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Highlights 

 

 

 The energy performance of liquid chiller is compared using R1234yf and R134a. 

 The Buckingham π-theorem was applied to modeling drop-in. 

 The predicted and experimental data are correlated in order to study the accuracy of the 

model. 

 R1234yf shows that COP reduces about 2% -11.3% taking R134a as baseline. 

 Indirect emissions are similar for R1234yf and R134a using several energy sources 
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ABSTRACT 

 

This paper presents a model for a variable-speed liquid chiller integrating a compressor 

model based on Buckingham π theorem to accurately predict the system performance when 

R134a is replaced with R1234yf, using a wide range of data obtained from an experimental 

setup. Relevant variables such as temperature, pressure, mass and volumetric flow rates, 

compressor power consumption and rotation speed were measured at several positions 

along the refrigeration and secondary circuits and were used to validate the developed 

model. Model results show that cooling capacity and power consumption predicted values 

are in good agreement with experimental data, within ±5%, being slightly higher for the 

deviation obtained for R134a than for R1234yf. Moreover, model results indicate that 

R1234yf has a reduction of coefficient of performance (COP) compared with R134a 

(between 2 and 11.3%), and that R1234yf COP reduction is diminished at intermediate 

volumetric flow rate and higher inlet temperature for the evaporator secondary fluid, 

respectively. On the other hand, an environmental analysis based on TEWI (total equivalent 

warming impact) method showed that direct emissions are almost negligible for R1234yf. 

However, there are no environmental benefits in terms of indirect greenhouse gas emissions 

using R1234yf without system modifications (as for instance the addition of internal heat 

exchanger or R1234yf new design components), which are required to reduce the liquid 

chiller climate change contribution using it as low GWP alternative in comparison with the 

typically used R134a refrigerant. 
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NOMENCLATURE 
 

A  Heat transfer area (m
2
) R Fouling factor (m

2
 K W

-1
) 

a Coefficients for compressor efficiencies Re  Reynolds number 

C  Constant rp Compression ratio 

minC  Minimum heat transfer capacity (W K
-1

) T  Temperature (K) 

pC  
Specific heat capacity (J kg

-1
 K

-1
) t  

Average thickness of micro-

fins (m) 

rC  Heat capacity rate U  Overall HTC (W m
-2

 K
-1

) 

d  Diameter (m) bV  
Volumetric flow rate (m

3
 h

-

1
) 

e  Fin height (m) VG Swept volume (m
3
) 

f  Friction factor W Compressor work (J) 

F Enhancement factor x Quality 

g Gravitational acceleration (m s
-2

) Greek symbols 

GE Static superheating degree (K)   Heat transfer coefficient (W 

m
-2

 K
-1

) 

GR Superheating degree (K)   Helix angle (rad) 

GS Subcooling degree (K)   Effectiveness 

h Enthalpy (J kg
-1

)   Compressor efficiency 

Ja Jacob’s number π Dimensionless parameter 
    Dynamic viscosity (Pa s) 

k  Thermal conductivity (W m
-1

 K
-1

)   Specific volume (m
3
 kg

-1
) 

M 
Molecular weight for refrigerant used (kg 

kmol
-1

) 
  Density (kg m

-3
) 

refm  Mass flow rate (kg s
-1

)   

n Polytrophic constant Subscripts 

N Compressor rotation speed (rpm) 
aec  Water at the inlet 

fN  Number of micro-fins asc  Water at the outlet 

Nt Number of transverse tubes bee  Brine at the inlet 

Nr  bse  Brine at the outlet 

NTU  Number of heat transfer units i  Inlet 

Nu s
 Nusselt number for smooth tube l  Liquid 

P  Pressure (kPa) o  Outlet 

Pr  Prandtl number r  Root 

cPot  Power consumption (W) sec Secondary fluid 

  w  Wall 

Q  Thermal power (W)   
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1. INTRODUCTION 

 

In the last decades, R134a has been used instead of R12 [1] in different refrigeration and air 

conditioning applications for minimizing the effect on the ozone layer due to its notable 

energy performance, low-toxicity and non-flammable characteristics. However, through the 

Kyoto Protocol [2], R134a have been identified as Greenhouse Gas (GHG) as many other 

hydrofluorocarbons. Then, the European Parliament established a ban for fluorinated gases 

(F-gases) with a global warming potential (GWP) higher than 150 for their use in Mobile 

Air Conditioning (MAC) systems for all produced cars in 2017 [3]. In addition, in 2014, the 

Directive 2006/40/EC was replaced by the Regulation (EU) No 517/2014, which specified 

GWP limits for most extended refrigeration and air conditioning systems (2500 in 

stationary refrigeration equipment), and additionally stablished a progressive quota to 

HFCs to be placed on the market (reaching 63% reduction of the baseline 2009–2012) [4]. 

Consequently, it is intended that the refrigerant R134a (with zero ozone depletion potential 

and GWP=1450) will be replaced by other environmentally-friendly alternatives. 

 

Therefore, two HFO (HydroFluoroOlefine) promising alternatives have been proposed: 

R1234yf [5] and R1234ze(E) [6], which present low-flammability, low-toxicity and GWP 

values of 4 and 6, respectively. In drop-in systems, R1234yf has been proposed as R134a 

substitute in equipment such as MAC [7] and [8], stationary refrigeration systems [9] and 

domestic refrigerators [10]. 

 

The development of methodologies for HFO applications in refrigeration systems has 

received significant attention mainly due to the possible environmental advantages obtained 

from the application of R1234yf and R1234ze(E) instead of R134a. For example, Lee and 

Jung [7] explores the drop-in performance of R1234yf in a heat pump test bencher, their 

results showed that the coefficient of performance (COP) of R1234yf is between 0.8 and 

2.7% lower than that of R134a, and the capacity of R1234yf is up to 4% lower than that of 

R134a. Zilio et al. [8] conducted experiments for a compact European automotive air 

conditioning system with a nominal capacity of 5.8 kW. Their results showed that the TXV 

tuning and optimizing the compressor displacement control valve for R1234yf systems 

could be improved, on the other hand, simulations showed that enhancing the condenser 

area by 20% and the evaporator by 10%, the R1234yf showed higher COP values compared 

with R134a. Jarall [11] reported that cooling capacity and COP for R1234yf are lower than 

that obtained using R134a. Aprea et al. [10] have obtained a 3% 24h energy consumption 

reduction using R1234yf but Leighton et al. [12] developed a theoretical model for the 

steady-state analysis of a domestic refrigerator-freezer and showed that R1234yf and 

R1234ze(E) have lower COP and cooling capacity. Navarro-Esbrí et al. [9] experimentally 

studied R1234yf performance in a vapor compression system in a wide range of conditions, 

concluding that the cooling capacity and COP for R1234yf are about 9% and 19% lower 

than those obtained using R134a. Lee et al. [13] developed a theoretical model for multi-

stage cycles with two-phase refrigerant injection, showing that R1234yf and R1234ze(E) 

have better performance than other low-GWP refrigerants. Ansari et al. [14] applied the 

exergy method to compare theoretically R1234yf and R1234ze(E) with R134a. They 

obtained that performance parameters for R1234yf are lower than those of R134a and for 

R1234ze(E) which are similar, concluding that both can replace R134a. 
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On the other hand, there is a high electric energy consumption associated with refrigeration 

systems, since most of these facilities are based on the vapor compression cycle. In order to 

study and reduce their consumption with new alternatives, the energy performance is 

usually assessed by one of the following approaches: (i) simplified calculations based on 

component characteristics; (ii) components analysis through commercial CFD packages; 

and (iii) standardized experiments [15]. Although the first two techniques play important 

roles in design, do not provide enough information on system behavior and requires 

previous by testing of the refrigeration system. However, experimental tests can be 

expensive and time consuming. A faster and less costly alternative method is the use of 

computer models to simulate the thermal behavior of the refrigeration systems. 

 

Many researchers have paid attention to the development of robust and alternative 

approaches to modeling of vapor compression systems. For example, Browne and Bansal 

[16] presented a model for predicting vapor compression chiller performance using an 

elemental NTU-efficiency approach. Their model requires only those inputs available to the 

user such as condenser inlet and evaporator outlet water temperatures. Their model outputs 

include variables such as compressor electrical work input and COP, calculated from the 

refrigerant thermodynamic states. Zhou et al. [17] proposed a steady-state model of a 

refrigeration system for high flux removal of electronic applications and studied the effect 

of various external inputs and the Pareto optimization on the system performance. Their 

model shows good agreement between the experimental data and the model predictions. 

 

Zhao et al. [18] developed a steady-state hybrid model of chiller, in which the compressor 

was modeled using a polynomial neural network and other components based in the 

thermodynamics first law. Based on the model, the switch point of economized and non-

economized mode is investigated in detail and a linear correlation is proposed, providing a 

path to improve part-load energy efficiency of screw chillers. Hermes et al. [19] present a 

simplified model to assess the energy performance of vapor compression ‘on–off’ 

controlled refrigerators for predicting energy consumption of refrigerators and freezers. 

Their model use algebraic equations adjusted with experimental data obtained from the 

refrigeration system. This study focused to predict the energy consumption within a ±5% 

deviation band. On the other hand, Dalkilic and Wongwises [20] present an ideal vapor 

compression refrigeration system analyzing the performance of alternative mixtures for 

R12, R134a and R22. Their results show that the refrigeration efficiency, based on COP, 

increases with the evaporating temperature augmentation for a constant condensing 

temperature. All systems including various refrigerant blends were improved by the effect 

of the superheating/sub-cooling case. 

 

Zsembinszki et al. [21] present a study of walk-in freezer refrigeration system performance 

under different conditions using a novel methodology for modeling a simple compression 

system Their model is system dependent, i.e. empirical correlations must be derived for 

determining some of the features of system components. Their results show that the model 

can accurately predict some of the main parameters of the system, such as evaporation and 

condensation pressures, temperature at different points of the thermodynamic cycle, and 

compressor consumption. Gill and Singh [22] presents the applicability of neuro-fuzzy 

inference system (ANFIS) to predict the COP of R134a/LPG (Liquefied Petroleum Gas) in 

a vapor compression refrigeration system. Their results show that the ANFIS model 
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predictions are in good agreement with the experiments and slightly better prediction than 

the mathematical models. 

 

Given the importance of vapor compression systems modeling and to evaluate refrigerant 

substitution by low GWP alternatives, such as R1234yf, methods that are physical-based 

models or black box models integrating experimental parameters for each refrigerant tested 

can be considered. Therefore, the aim of this paper is to present the development of a 

steady-state model for the simulation of a variable speed liquid chiller applying a new 

approach based on Buckingham π theorem for the reciprocating compressor and to 

investigate the performance of this system operating with R134a and R1234yf as an 

alternative. This approach can reduce the number of experimental parameters to model 

vapor compression systems working with R134a and R1234yf. The liquid chiller model 

takes six input variables, namely compressor rotation speed(N), static super-heating degree 

at expansion valve (GE), brine inlet temperature (Tbee) and brine volumetric flow rate (Vbee) 

at the evaporator, and water inlet temperature (Taec) and water volumetric flow rate (Vaec) at 

the condenser. These variables, coupled with the thermophysical properties of the 

refrigerants and the main geometric characteristics of the system, are used to calculate 

evaporating and condensing pressures, brine and water outlet temperatures, power 

consumption and coefficient of performance (COP). Finally, the energy and environmental 

performance of this model is tested using R1234yf and R134a as cases of study. Results 

can show the capabilities of this improved model for the design of variable-speed liquid 

chiller. 

 

 

2. EXPERIMENTAL PLANT AND DATA REDUCTION 

 

2.1 Experimental plant 

 

The experimental test bench consists on a liquid chiller vapor compression system, and two 

secondary fluid circuits. The vapor compression circuit is composed by four basic 

components: a 5.5 kW variable speed reciprocating open type compressor using polyolester 

(POE) oil as lubricant, a shell and tube condenser with refrigerant flowing along the shell 

and water as heat dissipation fluid inside the tubes, a R134a thermostatic expansion valve, a 

direct expansion shell and micro-fin tube evaporator, where the refrigerant flows inside the 

micro-fin tubes; brine water/propylene glycol (65/35% by volume) is used as secondary 

fluid flowing through the shell. Figure 1 shows a diagram of the experimental facility used 

to develop and validate the test bench model. 
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Figure 1. Schematic diagram of the test facility. 

 

The heat dissipation water loop (condenser) consists of a closed-type cooling system, which 

sets the water conditions at the condenser using a commercial chiller with a variable speed 

pump. On the other hand, the cooling load system (evaporator) also regulates the brine 

water/propylene glycol temperature through a set of immersed electrical resistances driven 

by a Proportional-Integral-Derivative (PID) controller; meanwhile its mass flow rate can be 

adjusted using a variable speed pump. The variable speed compressor and the heat 

exchangers (evaporator and condenser) in the test bench present the main characteristics 

listed in Table 1 and Table 2, respectively. 

 

Table 1. Geometrical characteristics of the compressor. 

Number of cylinders 2 

Piston diameter (m) 0.085 

Stroke (m) 0.060 

Minimum rotation speed (rpm) 400 

Maximum rotation speed (rpm) 600 

Displaced volume (cm
3
) 681 

 

Table 2. Main characteristics of the shell tube evaporator and condenser. 

 Evaporator Condenser 

Total number of tubes 76 20 

Number of tube passes 2 2 

Number of Shell passes 1 1 
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Inner tube diameter (m) 0.00822 0.013 

Outside tube diameter (m) 0.00952 0.016 

No. of micro-fins 30 - 

Fin height (m) 2x10
-4

 - 

Helix angle (°)  18 - 

Inner Shell diameter (m) 0.131 0.183 

Tube length (m) 0.8182 0.8 

Transverse tube spacing (m) 0.01142 0.0195 

Clearance between tubes (m) 0.0019 0.0035 

Number of baffles 5 4 

 

The experimental test facility is fully instrumented with sensors to measure the key 

variables. Table 3 lists a summary of the variables measured, as well as the sensor type and 

its uncertainty. All data generated by sensors were gathered by a PC-based data acquisition 

system and monitored with a PC. 

 

Table 3. Measured parameters and uncertainty. 

Parameter Sensor type Uncertainty 

Temperature K-type thermocouple ±0.3 K 

Pressure Pressure piezoelectric transducer ±0.1% 

Mass flow rate Coriolis effect mass flow meter ±0.22% 

Volumetric flow rate Electromagnetic flow meter ±0.25% 

Electric power 

consumption 
Digital wattmeter ±0.5% 

Rotation speed Inductive sensor ±1% 

 

In the experimental study, 57 and 52 different steady-state tests using R134a and R1234yf, 

respectively, were conducted in a wide range of operating conditions to gather data to 

validate the model. The process of selecting a steady-state test consists on taking a time 

period of 20 min, with a sample period of 0.5 s, in which the evaporating pressure is within 

an interval of ±2.5 kPa. Once a steady state is achieved (with 2400 direct measurements), 

the data obtained was averaged over a time period of 5 min (600 measurements). Table 4 

shows the R134a and R1234yf operating ranges covered by the tests. 

 

Table 4. Operating conditions of the test bench. 

 R134a R1234yf 

Volumetric flow of water at condenser (m
3
 h

-1
) 1.49 – 1.75 1.67 – 1.82 

Volumetric flow of brine at evaporator (m
3
 h

-1
) 1.14 – 1.24 1.14 – 1.24 

Temperature of brine inlet to the evaporator (K) 274.21 – 307.22 275.20– 304.28 

Temperature of condensing agent (K) 290.75 – 307.22 298.82 – 327.83 

Compressor rotation frequency (Hz) 35 – 50 35 – 50 

 

 

2.2 Data reduction 
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All the measurements of pressure, temperature, volumetric flow rates, mass flow rate of 

refrigerant and power supplied are used to evaluate parameters such as COP, cooling 

capacity, condenser capacity and compressor efficiencies to characterize the steady-state 

performance of the system and individual components. Pressure and temperature data were 

used to determine the thermodynamic properties of refrigerants using REFPROP 9.1 

software. Then, the calculations from the previously mentioned parameters were formulated 

from the mass and energy balances applied to each one of the main components of the test 

bench.  

 

The experimental volumetric, isentropic and overall efficiencies for the reciprocating 

compressor are calculated as shown in Eqs. (1-3), respectively. 

 

       
 ̇       

            
 (1) 

 

         
          

             
 (2) 

 

         
  ̇       (          )

        
 (3) 

 

The calculation of cooling capacity of the shell and microfin-tube heat exchanger is 

presented in Eq. (4) with the measured refrigerant mass flow rate and the enthalpy 

difference as a function of the temperature and pressure measured in the test bench, note 

that we assume isenthalpic process for the TXV valve, thus, the evaporator inlet enthalpy is 

the same than at the condenser outlet. 

 

 ̇       ̇               (4) 

 

The condensing capacity in the shell and tube heat exchanger is calculated in Eq. (5), thus 

the enthalpies are determined as a function of the inlet and outlet pressures and 

temperatures for the condenser.  

 

 ̇       ̇               (5) 

 

Finally, the energetic performance of the refrigeration system is evaluated by its COP, 

which is defined as the ratio between the experimental cooling capacity and the measured 

compressor power consumption. 

 

       
 ̇     

        
 (6) 

 

 

3. MATHEMATICAL MODELING 
 

The model is based on mathematical expressions arising from fundamental physics together 

with empirical correlations established on the basis of experimental tests. Figure 2 
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represents the model structure. First, the input parameters as inlet temperatures, flow rates 

of the secondary fluids, the compressor rotation speed and the static superheating degree 

are considered; and second, the model must estimate the operating pressures, outlet 

temperatures of secondary fluids, thermal capacitances, power consumption and the COP of 

the refrigeration system. 

 

 
Figure 2. Input-output model structure. 

 

For modeling, the refrigeration system was divided into three component sub-models: (i) 

compressor, (ii) thermostatic expansion valve, and (iii) heat exchangers (condenser and 

micro-fin tube evaporator). Each component sub-model is described below. 

 

3.1 Variable speed compressor modeling 

 

The model of a compressor can be developed through its volumetric, isentropic and overall 

efficiencies. Compressor efficiencies of a variable speed type mainly vary with the pressure 

ratio (discharge to suction pressure), as well with its rotation speed. However, the displaced 

volume, refrigerant type and environment temperature could have significant effects. Thus, 

a π-Buckingham analysis, a parametric study of dimensionless parameters and regression 

analyses of experimental data were carried out , allowing a confidence level of 98% and an 

accuracy of ±5%, ±4% and ±6% for volumetric, isentropic and overall efficiency (Eqns. 7 – 

9), respectively. Table 5 shows dimensionless parameters obtained for this compressor, and 

the predicted results for the compressor efficiencies under the proposed model are shown in 

Figure 3. 

 

     
         

         
        (7) 

 

       
        

        
        

       (8) 

 

       
         

        
        

       (9) 

 

 

Table 5. Dimensionless π-numbers for volumetric, isentropic and overall efficiencies. 
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 Volumetric efficiency 
Isentropic and overall 

efficiencies 

π1                 
π2       

π3 [
  

  
]
   

     
  

 
 

π4 
  

 
 

    

     
   

 

π5 
      

    
 

       

  
 

π6 – 
|
(         )

 
     |

    
 

π7 – 
      

    
 

 

  
(a) (b) 

 
(c) 
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Figure 3. Calculated compressor efficiencies for R134a and R1234yf: (a) volumetric 

efficiency, (b) isentropic efficiency (c) combined efficiency. 

 

Note that these compressor efficiencies expressions are valid for the operating range shown 

in Table 6. 

 

Table 6. Validity range for the proposed compressor efficiencies. 

 Range 

Evaporating temperature (K) 260 – 280 

Condensing temperature (K) 310 – 330 

Suction temperature (K) 270 – 300 

Compressor type Reciprocating 

Compressor rotation speed (rpm) 400 – 600 

Refrigerants R134a, R1234yf 

Ambient temperature (K) 288 – 300 

 

The refrigerant mass flow rate has been calculated using Eqn. (10). 

 

 ̇             (10) 

 

The compressor discharge temperature is obtained from the isentropic efficiency,     , and 

operating pressures. Thus, the refrigerant state at the compressor discharge is determined as 

shown in Eqn. (11). 

 

       
        

    
  (11) 

 

The power consumption by the compressor is obtained as expressed in Eqn. (12). 

 

     
 ̇           

    
  (12) 

 

The energetic performance of the refrigeration system is evaluated by its COP, which is 

defined as the ratio between the evaporator cooling capacity and the compressor power 

consumption (Eqn. 13). 

 

    
 ̇ 

    
  (13) 

 

3.2 Expansion valve modeling 

 

The thermostatic expansion valve (TXV) is modeled as an orifice through which the 

refrigerant expands from condensation to evaporation pressure. The flow through this 

component is given by Eqn. (14). 

 

 ̇        √      (14) 
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Where kv depends on the valve aperture and on its value when the valve is fully open, and 

the parameter A0 is the ‘vena contracta’ area. Generally, TXV manufacturer data are in 

terms of the refrigeration capacity or the catalog mass flow rate based on the valve fully 

opened parameters (Eqn. 15). 

 

√      
 ̇                 

√    
 (15) 

 

Based on experimental data for R134a and R1234yf, a general correlation for √      is 

expressed as indicated in Eqn. (16). 

 

√                 (16) 

 

Where C1 and C2 are 4.857 x10-8 m
2
 C

-1
 and 2.4431x10

-6
 m

2
 respectively. 

 

Under operation, the expansion valve is partially open so that the actual mass flow rate is a 

fraction of the maximum value. This condition must be introduced in the model. It is 

known that the refrigerant mass flow rate depends both on the actual superheating degree at 

the outlet of the evaporator, GR, and on the static superheating degree, GE, which is a 

constant value of 5 K. Also, GRmax are obtained from manufacturer data. 

 

 ̇     ̇                
     

        
 (17) 

 

3.3 Heat exchangers modeling 

 

The condenser and the evaporator are the components of the refrigeration system which 

have more influence in the thermal performance of the system, besides they have common 

characteristics. The following simplifications in the analysis are considered: (i) physical 

properties for refrigerant, secondary fluid and pipe wall are uniform in the transversal 

section of heat exchangers, (ii) heat exchangers are insulated, (iii) axial heat conduction in 

the pipes is neglected, and (iv) potential energy variations are also neglected. 

 

For modeling, the evaporator and condenser were divided into zones that correspond to 

each state of the refrigerant. As a result, the evaporator was divided into two sections 

corresponding to refrigerant evaporation and superheating zones and the condenser has 

three zones, for refrigerant de-superheating, condensing and sub-cooling. Both heat 

exchangers are considered as two passes inside tubes heat exchangers. The ε-NTU method 

is used for modeling each zone. Therefore, three balance equations are used for each zone: 

an equation for energy balance (Eqn. 18), an equation applying the ε-NTU method (Eqn. 

19) and an estimation of the wall temperature for each heat transfer area (Eqn. 20). For the 

completion of the evaporator modeling, the thermostatic expansion valve model is included 

as closing equation due to its influence on the refrigerant temperature at the evaporator 

outlet. 

 

Then, the inputs are reduced to the determination of the flow rate and inlet temperature for 

refrigerant and secondary fluid as well as the geometrical characteristics for condenser and 
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evaporator (total heat transfer area). Figure 4 and 5 show the modeling process for 

condenser and evaporator, respectively. Thus, the primary variables to determine of the 

equation system are the exit and wall temperatures and the heat transfer area in each zone 

and the secondary ones are the condensing/evaporating pressure, outlet enthalpy, the 

condensing/cooling capacity, effectiveness, among other parameters.  

 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 
Figure 4. Condenser modeling strategy. 
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Figure 5. Evaporator modeling strategy. 

 

   , , sec sec ,sec ,sec ,sec 0ref o zone i zone p i om h h V C T T     (18) 

   , , min ,sec , 0ref o zone i zone zone i i zonem h h C T T     (19) 

, , , ,

, , 0
2 2

i shell o shell i tube o tube

o o w zone i i w zone

T T T T
A T A T 
        

         
      

 (20) 

 

The heat exchanger effectiveness is estimated using Equations (21) and (22). 

 

 1 exp if  0zone zone rNTU C      (21) 
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



    
  

      
    

  

 (22) 

 

The effectiveness estimated with Eqn. (21) is for two-phase flow condition (boiling or 

condensing). On the other hand, for the heat transfer between two streams with no phase 

change, the effectiveness of the zone is estimated using Eqn. (22). The NTU parameter is 

defined as shown in Eqn. (23). 

 

min,

zone zone
zone

zone

U A
NTU

C
  (23) 

 

The overall heat transfer coefficient is calculated using Equation (24) which includes the 

thermal resistance associated to the fouling on the shell side in evaporator and that on tubes 

in condenser, Ro,e, Ri,c, respectively. The fouling value for evaporator is 0.000086 m
2
 K W

-1
 

for water/propylene-glycol brine containing below 40% of propylene-glycol according to 

the manufacturer data, and for condenser is 0.00062 m
2
 K W

-1 
considering water flowing 

inside the tubes. 

 
1

, ,

,

ln
1 1

2

o
o

io o
zone o e d i

i zone i i o

d
d

dd d
U R R

d d k 



  
  
                 

     
  

 (24) 

 

3.3.1 Heat transfer coefficients 

 

In order to calculate the heat transfer coefficients in the different flow regimes, several heat 

transfer correlations are used for in-tube, shell side and two-phase flows in the model (see 

Table 7). For single phase at evaporator in micro-fin tube side, the Jensen and Vlakancic 

correlation [23] is used, and at condenser the Gnielinskis’ correlation [24] for smooth tubes 

is used, respectively. On the other hand, for two phase flow heat transfer, the Akhavan-

Behabadi et al. [25] and the Jakob [26] correlations are used for in-micro-fin tube flow 

boiling and shell side condensation, respectively. Finally, single phase heat transfer on the 

shell side is calculated using Zhukauskas’ correlation [27] for external forced convection on 

the array of tubes, where C and m coefficients, are estimated according to the Reynolds 

number. For two phase flow at evaporator, average heat transfer coefficient is estimated 

integrating the correlation between the vapor quality at the inlet and saturation quality for 

vapor. From the evaporator model analyzed in Mendoza-Miranda et al. [28], the best 

agreement with the experimental results resulted with the correlations aforementioned. The 

model output variables (evaporator temperatures, pressures and heat transfer) were within a 

±5% bandwidth error. 
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Table 7. Heat transfer correlations for in-tube, shell side and two-phase flows used in the 

model. 

Author 
Int/Ext 

flow 

Tube type 

and phase 
Correlation 

Jensen and 

Vlakancic 

Int Micro-fin 

tube single 

phase 
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 

                         

 

  

   
1 2 2 3

/ 2 Re 1000 Pr
Nu

1 12.7 / 2 Pr 1
s

f

f




 

 

 
2

1.58ln Re 3.28f


   
 

Gnielinski int Smooth tube 

single phase 
  

   
1 2 2 3

/ 2 Re 1000 Pr

1 12.7 / 2 Pr 1

f

i

i

kf

df


  
  

   
 

 
2

1.58ln Re 3.28f


     

Zhukauskas Ext. Smooth 

tubes bank 

single phase 

1 4

0.36

1 ,max

Pr
Re Pr

Pr


   
    

   

fm

o D

w o

k
C

d
 

 

Configuration ,ReD máx
 

1C  m  

Staggered 16 – 40 1.04 0.40 

Staggered 40 – 1000 0.71 0.50 

Staggered (   / 2T LS S ) 1000 – 2 x 105  
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0.35 /T LS S  0.60 

Staggered (   / 2T LS S ) 1000 – 2 x 105 0.40 0.60 
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Once the characterization for each component of the test bench is completed, the models of 

the components were coupled to build a single representation for the overall model of the 

test bench. Note that the nonlinear equations system is consistent according to the number 

of unknown variables and equations. 

 

 

4. SIMULATION PROCEDURE 
 

The models were written in a modular format using a specific routine for each of the 

component sub-models. The flowchart of the vapor compression model is presented in 

Figure 6. 

 

 
Figure 6. Variable speed liquid chiller modeling strategy. 
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The model needs initial guess values (arbitrarily chosen) for the calculation of the operating 

temperatures (such as evaporation, condensation and suction) to start the simulation. In the 

first step, the condensing and evaporating pressures are calculated, and then both 

temperatures and pressures are used in the compressor model to find the discharge 

temperature and mass flow rate. Using these values, the discharge line and condenser 

conditions are obtained. The condensing temperature is compared with the initial one and if 

the difference is greater than 1x10
-5

, the guessing condensing temperature is updated 

according to the governing equations and the process is repeated. Otherwise, if the 

difference is lower than 1x10
-5

, the evaporator model is solved and now the comparison is 

made with the evaporation and suction temperatures. When both differences are lower than 

1x10
-5

, the guess values of the parameters satisfy the established restrictions of 

convergence and the resulting values are considered accurate enough, and hence, they are 

taken as outputs of the model. 

 

 

5. RESULTS AND DISCUSSION 

 

5.1 MODEL VALIDATION 

 

Figures 7 – 10 show comparisons between measured and predicted data for the two tested 

refrigerants (R134a and R1234yf). Figure 7 highlights the measured mass flow rate and 

those calculated with the proposed volumetric efficiency correlation. It can be seen that the 

results highly agree, within ±5% of error bandwidth for both R134a and R1234yf. 

 

Figure 8 shows the measured operating pressures compared with those obtained using the 

model. It can be seen that all the results are within ±5% of the measured values. In the 

model, a good prediction of evaporating pressure is observed for both refrigerants. On the 

other hand, all the predicted condensing pressure data agree quite well with the tested data 

(Figure 8b). However, most of the deviations are slightly higher for R134a than those 

obtained for R1234yf, corresponding to low and high condensing pressures reaching up to 

±5% of error bandwidth. 

 

Figure 9 shows a comparison between the measured and predicted values for the cooling 

capacity, Qo, and the thermal load removed at condenser, Qk, are within an error bandwidth 

of ±5%. The values of the cooling capacity and the thermal load removed used are obtained 

from the refrigerant side measurements, which coincide with the values obtained from the 

brine side. Furthermore, predicted values of the compressor power consumption and COP, 

can be compared with those obtained with the experimental setup. In this case, as it can be 

observed from Figure 10, in most of experimental test the model error is also within ±5%. 

 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 
Figure 7.Validation of refrigerant mass flow rate. 

 

  
(a) (b) 

Figure 8.Validation of (a) evaporating pressure, (b) condensing pressure. 

 

  
(a) (b) 

Figure 9.Validation of (a) cooling capacity, (b) condenser capacity. 
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(a) (b) 

 

Figure 10. Validation of (a) power consumption (b) coefficient of performance, COP. 

 

5.2 Energy performance evaluation 

 

The described model is now applied to a large set of input values combinations to observe 

the system efficiency behavior when the main operating conditions are varied using R134a 

and R1234yf. This section summarizes the results obtained using the proposed model to 

simulate a variable speed vapor compression chiller performance. 

 

Firstly, it the influence of the main operating variables in COP is studied. The volumetric 

flows and temperatures at condenser and micro-fin tubes evaporator influence on the global 

coefficient of performance (COP) are presented in Figure 11. 

 

Figures 11a and 11b show the influence on COP of the condenser secondary fluid varying 

the volumetric flow and the temperature. It can be observed that COP strongly decreases 

when the temperature increases. For instance, at 575 rpm, the COP increases about 13% 

when volumetric flow increases from 1 to 2 m
3
 h

-1
 using R134a and about 19% using 

R1234yf (Figure 11a). In the same way, if the secondary fluid inlet temperature at 

condenser varies, COP shows an approximate decrease of 48% using R134a; meanwhile for 

R1234yf the COP decreases about 52%. On the other hand, maintaining the same operating 

conditions for a compressor speed of 400 rpm, the COP decreases between 3 and 9% when 

R134a is replaced by R1234yf under low compressor speed (400 rpm), meanwhile if the 

compressor speed is raised to 575 rpm, the COP shows a decrease of 5 to 8% replacing 

R134a using R1234yf.  

 

The decrease in the COP is affected by a rise in the pressure ratio (the temperature of 

condensation increases), producing major power consumption, lower compressor 

efficiencies, and a decrease in the cooling capacity due to the higher quality of the 

refrigerant at the evaporator inlet. On the other hand, the volumetric flow of secondary fluid 

causes an increase of COP due to the increase in condenser sub-cooling for refrigerant, 

therefore, the quality at the inlet of evaporator decreases and then, the cooling capacity 

increase, taking into account that the changes in pressure and power consumption are not 
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significant. Thus, the inlet temperature has a major influence in the COP than the secondary 

volumetric flow at condenser. 

 

When the volumetric flow varies at evaporator (Figure 11c), the brine volumetric flow rate 

has a slightly more influence on COP than water volumetric flow rate in the studied range 

for these variables. Thus, using R134a, a rotation speed of 575 rpm and increasing the brine 

volumetric flow at evaporator from 0.6 m
3
 h

-1
 to 1.2 m

3
 h

-1
; it is observed a COP increase of 

40%. In the other hand, for the same operating conditions but using R1234yf, COP 

increases 33%. The COP decreases about 4.6% at low compressor rotation speed and up to 

9.5% at high values when R1234yf is used in the liquid chiller. The increase in the COP 

with the secondary fluid volumetric flow rate at evaporator is due by the adjustment in the 

cooling capacity demand causing an increase in the evaporating pressure, and hence, the 

power consumption decreases by the lower pressure ratio at compressor. 

 

The influence of brine temperature on the COP is studied in Figure 11d. For R134a, the 

COP increases about 50% when the brine temperature increases from 270 to 295 K. In the 

same way, for R1234yf and the same operating conditions, COP increases about 63%. It is 

observed that the COP varies significantly with the brine inlet temperature. Replacing 

R134a, the observed decrease in COP lies between 5.7 and 7.8% at low compressor rotation 

speed and when it is 575 rpm, COP decreases between 9.1 and 11.8%. Note that for high 

brine temperatures R1234yf tend to approach R134a COP. The effect of the secondary fluid 

temperature has the opposite effect observed for the condenser, that is, there is a decrease in 

the pressure ratio and power consumption.  

 

  

(a) (b) 
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(c) (d) 

 

Figure 11. COP vs operating conditions at condenser and evaporator at different 

compressor rotation speed using R134a and R1234yf, varying (a) volumetric flow rate at 

condenser, (b) water temperature at condenser inlet, (c) brine volumetric flow at 

evaporator, (d) brine temperature at the inlet of evaporator. 

 

 

Finally, Figure 12 shows the behavior of the COP when the compressor rotation speed is 

varied. Analyzing the compressor rotation speed, COP decrease at high compressor rotation 

speed. For the same system and using R1234yf, it is observed a decrease of COP between 4 

to 11% when the compressor rotation speed varies and comparing the same operating 

conditions when R134a is used. The decrease in COP when the rotation speed increases is 

due to the direct relation between refrigerant mass flow rate and compressor suction and 

discharge pressure drops that causes a reduction in the compressor efficiencies. 

 

 

 

Figure 12. COP vs compressor rotation speed. 
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From Figures 11 and 12, it can be seen that the best conditions for R134a replacement 

using R1234yf is at higher secondary fluid evaporator inlet temperature and lower 

rotational speed. At these conditions, the R1234yf power consumption increase compared 

to that of R134a is reduced and COP of both fluids can be considered comparable. 

Additionally, R1234yf thermodynamic properties show more similarity to R134a at high 

temperatures or pressures. 

 

5.3 Environmental impact using TEWI analysis 

 

The total equivalent warming impact (TEWI) was developed as a measure of the direct and 

indirect global warming impacts of the refrigerant losses to the atmosphere and the CO2 

emissions from energy source to generate power to run the vapor compression system. 

Maykot et al. [29] defined TEWI in equivalent of kg·CO2 as shown in Equation (15). 

 

 1TEWI GWP L n GWP m n E            (15) 

 

Equation (15) considers system refrigerant leakages, recuperation losses and energy 

consumption. Detailed information about these parameters can be found in Makhnatch and 

Khodabandeh [30]. For the environmental evaluation of the liquid chiller, Table 8 

summarizes two different operating conditions and the amount of energy consumption of 

both R134a and R1234yf for the same secondary fluid conditions. The emission factor 

relationship between electricity generation and CO2 production vary significantly, 

depending on the approach to be followed. Here, the average emission factor is taken from 

Maykot et al. [29], who provides several primary energy sources based on a Life Cycle 

approach. These values were used by these authors to evaluate TEWI analysis for 

refrigerant replacement in household and commercial applications for different locations. 

 

Figure 13 shows the resulting TEWI for both refrigerants using different energy sources in 

tons of equivalent CO2 (t CO2-eq.). As can be appreciated in Figure 13a, the TEWI for 

R1234yf is 3.5% lower than R134a due to almost negligible direct emissions for R1234yf 

(GWP value close to the unity). However, the resulting TEWI, when only considering GHG 

emission by energy consumption, for this alternative was approximately 2% higher than 

R134a, and there are no environmental benefits without system modifications in this case 

(Figure 13b). R1234yf is disadvantaged by a COP reduction at most conditions observed. 

Besides, warming impact due by the system operation could be reduced depending of the 

primary energy sources (Figure 13a) and R1234yf utilization is benefited from clean 

energies as nuclear or renewable technologies that reduces the significance of the energy 

performance of the refrigeration system. If the production of electricity using this kind of 

technologies is not possible, an improvement of the energy performance of actual system is 

required to improve the liquid chiller environmental effect (Figure 13b). This can be 

achieved considering, for instance, system modifications like the introduction of an internal 

heat exchanger, components specifically designed and sized for R1234yf operation, 

consideration of other compressor technologies, better super-heating and sub-cooling 

adjustment, or oversized condenser, among others. 
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Table 8. Refrigeration system operating conditions selected for the TEWI analysis. 

 
Case A 

Constant compressor speed 

Case B 

Variable speed 

Compressor rotation speed 

(rpm) 
575 400 575 

Refrigerant  R134a R1234yf R134a R1234yf R134a R1234yf 

Volumetric flow of water at 

condenser (m
3
 h

-1
) 

1.65 1.65 1.65 1.65 1.65 1.65 

Volumetric flow of brine at 

evaporator (m
3
 h

-1
) 

1.15 1.15 1.15 1.15 1.15 1.15 

Temperature of condensing 

agent (K) 
302 302 302 302 302 302 

Temperature of brine inlet to 

the evaporator (K) 
278 278 278 278 278 278 

Static superheating degree 

(K) 
5 5 5 5 5 5 

Power consumption (kW) 2.90 3.01 1.84 1.89 2.90 3.01 

Refrigerant charge (kg) 8 8 8 8 8 8 

Operation time (h/day) 6 6 2.5 2.5 6 6 

 

  
(a) (b) 

 

Figure 13. Total Equivalent Warming Impact using different energy sources considering (a) 

indirect and direct emissions, (b) only indirect emissions due to energy consumption. 

 

6. CONCLUSIONS 

 

In this paper, a model of a variable-speed liquid chiller has been proposed. This model is 

based on a steady state physical laws making use of low cost data, and employing the 

dimensionless analysis for refrigerant replacement, which can be easily obtained from an 

existing liquid chiller. The input parameters of the model are the inlet characteristics of the 

secondary fluids and the compressor rotation speed, giving as model outputs, the operating 

pressures, secondary fluids output variables and the system overall energy performance. 

The results for the studied experimental tests show that the proposed model is able to 

accurately predict the steady state system operation and energy performance with errors 

below 5% for R134a and R1234yf. 
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The model has been used to analyze the R134a and R1234yf system behavior in different 

operating conditions in order to be used for energy performance calculation by changing 

the operating parameters, such as compressor speed, secondary fluids input temperatures, 

and volumetric flow rates. The energetic comparison is performed on the basis of the COP 

obtaining that R1234yf reduces the COP of the refrigeration system from 2% to 11.3% 

compared to that obtained using R134a and depending on the input variables that are 

modified. 

 

For the range of values of the given variables, the model results show that the main driving 

magnitudes are compressor speed and secondary fluids inlet temperatures, whereas brine 

and water volumetric flow rates have a lower influence on global system efficiency, but 

they must also be tuned to reduce energy consumption. 

 

Finally, direct emissions are negligible for R1234yf due to its GWP value close the unity; 

its resulting TEWI only caused by energy consumption was approximately 2% higher than 

that of R134a and there are no environmental benefits without system modifications, thus, 

system modifications are required to improve the liquid chiller environmental effect. 
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