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Abstract. Fuzzy-number-valued functions, that is, functions defined on a topo-
logical space taking values in the space of fuzzy numbers, play a central role in the
development of Fuzzy Analysis. In this paper we study completeness, metrizability
and compactness of spaces of continuous fuzzy-number-valued functions.

1. Introduction

Fuzzy Analysis is based on the notion of fuzzy number in the same way as Clas-
sical Analysis is based on the concept of real number. From 1986, the so-called
representation theorem of real fuzzy numbers (see [19]) eased considerably the de-
velopment of the theory concerning fuzzy-number-valued functions, that is, functions
defined on a topological space taking values in E1, the space of fuzzy numbers. Such
functions, as real-valued functions do in the classical setting, play a central role in
Fuzzy Analysis. Namely, fuzzy-number-valued functions have become the main tool
in several fuzzy contexts, such as fuzzy differential equations ([6]), fuzzy integrals
([37],[41]), fixed point theory ([25, 30, 40]) and fuzzy optimization ([20],[38], [39]).

In this paper we address three topological aspects of the spaces of continu-
ous fuzzy-number-valued functions when endowed with the most usual topologies.
Namely we will study completeness, metrizability and compactness in this context.
Only the latter concept, which is clearly related to Ascoli theorem, seems to have
received certain attention in fuzzy literature (see, e.g., [33], [14]). The prototype
of such result in Classical Analysis was proved by Ascoli in [5] and, independently,
by Arzelà, who acknowledged Ascoli’s priority in [4]. Nowadays, Arzelà-Ascoli type
theorems encompass the study of the (relative) compacity of a family of functions
endowed with several topologies and their literature is extense. The applications of
these results are numerous in different settings; namely, in the context of differential
equations, in finding extremal curves, in most criteria for the consistency of systems
involving inequalities, etc.

In [14, Theorem 4.2], Fang and Xue set up a fuzzy version of Ascoli theorem
which characterized compact subsets of the space C(K, (E1, d∞)) of all fuzzy-valued
continuous functions on a compact metric space K endowed with the topology of the
uniform convergence. Unfortunately this version is not correct since, as pointed out
in [15], it is based on a wrong characterization ([14, Theorem 2.4]) of the compact
subsets of (E1, d∞). In the last section of this paper we fix [14, Theorem 4.2] by
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extending the fuzzy Ascoli theorem to a broader framework. The key concepts
in our approach are bounded subsets of a topological space and αf -spaces. Thus,
previously, in Section 3 we obtain a fuzzy characterization of bounded subsets and
αf -spaces, and point out how such spaces appear in a natural way when considering
the completeness of the spaces C(X, (E1, d∞)), X a topological space, equipped with
the topology τα of uniform convergence on the (bounded) members of a cover α of X.
In Section 4, we establish an explicit criterion for Cτα(X, (E1, d∞)) to be metrizable.
Finally, as mentioned above, in Section 5 we address the fuzzy Ascoli theorem (and
also the weak fuzzy Ascoli theorem) for spaces C(X, (E1, d∞)). As a consequence of
our results we show that C(X, (E1, d∞)) endowed with the topology of the uniform
convergence satisfies the fuzzy Ascoli theorem if and only if X is pseudocompact.

2. Preliminaries and notation

Given a fuzzy subset u on the real numbers R, the λ-level set of u is defined by
[u]λ = {x ∈ R : u(x) ≥ λ } for λ ∈ (0, 1] and [u]0 = clR {x ∈ R : u(x) > 0 } for
λ = 0.

Now, the fuzzy number space E1 is the set of such u satisfying the following
properties:

(1) u is normal, i.e., there exists an x0 ∈ R with u(x0) = 1.
(2) u is convex, i.e., u(λx+ (1− λ)y) ≥ min {u(x), u(y)} for all x, y ∈ R, λ ∈ [0, 1].
(3) u(x) is upper-semicontinuous.
(4) [u]0 is a compact set in R.

Notice that, if u ∈ E1, then the λ-level set [u]λ of u is a compact interval for each
λ ∈ [0, 1]. We denote [u]λ by [u−(λ), u+(λ)]. Every real number r can be consider a
fuzzy number: indeed, if r can be identified with the fuzzy number r̃ defined by

r̃ =

{
1 if t = r,

0 if t 6= r.

From now on, we do not distinguish between r and r̃. The following two results
are useful in the theory of fuzzy numbers.

THEOREM 2.1. [19] Let u ∈ E1 and [u]λ = [u−(λ), u+(λ)], λ ∈ [0, 1]. Then the pair
of functions u−(λ) and u+(λ) has the following properties:

(i) u−(λ) is a bounded left continuous nondecreasing function on (0, 1].
(ii) u+(λ) is a bounded left continuous nonincreasing function on (0, 1].

(iii) u−(λ) and u+(λ) are right continuous at λ = 0.
(iv) u−(1) ≤ u+(1).

Conversely, if the pair of functions α(λ) and β(λ) satisfies the above conditions
(i)-(iv), then there exists a unique u ∈ E1 such that [u]λ = [α(λ), β(λ)] for each
λ ∈ [0, 1].

THEOREM 2.2. [19, 12] For u, v ∈ E1, define

d∞(u, v) = sup
λ∈[0,1]

max
{
|u−(λ)− v−(λ)|, |u+(λ)− v+(λ)|

}
.
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Then d∞ is a metric on E1 called the supremum metric on E1, and (E1, d∞) is a
complete metric space.

Notice that, by the definition of d∞, the reals R endowed with the euclidean
topology can be topologically identified with the closed subspace R̃ = { x̃ : x ∈ R }
of (E1, d∞) where x̃+(λ) = x̃−(λ) = x for all λ ∈ [0, 1]. As a metric space, we will
always consider E1 equipped with the metric d∞.

Throughout this paper, X will stand for a Tychonoff space, that is, a completely
regular Hausdorff space. A subset B of a space X is said to be bounded (in X) if
every real-valued continuous function on X is bounded on B or, equivalently, every
locally finite sequence {Un : n ∈ B} of pairwise disjoint open sets meeting B is finite.
Spaces which are bounded in themselves are called pseudocompact. Given a space
X, the family of all bounded subsets of X is denoted by β. If α is a cover of a space
X, we say that a function f from a space X into a space Y is αf -continuous if the
restriction of f to each member of α can be extended to a continuous function on
the whole X. A space X is called an αf -space if every real-valued αf -continuous
function on X is continuous.

For α ⊆ β, locally pseudocompact spaces and kr-spaces (spaces X where a real-
valued function is continuous whenever its restriction to each compact subset of X is
continuous) are examples of αf -spaces. Thus, locally compact spaces, first countable
spaces (in particular, metrizable spaces) are αf -spaces too. The theory of z-closed
projections [27], the distribution of the functor of the Dieudonné completion [9, 31],
compactness of functions spaces in the topology of the pointwise convergence [2],
and locally pseudocompact groups [34] are some of the frameworks where αf -spaces
arise in a natural way. We encourage the reader unfamiliar with the techniques of
the theory of bounded subsets to consult [35].

Let F (X,E1) denote the set of all functions from a set X into E1. For a cover,
say α, of X, we denote by τα the topology of uniform convergence on members of α.
It is a well-known fact that ((F (X,E1), τα) is a Tychonoff space. Indeed, the family
of all subsets of F (X,E1)× F (X,E1) of the form

U(A, ε) =

{
(f, g) ∈ F (X,E1)× (F (X,E1) : sup

a∈A
d∞(f(a), g(a)) < ε

}
,

for all A ∈ α and all ε > 0, is a subbase for a (Hausdorff) uniformity Uα on F (X,E1)
which induces the topology τα. In the sequel we will use the well-known fact that
every uniformity with a countable base is metrizable (see, e.g., [13, Theorem 8.1.21]).

Our terminology and notation are standard. For instance, N stands for the set of
natural numbers and f |A means the restriction of a function f to a subset A. For
a subset F (X,E1) of F (X,E1), the space (F (X,E1), τα) is denoted by Fτα(X,E1).
The symbol C(X,E1) (respectively, C(X,R)) stands for the set of all continuous
functions from X into (E1, d∞), that is, the set of all fuzzy-number-valued continuous
functions on X (respectively, the set of all real-valued continuous functions on X).
Notice that we obtain τp, the topology of the pointwise convergence, by taking α the
cover of X consisting of its points (equivalently, of all its finite subsets). The paper
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[23] covers a wide variety of topics about C(X,E1) endowed with the topology τp. If
α = {X}, then we obtain the topology, τu, of uniform convergence on X. The cover
k of all compact subsets of a topological space X induces the so-called compact-
open topology on C(X,E1) denoted by τco. It is worth noting that the pointwise
convergence topology on F (X,E1) coincides with the product topology on (E1)X .
This equivalent to consider τp on C(X,E1) when X is equipped with the discrete
topology. For notions which are not explicitly defined here, the reader might consult
[13].

3. Completeness of Cτα(X,E1)

In the first part of this section we shall show that the notions of bounded subset
and of αf -space (α ⊆ β) can be characterized by means of fuzzy-number-valued con-
tinuous functions. In the second part we shall show that αf -spaces occur naturally
when we study completeness of Cτα(X,E1). A similar claim can be made about the
metrizability of Cτα(X,E1) as we will see in the next section.

A subset A of a metric space (X, d) is precompact if for every ε > 0, there is
a finite subset {x1, x2, . . . , xn } such that A ⊆

⋃n
i=1Bε(xi) where, as usual, Bε(xi)

stands for the ball of center xi and radius ε. Recall that a metric space X is compact
if and only if X is precompact and complete. Since boundedness is equivalent to
precompactness for subsets of R, we can replace bounded by precompact in the
definition of bounded subset. In this direction, we have

THEOREM 3.1. For a subset B of a space X, the following are equivalent:

(1) B is bounded in X.
(2) For each continuous function f : X → E1, f(B) is precompact.

Proof. (2)=⇒(1) follows from the fact that precompact subsets of R are precompact
in E1. In order to prove (1)=⇒(2), notice that, being E1 a complete metric space
of non-measurable cardinality, it is realcompact. Thus, by [18, Theorem 11.8], E1

is homeomorphic to a closed subset T of a product, RS, of real lines. Now, if
f : X → E1 is a continuous function, we can consider the bounded subset (πs ◦
f)(B) for all s ∈ S. Then clE1f(B) = clTf(B) is a closed subset of the compact
set

∏
s∈S clR (πs ◦ f)) (B) and, consequently, clE1f(B) is compact. Thus, f(B) is

precompact. �

THEOREM 3.2. If α ⊆ β, then the following are equivalent:

(1) X is an αf -space.
(2) Every αf -continuous function from X into E1 is continuous.

Proof. Since E1 is a Tychonoff space, (1)=⇒(2) is a consequence of Lemma 8 in
[7]. Thus, we only need to prove (2)=⇒(1). To this end, it suffices to notice that if
f : X → R is an αf -continuous function, then f can be regarded as an αf -continuous
function from X into E1 because R is a (closed) subspace of E1. �

Let us now move on to the study of completeness of Cτα(X,E1). We say that a
space X is topologically complete if X is homeomorphic to a closed subspace of a
product of metrizable spaces. It is known that, for every space X, there exists a
unique, up to homeomorphisms that leave X pointwise fixed, topologically complete



COMPLETENESS, METRIZABILITY AND COMPACTNESS IN Cτα(X,E1) 5

space γX, in which X is dense and every continuous function f from X into a
topologically complete space M can be extended to a continuous function fγ on
γX. Such γX is called the Dieudonné topological completion of X. For these and
related results, the reader might consult [18]. Bounded subsets can be characterized
as subsets whose closure in γX is compact (see [18, Problem 8E.] or [3, Proposition
5.1]). The following lemma is straightforward. We write τ1 ≥ τ2, if the topology τ1
is finer than the topology τ2.

LEMMA 3.3. Let X be a space. If τ ≥ τp, then Cτ (X,R) is topologically embedded
as a closed subspace of Cτ (X,E1).

It is a well-known fact that, for an arbitrary space X, Cτu(X, (M,d)) is complete
whenever the metric space (M,d) is (see, for example, [13, Exercise 8.3.C.(a)]).
Thus, we have

THEOREM 3.4. (Compare with [14, Theorem 3.5]) For an arbitrary space X,
Cτu(X,E1) is a complete metric space.

Proof. The space (E1, d∞) being complete [19], completeness follows from [13, Ex-
ercise 8.3.C.(a)]. On the other hand, notice that the entourage of the diagonal{

(f, g) ∈ C(X,E1)× (C(X,E1) : sup
x∈X

d∞(f(x), g(x)) < 1/n

}
for all n ∈ N, forms a countable subbase for the uniformity of Cτu(X,E1). Thus,
Cτu(X,E1) is metrizable by [13, Theorem 8.1.21]. �

Now we take up a result which plays a pivotal role in the characterization of the
completeness of Cτα(X,E1). Recall that there exists an isometric embedding j of
(E1, d∞) into a Banach space (E, ‖ . ‖) which preserves convex combinations, that is,
j satisfies the following two properties: (1) d∞(u, v) = ‖j(u)−j(v)‖ for all u, v ∈ E1,
and (2) j(λu + (1 − λ)v) = λj(u) + (1 − λ)j(v) for all u, v ∈ E1 and all λ ∈ [0, 1]
(see [11] for the details). Moreover, j(E1) is a closed cone of (E, ‖ . ‖) with vertex
0. Recall also that a subset A of a space X is called C-embedded in X if every
real-valued continuous function on A extends continuously to the whole X.

THEOREM 3.5. For a subset A of a space X, the following assertions are equivalent:

(1) A is C-embedded in X.
(2) Every continuous fuzzy-number-valued function f on A with separable range has

a continuous extension F to the whole X; furthermore F (X) is included in the
closed convex hull of f(A).

Proof. (2)=⇒(1) can be easily verified since R is a closed convex subset of E1. In
order to see (1)=⇒(2), let j be the above isometric embedding of (E1, d∞) into a
Banach space (E, ‖ . ‖) . From now on, we identify E1 with j(E1). Thus, we can
consider f as a function from A to the closed (so complete) convex hull conv(f(A))
of f(A) in (E, ‖ . ‖). Being E1 a (complete) cone, we have that conv(f(A)) ⊂
E1. Since A is C-embedded in X, by Theorem 2.4 of [17] and Theorem 4.7 of
[36], every continuous pseudometric d on A which induces a separable topology
extends continuously to a continuous pseudometric on X. Hence we can apply
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Theorem 2.3 of [1] to conclude that f has a continuous extension F to X with
F (X) ⊂ conv(f(A)). �

REMARK 3.6. An argument similar to the one used in the previous theorem enables
us to characterize C?-embedded subsets A (that is, every bounded real-valued con-
tinuous function on A extends to a continuous function on X). Indeed, we can apply
Theorem 2.9 of [1] to obtain: For a subset A of a space X, the following assertions
are equivalent: (1) A is C?-embedded in X, and (2) every continuous fuzzy-number-
valued function f on A with precompact range has a continuous extension F to the
whole X; furthermore F (X) is included in the closed convex hull of f(A).

The relationship between αf -spaces and the completeness of Cτα(X,E1) is given
by the next result. Let us first recall that, given a space X, a family α ⊆ β is a
bornology if it satisfies the following two conditions:

(i) α is a cover of X; and
(ii) if A and B belong to α, then there exists C ∈ α such that both A and B are

included in C.

Indeed, any cover α of X generetes a bornology α̂ by taking finite unions of elements
of α and both uniformities coincide.

THEOREM 3.7. Assume α ⊆ β is a bornology in a space X. Then Cτα(X,E1) is
complete if and only if X is an αf -space.

Proof. Assume thatX is an αf -space and consider a Cauchy net {fi}i∈I in Cτα(X,E1).
By [19], (E1, d∞) is a complete metric space and consequently each element fi has
a continuous extension, say fγi , to γX. By Theorem 3.4, for each subset B in α,
the net {fγi |clγXB}i∈I converges uniformly to a function fB ∈ C(clγXB,E1). Let g
be the function from X into (E1, d∞) defined by the rule g|B = fB whenever B is
a bounded subset of X in α. Since α is a bornology, a standard argument shows
that g is well defined. Moreover, since each compact subset of a topological space
is C-embedded, by Theorem 3.5 the restriction of g to each subset B ∈ α can be
continuously extended to γX. Thus, g is αf -continuous. Since X is an αf -space, g
is actually continuous. One can easily verify that g is the limit of the net {fi}i∈I in
Cτα(X,E1). Thus, the function space Cτα(X,E1) is complete.

Suppose now that Cτα(X,E1) is complete. Let f be a αf -continuous fuzzy-number-
valued function on X and consider the set {B ⊂ X : B ∈ α } directed by inclusion.
Define now a net {fB}B∈α where fB is the continuous extension of f |B to X. It
is clear that the net {fB}B∈α converges to f in Fτα(X,E1). The completeness of
Cτα(X,E1) implies that f is a continuous function. Thus, X is an αf -space. �

COROLLARY 3.8. (1) Cτβ(X,E1) is complete if and only if X is a bf -space.
(2) Cτco(X,E1) is complete if and only if X is a kr-space.
(3) Cτp(X,E1) is complete if and only if X is discrete.

4. Metrizability of Cτα(X,E1)

We now address the question of metrizability of the space Cτα(X,E1). The fol-
lowing is an explicit criterion for Cτα(X,E1) to be metrizable. Let α ⊆ β be a



COMPLETENESS, METRIZABILITY AND COMPACTNESS IN Cτα(X,E1) 7

cover of a space X. We say that X is hemi-α-bounded if there is a countable fam-
ily A = {An : n ∈ N} ⊂ α such that X =

⋃
n∈NAn, and any A ∈ α is a subset

of some finite union An1 ∪ An2 ∪ · · ·Ank of elements of A . Hemi-β-bounded (re-
spectively, hemi-k-bounded) spaces are usually called hemibounded (respectively,
hemicompact) spaces.

THEOREM 4.1. Let α be a cover of a space X. If every element of α is a closed
set, then the following conditions are equivalent:

(1) X is a hemi-α-bounded space.
(2) Cτα(X,E1) is metrizable.
(3) Cτα(X,E1) is first countable.
(4) Cτα(X,E1) has a countable base at the zero function.

Proof. (1)=⇒(2) Let {An : n ∈ N} ⊂ α be a countably family which witnesses hemi-
α-boundedness of X. It is an easy matter to check that

B = {U(An, 1/k) : n, k ∈ N}
is a countable subbase for the uniformity Uα. The result now follows from [13,
Theorem 8.1.21].

(2)=⇒(3) and (3)=⇒(4) are trivial. To see (4)=⇒(1), set

V (A, ε) :=

{
f ∈ C(X,E1) : sup

x∈A
d∞(0, f(x)) < ε

}
with A ∈ α and ε > 0, and consider a countable family B = {(V (An, εn) : n ∈ N}
such that finite intersections of elements of B form a base at 0.

Fix now A ∈ α. Given a neighborhood V (A, 1/2) of 0, there exist

{V (An1 , εn1), V (An2 , εn2), . . . , V (Ank , εnk)}
such that

V (An1 , εn1) ∩ V (An2 , εn2) ∩ . . . ∩ V (Ank) ⊂ V (A, 1/2).

We claim that A ⊆ An1 ∪ An2 ∪ · · · ∪ Ank . Indeed, suppose, contrary to what
we claim, that there is x ∈ A \ (An1 ∪ An2 ∪ · · · ∪ Ank). The set An1 ∪ An2 ∪ Ank
being closed, there is f ∈ C(X,E1) such that f(x) = 1 and f |An1∪An2∪Ank = 0 (see
Proposition 3.5 of [23]). Then f ∈ V (An1 , εn1) ∩ V (An2 , εn2) ∩ . . . ∩ V (Ank) but
f /∈ V (A, 1/2). This contradiction yields the claim.

In addition, for any x ∈ X, there exists A ∈ α containing x. Hence the previous ar-
gument proves that there are An1 , An2 , · · · , Ank with A ⊂ An1∪An2∪· · ·∪Ank . Thus,
the family {An : n ∈ N} is a cover of X. We have just showed that {An : n ∈ N}
witnesses the hemi-α-boundedness of X. �

REMARK 4.2. (1) The condition that the elements of the cover α are closed is not
as restrictive as it may seem. Indeed, if α ⊆ β is a cover of X, then we can consider
the cover α̂ ⊆ β defined as

α̂ = {clXA : A ∈ α} .
Then the function spaces Cτα(X,E1) and Cτα̂(X,E1) are homeomorphic. An even
more strong conclusion is possible: actually, they are uniformly isomorphic. The
proof can be left to the reader as an easy exercise.
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(2) For the function space Cτα(X,R), the equivalence of (2) and (4) is a consequence
of the well-known Birkhoff-Kakutani theorem which states that a topological group
G is metrizable if and only if it is Hausdorff and first countable. However, it is worth
noting that Cτα(X,E1) fails to be a topological group so that Birkhoff-Kakutani
theorem does not apply in this context.

COROLLARY 4.3. (1) Cτβ(X,E1) is metrizable if and only if X is hemibounded.
(2) Cτco(X,E1) is metrizable if and only if X is hemicompact.
(3) Cτp(X,E1) is metrizable if and only if X is countable.

5. αf -spaces and the Ascoli theorem

Given a metric or a uniform space, Y , an Ascoli type theorem characterizes com-
pactness in a function space C(X, Y ) in terms of equicontinuity plus natural condi-
tions. For example, the basic Ascoli theorem deals with compactness in the function
space C([0, 1]) of all real-valued continuous functions on the unit interval endowed
with the uniform topology. It states that a subset F of C([0, 1]) is compact if,
and only if, F is closed, bounded, and equicontinuous. Since the classical Heine-
Borel theorem states that a subset of Rn is compact if, and only if, it is closed
and bounded, the basic Ascoli theorem can be viewed as fixing the problems of
Heine–Borel theorem in C([0, 1]). Recall that, in contrast to Heine–Borel theorem,
in infinite-dimensional normed vector spaces, closed and bounded sets need not be
compact and closed balls are never compact.

In the realm of function spaces of fuzzy-valued functions, we study Ascoli theorem
in the spirit commented in the previous paragraph, that is, by means of equicon-
tinuity plus extra conditions. The key idea is to analyze the relationship between
αf -spaces and compactness in Cτα(X,E1). As a fairly direct consequence of our
results, we characterize when Cτu(X,E1) satisfies the fuzzy Ascoli theorem. Our
approach follows the link between the exponential map and the Ascoli theorems as
developed in [28].

First, some concepts are in order. Given a space X and a metric space (Y, d),
a family { fi }i∈I ⊂ F (X, Y ) is called equicontinuous if for each x ∈ X and each
ε > 0, there is a neighborhood V of x such that d(fi(y), fi(x)) < ε for all y ∈ V
and all i ∈ I. In the case when X is also a metric space, say (X, d′), the family
{ fi }i∈I ⊂ F (X, Y ) is said to be uniformly equicontinuous if for every ε > 0, there
is δ > 0 such that d(fi(y), fi(x)) < ε for all i ∈ I whenever d′(x, y) < δ. It is a
well-known fact that, for a compact metric space (X, d′), equicontinuity is equivalent
to uniform equicontinuity.

A subset U ⊂ E1 such that the families {u+(−) : u ∈ U } and {u−(−) : u ∈ U }
are uniformly equicontinuous on ]0, 1] is named ]0, 1]-uniformly equicontinuous.

The motivation for the results of this section is the following fuzzy version of the
classical Ascoli theorem stated by Fang and Xue.

THEOREM 5.1. ([14, Theorem 4.2]) If K is a compact metric space, then a closed
subset F of Cτu(K,E1) is compact if and only if the following conditions are satisfied:

(i) For each k ∈ K, the set { f(k) : f ∈ F } is d∞-bounded, that is, it is contained
in a ball of center 0 in the metric space (E1, d∞).
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(ii) F is equicontinuous on K.
(iii) For each k ∈ K, the set { f(k) : f ∈ F } is ]0, 1]-uniformly equicontinuous,

i.e., F is pointwise ]0, 1]-uniformly equicontinuous.

Unfortunately the above theorem in based on a wrong characterization ([14, The-
orem 2.4]) of the compact subsets of E1, as pointed out in [15]. To provide a right
characterization we need to introduce several concepts. Namely, given a function
f : [0, 1] → R, let f(λ0+) denote the limit of f when λ approaches λ0 from above
(right).

DEFINITION 5.2. Let { fi }i∈I be a family of functions defined from the unit interval
[0, 1] into the reals. Given λ0 ∈ [0, 1[ such that fi(λ0+) exists for all i ∈ I, the family
{ fi }i∈I is said to be almost-right-equicontinuous at λ0 if, for every ε > 0, there is
δ > 0 such that |fi(λ)− fi(λ0+)| < ε for all i ∈ I whenever λ ∈ ]λ0, λ0 + δ[.

Such a family of real-valued functions is said to be left-equicontinuous at a point
λ0 ∈ ]0, 1] if, for all ε > 0 and for all i ∈ I, there is δ > 0 such that |fi(λ)−fi(λ0)| < ε
whenever λ ∈ ]λ0 − δ, λ0]. The family {fi}i∈I is called left-equicontinuous (resp.
almost-right-equicontinuous) if it is left-equicontinuous (resp. almost-right-equicon-
tinuous) at every point of ]0, 1] (respectively, at every point of [0, 1[).

We say that a subset U ⊂ E1 is both-sided equicontinuous if both {u+(−) : u ∈ U }
and {u−(−) : u ∈ U } are almost-right-equicontinuous and left-equicontinuous.

DEFINITION 5.3. A subset F of F (X,E1) is said to be pointwise both-sided
equicontinuous if, for all x ∈ X, {f(x) : f ∈ F} is both-sided equicontinuous.

DEFINITION 5.4. A subset F of F (X,E1) is said to be pointwise d∞-bounded if,
for all x ∈ X, {f(x) : f ∈ F} is d∞-bounded in E1.

If τ is a topology on C(X,E1), then (X,E1, τ) is said to satisfy the weak fuzzy
Ascoli theorem if each τ -closed, pointwise d∞-bounded, equicontinuous, pointwise
both-sided equicontinuous subset of C(X,E1) is τ -compact. If also each τ -compact
subset is τ -closed, pointwise d∞-bounded, equicontinuous, and pointwise both-sided
equicontinuous, then (X,E1, τ) is said to satisfy the fuzzy Ascoli theorem.

The aim of this section is to establish fuzzy versions of the (weak) Ascoli theorem
for topologies of the uniform convergence on the members of a cover of a space X,
but first we need several previous results.

PROPOSITION 5.5. If U ⊂ E1 is both-sided equicontinuous, then so is clE1U .

Proof. Fix λ0 ∈ ]0, 1]. By hypothesis, given ε > 0, there is δ > 0 such that, for all
u ∈ U , |u+(λ)− u+(λ0)| < ε/3 whenever λ ∈ ]λ0 − δ, λ0]. Now, if v ∈ clE1U , we can
choose u ∈ U with

sup
λ∈]0,1]

∣∣v+(λ)− u+(λ)
∣∣ < ε.

Then, if λ ∈ ]λ0 − δ, λ0], we have∣∣v+(λ)− v+(λ0)
∣∣ ≤ ∣∣v+(λ)− u+(λ)

∣∣
+
∣∣u+(λ)− u+(λ0)

∣∣+
∣∣u+(λ0)− v+(λ0)

∣∣ < 7ε/3.
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Thus, { v+(−) : v ∈ clE1U } is left-equicontinuous at each λ0 ∈ ]0, 1]. Similar argu-
ments show that the family { v−(−) : v ∈ clE1U } is also left-equicontinuous at each
λ0 ∈ ]0, 1] and that both families are almost-right-equicontinuous. This completes
the proof. �

THEOREM 5.6. A subset F ⊆ (E1, d∞) is precompact if and only if the following
two conditions are satisfied:

(i) F is d∞-bounded , and
(ii) F is both-sided equicontinuous.

Proof. Suppose that F is precompact. Since (E1, d∞) is complete, clE1F is compact.
Hence, by [15, Theorem 3.3] (see also [16]), clE1F is d∞-bounded and, consequently,
so is F . Similarly, by [15, Theorem 3.3], condition (ii) is satisfied.

To see the converse notice that, being F d∞-bounded, then so is clE1F . In addition,
by Proposition 5.5, clE1F is both-sided equicontinuous. Now the result follows from
[15, Theorem 3.3]. �

THEOREM 5.7. For any space X, the τp-closure of a subset F of (E1)X is a compact
set if and only if the following two conditions are satisfied:

(1) F is pointwise d∞-bounded, and
(2) F is pointwise both-sided equicontinuous.

Proof. If F satisfies conditions (1) and (2), then so does clτpF ; indeed, condition
(1) is straightforward and condition (2) follows from Proposition 5.5. Hence we can
assume that F is τp-closed. Consider now F as a subset of∏

x∈X

clE1 {f(x) : f ∈ F} ⊂ (E1)X .

Then F is a τp-closed subset of
∏

x∈X clE1 {f(x) : f ∈ F} which is τp-compact since
each fiber is compact by Theorem 5.6. Thus, F is τp-compact.

If F ⊂ (E1)X is τp-compact, then, since the projection map πx : F → E1 defined,
for all x ∈ X, as πx(f) = f(x), is continuous, we infer that { f(x) : f ∈ F } is a
compact subset of E1. Now, in order to obtain the desired result, it suffices to apply
Theorem 5.6 for each x ∈ X. �

COROLLARY 5.8. For any space X and any cover α ⊆ β, the τα-closure of a subset
F of Cτα(X,E1) is a compact set if and only if the two conditions in Theorem 5.7
are satisfied.

Given three topological spaces X, Y, Z, the map µ : F (X×Y, Z)→ F (X,F (Y, Z))
defined by the relation µf(x)(y) = f(x, y) is called the exponential map. The re-
striction of this map to subspaces will also be denoted by µ. The following results
will be useful in the sequel. If α is a cover of Y and k is the cover of the compact
subsets of X, then k × α denotes the cover of X × Y ,

k × α = {A×B : A ∈ k and B ∈ α} .

THEOREM 5.9. [31, Proposition 2.2] If K is a compact space and Y is an αf -space,
then K × Y is a (k × α)f -space.
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THEOREM 5.10. Let K be a compact space. If Y is an αf -space (α ⊆ β), then

µ−1
(
C(K,Cα(Y,E1)

)
⊆ C(K × Y,E1).

Proof. By Theorem 5.9, it suffices to show that if f ∈ µ−1 (C(K,Cα(Y,E1)), then
f |K×A has a continuous extension to K × Y for all A ∈ α. For this, let g ∈
C(K,Cα(Y,E1)). Being E1 a complete metric space, there exists, for all x ∈ K, a
continuous extension g(x)µ of g(x) to the Dieudonné completion γY of Y .

Now, for each A ∈ α, consider the function gA from K to Cτu(clµYA,E1) defined
by the rule

gA(x) = g(x)µ|clY A, x ∈ K.
Since g is continuous, it is an easy matter to show that so is gA and, consequently,

µ−1(gA) ∈ C(K × clYA) for all A ∈ α. Being K × clYA compact, µ−1(gA) has a
continuous extension to K × γY for all A ∈ α. The result now follows from the fact
that µ−1(gA) and µ−1(g) coincide when restricted to K × A. �

THEOREM 5.11. Let K be a compact space. If X is an αf -space (α ⊆ β), then the
equality µ(C(K ×X,E1)) = C(K,Cτα(X,E1)) holds.

Proof. A particular case of [34, Theorem 3.2] implies that, if X is a bf -space, then
the equality µ(C(K ×X,E1)) = C(K,Cτβ(X,E1)) holds.

Next, the topology τα being coarser than the topology τβ, a consequence of the
above paragraph is the inclusion µ(C(K ×X,E1)) ⊆ C(K,Cτα(X,E1)).

Finally, the inclusion in Theorem 5.10 completes the proof.
�

We are now ready to characterize those (X,E1, τα) satisfying the fuzzy weak Ascoli
theorem. Let us recall that if α is a cover of X, then we have τα ≥ τ p.

THEOREM 5.12. Let X be a topological space. If α is a cover of X, then the
following are equivalent:

(1) α ⊆ β.
(2) For each (infinite) compact space K, the following inclusion holds:

µ(C(K ×X,E1)) ⊆ C(K,Cτα(X,E1)).

(3) (X,E1, τα) satisfies the weak fuzzy Ascoli theorem.

Proof. (1)=⇒(2) Let K be a compact space and consider a continuous fuzzy-number-
valued function f on K × X. Since E1 is a complete metric space, f admits a
continuous extension fγ to γ(K ×X) = K × γX (see [26, Theorem 5.1]). For each
B ∈ α, clγ(X)B is compact and by Theorem 5.11,

µ(fγ|K×clγ(X)B) ∈ C(K,Cτu(clγ(X)B,E1))

which yields µ(f) ∈ C(K,Cτα(X,E1)). Thus, (2) holds.

(2)=⇒(3) Let K be a τα-closed, d∞-bounded, equicontinuous, pointwise both-
sided equicontinuous subset of Cτα(X,E1). By Theorem 5.7, clτpK is compact.
Moreover, by [24, Theorem 7.14], it is also equicontinuous. Now, by [24, Theorem
7.15], the evaluation mapping
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e : clτpK ×X → E1

(f, x) → f(x)

is a continuous function. By condition (2), the function µ(e) : clτpK → Cτα(X,E1)
is continuous.

Notice that, since e is the evaluation mapping, µ(e) is the inclusion mapping.
Thus, clτpK is τα-compact. Taking into account that K is a τα-closed subset of
clτpK, we have that K is τα-compact.

(3)=⇒(1) Suppose there is B ∈ α which is not bounded. Hence we can find a
locally finite sequence {Un : n ∈ N} of pairwise disjoint open sets meeting B which
is not finite. Now choose a sequence {vn : n ∈ N} of elements of E1 such that
d∞(0, vn) > 1 for all n ∈ N. For each n ∈ N, fix xn ∈ Un ∩ B. By Proposition 3.5
of [23] there is a function fn ∈ C(X,E1) satisfying fn(xn) = vn and fn|X\Un = 0.
Next, for each n ∈ N, consider the function gn on X defined as

gn(x) =
n∑
k=1

fk(x) for all x ∈ X.

According to [23, Proposition 3.1], gn is continuous for all n ∈ N. It is easy to see
that the sequence B = {gn : n ∈ N} converges in Cτp(X,E1) which implies that it
is a τp-relatively compact subset. Being τα stronger than τp, the τα-closure of B is
contained in its τp-closure. Thus, by Theorem 5.7, the τα-closure of B is pointwise
d∞-bounded, and pointwise both-sided equicontinuous. We shall prove that B is
equicontinuous. For this, fix x ∈ X. We shall consider two cases:

Case 1. x /∈
⋃
n∈N Un.

Being the sequence {Un : n ∈ N} locally finite, we can choose a nonempty open set
V with x ∈ V such that V ∩

⋃
n∈N Un = ∅; this implies that

d∞(gn(y), gn(x)) = 0

for all y ∈ V and all n ∈ N.

Case 2. There is n ∈ N such that x ∈ Un.

Let ε > 0. Consider the open set V = Un ∩ f−1n (Bε(fn(x)). Then, for all y ∈ V , we
have

d∞(gk(y), gk(x)) < ε

for all k ≥ n.

Case 1, together with Case 2, shows that B is equicontinuous at x. If x is an
arbitrary point of X, then the family B is equicontinuous on X. Since τα ≥ τp,
Theorem 7.14 of [24] tells us that the τα-closure of B is equicontinuous as well.
We conclude the proof by proving that B is not relatively compact in Cτα(X,E1).
Indeed, note that gs(xj) = 0 and gk(xj) = vj whenever s < j < k and, consequently,
by choice of the sequence {vn : n ∈ N}, we have d∞(gs(xj), gk(xj)) > 1 whenever
s < j < k. Thus, B is not relatively compact in Cτα(X,E1). �
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It is convenient to provide an example of a function space satisfying the weak
fuzzy Ascoli theorem but not the fuzzy Ascoli theorem to illustrate the notions that
are being discussed. Recall that a function f : X × Y → Z is said to be separately
continuous if f |X×{y} and f |{x}×Y are continuous for all x ∈ X and all y ∈ Y . It is
worth mentioning that any real-valued continuous function defined on the product
X×Y of two pseudocompact spaces can be extended to a separately continuous (not
necessarily continuous) function defined on βX × βY where, as usual, βM stands
for the Stone-Čech compactification of a space M .

EXAMPLE 5.13. Let K × X be a product space with K compact. Assume that
there is a separately continuous (but not continuous) fuzzy-number-valued function
f on K ×X. By Theorem 5.12, Cτp(X,E1) satisfies the weak fuzzy Ascoli theorem.
We shall prove that Cτp(X,E1) does not satisfy the fuzzy Ascoli theorem. For this,
we claim that µ(f) ∈ C(K,Cτp(X,E1)). Indeed, the function f being continuous on
{k} ×X for all k ∈ K, the function µ(f)(k) ∈ C(X,E1) (k ∈ K). Now, to see that
µ(f) is continuous at every point k ∈ K, consider a net kδ converging to k ∈ K.
Since f |K×{x} is continuous for all x ∈ X, we have that f(kδ, x) converges to f(k, x)
for all x ∈ X. Thus, µ(f) is continuous.

Suppose now, to derive a contradiction, that Cτp(X,E1) satisfies the fuzzy Ascoli
theorem. Then the compact set µ(f)(K) is equicontinuous. By [24, Theorem 7.15],
the evaluation function

e : µ(f)(K)×X → E1

(h, x) → h(x)

(h ∈ µ(f)(K), x ∈ X) is continuous. So f = e ◦ (µ(f) × idX) is also continuous, a
contradiction. Therefore Cτp(X,E1) does not satisfy the fuzzy Ascoli theorem. �

THEOREM 5.14. Let α ⊆ β be a cover of a space X. If X is an αf -space, then
(X,E1, τα) satisfies the fuzzy Ascoli theorem.

Proof. By Theorem 5.12, we only need to prove that a compact subsetK of Cτα(X,E1)
is τα-closed, pointwise d∞-bounded, pointwise both-sided equicontinuous and equicon-
tinuous. Consider the (continuous) inclusion mapping i from K into Cτα(X,E1). By
Theorem 5.11, the evaluation mapping µ−1(i) is continuous. Since τα ≥ τp, equicon-
tinuity of K follows from [24, Theorem 7.19 and Theorem 7.20]. Now, being K
τp-compact, K is pointwise d∞-bounded and pointwise both-sided equicontinuous.
This completes the proof thanks to Theorem 5.6. �

COROLLARY 5.15. The following statements hold:

(1) If X is a bf -space, then (X,E1, τβ) satisfies the fuzzy Ascoli theorem.
(2) If X is a kr-space, then (X,E1, τco) satisfies the fuzzy Ascoli theorem.

The previous corollary has several applications. Two of them are stated in what
follows. Although an arbitrary product of pseudocompact groups is a pseudocom-
pact group (see [10]), it is a trivial fact that an arbitrary product of locally pseudo-
compact groups fails to be locally pseudocompact. However, an arbitrary product
of locally pseudocompact groups is a bf -group, that is, a topological group whose
underlying space is a bf -space (see [34, Theorem 4.3]). Thus, we have
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COROLLARY 5.16. If G is an arbitrary product of locally pseudocompact groups,
then (G,E1, τβ) satisfies the fuzzy Ascoli theorem.

The product of two kr-spaces need not be a kr-space ([22]) but there are several
interesting cases where an arbitrary product of kr-spaces is a kr-space as well. For
example, if Xα is a kr-space pseudocompact for all α ∈ I, then so is X =

∏
α∈I Xα

([29, Theorem 4.2]). This fact allows us to state the following

COROLLARY 5.17. If X is an arbitrary product of kr-pseudocompact spaces, then
(X,E1, τco) satisfies the fuzzy Ascoli theorem.

For the important case of the uniform convergence, we have

COROLLARY 5.18. For a space X, the following conditions are equivalent:

(1) X is pseudocompact.
(2) (X,E1, τu) satisfies the weak fuzzy Ascoli theorem.
(3) (X,E1, τu) satisfies the fuzzy Ascoli theorem.

Proof. By Theorem 5.12, it is apparent that (1) and (2) are equivalent and that
(3)=⇒(1). Finally (1)=⇒(3) follows from Theorem 5.14. �

COROLLARY 5.19. [14, Theorem 4.2] For each compact metric space K, (K,E1, τu)
satisfies the fuzzy Ascoli theorem.

REMARK 5.20. We would like to thank the referee for drawing our attention to a
recent interesting paper by H. Huang ([21]). In his manuscript, the author provides
a complete study of the endograph metric, Hend, on general fuzzy sets (containing
fuzzy numbers) which, combined with the ideas presented in this paper, opens new
perspectives for future research on the realm of fuzzy-number-valued functions. More
precisely, Huang’s results on compactness and our techniques could be applied to ob-
tain versions of (weakly) Arzelà-Ascoli theorem for the space C(X, (E1, Hend)). It is
worth noting that, since Hend(u, v) ≤ d∞(u, v) for all u, v ∈ E1 ([8]), the identity map
is continuous from Cτα(X, (E1, d∞)) into Cτα(X, (E1, Hend)) (α a bornology on X).
Thus, every compact subset of Cτα(X, (E1, d∞)) is compact in Cτα(X, (E1, Hend)).

6. Conclusion

The aim of this paper is to describe three topological properties, namely, com-
pleteness, metrizability and compactness, in the space of continuous (with respect to
the supremum metric) fuzzy-number-valued functions defined on a topological space
X. We conclude that, when we endow these function spaces with the (commonly
used) topology of uniform convergence on the members of a cover of X, such prop-
erties are closely related to those covers contained in the cover of all bounded sets.
Completeness and metrizability had not been addressed in the fuzzy literature yet,
while our results on compactness (that is, Ascoli type results) correct and improve
some previously published ones. We expect this research to be useful for future
developments in Fuzzy Analysis.
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