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Abstract Existing work on drug-induced synaptic

changes has shown that the expression of perineuronal

nets (PNNs) at the cerebellar cortex can be regulated

by cocaine-related memory. However, these studies on

animals have mostly relied on limited manually-driven

procedures, and lack some more rigorous statistical ap-

proaches and more automated techniques. In this work,

established methods from computer vision and machine

learning are considered to build stronger evidence of

those previous findings. To that end, an image descrip-

tor is designed to characterize PNNs images; unsuper-

vised learning (clustering) is used to automatically find

distinctive patterns of PNNs; and supervised learning

(classification) is adopted for predicting the experiment

group of the mice from their PNN images.

Experts in neurobiology, who were not aware of the

underlying computational procedures, were asked to de-

scribe the patterns emerging from the automatically

found clusters, and their descriptions were found to

align surprisingly well with the two types of PNN im-

ages revealed from previous studies, namely strong and

weak PNNs. Furthermore, when the set of PNN im-

ages corresponding to every mice in the saline (control)

group and the conditioned (experimental) group were

characterized using a bag-of-words representation, and

subject to supervised learning (saline vs conditioned

mice), the high classification results suggest the abil-

ity of the proposed representation and procedures in

recognizing these groups.

Therefore, despite the limited size of the dataset

(1,032 PNN images of 6 saline and 6 conditioned mice),

the results support existing evidence on the drug-

related brain plasticity, while providing higher objec-

tivity.
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1 Introduction

Addiction is characterized by an aberrant overconsoli-

dation of drug-cue associative memory (Hyman et al.,

2006). Even after protracted abstinence, drug-related

cues have the ability to trigger craving and relapse (Sha-

ham et al., 2003). Importantly, neuroimaging studies of

cue-reactivity in drug addicts have consistently shown

cerebellar activations when these memories are reacti-

vated by presenting drug-related cues (Moulton et al.,

2014, Moreno-Rius and Miquel, 2017). Thus, it seems

that the cerebellum may represent drug-cue memories

and thereby contribute to the persistent risks of relapse

to addiction.

Interestingly, several external factors like drugs of

abuse might control structural remodelling of brain

circuitry by modulating the activity of regulatory

molecules that restrict neuronal plasticity in order to

stabilize circuits (Foscarin et al., 2011). These plas-

ticity inhibitory mechanisms take place in a cartilage-

like structure called Perineuronal net (PNN) consisting

of molecules of extracellular matrix that enwraps the

perikaryon of neurons (Brückner et al., 1993, Grimpe

and Silver, 2002, Carulli et al., 2005, 2006, Frischknecht

et al., 2009, Carulli et al., 2013). The PNN struc-

ture is quite resistant to intracellular degradative sys-

tem (Toyama and Hetzer, 2013), leading to the sug-

gestion thereby that PNNs might act as one of the

stabilization mechanisms for long-lasting drug-induced

synaptic modifications (Wright and Harding, 2009,

Van den Oever et al., 2010, Xue et al., 2014, Slaker
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et al., 2015, Vazquez-Sanroman et al., 2015a,b, Slaker

et al., 2016, Sorg et al., 2016, Blacktop et al., 2017,

Vazquez-Sanroman et al., 2017).

It is now clear that the reticular structure of PNNs

could be modified by drug intake experiences resulting

in conditioned memories (Xue et al., 2014, Slaker et al.,

2015, 2016, Blacktop et al., 2017, Carbo-Gas et al.,

2017). Recently, it has been described that cocaine-

induced conditioned learning increased neuronal activ-

ity and expression of PNNs surrounding Golgi interneu-

rons in the dorsal cerebellar cortex (Carbo-Gas et al.,

2017). A fully condensed PNN around Golgi interneu-

rons could “stamp in” the synaptic arrangement repre-

senting drug-cue association (Sorg et al., 2016). Golgi

neurons are key components for the modulation of ac-

tivity and plasticity in the cerebellum (D’Angelo and

De Zeeuw, 2009, Carta et al., 2004); specifically, they

are critical to the synchronization of granule cell clus-

ters (Armano et al., 2000).

Although some statistical evidence of PNN remod-

elling has been found (Slaker et al., 2016), the fields of

computer vision and machine learning have the poten-

tial for bringing more systematic and automatic forms

of evidence. To that end, the goal of our study is to char-

acterize PNN images of mice cerebella so that structural

image information can be automatically inferred and

used to recognize whether the PNNs of a mouse corre-

spond to an animal that has acquired cocaine-induced

preference memories for olfactory cues. This study is

relevant since automatic recognition would back the

hypothesis that PNN structure is stable under physi-

ological conditions and could play a role in long-lasting

drug-induced synpatic modifications.

Computer vision and machine learning (“machine

vision” for short from now on) has been widely ap-

plied to the challenging fields of biological and medi-

cal imaging. As a brief overview of this vast field, some

works closer to neuroimaging can be mentioned. Neu-

ron reconstruction from images has been studied (San-

tamaŕıa-Pang et al., 2015). Then, neuron reconstruc-

tions can be compared (Gillette et al., 2011), charac-

terized (Wan et al., 2015), or segmented (Zhang et al.,

2018). Shape and appearance features are explored for

classifying dendritic spine into one of three possible

classes (Ghani et al., 2017). Nevertheless, to the best

of our knowledge, machine vision has not been previ-

ously studied in the context of neither PNN images in

general nor in the particular problem addressed in this

work.

To analyse our problem from the machine vi-

sion perspective, an image descriptor was designed

for its potential ability to discriminate between types

of PNNs. First, unsupervised learning is used to dis-

cover image patterns corresponding to different types

of PNNs. Then, the resulting clusters are used to build

a bag-of-words (BoW) model to characterize individu-

ally mice from their corresponding set of PNN images.

Finally, the BoWs are used for supervisedly classifying

mice into the established categories according to the

experimental set-up for cocaine-induced preferences in

mice.

2 Methodology

The methodology regarding mice conditioning experi-

ments (Sects. 2.1–2.2) is first provided as background

information to make the paper more self-contained.

Then, the specific methodology corresponding to the

computational aspects of the present work are de-

tailed (Sects. 2.3–2.7).

2.1 Cocaine-induced conditioned preference protocol

Five-week-old Swiss male mice were purchased from

Janvier (ST Berthevin Cedex, France) and housed in

our animal facilities (Jaume I University, Spain). Ex-

perimental procedures started at the age of 7 weeks.

Handling was performed daily for 5 minutes before

the experiment began. Conditioning was developed in

an opaque, oblong corridor that included two lateral

black chambers (30 × 15 × 20 cm) located on oppo-

site sides. Two equally preferred olfactory stimuli (pa-

paya and strawberry) were used. One of the odours

acted as cocaine-paired stimulus (CS+) and was asso-

ciated with cocaine hydrochloride (20 mg/kg) (Alcal-

iber S.A., Madrid, Spain), dissolved in a 0.9% saline

solution and administered intraperitoneally (IP). The

other one acted as saline-paired stimulus (CS−) and

was associated with saline injections as the control ve-

hicle. Olfactory stimuli were counterbalanced as CS+

and CS−. Four drops of papaya or strawberry scents

were presented inside a steel ball at the end of the each

conditioning box. During the training session, the ani-

mals remained confined in one of the lateral chambers,

and access to the other side was blocked by a panel.

Each pairing session lasted for 15 minutes.

A total of eight cocaine-cue paired sessions were con-

ducted and the left and right locations in the corridor

were also counterbalanced among the animals. Prefer-

ence for the cocaine-related cue was evaluated 48 h af-

ter the last cocaine administration in a 30 min drug-

free test in which the CS+ and CS− were presented

simultaneously on both sides of the corridor in an op-

posite location to that in the training. Thus, for the

first 10 min of the test session, the mice were allowed
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to explore the new location of the odour cues, and con-

sequently this period was not included in the analy-

sis. All the test sessions were videotaped and scored by

a blind observer. The preference score was calculated

as 100 · t+
t++t−

, where t+ (t−) is the time (in seconds)

spent in the CS+ (CS−) part of the corridor (Carbo-

Gas et al., 2014a,b, 2017).

Additionally, we included two control groups: the

saline group and a pseudo-conditioning group (the un-

paired group); the latter was treated with the same

number of cocaine injections than the former, but it

was randomly associated with both olfactory stimuli.

In a second step, we used an arbitrary cut-off point of

60% of time spent in the CS+ as a criterion to select the

mice expressing preference for the cocaine-related cue

(the conditioned group). Therefore, the experimental

set-up in this study consisted of three groups of mice:

– The experimental or conditioned group (C) that

was trained to associate an olfactory stimulus with

the effects of repeated injections of cocaine.

– The saline group (S): animals undergoing the same

conditioning sessions, but only received saline injec-

tions; and

– The unpaired group (U): animals receiving the

same number of cocaine injections, but they were

provided with random association between olfactory

stimuli and cocaine.

2.2 PNN characterization by immunoanalysis

Drug-related modifications in PNNs have been mainly

estimated by a densitometry analysis using a fluores-

cence labelling of the lectin wisteria floribunda agglu-

tinin (WFA). WFA binds to the glycosaminoglycan

chains of the proteoglycans (CSPGs) and labels the

external structure of the PNN (Härtig et al., 1992).

WFA immunolabeling was performed on free-floating

sections. After several rinses with PBS 0.1 M triton

X-100, cerebellar sections were exposed to a blocking

buffer with donkey serum, and then they were incu-

bated overnight at 4 ◦C in 1.5% donkey serum dissolved

in PBS 0.1 M Triton X-100 with biotinylated Wiste-

ria floribunda agglutinin (WFA) (1:200; Sigma Aldrich,

Madrid, Spain).

To reveal WFA staining, cerebellar tissue was ex-

posed for 2 hours to Cy3-streptavidin (1:200 Jackson

Immunoresearch Europe Ltd, Suffolk, UK). After fluo-

rescence reaction occurred, the sections were mounted

using Mowiol (Calbiochem, Merck Chemicals and Life

Science, Madrid, Spain).

Fluorescent-labelled sections were examined under

a Olympus FV1000 confocal microscope (Olympus Eu-

Table 1 Number of images per mouse and group

Mouse identifer
Group 1 2 3 4 5 6 Total

S 65 35 55 67 63 51 336
C 88 71 81 63 70 19 392
U 61 75 63 30 75 – 304

Total . . . . . . 1,032

rope Holding GMBH, Hamburg, Germany). Confocal

images were acquired in single planes with a 40× lenses,

2.5 zoom, a resolution of 1024×1024 and 100 Hz speed.

Laser intensity, gain and offset were maintained con-

stant in each analysis.

2.3 Image dataset

The image dataset was extracted from a total of 17

different mice divided into the three considered groups

in the experiment: 6 saline, 6 conditioned and 5 un-

paired. From the initial confocal microscope images of

the WFA staining fluorescent-labelled sections, PNNs

images were extracted in the following way. All PNNs in

each image clearly identifiable were manually cropped

and approximately centred in images of 400× 400 pixel

resolution (Fig. 1). Finally, a total of 1,032 PNNs im-

ages were extracted from all available confocal images

of the 17 mice. The number of images per mouse and

group are given in Table 1. We refer to a particular

mouse in the saline and conditioned groups by Si and

Ci, i ∈ {1, . . . , 6}, respectively.

Sample PNN images exhibiting weak, medium, and

strong PNN patterns are given using the jet color

map (Fig. 1). We will refer to weak (w) and strong (s)

PNN as w-PNN and s-PNN. Since the original images

are gray-level and low-contrast, the use of a color map

is of key importance for human visual inspection. Even

with the color map, these example images illustrate the

difficulty of distinguishing w-PNN and s-PNN by a sim-

ple and general rule of thumb. However, one can appre-

ciate that strong PNNs have denser regions with higher

values (more red pixels in the jet color map). From a

computational point of view, one of the challenges is to

model this intuitive and generalist observation into a

successful representation. This issue is discussed in the

following section.

2.4 Image descriptor (HND)

To characterize the PNN images, the well-known Scale-

Invariant Feature Transform (SIFT) (Lowe, 2004) was

used as a starting point. Like other keypoints detectors

and descriptors, SIFT is invariant to rotation and scale,
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(a) weak (b) medium (c) strong

Fig. 1 Example images with clearly weak PNN (left), clearly strong PNN (right) and in-between PNNs (middle)

and robust to geometric deformations and illumination

changes, which makes SIFT and its extensions and vari-

ants very useful in applications involving image match-

ing (Liu et al., 2011), recognition (Scovanner et al.,

2007) and other problems (Zhao and Ngo, 2013). Al-

though other local keypoint detectors (Tuytelaars and

Mikolajczyk, 2008) or descriptors, either general (Miko-

lajczyk and Schmid, 2005), or texture-based (Grig-

orescu et al., 2002) might be possible, in our case the

general overall distribution of SIFT keypoints (Fig. 2)

seemed to be potentially useful for discrimination pur-

poses. A good image characterization was therefore

required to capture this distribution. The proposed ap-

proach is based on these two key observations:
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– In contrast to w-PNN images, in s-PNN images

there are many keypoints close together, forming

some dense clusters.

– In both kind of images, there are far more keypoint

pairs that are far away than close together.

The first observation led to the concept of histogram

of pair-wise keypoint distances, and the second one led

to the concept of nearest neighbours. Thus, while his-

tograms compactly summarize the distribution of pair-

wise distances, the contamination of the representation

with information derived from many big distances is

prevented by limiting the distances to the nearest ones

as well as by imposing a distance threshold. Addition-

ally, as a way of separately modeling different distance

magnitudes, K nearest neighbours of each keypoint are

considered, and one specific histogram for each specific

nearest neighobor is computed.

The descriptor, which we call Histograms of Nearest

Distances (HND), is parameterized by the number of

nearest neighbours considered, K, the number of bins

per histogram, N , and a distance threshold, θd. The

following ones are the datailed steps for its computa-

tion, and Algorithm 1 (page 7) formalizes compactly

this procedure.

1. The K nearest neighbours of each keypoint are first

found, and their corresponding distances are kept.

Since the closest nearest neighbours of a keypoint is

itself, we exclude this zero distances from consider-

ation.

Formally, let X = {x1,x2, . . . ,xm} be set of the m

detected keypoints, xi = (xi, yi), in a given image,

Let d(xi,xj) the Euclidean distance between any

given pair of keypoints, 1 ≤ i, j ≤ m, and dik =

dk(xi), 1 ≤ k ≤ K the k-shortest distance in the

set {d(xi, xj) ≤ θd, 1 ≤ j ≤ m, i 6= j}. Then, the

neighbour distance matrix D is computed,

D =


d11 d12 · · · d1K
d21 d22 · · · d2K
...

...
. . .

...

dm1 dm2 · · · dmK

 = [D1D2 · · ·DK ]. (1)

Thus, D has one row per interest point and one col-

umn Dj , 1 ≤ j ≤ K, per nearest neighbour. There-

fore, the distances corresponding to the j-th nearest

neighbours are in column Dj .

2. For each Dj its corresponding hj histogram is com-

puted using N equally spaced values from 1 to θd.

In detail, let R = {r0 = 1, r1, r2, . . . , rN = θd} be

the set of right-end point of intervals equally par-

titioning the distance range [1, θd], i.e. rj − rj−1 ≈
θd−1
N , 1 ≤ j ≤ N . Then, the b-th bin of histogram

hj , hj(b), is computed by counting the number of

distances in Dj lying on the b-th interval in R:

hj(b) =

m∑
i=1

1[rb−1,rb)(dij), (2)

with 1A(x) being the indicator function which eval-

uates to 1 if x ∈ A and to 0 if x 6∈ A. To compute

all bins of all histograms, Eq. (2) is evaluated for all

j ∈ [1,K], b ∈ [1, N ]. The resulting descriptor hHND

has therefore dimensionality K ·N .

Notice that for many computer vision tasks, the

SIFT descriptor is used in addition, or alternatively, to

the SIFT detector. In our work, however, we only use

the detected keypoints, in terms of a description of their

geometric distribution. In other words, no photometric

information is used in the HND descriptor. Addition-

ally, it is worth noticing that HND is, by definition,

translation and rotation invariant. Scale invariance is

not sought because our images are all in the same scale;

if they were not, some form of scale invariance would

be required too.

To refer to a particular bin of the HND descriptor

we use the notation k|n, where k ∈ {1, . . . ,K} is the

k-th nearest neighbour and n ∈ {1, . . . , N} is the n-th

bin for the histogram for that particular nearest neigh-

bour. From the normalized HND descriptor (K = 5,

N = 3) averaged over mice per condition group (Fig. 3),

it can be observed that the average number of keypoints

in the conditioned group is higher than in the saline

group for all the bins of the first nearest neighbour

(B1 =
{

1|k, k ∈ {1, 2, 3}
}

) and the first two bins of

the second nearest neighbour (B2 =
{

2|k, k ∈ {1, 2}
}

).

For the rest of the bins, there are more points in PNNs
of saline group. These bins (B1∪B2) correspond to the

shortest distances, and therefore, they may be captur-

ing the denser regions occurring in s-PNNs which are

expected to dominate in mice of the conditioned group.

The number of points decreases with k|n (from left to

right) in the conditioned group, whereas for the saline

group the largest number of points happen at interme-

diate k|n. Again, this is indicative of the different dis-

tributions of keypoints in w-PNN and s-PNN images.

2.5 PNN image pattern discovery and mice

classification

In an earlier stage of our work, we performed experi-

ments with supervised learning using expert-provided

labels of individual images as ground-truth class labels

of weak and strong PNNs. Although there are some im-

ages which clearly correspond to weak PNNs and others
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(a) weak (b) medium (c) strong

Fig. 2 SIFT keypoints (yellow dots) detected on the images in Fig. 1
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Input: X, the set of interest points on an image
Output: hHND, the HND descriptor (i.e. the concatenation of distance histograms)
D← computeDistancesNearestNeighbors(X;K) // Eq. (1)

R← generateLinearlySpacedValues([1, θd],N)

for each j ∈ {1, 2, . . . ,K}
hj ← computeHistogram(Dj ,R) // Eq. (2)

end
hHND ← [h1,h2, . . . ,hK ]
return hHND

Algorithm 1: HND(K,N ;θd) computation

Fig. 3 Mean (bars) and standard deviation (error bars) of
histograms corresponding to HNDs

to strong PNNs, many more images are something in

between which are hard to classify with an unequiv-

ocal label. Consequently, it was decided to use unsu-

pervised learning at image level (Sect. 2.5.2), and su-

pervised learning only at mouse level (Sect. 2.5.4). But

before presenting the details for these two processes,

some insights are given in graphical form (Sect. 2.5.1).

2.5.1 Visualizing the HND in a low-dimensional space

We used the t-Distributed Stochastic Neighbor Embed-

ding (t-SNE) technique (van der Maaten and Hinton,

2008) to reveal the implicit structure in the 15-D HND

space, and visualize it in the human-intuitive 2-D space.

The result using a perplexity value of 20 (Fig. 4) shows

that, as in most real-world problems, the two compared

mice groups significantly overlap in this space. After all,

PNN images within one group can be of many differ-

ent types in a continuum ranging from clear w-PNN

to clear s-PNNs. The output is not random, though,

since the manifold underlying the data is captured and

some regularities emerge. Indeed, it can reasonably be

argued that the overlapping pattern itself supports the

hypothesis that saline mice do not develop so many s-

PNN structures as conditioned mice do.

Interestingly, there is a noticeable difference be-

tween the sample distribution of both groups. In partic-

ular, there are areas where points of one of the groups

dominate, such as the dense red dots (conditioned mice)

in the upper right part of the scatter plot or the areas

of denser blue squares (saline mice) in the bottom left

part. Therefore, one can hypothesize that regions where

images of conditioned mice dominate would mostly cor-

respond to s-PNNs. As a matter of fact, by observing

images corresponding to different areas in this 2D visu-

alization space (Fig. 5), different image PNN structures

in the dominant saline and conditioned areas can be no-

ticed. The visualization of the set of images of particular

mice (Fig. 6) provides further insight into the different

distributions of the patterns of PNN images depending

on the experimental group of the mouse.

The above discussion and series of plots not only

provide a first evidence on the hypothesis of this work,

but also point to the potential of the proposed ap-

proach, namely, an unsupervised image-level pattern

discovery plus a supervised mice-level group classifica-

tion.

2.5.2 Finding image patterns unsupervisedly

Following our approach, each PNN image is represented

with its HND descriptor (Sect. 2.4). Our purpose now is

to be able to automatically find similar patterns among

the images in the dataset through their HND charac-

terizations. In particular, the goal is to automatically

indicate to which of the found patterns a new PNN

image resembles the most. To that end, we use vector

quantization; in essence, similar HND descriptors will

be grouped together and will be assigned a represen-

tative prototype against which novel descriptors will

be compared. Since several groups will be found, then

a new descriptor will be assigned to the group whose

prototype this descriptor is most similar to. It is im-

portant to note that this is performed unsupervisedly,

which means that no prior information of the proce-



8

dence of the PNN images is used at all. In other words,

at this stage, our algorithm ignores whether the PNN

images come from mice in the saline, conditioned or

unpaired groups. The detailed procedure is as follows.

Let H = {h(i)
HND}m1 be the set of HND descriptors

for a given set of images. Let L be the desired number

of groups (i.e. the patterns) we want to discover. We

use the well known k-means clustering (Jain, 2010) to

find these patterns (with k = L). To find the L clusters

{Cj}L1 and their corresponding prototypes {pj}L1 from

a given set of m data points X = {xi}m1 ,
⋃L
j=1 Cj = X ,

Ci
⋂
Cj = ∅, i 6= j, k-means proceeds iteratively, usu-

ally starting with a random assignment of every data

point {xi} to a single cluster ci ∈ {1, 2, . . . , L}.

1. Given the current clusters {Ci}L1 , compute their pro-

totypes {pj} as the mean of the points within each

cluster:

pj =
1

|Cj |
∑
x∈Cj

x, j ∈ {1, 2, . . . , L}. (3)

with |A| denoting the cardinality of the set A.

2. Given the new prototypes {pi}, recompute the as-

signment of points {xi} to clusters {ci} by finding

their closest prototypes:

ci = arg min
j∈{1,2...,L}

d(xi,pj), i ∈ {1, 2, . . . ,m}. (4)

These two steps are repeated until convergence (the

clusters become stable and no longer change) or until

a maximum number of iterations are performed. In our

Fig. 4 Output of t-SNE on the set of HND descriptors. Each
point in this space corresponds to a single PNN image over the
set of mice in the saline and conditioned groups. The manifold
underlying the HND descriptor is somehow uncovered

case, the data points that are clustered are the set of

HND descriptors, i.e. X = H. After that, to assign a

new image descriptor q 6∈ X to a given cluster, the most

similar existing prototype is found, exactly in the same

way as data points are reassigned to a cluster in Eq. (4).

Examples of BoW averaged over mice per condition

group (Fig. 7) illustrate that mice in different groups

may differ in the number of PNNs assigned to different

clusters. These differences suggest its potential discrim-

inative effect.

2.5.3 Choosing representative images

Although all images in the identified clusters are

used for the subsequent supervised learning stage

(Sect. 2.5.4), we were also interested in showing a lim-

ited representative set of images for human experts

to analyze. Simply choosing images randomly might

result in a non-representative sample of each cluster.

Therefore, an smarter sampling approach based on a

probability density estimation (Scott, 1992) is applied

over the feature space of the HND descriptors. To that

end, given the m data points {xi}, each point in a

n-dimensional space, the underlying unknown density

function f is estimated non-parametrically through ker-

nel density estimation (KDE) as:

f̂(x) =
1

n

m∑
i=1

KH(x− xi), (5)

where KH(x) = |H|− 1
2K(H−

1
2x), with K(·) being a

chosen kernel function, and H being the n × n band-

width matrix. Intuitively, a kernel-based density esti-
mation resembles the estimation of an histogram from

data, but with benefits regarding smoothness and con-

tinuity. Since we used a Gaussian kernel, and auto-

matic scale parameter selection with Scott’s rule (Scott,

1992), then,

KH(x) = (2π)n/2|H|− 1
2 e−

1
2x

TH−1X,

and Hii = σ2
i · m−2/(n+4), with σ2

i being the vari-

ance of the i-th variable. The way we use KDE in our

setting consists of applying this procedure separately

for the data points in each cluster. To avoid numeri-

cal issues due to singular matrices, zero-mean Gaussian

noise of standard deviation 10−3 was added to each

variable of the data points prior to the KDE estima-

tion. After f̂ is estimated, we evaluate it on the data

points and normalize them to sum to 1, so we have

pi = f̂(xi)/
∑m
i=1 f̂(xi). Then, for each cluster, we ran-

domly select the desired number ` of points according

to the probability density given by the pi values.
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1 2 3 4 5

(a) PNNs easily identifiable as s-PNNs

1 2 3 4 5

(b) PNNs easily identifiable as w-PNNs

1 2 3 4 5

(c) PNNs with a structure in-between w-PNNs and s-PNNs

Fig. 5 Examples of PNNs randomly selected from three very distinct areas of the output of t-SNE, which roughly correspond
to easily identifiable kinds of PNNs

(a) Mouse S1 (b) Mouse C1

Fig. 6 PNNs of one mouse in each group highlighted on t-SNE output

2.5.4 Recognizing the mice group supervisedly

Supervised classification aims at learning a decision
function that can predict the class y of a novel data in-

stance x. To this end, a classifier learns the association



10

(a) L = 2 (b) L = 5

Fig. 7 Mean (bars) and standard deviation (error bars) of histograms corresponding to BoWs of the two experimental groups.
Two different vocabulary sizes L are given as examples

of instances {xi} to class labels {yi} given as a train-

ing set. The adjective “supervised” comes from the fact

that ground-truth class labels are used for this training

stage.

In our problem, we consider two classes, namely the

saline and the conditioned experimental groups of the

mice. We want to be able to predict the class of an un-

seen mouse given the set of its PNN images. Since we

can compute the HND descriptor for every PNN image,

we might use the set of HND descriptors corresponding

to the PNN images of a mouse to infer its class label.

However, this approach is complicated for a number of

reasons such as that different mice have different num-

ber of PNN images.

In cases like this one, some kind of pooling mecha-

nism is usually required that “sums up” a set of features

of an arbitrary size into a single, fixed-length represen-

tation. One widely known pooling approach consists of

the bag-of-words (BoW). In essence, the BoW of a vi-

sual entity corresponds to an histogram-like count of

how many of the features in a set for that entity are

similar to each of a given set of “words”. This set of

words is often referred to as vocabulary or dictionary.

Although conceptually simple, this representation has

shown to be useful in a number of problems in com-

puter vision (Lazebnik et al., 2006, Niebles and Fei-Fei,

2007, Yu et al., 2013).

A key requirement to use the BoW is to define a

vocabulary of words. In our case, the words correspond

to each the clusters of HND descriptors found unsu-

pervisedly (Sect. 2.5.2). Let {xi}m1 be the set of m

HND descriptors of the set of PNN images for a certain

mouse. By using Eq. 4, each of these descriptors will

be assigned to a cluster (word) ci. Then, we can count

how many of the descriptors are assigned to each of

the words, and this will be the BoW representation for

that mouse. Since there are L clusters (words), the BoW

representation will be a L-length histogram hBoW. For-

mally, each bin b of this histogram is therefore com-

puted as

hBoW(b) =

m∑
i=1

1{b}(ci), b ∈ {1, 2, . . . , L}, (6)

where ci is the cluster which data point xi is assigned to,

and we again use the indicator function 1A(·) by using

as the set A the singleton whose element is the cluster

(word) index for which we want to count the number of

assignments. Remember that in our problem each data

point xi corresponds to a HND descriptor.

By using this BoW representation, a set of mice

M = {mi}M1 can therefore be represented as the set of

their corresponding BoW histograms, {h(i)
BoW}M1 which,

together with their true class labels {yi}M1 , are used

for supervisedly learning a classifier. After the learning

(training) stage, the class of a different mouse m 6∈ M
(i.e. whose images have not been used during training)

can be predicted from the BoW histogram computed on

the set of PNN images available for this mouse m. As

we will see below, care was taken to use disjoint sets of

training and testing sets of mice and PNN images, both

when computing the vocabulary of words and when

training the classifier in order to distinguish between

conditioned and saline mice. Regarding the classifier, al-

most any general-purpose classifier can be used. In our

case, the Support Vector Machines (SVM) model (Vap-

nik, 1998) is adopted since it is widely accepted and has

generally good performance.
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It may be worth noting that since the HND descrip-

tor has very low dimensionality (15 bins), no dimension-

ality reduction is required for the unsupervised learn-

ing. This is also the case for the supervised learning,

since the vocabulary size is also small (less than 100

words are used).

2.6 Settings and software

The VLfeat library (Vedaldi and Fulkerson, 2008)

for SIFT detection, and Python packages scikit-
image (van der Walt et al., 2014) for image process-

ing and scikit-learn (Pedregosa et al., 2011) for machine

learning, were used. For t-SNE, the Python implemen-

tation provided by its author was used (van der Maaten,

2018). For SIFT, the edge and peak thresholds were

set to 10 and 2, respectively. The HND parameters

were K = 5, N = 3 and θd = 30, thus resulting in

compact 15-dimensional feature vector. An SVM with

radial-basis function (RBF) kernel was used. The reg-

ularization parameter C for the SVM, and the scale

parameter γ of the RBF kernel were selected by vali-

dation from the sets C ∈ {10i : i ∈ {−8,−7, . . . , 7, 8}}
and γ ∈ {10j : j ∈ {−4,−3, . . . , 3, 4}}, respectively.

2.7 Computational analysis

Asymptotic cost and actual running times on a i7-

6700HQ CPU @ 2.60GHz are given in Table 3 for differ-

ent parts of the proposed approach. Some explanations

and observations are in order. The precise asymp-

totic cost for some algorithms can be implementation-

dependent or can be particularly complex because it is

much data- and parameter-dependent. Then, to be of

practical use, a simpler and general expression is pro-

vided instead. This is particularly the case of SIFT,

whose detailed computational breakdown can be found

elsewhere (Vinukonda, 2011). The times for SIFT

points detection (part A1) are an overestimate of the

strictly required times since we used a command-line

tool which computes also the SIFT descriptors (which

are ignored for HND computation) and writes the re-

sulting SIFT points to a file. After the SIFT points are

found, the computation of the HND descriptor (A2) is

very fast given the average number of points found in

the PNN images in our dataset (Table 2).

Overall, it can be noted that the complete proce-

dure is computationally quite affordable and reason-

ably scalable to more data and higher dimensions. For

instance, using the mean times as an estimate (com-

ponents A1 + A2 + B2 + C1, with L = 10), classify-

ing a mice would take about 265 ms. (i.e. a classifica-

Table 2 Number of SIFT points detected on PNN images

Group Average Standar deviation
S 103.2 55.7
C 170.6 85.5

S ∪C 139.5 80.6

tion speed of 3.8 mice/s), even with unoptimized code.

Certainly, with more mice and more or larger images

per mice, some costs would increase, according to com-

plexities given (Table 3), but this is hardly to become

a practical issue in the contexts where these data are

commonly used in neurobiological research, where hard

time constraints are not usually imposed.

3 Experiments and results

The goal of our study is to assess how successful the

proposed machine vision methods are in, first, qualita-

tively predicting functionally relevant PNN image pat-

terns and, second, quantitatively inferring the experi-

mental mice groups. Certainly, the ultimate interest of

this assessment relies in gaining insight into how these

results support the current evidence on the link between

neuronal plasticity and drug addiction mechanisms.

3.1 Qualitative assessment of discovered PNN patterns

To gain some insight about the contents of the groups

(clusters) of PNNs found by the unsupervised clustering

procedure (Sect. 2.5.2), an small representative subset

of images per group was selected (Sect. 2.5.3). To that

end, the density-based sampling approach (Sect. 2.5.3),

with ` = 10, was applied to each of the L = 3 clusters.

The reason for this choice of the number of clusters

was two-fold: on the one hand, it is a small number

for human experts to analyse carefully without much

cognitive and physical burden; on the other hand, from

our discussions with them, some prior belief emerged

that the number of relevant patterns might actually be

small, about 3 or 4.

The set of the ` = 10 images selected per cluster

were shown to the experts, who were asked to individu-

ally and carefully observe the images, and then describe

in written form their patterns by characterizing the im-

ages within each group and how they differ with respect

to those images in the other groups. A subset of these

images is given in Fig. 8. To avoid judgement biases,

we tried to inform the experts the least, and made an

effort to use with them a jargon-free vocabulary regard-

ing machine vision concepts. For instance, rather than

talking about “clusters”, we used the more neutral term

“pattern”. By reading experts’ annotations (Table 4),
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Table 3 Temporal complexity and running times (ms), av-
erage and standard deviation (in parentheses)

A: HND computation

A1: SIFT detector
Complexity Values Running time
θ(N2)∗ N = 400 263.4 (13.3) †∗∗

∗N : width (height) of image
†Average per image
∗∗Includes SIFT description + I/O

A2: k-NN and histogram of distances (HD)
Complexity Values Running time
O(m2Kd) ∗† m ≈ 140∗∗, K = 5, d = 2‡ 1.5 (13.3) §

∗Cost of k-NN, subsumes that of HD which is O(mK)
†m: No. SIFT points/image, K: No. of NNs, d: data dim.
∗∗See Table 2
‡(x, y) of each SIFT point
§Average per image

B: BoW computation

B1: k-means
Complexity Values Running time ‡

θ(nkd)∗ d = 15†, n = 728∗∗ See below for varying k
k = 2 31.5 (2.8)
k = 5 60.9 (6.3)
k = 10 84.9 (10.6)
k = 50 176.2 (5.5)

∗n: No. of data points, k: No. of clusters, d: data dim.
†That of HND
∗∗All images of mice in saline and conditioned groups
‡For 20 repetitions to account for variability

B2: Computing BoW histogram of given set of images
Complexity Values Running time ‡

O(mkd)∗† m = 70∗∗ See below for varying k
k = 2 0.34 (0.027)
k = 5 0.36 (0.011)
k = 10 0.37 (0.008)
k = 50 0.40 (0.007)

∗m: No. of images, k and d: same meaning as before
†m times the cost of finding the closest cluster, O(kd)
∗∗Similar set size as in the mice in the dataset (Table 1)
‡For 20 repetitions

C: Mice classification

C1: SVM classification given the BoW histogram
Complexity Values Running time (ms)
O(Nd)∗ N = 11†, d = L = 10∗∗ 0.17 (0.07)‡

∗N : No. of training intances, d: data dim.
†Leaving one mouse out
∗∗No. of clusters
‡Averaged over 12 mice and 10 repetitions

it can be observed that they all (1) found quite clearly

distintive features in each of the three groups of images;

and (2) roughly agree among themselves in the features

they independently found.

In an attempt to provide a unified general character-

ization of the three patterns, we identified the common

traits that are approximately revealed from expert’s de-

scriptions (Table 5). Roughly speaking, Pattern 1 can

be assimilated to weak PNNs and Pattern 3 to strong

PNNs, while Pattern 2 exhibits more intermediate, less

clear-cut appearance, even though a distinctive round

shape is still identified. It is worth noticing that Ex-

pert 3 associated the Pattern 3 directly with animals in

the conditioned group. Interestingly, the 9 out of 10 im-

ages selected automatically for this pattern came from

mice in the conditioned group, whereas in Patterns 1

and 2, only 3 out of 10 images came from conditioned

mice. These observations suggest the proposed descrip-

tor has the intended ability of capturing and character-

izing neurons with different visual patterns correspond-

ing to different PNNs structures.

3.2 Quantifying the mice group recognition rate

To find whether these patterns are not only qual-

itatively meaningful and subjectively useful, classifi-

cation of the experimental group (saline vs condi-

tioned) per mice was performed using the BoW ap-

proach (Sect. 2.5.4). Given the stochastic nature of the

k-means, the procedure (clustering, histogram coding,

training and classification) was repeated ten times for

four different cluster sizes (L ∈ {2, 3, 4, 5}). A leave-

one-out statistical validation was employed: each mice

was used as test whereas the remaining 11 were used

for training, and this procedure is repeated for each

of the available mice. Despite the limited size of the

dataset (12 mice), the results (Table 6) are interesting

since they suggest that the designed image descriptor

combined with unsupervised and supervised learning,

is able to encode discriminative PNN properties and,

eventually, predict with reasonable reliablity the exper-

imental condition (saline or conditioned) of the mice.

The confusion matrices (Table 7) reveal that the classi-

fication rates per experimental condition are balanced.

3.3 Neurobiological relevance

In functional terms, the fact that an automated al-

gorithm can discriminate PNNs expressed by saline

animals from those of the conditioned group implies

that the previously reported differences between these

groups Carbo-Gas et al. (2017) are robust. Moreover,
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(a) Pattern 1 (b) Pattern 2 (c) Pattern 3

Fig. 8 A selection of patterns found when clustering with L = 3 groups
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Table 4 Expert description of the patterns found by clustering.

Pattern
Expert 1 2 3

1 Except images 4 and 8, images
have an identifiable morphologi-
cal pattern. Cells are elongated.
Expression degree in brightness
terms is similar, intermediate.

Except image 5, all images are
morphologically circular and show
faint PNNs

Morphological inconsistency:
there are both elongated and
circular neurons. Recognizable
high PNN expression

2 They seem to have less intensity.
They are not very compact and
have quite a few openings. They
look more elongated than the oth-
ers.

They present low intensity, with
many gaps and look more round.

They are intense, are closer than
the other patterns and even neu-
rites are intense. Unlike the other
patterns, they have branches.

3 Images represent the pattern of
a non-conditioned animal. Less
branching and condensation than
Pattern 3. Less strong and fewer
neurites than in Pattern 3. PNN is
mostly observed in the soma part

Not clearly belonging to saline or
conditioned group, but more to
the latter. Branching PNNs, but
of middle intensity and density.
PNNs are bigger than in Pat-
tern 1. Similar in size and shape
to Pattern 3, but less intense.

They represent mostly the pattern
of a conditioned animal. PNNs
look like more condensed, more
structured, denser. Besides being
more intense, these neurons have
larger branching, they have more
neurites with PNN; an intense
WFA labelling is not only ob-
served in the soma. The thick-
ness of PNNs seems to be higher.
They are similar in size to those
in Pattern 2, but not as much in-
tense or dense. They are more in-
tense, denser, and PNNs are ob-
served in both soma and proximal
dendrites. It seems they are bigger
than those in Pattern 1.

Table 5 Commonalities in experts’ descriptions of the pat-
terns

Pattern Shape Intensity Density Branching
1 Elongated Middle Low Low
2 Circular Low Middle Middle
3 Inconsistent High High High

Table 6 Performance of group classification (saline vs con-
ditioned) at mouse-level with the BoW approach for differ-
ent vocabular sizes L by leaving-one-out validation. Averages
over the 12 mice of mean, standard deviation, and median of
the accuracy for each mouse are reported. The corresponding
confusion matrices for L 6= 2 are given in Table 7

Number of clusters (L)
2 3 4 5

mean 100 85 86.7 79.2
std. dev. 0 32.1 29.7 33.9
median 100 100 100 95.8

the present findings suggest that cocaine-induced mem-

ories are capable of up-regulating reliably one of the

main plasticity mechanisms for synaptic stabilisation

in the cerebellum. Notwithstanding these findings, the

present analysis does not allow to rule out that the ob-

served modifications in the PNN structure are memory

unrelated and due to the neuropharmacological action

of cocaine.

As an additional test, taking the BoW representa-

tion of images of both the saline and conditioned mice

as training data, we classified the mice in the unpaired

group. By tentatively assuming mice in the unpaired

group actually belong to the saline group classifica-

tion results (Table 8) are not as good as when classify-

ing the mice in saline and conditioned groups. In fact,

some better results are obtained if many more clus-

ters than those tested with the conditioned and saline

groups alone are used. This may be explained by the

fact that the images in the unpaired group do not re-

ally distribute as those of the other two groups, and

therefore might benefit from more fine-grained types of

PNNs image patterns. Despite the decrease in recog-

nition rate, the results still provide evidence that the

unpaired mice could not establish a cue-drug associ-

ation, and therefore they did not express strong fully

condensed PNNs as the conditioned mice did. The vari-

ability (standard deviation of the estimated recognition

rate) for these tests is in general quite large throughout

all tested L. This further indicates that unpaired mice

are not able to build PNNs according to the patterns

observed and characterised for conditioned mice.

These results are interesting since, indeed, the un-

paired group is different from the other two groups.

Unpaired animals received the same cocaine treatment

as the conditioned mice but, in this case, nothing could
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Table 7 Confusion matrices for different vocabulary sizes L, as complementary information to Table 6. Rows correspond
to ground-truth groups and columns to predicted groups, for three number of clusters. Values are the number of mice and,
in parentheses, the percentage computed group-wise (i.e. over 60). The overall accuracy is given by the sum of the correct
classifications (on the main diagonal of each matrix) over the total (120)

L = 3 L = 4 L = 5
S C S C S C Total

S 52 (86.7%) 8 (13.3%) 53 (88.3%) 7 (11.7%) 46 (76.7%) 14 (23.3%) 60
C 10 (16.7%) 50 (83.3%) 8 (15.0%) 51 (85%) 11 (18.3%) 49 (81.7%) 60

Accuracy (%) 85.0 86.7 79.2

be learnt because the contingent cue-cocaine associa-

tion was lacking. Hence, the results yielded by our al-

gorithms indicate that in addition to cocaine-induced

memory, PNN structure might be also regulated by a

mere repeated experience with the drug independently

of memory acquisition.

4 Conclusions

Addiction results from long-lasting plasticity modifica-

tions that render the brain “inflexible” to drugs and

drug-related stimuli. Thus, it seems crucial for the field

to understand the mechanisms of stabilization that are

linked to drug-induced synaptic changes. The present

results using a computer vision and machine learning

approach support prior findings involving PNN expres-

sion at the cerebellar cortex in cocaine-related condi-

tioned memory. Also, these results open new avenues

to describe specific patterns of brain plasticity struc-

tural modifications based on a machine vision perspec-

tive. The ability of the proposed image descriptor and

the bag-of-words approach to characterize different pat-

terns of PNN expression around Golgi cells is remark-

able, particularly because these patterns roughly corre-

spond to the treatment groups.

Information Sharing Statement

Data and code related to this work are avail-

able in GitLab: https://gitlab.com/vtraver/

PNNsMiceMachineVision (RRID:SCR 016485). Details

and explanations can be found in the README.md

and the source files.
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