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Abstract Bankruptcy prediction has acquired great relevance for financial
institutions due to the complexity of global economies and the growing num-
ber of corporate failures, especially since the world financial crisis of 2008. In
this paper, the problem of corporate bankruptcy prediction is faced by means
of four linear classifiers (Fisher’s linear discriminant, linear discriminant clas-
sifier, support vector machine and logistic regression), which are designed on
the dissimilarity space instead of the classical feature space. Experimental re-
sults indicate that the prediction methods implemented with the dissimilarity
representation perform considerably better than the same techniques when
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applied onto the feature space, in terms of overall accuracy, true-positive rate
and true-negative rate.

Keywords Bankruptcy prediction - Dissimilarity representation - Linear
classifier - Qualitative variables

1 Introduction

In brief, bankruptcy refers to financial failure of a corporate or an individual,
which not only leads to significant costs to shareholders and creditors but also
may result in a considerable macroeconomic impact (Altman, 1993; Zopounidis|
[and Dimitras), [1998)). In order to avoid the financial losses associated with the
failure, financial analysts have long seen the need for the early discovery of
bankruptcy. This is the main reason why bankruptcy prediction is deemed as a
subject of key relevance for financial institutions. As a consequence, improving
the performance of existing techniques and building highly effective models
have attracted the attention of many researchers and practitioners
2006).

A vast amount of techniques have been developed to help decision-makers
and analysts in predicting financial failure. The most traditional approaches
have been based on statistical and operational research methods
2006)), such as factor analysis [1985)), linear and multivariate
discriminant analysis (Altman et al, [1977; [Karels and Prakashl [1987), logit
analysis (Ohlsonl, [1980} |Jones and Hensher|, [2004; Tseng and Lin, [2005)), probit
analysis (Zmijewski, [1984)), linear and quadratic programming (Kwak et al
2012), and data envelopment analysis (Cielen et al, 2004; [Premachandra et al
2009).

After the Basel II recommendations issued by the Basel Committee on
Banking Supervision in 2004, financial institutions realized the need of us-
ing more complex systems based upon computational intelligence techniques.
Unlike the statistical models, these methods do not assume any specific prior
knowledge, but automatically extract information from past observations.
[mar and Ravi (2007 reported a comprehensive review of statistical and compu-
tational intelligence methods in the context of bankruptcy prediction. Among
some other techniques, support vector machines (Shin et al, 2005; Min and Le¢
2005; [Erdogan, 2013), genetic and evolutionary algorithms (Lensberg et al
2006; |Acosta-Gonzalez and Fernandez-Rodriguez, 2014)), artificial neural net-
works (Wilson and Sharda), 1994} |Sun and Shenoy, 2007} [Cleofas-Sénchez et al
2016} [Zhao et al, [2016)), rough sets (Slowinski and Zopounidis|, [1995; Mckee
2000)), and hybrid and classifier ensembles (Verikas et al, [2010; |[Fedorova et al
2013; [Abellan and Mantas, 2014; [Tsai, [2014)) have received much attention.
Many works have empirically compared and contrasted these soft computing
methods (Alfaro et al, 2008; |Chen, |2012; |Olson et al, 2012; Erdal and Ekinci,
[2013} [T'sai et al, 2014).

All these statistical and computational intelligence techniques applied in
the field of bankruptcy prediction are based on the assumption that samples
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are represented by a set of features (explanatory variables), which defines a
feature space. These features usually correspond to financial ratios and/or
macroeconomics indicators, either represented as continuous variables or dis-
cretized in a straightforward manner as qualitative information. However, in
a few cases the samples are described by means of qualitative variables whose
values are gathered from expert judgments (Kim and Han| [2003)).

Apart from the feature space, there exist other approaches to pattern rep-
resentation that could also be exploited for very distinct financial applica-
tions. One is the dissimilarity representation, in which samples to be classi-
fied/predicted are derived from pairwise dissimilarities (distances from other
samples in the data set) (Pekalska and Duin), 2002). The justification for con-
structing classifiers in a dissimilarity space is that a dissimilarity measure
should be small for similar samples and large for distinct samples, thus allow-
ing for efficient and more reliable discrimination of classes. Another important
characteristic is that the dimensions of a dissimilarity space symbolize homo-
geneous types of information and therefore, all dimensions can be considered
as equally relevant. On the other hand, for a complex problem, a simple linear
prediction model in a dissimilarity space could separate the classes more easily
than the same classifier in a feature space (Pekalska et al, [2002).

Taking into account the practical advantages of the dissimilarity repre-
sentation over the classical feature-based one ([Pelillol 2013)), this paper faces
the problem of corporate bankruptcy prediction in a way different from that
traditionally followed by the methods reported in the literature. As far as we
know, the dissimilarity-based paradigm, which has shown to be truly effective
on various real-life problems, has not been applied in the financial scenario.
Accordingly, the present paper analyzes the performance of four standard lin-
ear classifiers built on the dissimilarity space for the discovery of corporate
financial failure using a data set whose explanatory variables are qualitative,
and compares them with their feature-based counterparts. The reasons for fo-
cusing this study on linear models are three-fold (Yuan et al,[2012): (i) they are
good handling sparse data; (ii) they are easy to describe mathematically, com-
putational simple and easy to interpret; and (iii) when applied to dissimilarity
data, they often lead to very good performance (Pekalska et all [2002).

The remaining of the paper is organized as follows. Fundamental concepts
related to the dissimilarity representation are summarized in Section 2] The
prediction methodology proposed in this paper is described in Section [3] Next,
Section {4 introduces the bankruptcy database and describes the experimental
set-up. Results are presented and discussed in Section [5| Finally, a number of
concluding remarks and possible directions for future research are outlined in
Section

2 Dissimilarity Space

From a practical viewpoint, the bankruptcy prediction problem can be defined
as a binary classification problem where a new input sample has to be catego-
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rized into one of the predefined classes based on a number of observed variables
or features related to that sample. Formally, it can be described as follows:
Given a set of past observations T" = {(x1,vy1), (x2,¥2), .-+, (Tn,Yn)}, where
each example z; is characterized by a vector of m features, [x;1, Z;2, . . . Tim],
and y; denotes the class (bankrupt/non-bankrupt), then the bankruptcy pre-
diction problem consists of constructing a model § to predict the value y for
a new input sample x, that is, §(x) = y.

Traditional prediction models rely on the description of examples through
a set of explanatory variables. A reliable alternative to the feature (variable)
space is the dissimilarity space proposed by |Pekalska and Duin| (2002)), in
which the dimensions are defined by vectors measuring pairwise dissimilarities
between examples and individual prototypes from a given representation set
R ={p1,...,pr}, where r is its cardinality. This set can be chosen as the com-
plete training set T', a set of generated prototypes, a subset of T that covers
all classes, or even an arbitrary set of labeled or unlabeled samples (Pekalska
et al, |2006)). Although the representation set can be selected either in a sys-
tematic or in a random way, it has been shown that both strategies produce
similar classification results (Duin et all |1999).

Given a dissimilarity measure d(-, -), which is required to fulfill the positiv-
ity (d(z, z;) > 0 if a; is distinct from ;) and the reflectivity (d(z;,x;) = 0)
conditions but it might be non-metric, a dissimilarity representation is de-
fined as a data-dependent mapping function D(-, R) from T to the dissim-
ilarity space. This means that every example x; € T can directly be rep-
resented by an r-dimensional vector in the dissimilarity space, D(x;, R) =
[d(xi,p1),.-.,d(z;,pr)], that is, each dimension corresponds to a dissimilarity
to a prototype from R. Therefore, dissimilarities between all examples in T' to
R are represented by a matrix D(T, R) of size n x r, which corresponds to the
dissimilarity representation we want to learn from (Pekalska and Duin} [2005)).

d(ﬂfl,pl) d($17p2) d(l‘l,pr)
d

d(iﬂz,pl) ($27P2) d(l'z,pr)
D(T,R) = . . . .

d(zp,p1) d(@n,p2) -+ d(@n,pr)

In general, a drawback related to the use of features is that completely
different examples may have the same feature representation, which results in
class overlap (examples that belong to different classes are represented by the
same feature vectors). In the dissimilarity space, however, only identical exam-
ples (with the same class label) have a zero-distance, which means that there
does not exist class overlapping. On the other hand, the dissimilarity-based
classifiers may be robust against variations in scale (Duin and Pekalskal [2012)).
Note that in principle, any standard classifier can be built on the dissimilarity
space in the same way as on the feature space.
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3 Methodology

This section provides a general overview of the complete methodology for
constructing the model and classifying new corporate samples. Figure [I| shows
a flowchart of the learning and prediction processes for both a classical feature-
based representation (black lines) and a dissimilarity-based representation (red
lines).

IPl |p2 | L ‘p, Representation set, R

Training set, T’

l

* Mapping function D(-R) [+~ ———— X (new sample) ——
|
|
|
|
|
|

\ |
d(z1,p1)  d(z1,p2) -+ dzy,pr) |
d(-l‘;'a..])l) d(a"z’- pa) - d(rz'.p-) e [d(%, p1), d(X,p2), . .., (%, pr)] :

: : . : | |
d(zn,p1) d(zn,p2) --- d(zn,pr) : I
| |

' [

' [

B [

Build the model Prediction model [~———- Classlabel (y) |

|

Fig. 1 Flowchart of the proposed methodology

Using a feature-based representation, the learning stage (continuous lines)
simply consists of building the classifier with the training set T'. In the case
of a dissimilarity-based representation, the first step of learning consists of
choosing a representation set R, whose prototypes will be used to measure the
pairwise dissimilarities to the training examples in 7. Next, the training set
T is mapped into a dissimilarity space, which will be finally used to build the
classifier.

In the testing stage (dashed lines), when a new sample x has to be classi-
fied, it is mapped into the dissimilarity space by calculating the dissimilarity
between x and all prototypes in the representation set R, which results in a
one-dimensional matrix (vector) D(x,R) = [d(x,p1),...,d(x,p,)]. This dis-
similarity vector D(x, R) is passed through the prediction model for assigning
a class label y to the new sample x.
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4 Database and Experimental Protocol

The database used in the present experiments was taken from the UCI Machine
Learning Database Repository (Lichman| 2013). This is a subset of samples
collected during the period 2001-2002 from one of the largest commercial
banks in Korea (Kim and Han| 2003). It consists of 250 instances, with about
43% of them labeled as bankrupt. Each sample is represented by explanatory
variables that correspond to levels (negative, average, and positive) of six
qualitative risk factors (see Table evaluated by loan officers. These risk
factors are the ones established and used by the bank in order to estimate the
default risk of manufacturing and service companies. Since all these variables
were categorical, they were first converted into numeric values (negative = 1,
average = 2, and positive = 3) as reported in the paper by |[Kim and Han
(2003), and then these were normalized in the range [0, 1].

Table 1 Description of the explanatory variables

Risk factor (variable) Meaning

Industry risk (IR) Stability and growth of the company, degree of competition
within the company, and overall conditions of the company

Management risk (MR) Efficiency and stability of management and organization
structure

Financial flexibility (FF)  Ability of the company for financing from direct and indirect
financial market and other sources

Credibility (CR) Reputation of the company associated with credit history,
reliability of information provided by the company, and the
relationship with financial institutions

Competitiveness (CO) Degree of competitive advantage determined by market po-
sition and the capacity of core technology
Operating risk (OP) Volatility and stability of procurement, efficiency of produc-

tion, and stability of sales

Even though the key question of this paper is not to select the most rele-
vant explanatory variables, two feature ranking methods were applied to eval-
uate the usefulness of each variable: the ReliefF algorithm and the Pearson’s
correlation-based approach. The former evaluates the worth of a variable by
repeatedly sampling an instance and considering the value of the given vari-
able for the nearest instance of the same and different classes, whereas the
latter evaluates the worth of a variable by measuring the correlation between
it and the class. Results in Table [2|indicate that competitiveness (CO) is the
most meaningful variable and the industry risk (IR) corresponds to the least
relevant feature in terms of both ranking scores.

Bearing in mind that the purpose of this study is to compare both feature
representations in the field of bankruptcy prediction, not to select the most
meaningful variables, the experiments focused on four linear classifiers: the
Fisher’s linear discriminant (FLD), the linear discriminant classifier (LDC),
a support vector machine (SVM) with a linear kernel and the soft-margin
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Table 2 Relevance of the explanatory variables

Ranking

ReliefF CO (0.438) - FF (0.293) - CR (0.247) - OP (0.046) - MR (0.020) - IR (0.007)
Pearson  CO (0.204) - OP (0.159) - CR (0.152) - MR (0.101) - FF (0.048) - IR (0.016)

constant C' = 1.0, and the logistic regression (logit) model (this is considered
a classical econometric method that can be viewed as a reference approach
for various financial applications). The performance of these techniques was
explored both on the feature space (FS) and the dissimilarity space (DS). For
the latter case, we chose the representation set R to be equal to a percentage
of examples from the training set T, varying from 1% to 50% with a step size
of 1. Here two variants were used: (i) the representation set was randomly
drawn by picking examples from T without taking care of their class label
(R-DS), and (ii) the representation set was created by randomly selecting the
same proportion of examples from each class (RC-DS).

The common method to evaluate the performance of bankruptcy predic-
tion systems when databases are small or medium sized corresponds to K-fold
cross-validation because it appears to be a better estimator than other strate-
gies, such as bootstrap with a high computational cost or re-substitution with
a biased behavior (Garcia et al, 2015)). Here a stratified 5-fold cross-validation
was applied: the data set was randomly divided into five stratified blocks of
equal size; for each fold, four blocks were pooled as the training set, and the
remaining part was used as an independent test set. Thus, the learning proce-
dure was run a total of five times on different training sets and the results from
predicting the class of the test samples were averaged across the five trials.
Note that stratification allows to preserve the class proportions of the whole
data set into each one of the blocks, thus reducing the prior probability of data
set shift and the variance in the estimation process (Santafe et all [2015)).

In most financial applications, it is important to assess not only the overall
accuracy of the model, but also the true-positive and true-negative hits because
the misclassification costs are usually asymmetric (the cost of predicting a
bankrupt sample as non-bankrupt is generally much higher than the opposite
situation) (Caouette et all 2008). The true-positive rate (or sensitivity) is
the proportion of positive samples that are correctly predicted, whereas the
true-negative rate (or specificity) is the proportion of negative cases that are
correctly predicted. Note that we have considered that the bankrupt examples
shape the positive class and the non-bankrupt ones form the negative class.

5 Results and Discussion

Figures display the accuracy, the true-positive rate (TPr) and the true-
negative rate (TNr) averaged across the five runs. For each prediction model,
we have plotted the results for the feature space and also the results of the two
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variants for the dissimilarity space when varying the percentage of examples
from T that have been chosen to generate the representation set R. Note that
the line parallel to X-axis corresponds to the case of the feature space, which
indicates that the results do not depend on the size of R because they were
achieved by learning directly from the training set T'. These plots show that the
models built with any of both approaches to the dissimilarity representation
perform much better than the respective feature-based classifiers.
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Fig. 2 Accuracy rates when varying the size of the representation set

If the focus is on the plots of Figure [3] it is remarkable and important to
notice that differences between the dissimilarity space and the feature space
are especially significant in the case of the true-positive rate, which refers to
the number of hits on the most critical class because of the high cost of failing
in the prediction of bankrupt samples.

When comparing R-DS and RC-DS, the plots in Figures 2}-[3] indicate that
in general, there do not exist differences in prediction performance, indepen-
dently of the classifier used. However, when the percentage of prototypes is
less than 5%, the option of generating the set R with the same proportion
of examples from each class (RC-DS) performs slightly better than the R-DS
variant.
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Fig. 3 True-positive and true-negative rates when varying the size of the representation set

Tables [3] and [] report a summary of the experimental results for 10%,
20%, 30%, 40% and 50% of prototypes used to built the representation set.
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Table 3 Summary of accuracy rates

% FLD LDC  Logit SVM

FS — 0.5160 0.5480 0.5840 0.5480

R-DS 10 0.9640 0.9680 0.9480  0.9880
20  0.9640 0.9840 0.9360  0.9840
30 0.9920 0.9920 0.9520 0.9840
40 0.9920 0.9920 0.9680  0.9960
50  0.9920 0.9960 0.9680  0.9880

RC-DS 10 0.9680 0.9640 0.9360 0.9880
20 0.9800 0.9880 0.9600 0.9760
30 0.9920 0.9920 0.9640  0.9920
40 0.9880 0.9960 0.9680  0.9960
50 0.9960 0.9640 0.9760  0.9920

As can be observed, using a dissimilarity space instead of a feature space con-
sistently produces considerable gains in terms of accuracy, true-positive rate
and true-negative rate. In the case of accuracy, whilst the performance of the
prediction models on the feature space is about 51%-58%, that on the dissim-
ilarity space is about 96%-99%. Differences are even more significant when
the performance is assessed by means of the true-positive rate, especially with
the Fisher’s linear discriminant model. On the other hand, various configu-
rations of the dissimilarity representation yield 100% of true-negative rate.
These results support the claim that the linear models generally lead to very
high performance when they are built on the dissimilarity space.

Table 4 Summary of true-positive and true-negative rates

TPr TNr

% FLD LDC Logit SVM FLD LDC Logit SVM

FS - 0.1221 0.3472 0.5165 0.3472 0.8111 0.6988 0.6369  0.6988

R-DS 10 0.9165 0.9065 0.9165 0.9909 1.0000 0.9719 0.9724 0.9862
20 09165 0.9719 0.9065 0.9909 1.0000 0.9931 0.9581 0.9788
30 0.9909 0.9818 0.9251 0.9727 0.9931 1.0000 0.9722 0.9931
40 09818 0.9818 0.9537 0.9909 1.0000 1.0000 0.9791  1.0000
50 0.9818 0.9909 0.9437 0.9909 1.0000 1.0000 0.9862 0.9860

RC-DS 10 0.9338 0.9623 0.8874 0.9909 0.9929 0.9653 0.9722  0.9860
20 0.9537 0.9909 0.9537 0.9636 1.0000 0.9860 0.9650 0.9862
30 0.9818 0.9909 0.9346 0.9818 1.0000 0.9929 0.9860 1.0000
40 09719 0.9909 0.9537 0.9909 1.0000 1.0000 0.9793  1.0000
50 0.9909 0.9156 0.9719 0.9909 1.0000 1.0000 0.9791 0.9931

To gain some insight into these results, we have projected the data onto a
two-dimensional subspace through PCA. Figure [] shows the scatter plots of
the original feature space and the two variants of the dissimilarity space (for
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the percentages of prototypes reported in Tables [3| and . In addition, as the
size of the original training set is 250 x 6 (250 examples and 6 explanatory
variables), we have also included the scatter plots of the dissimilarity repre-
sentations obtained by random selection of six examples, which results in a
matrix D(T, R) of size 250 x 6. By this, one can compare the class distribution
on both spaces under identical conditions (sizes).

As can be seen in Figure[d] the overlap between bankrupt and non-bankrupt
examples is very high in the feature space, whereas both dissimilarity-based
variants give rise to good separability between classes, irrespective of the size of
the representation set R. The lack of separability between classes in the feature
space may result in many false-positives or false-negatives, which helps to
explain the low performance of the prediction models when they were applied
on this space.

FS RDS(6)  RCDS(6)

R-DS (10%) R-DS (20%) R-DS (30%) R-DS (40%) R-DS (50%)

RC-DS (20%)  RC-DS (30%)  RC-DS (40%)  RC-DS (50%)

RC-DS (10%)
Fig. 4 Distribution of the bankrupt (red diamond) and non-bankrupt (blue star) classes in
a two-dimensional space

6 Conclusions and Future Work

In the present study, we have explored the feasibility of applying the dissim-
ilarity representation to effectively discriminate between bankrupt and non-
bankrupt companies. To this end, four well-known linear prediction techniques
(FLD, LDC, SVM and logit) have been implemented both on the feature space
and the dissimilarity space and tested over a database generated by a com-
mercial bank in Korea.
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The experimental results have demonstrated that all the linear models here
analyzed for bankruptcy prediction perform clearly better on the dissimilarity
space than on the feature space in terms of accuracy, true-positive rate and
true-negative rate. Projection of data onto a two-dimensional subspace has
shown that the dissimilarity representation provides significantly higher sepa-
rability between classes than the original feature representation, which allows
to understand why the dissimilarity-based prediction models outperform their
feature-based counterparts.

In the future, it would be of interest to perform further simulation studies
that compare linear and non-linear prediction models on both the dissimilarity
and the feature spaces. Other research directions might include the application
of the methodology described in this paper to analyze the effects of class
imbalance and data set shift on the dissimilarity-based models for bankruptcy
prediction or even for other economic and financial problems. A final avenue for
further research is to study the applicability of the dissimilarity representation
to select the most relevant explanatory variables. This is a non-trivial problem
that may require a significant effort, but deserves to be taken into account.
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