.2 x 10® k] m ™2, which would be more
than sufficient to alter the sample previously irradiated with the
fs laser.

According to the EDS measurements (Fig. 8) the fs laser
irradiation provokes the formation of Ag, .Cr;_,0,_, and
metallic Ag NPs. Therefore, aside from the sintering process
the interplay between the species forming the above mentioned
plasma plume might also lead to the formation of metallic Ag
NPs and simpler metallic oxides.”> Moreover, the presence of
different Ag nanostructure morphologies could be attributed to
a welding phenomenon that is a consequence of the interaction
between newly created Ag NPs with further incoming fs laser
pulses. As it has been extensively reported, when the distance
between two or more metal NPs is sufficiently short, hybridized
plasmon modes appear producing an enhancement of the near
field in the interparticle gaps, reaching enough energy to melt
them, which leads to the union of the nanostructures.”®”® In
addition, the non-irradiated sample was also exposed to the
electron beam irradiation of the TEM and the corresponding
results are presented in Fig. 9. Here, the interaction of the
sample with the electron beam irradiation was completely
different to that of the fs laser-irradiated sample. As soon as
the electron beam interacted with Ag,CrO, (Fig. 9a), the sample
decomposed rapidly, forming products that adhered to the Cu-
C grid of the TEM, where the sample was placed onto (Fig. 9b).

In order to understand the influence of the electron beam
irradiation, a quantitative analysis was performed, as shown in

6 | Phys. Chem. Chem. Phys, 2019, 00, 1-11

b

Fig. 9 TEM images of the non-irradiated Ag,CrO4 sample (a) before
electron beam irradiation and (b) after electron beam irradiation.

Fig. 10. Fig. 10a and b display the Ag,CrO, sample before and
after electron beam irradiation, respectively.

The EDS characterization was performed for the two regions
of Fig. 10b: region (1) already existed and region (2) formed as a
consequence of the electron beam irradiation on the sample. As
soon as the electron beam irradiation reached the sample, the
formed product spread instantly along the entire Cu-C grid of
the TEM. The grid worked as a template and the formed
product covered the grid over a few micrometers. The EDS
characterization (Fig. 10c) shows different atomic proportions
of Ag (66.1% and 39.1%), Cr (30.7% and 23.0%) and O (3.2%
and 37.9%) in regions 1 and 2, respectively. When we converted
the elementary percentages into molar fractions to determine
the stoichiometry of the products (Fig. 10e), we noticed that in
both regions, the stoichiometric coefficients do not match the
Ag,CrO, coefficients. These results indicate that there may be
other products formed by the electron beam, in addition to
metallic silver, already observed.

The HR-TEM analysis displayed in Fig. 10d illustrates that
the interplanar distances found in the formed product (2.58 A
and 2.59 A) are related to the (0 4 0) plane of the orthorhombic
structure of Ag,03, according to the JCPDS No. 40909. Further-
more, additional values of interplanar distances were found
that could not be identified as metallic Ag, Ag,CrO,, or simple
oxides such as Ag,0 or CrO;. This confirms our hypothesis that
there are other products of unknown composition being
formed simultaneously to the metallic Ag. Hence, it was neither
possible to detect a proper stoichiometry for Ag, ,Cr;_,04_,
nor an estimated ratio between formed oxides and metallic Ag.
This is because the amounts of Ag, Cr, and O with respect to
each formed compound cannot be determined and it is not
possible to distinguish the amount of metallic Ag from the total
Ag amount found in the sample by using only an EDS analysis.

The Ag NP growth process and spreading through the TEM
grid can be understood as a mass transport phenomenon
induced by the electron beam. The atom and particle migration
along the grid occurs via diffusion and/or convection owing to
the electrical potential generated by the electron beam. When
the electron beam interacts with the sample, the electrons
decelerate and part of the energy dissipates via repeated ran-
dom scattering and absorption within an interaction volume of
the specimen. This energy loss, due to inelastic collisions, is
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Fig. 10 TEM images (a) before electron beam irradiation and (b) after electron beam irradiation. (c) EDS characterization of the central (1) and peripheral
(2) regions of the Ag,CrO,4 microparticle and (d) high resolution TEM of an Ag,CrO,4 microparticle.

mostly used in the generation of electron-hole pairs. The
generated free carriers move and redistribute around the
electron-irradiated region, forming relatively stable defects,
also known as self-trapped excitons (STEs). The STE formation
is followed by strain and bond-breaking processes that accel-
erate and induce anatomic diffusion in comparison with the
environmental thermal diffusion, without electron beam
irradiation.’” The thermal energy inside the high-vacuum
chamber is 7.73 million times higher than the environmental
thermal energy. This condition enables a mass transport along
the TEM grid.

As displayed in Fig. 3, Ag,CrO, is composed of three
different clusters; two of them with a predominant ionic
character that act as network modifiers: [AgO,] and [AgOs];
and one with a predominantly covalent character, which acts as
a network former: [CrO,]. We believe that the interaction
between Ag,CrO, and the different radiation forms, electronic
or photonic, promotes the transitions of electrons from the
occupied state (below the Fermi level) to the unoccupied state
(usually above the Fermi level) in the oxygen atoms of the
clusters. This causes an electron redistribution. Hence, stabili-
zation of the crystal occurs, causing oxidation/reduction reac-
tions. In this case, the clusters of Ag ([AgO,], x = 4 and 6), as
constituent building blocks of Ag,CrO, absorb this electronic
excess, thereby reducing Ag” to Ag’ and obtaining a non-
stoichiometric oxide. As Ag,CrO, is an n-type semiconductor,

This journal is © the Owner Societies 2019

it becomes an n/p-type semiconductor at the sites where the
formation of Ag® occurs owing to the formation of internal
defects which is due to the occurrence of Ag vacancies.

The control over the growth process during fs laser or
electron beam irradiation is still limited. Nevertheless, an
increment in the photon/electron current typically initiates or
enhances the Ag growth process, which is still localized on
particular nucleation sites, where Ag is drawn from distant
regions of the particles. However, the fs laser and electron
beam irradiation-driven processes induce the formation of non-
stoichiometric compounds and/or compounds with an
unknown stoichiometry. This fact has not been observed in
previous studies on similar complex semiconductor Ag,WO,
networks.21,26,48,81—83

Both products, Ag,_,Cr;_,0,_, and metallic Ag, induced by
the fs laser and electron beam irradiation, are stable com-
pounds. Their formation processes are extremely fast and
deserve more profound investigations. In the future, we will
investigate the effect of electron beam irradiation at cryogenic
temperatures. Thus, it will be possible to determine if the mass
transport occurs via convection or diffusion of atoms and to
estimate the diffusion coefficients, which will help to under-
stand the mass transport kinetics. Overall, these studies can
provide a straightforward route for the design, iteration, and
production of Ag and/or other metal NPs in semiconductor
frameworks to develop promising applications.
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Conclusions

The fs laser and electron beam irradiation of materials is a well-
developed green process for the synthesis of metal NPs. In this
study, we observed for the first time the growth of Ag NPs in
Ag,CrO, induced by fs laser irradiation. In addition, we inves-
tigated the already known growth of metallic Ag in Ag,CrO,
induced by electron beam irradiation. The Ag,CrO, sample was
obtained using the precipitation method. The sample was
divided into two parts; one part was irradiated with an fs laser.
The XRD and micro-Raman analyses revealed that the Ag,CrO,
sample has an orthorhombic structure. The FE-SEM measure-
ments showed that the non-irradiated particles present narrow
size distributions (between 0.15 pm and 0.60 pm). However, the
irradiated sample exhibits an expressive increase in the particle
size distribution (between 0.45 pm and 2.0 pm). This result
evidences the initial process of particle coalescence activated by
fs laser irradiation. In addition, the TEM images reveal the
presence of several micro-stems along some fs laser-irradiated
particles. These micro-stems are stable and were formed during
the fs laser irradiation. The non-irradiated sample reacted
readily when subjected to the electron beam of the TEM. The
TEM grid worked as a template and recoating took place. The
EDX analysis confirms that in both irradiations, the products
are formed by Ag NPs and species with unknown stoichiometry
(Agy_+Cr;_,04_5). To the best of our knowledge, the formation
of Ag micro-stems induced by fs laser irradiation and the
coating of a TEM grid while studying Ag,CrO, are reported
for the first time. These results show enormous potential for
the synthesis and morphological control of Ag NPs with fs laser
and electron beam irradiation. Moreover, fs laser irradiation
proved to be promising for sintering studies. The electron beam
irradiation results enable investigations of the growth of Ag NPs
on, e.g., templates or biotemplates, core-shells, or decorations.
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