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Abstract

In this paper, an artificial neural network application to model a small refrig-
eration system is presented. The main objective of this study is an energy
comparison of three refrigerants: R134a, R450A and R513A. The application
of the artificial neural network was designed to model individually three typ-
ical energy parameters: the cooling capacity, the power consumption and the
coefficient of performance, as a function of the evaporating temperature and
the condensing temperature. Each model was validated using a technique
called cross-validation, producing minimum relative errors of 0.15 for the
cooling capacity and the coefficient of performance, while 0.05 for the power
consumption. Based on the appropriate validation results, computer simula-
tions were performed to build 3D color surfaces. After inspecting these 3D
color surfaces, it was concluded that R450A presented a slightly lower cooling
capacity than R134a, actually a 10 % reduction in the cooling capacity was
estimated. Similar results were observed for the power consumption, that is,
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R450A had about 10 % less power consumption than the other two refriger-
ants. On the other hand, it was observed that R134a and R513A presented
very similar energy behaviors. With respect the COP, it was concluded that
all three refrigerants showed a very similar behavior. After the analysis per-
formed with the artificial neural networks and the use of 3D surface color, it
was concluded that R450A and R513A are appropriate refrigerants to replace
R134a in the short term in applications at medium evaporating temperature.

Keywords: vapor compression system, artificial neural network, R450A,
R513A, cross-validation, energy performance

1. Introduction

Vapor compression systems are the most extensively used technology for
cold generation. This type of refrigeration has been affected by two subjects
that are currently under investigation: the reduction of energy consump-
tion and the decrease of greenhouse gas emission. In this regard, different
strategies to reduce energy consumption [1, 2], or achieve more efficient con-
figurations [3] are important investigation topics in this field. Additionally,
the research and use of environmentally friendly refrigerants [4, 5, 6], are also
very important topics for research in this area.

In order to reduce energy consumption, different models of vapor com-
pression systems have been developed to characterize the behavior of this
type of facilities. Some of them are based on equations derived from physical
laws and empirical correlations, and in some cases, these two methods can
be combined [7, 8]. These models frequently require geometric data that
are difficult to obtain, and in some cases, operating parameters that are not
available. Additionally, this type of models are very difficult to export to
other systems with different geometric characteristics. Because it is difficult
to accurately characterize a refrigeration system, empirical models have been
proposed. In this way, the application of artificial intelligence in the field of
refrigeration systems has notably increased in the last few years. Thus, the
use of artificial neural networks, ANNs, shows interesting applications in the
refrigeration field [9, 10], this is mainly due to the fact that ANNs have
very good approximation capabilities and offer additional advantages such
as: short development and fast processing time.

For example, Rashidi et al. [11] applied an ANN modeling technique to
an ejector refrigeration cycle for predicting the unknow data. The authors
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concluded that the advantages of using ANN compared to other methods
were speed and simplicity. Hosoz and Ertunc [12] developed an ANN model
for a cascade vapor compression refrigeration system using R134a in both
higher and lower cycles. This model was used for predicting the energy pa-
rameters of the overall cascade system. Their results suggest that the ANN
model could alternatively and reliably be used for modeling. Esen et al. [13]
used an ANN model to predict the performance of an experimental ground-
coupled heat pump system with minimum input data. They concluded that
the ANN approach could be used for the forecasting of the coefficient of
performance, COP. Tong et al. [14] analyzed the performance of the refriger-
ation system through the application of an ANN with three input data. This
model could provide guidance about how to create a saving energy control
method of a refrigeration system working at part-load conditions. Önder [15]
developed an approach based on an ANN with a small data set to determine
the performance of a refrigeration system in terms of its thermodynamic as-
pects and its energy consumption. Their prediction results were very close
to the actual values. Li et al. [16] applied an ANN modeling technique to a
direct expansion air conditioning system using 169 sets of experimental data.
This model could help to design a strategy to simultaneously control indoor
air temperature and humidity. Belman-Flores et al. [17] developed a new
method to model a refrigeration system, this method accurately estimated
the number of neurons in the hidden layer, and the model predicted the en-
ergy performance with good results. Further to this study, they proposed
a new tool that uses ANN to build energy maps for a vapor compression
system working with R1234yf. From these maps, it is possible to identify
the best performance zones [18]; in a later study, they built 3D plots for
visualization of the energy performance and its variability when the input
operating parameters change [19]. Cao et al. [20] developed an ANN model
for an electronic expansion valve using the refrigerant pressures at the inlet
and at the outlet, the inlet subcooling and the refrigerant mass flow rate as
output. Their results showed that the ANN model was much more accurate
than the literature correlations.

On the other hand, R134a has been the most important and dominant
refrigerant in diverse refrigeration systems as well as in air conditioning sys-
tems. This refrigerant has a high global warming potential, GWP, of 1300,
contributing significantly to the greenhouse effect [21]. In this regard, there
are different options to replace hydrofluorocarbons, HFCs, in the refrigeration
systems; the alternatives are natural refrigerants and synthetic refrigerants.
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Focusing on synthetic fluids such as hydrofluoroolefins, HFOs, their mixtures
with HFCs have emerged as low GWP alternatives to replace conventional
refrigerants in refrigeration systems currently working with R134a. For ex-
ample, R450A is a mixture of R1234ze and R134a; while R513A is a mix-
ture of R1234yf and R134a. Both, R450A and R513A, are main options for
medium temperature refrigeration and air conditioning systems. However,
in literature there is little information about these two fluids. For example,
Schultz and Kujak [22] evaluated experimentally R450A in a water-cooled
chiller and compared it with R134a. Their results showed a decrease of 15%
and 2% for the cooling capacity and for the COP, respectively, when com-
pared to R134a. Mota-Babiloni et al. [23] presented an experimental study of
R450A as R134a drop-in replacement. Their experimental tests were carried
out in a vapor compression system with a variable-speed compressor. They
concluded that R450A could be used directly in R134a systems obtaining a
good energy performance. Later, they demonstrated that the incorporation
of an internal heat exchanger improved the energy performance of the overall
system working with R450A [24]. Mendoza-Miranda et al. [25] evaluated the
evaporator performance through a shell-and-microfin tube evaporator model
for various refrigerants, including R450A, which behavior was very similar
to R134a. With regard to R513A, Mota-Babiloni et al. [26] experimentally
assessed the main operation and the performance differences between retrofit
replacement of R513A and R134a in a test bench equipped with a hermetic
rotary compressor, a plate condenser and a plate evaporator. They concluded
that the use of R513A could be recommended for refrigeration systems that
use R134a.

Based on the above and because there are no studies about the modeling
of refrigeration systems that operate with lower GWP mixtures, this paper
presents the development of a model for a small refrigeration system that
can be used to analyze the energy performance of alternative refrigerants to
R134a. The model is based on the use of artificial neural networks to compare
the behavior of three refrigerants: R450A, R513A and R134a. The proposed
ANN was trained and their performance was analyzed using a special type
of validation called cross-validation. The main contribution is the use of
a technique of artificial intelligence known as artificial neural network in
combination with a special type of validation to analyze the replacement
of R134a with two lower GWP refrigerants; note that there are not any
similar studies for these type of refrigerants. The primary advantage of the
application of an ANN is that it can create a model from measurement data
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and predict the behavior under other operating conditions. Finally, computer
simulations were made to predict the main energy parameters of the facility
such as cooling capacity, power consumption and COP.

2. Characteristics of R450A, R513A and R134a

The main characteristics of the refrigerants under study in this work are
shown in Table 1. It can be seen that the properties are very similar between
refrigerants. However, it is possible to highlight the difference between GWP
values, for instance it can be observed that R450A and R513A have a 42% and
44% reduction respectively, when compared to R134a. Another important
fact is that R450A and R513A are non-flammable mixtures.

The normal boiling points of the refrigerants are in a similar range, and
therefore, they can be used as an alternative for R134a in food conservation
applications as well as in air conditioning applications. The glide of both
refrigerants is low enough to consider R513A azeotropic mixture and R450A
near-azeotropic mixture as replacements of R134a. The latent heat of vapor-
ization of both alternatives is slightly lower than the one of R134a, so that
the variation on cooling capacity will depend on the operating conditions and
the mass flow rate. The slightly lower liquid density indicates that the system
could require less refrigerant charge, but the great variation of vapor density
could affect: the geometric volume of the compressor, the heat transfer in
the heat exchangers of the circuit and the pressure drop in components and
pipelines. Another parameter that could affect the heat exchanger design
could be the liquid thermal conductivity, when it is compared to the vapor
thermal conductivity, the liquid specific heat, and the vapor specific heat, it
can be observed that the liquid thermal conductivity is the parameter with
the greatest difference between R134a and its alternatives. By comparing
R134a with the other two refrigerants, it can be observed that the major
difference is exhibited in the viscosity of both the liquid and the vapor of
R513A.

Therefore, these main characteristics make R450A and R513A good op-
tions as alternatives of R134a in applications at medium evaporating tem-
perature.
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R450A R513A R134a

Composition (mass %) R134a/R1234ze R134a/R1234yf
42/58 44/56 100

ASHRAE safety class A1 A1 A1
ODP 0 0 0
GWP [21] 547 573 1300
Critical temperaturea (◦C) 105.6 97.7 101.1
Critical pressurea (kPa) 3913.5 3855.3 4059.3
Glidea,b (K) 0.61 0.10 0
Normal boiling point a,b (◦C) -23.65 -29.87 -26.36
Latent heat of vaporization a,c (kJ/kg) 204.42 194.94 217.16
Liquid density a,c (kJ/kg) 1259.64 1221.90 1294.78
Vapor density a,c (kJ/kg) 13.18 17.23 14.43
Liquid specific heat a,c (kJ/kg K) 1.33 1.31 1.34
Vapor specific heat a,c (kJ/kg K) 0.89 0.92 0.90
Liquid thermal conductivity a,c (mW/m K) 86.24 79.20 92.01
Vapor thermal conductivity a,c (mW/m K) 11.71 11.73 11.51
Liquid viscositya,c (µ Pa s) 260.27 224.69 266.53
Vapor viscosity a,c (µ Pa s) 10.73 10.57 10.73

a Values obtained using REFPROP V9.4 Program [27]
b at 100 kPa
c at 0 ◦C

Table 1: Characteristics of the studied refrigerants.
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Figure 1: a) Experimental setup, and b) schematic diagram.

3. Experimental test bench

3.1. Experimental setup

The experimental data needed for the development of the ANN model
have been obtained from a fully instrumented small capacity refrigeration
unit (see Figure 1a). This vapor compression system has been designed to
simulate the R134a typical operation in: mobile air conditioning, domes-
tic and commercial refrigerators, heat pump water heaters and other small
refrigeration systems (working at medium evaporating temperature). Fig-
ure 1b shows the schematic of the experimental setup, the main components
and measurement points are indicated. It is composed of the main circuit,
which simulates the operation of a vapor compression system, and two sec-
ondary circuits: the secondary fluid (ethylene glycol) close loop connected to
the evaporator and the water open loop connected to the condenser.

The installation is composed of four main components, common to every
vapor compression system: a full hermetic rotary compressor for R134a with
an internal motor protector, two plate heat exchangers (an evaporator and a
condenser) with a channel volume of 62 cm3, and a R134a thermal expansion
valve (TXV) with external pressure equalization (see Table 2). Additional
accessories to ensure right operation of the system such as, a filter dryer, a
sight glass and an oil separator, are also located in the installation. It should
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Compressor Value
Motor rating 550 W
Displacement 15.4 cm3 per revolution
Rotating speed 2840/2860 rpm at 220/240 V
Oil type / charge POE NEO32 / 300 cm3

Condenser/Evaporator
Plate heat exchanger
Channel volume 62 cm3

Max volume flow 9 m3/h
Expansion valve
Thermostatic expansion valve, TEN 2
Designed for R134a

Table 2: Characteristics of the main components.

be noted that the components and the pipes of the system are completely
isolated using closed cell elastomeric nitrile rubber foam (with a thermal
conductivity of 0.033 W/m·K at 0◦C) to minimize losses to ambient, and
thus, allow measuring more accurate results. The secondary circuits allow
setting a wide range of evaporating and condensing conditions of the vapor
compression circuit. The heat load circuit is a close loop composed of a
pump that drives an 43 wt-% ethylene glycol based secondary fluid heated
by a set of adjustable resistances capable of delivering 2.6 kW power that are
immersed in a small isolated deposit. The heat removal circuit is a running
water open loop which flow is controlled by a water regulating valve.

The measuring instrumentation of the system is described in the follow-
ing:

• The temperatures at the inlet and the outlet of each main component
(main and secondary circuits) were measured by thermocouples T type
with an uncertainty of ±0.11 K.

• The condensation and evaporation pressures were measured by two cal-
ibrated pressure sensor transducers with ±0.08% of uncertainty (full
scale best straight line). The maximum measurement for the low pres-
sure transducer was 1000 kPa, while for the high pressure transducer
was 2000 kPa.
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Operating conditions R134a R450A R513A
Evaporating temperature (◦C) [-15.5, 13] [-15.5, 13] [-15.5, 13]
Condensing temperature (◦C) [24, 45] [24, 45] [24, 45]
Refrigerant amount (kg) 0.450 0.500 0.510

Table 3: Tests operating conditions.

• The evaporation pressure drop was measured by a differential pressure
sensor with an uncertainty of ±0.25% (reading).

• The refrigerant mass flow rate was measured by a Coriolis type flow
meter with an uncertainty of ±0.5% (reading).

• The electric consumption of the motor-compressor set and the heaters
was registered by a configurable multi transducer with an uncertainty
of ±0.2% (reading).

Finally, all measurements were collected every 10 seconds by a data acqui-
sition system and gathered to a personal computer, in which the data were
displayed and registered.

3.2. Test conditions

All recorded tests were carried out at steady-state conditions taking a
time period of 30 min. To define a steady-state test, the high and low pres-
sures should be within an interval of ±2.5 kPa and the measured tempera-
tures should be within ±0.5 K. Then, the data used as a steady-state test
were obtained averaging over a time period of 10 min. The average output
properties were calculated using the REFPROP.

The performed tests were intended to simulate a wide range of medium
evaporating temperature conditions. These conditions are typical for a small
capacity refrigeration system operating under very different condensing tem-
peratures (summer/winter conditions or cold/warm country). These tests
included twelve evaporating temperatures (in steps of 2.5◦C) and five con-
densing temperatures (in steps of 5◦C) for each of the three analyzed refrig-
erants, see Table 3. In order to have more points, some additional measure-
ments were made at other intermediate conditions. A total of approximately
N = 100 points were measured and used for the ANN model
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4. Artificial neural networks

An artificial neural network, ANN, is a computational method inspired
in biologic processes that is typically used to solve problems that are too
difficult for computers or humans. An ANN can be considered a black box
because it has a set of inputs and a set of outputs. In addition, ANNs have
the benefit that they can adapt to an ample range of situations where a
mathematic equation or model is missing. ANNs are organized in layers: the
input layer, the output layer and some hidden layers. An ANN can have
zero, one or more hidden layers depending on the application, in this paper,
the modeling of the vapor compressor system required only one hidden layer
because this configuration provided the best results.

In practical terms, ANNs can be implemented in hardware and software
[28]. Thus, in this research, ANNs were implemented in software by the use of
the Neural Lab simulator. In this simulator, it is possible to setup the number
of neurons in each layer. A neuron is the basic component of an ANN, and is
a processing unit that receives signals from other neurons to produce a single
output signal as it is shown in Figure 2. Each neuron is composed of an adder
and an activation function; the activation function must be real, continuous,
limited, have a positive derivative and typically must have a sigmoid shape.
In this work, the network has two inputs the temperature at the condenser
(Tcond) and the temperature at the evaporator (Tevap). The network has only
one output, represented by z in Figure 2. The number of neurons in the
hidden layer was adjusted to avoid overfitting, see [29]; thus 10 neurons in
the hidden layer were used. Three different ANNs were designed and tested;
one for each output parameter. One for the cooling capacity, another for the
power consumption, and a last network for the COP. These three networks
were trained using a hybrid method based on Simulated Annealing and the
Conjugate Gradient method [29]. There are other training methods that can
be used to train an ANN, however, the hybrid method used provided the
best performance. The network in Figure 2 has two sets of weights: one set
connecting the input layer and the neurons in the hidden layer (h11, h12, ...)
and the other set of weights connecting the neurons in the hidden layer with
the neurons in the output of the network (w11, w12, ...). The value of these
weights is estimated during a process called training which will be discussed
next.
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4.1. Cross-validation

Before an ANN can be used for any practical purpose, an ANN must
be trained. During training, the network weights are adjusted using a data
set called the training set. The training set has two components: the input
and the target. The training set target includes the set of desired values
at the output of the ANN when each of the inputs specified in the training
set is applied to the network. In order to assess how well an ANN will
behave in real applications, the network must be validated. Typically, the
validation process is performed using a data set called the validation set.
Thus, the proper use of ANNs requires two data sets: the training set and
the validation set. When using conventional validation, the original data set
is split into two sets: 70% is used for training and the remaining 30% is used
for validation. However, in the data sets of this work, there is not enough data
available to used conventional validation without comprising the significance
of the results. Consequently, a general technique called cross-validation which
combines measures to derive an accurate estimate of the performance of the
model was used. There are several types of cross-validation: exhaustive cross-
validation, leave-p-out cross validation, leave-one-out cross validation and
some more. In this paper, leave-one-out cross validation (which is typically
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abbreviated as LOOCV) was used.
Figure 3 illustrates how to perform LOOCV, in this case, the data set

includes N data samples. The algorithm begins by using for training the
original data set without case one; this is indicated by Step 1 in Figure 3.
After the ANN has been trained, the validation error is computed using only
case one. During Step 2, case two is excluded during the training of the
ANN, and validation is performed using case two. The process is repeated N
times, and consequently, by the end of LOOCV there are N validation errors.
Finally, the mean value of these errors is used to evaluate the performance
of the network.

5. Results and discussion

After the three networks were trained, the performance of the ANNs was
evaluated. As previously indicated, this evaluation was based on one special
type of cross-validation, called leave-one-out cross-validation, LOOCV. The
three energy parameters selected for validation by the estimation of the rel-
ative error are: the cooling capacity, the power consumption and the COP.
Then, the performance results obtained from the simulation for the three
refrigerants are discussed and compared.

5.1. Cooling capacity

Figure 4 shows the relative error for the cooling capacity for all refriger-
ants. The horizontal axis (the x-axis) represents the validation sample, that
is a non-dimensional sequential number representing each measurement. The
vertical axis (the y-axis) represents the relative error, and therefore, it does
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not have any units. The computer simulations in Figure 4 were performed
using uniformily distributed values in the ranges included in Table 3.

Each refrigerant is displayed with a color: R134a is shown in blue, R513A
in red and R450A in green. The validation is shown for the 100 data used
in the development of the ANN. In the figure, it can be seen that there is a
maximum relative error of 0.15 for a particular test of the R450A refrigerant,
however, it can also be observed that there are several errors practically
null. The maximum peak error values displayed in this figure might be
produced by the operation of the system under extreme conditions in which
the measurement devices do not present full accuracy. Other possible cause of
these peaks might be that some validation cases may not be fully represented
for the cases that were used for training.

In addition, it can be noted that for most of the data and for the three
refrigerants under study, there is a relative error below 0.05. Consequently,
this indicates acceptable validation results for the cooling capacity, CC, which
confirms an adequate prediction for this parameter by the ANN.

Based on the previous validation results, Figure 5 illustrates the computer
simulation for the behavior of the cooling capacity which is presented for the
refrigerants: R134a (Figure 5a), R450A (Figure 5b) and R513A (Figure 5c).
This behavior is based on the operating variation of the condensing temper-
ature (Tcond) and the evaporating temperature (Tevap) as it is indicated in
Table 3; these parameters were used in the ANN model of Figure 2. The
graphs in these figures show 3D color surfaces, which represent magnitude
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variation of the cooling capacity in Watts. For instance, a value of 480 W
is represented in dark blue, when the cooling capacity increases the color
changes until a maximum value of 2780 W, which is shown in black.

By inspecting the 3D surfaces in Figure 5, it can be appreciated that
the behavior of the cooling capacity is very similar for the three refrigerants.
According with the color surfaces and using as reference the results obtained
for R134a refrigerant, it can be observed that R450A exhibits a slightly lower
cooling capacity than the R134a; in fact a 10 % reduction in the cooling ca-
pacity is obtained from the computer simulations. This can be noted because
the R134a refrigerant displays a greater zone that includes the colors: red,
magenta and black. On the other hand, R513A exhibits a slightly higher
cooling capacity when compared with R134a, this can be observed by a big
zone that includes the colors magenta and black; these results can be justified
attending to the related mass flow rate and refrigerating effect (evaporator
enthalpy difference) of the refrigerants under the same operating conditions.
As has been proved experimentally [23, 26], R450A presents lower mass flow
rate than R134a while R513A presents higher value. Then, the difference of
the deviation of refrigerating effect is lower, and attenuates the difference in
cooling capacity.

In addition, it can be noticed that the evaporating temperature affects
more the cooling capacity than the condensing temperature because of the
influence of the first parameter in the suction conditions and pressure ratio.
In fact, the condensing temperature produces variations in the cooling ca-
pacity of approximately 10 % for the R134a, 5 % for the R513A and 1 %
for the R450A. With the simulation of this first energy parameter, it can be
concluded that the refrigerants R450A and R513A present a similar cooling
capacity to the R134a refrigerant, this under the same operating conditions.
Thus, the cooling capacity of the system is not going to be affected, if R134a
is substituted by these lower GWP refrigerants.

5.2. Power consumption

Regarding the validation of the power consumption, it is represented in
Figure 6. The computer simulations in Figure 6 were performed using the
same operating conditions as those used for the cooling capacity. It can be
observed that for the three refrigerants a maximum error value of the order
of 0.05 has been obtained, and for most of the data relative errors below 0.02
are presented. This confirms the correct performance of the ANN to predict
the power consumption of the test facility. Another important point to note
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is the order of magnitude for this parameter in comparison to the cooling
capacity (see Figure 4), that is, the maximum relative error value for the
cooling capacity was 0.15; three times greater than the maximum error for
the power consumption. This is because the power consumption is directly
obtained by a measuring device, however, the cooling capacity is estimated
using other measurements such as: temperature, pressure (both parameters
were used in the equations of state to calculate the enthalpy values) and mass
flow rate.

Figure 7 illustrates the computer simulations for the motor-compressor
power consumption for the installation working with the three refrigerants.
The minimum power consumption, 350 W, is displayed in dark blue; a grad-
ual color change indicates a power increase until a maximum value of 640
W which is displayed in black. By inspecting the computer simulations re-
sults for the three refrigerants, it can be noted that the surface color for
R450A includes less red area than R134a and R513A, and more blue area
than the other refrigerants. Consequently, the R450A refrigerant represents
a lower power consumption than the other two. The ANN model produced
a maximum power consumption of 568 W for R134a, 513 W for R450A and
586 W for 513A. Thus, it can be concluded that the behavior of the R513A
refrigerant is very similar to the behavior of R134a.

These computer simulations indicate that the condensing temperature
influences more the power consumption than the evaporating temperature;
an increase in the condensing temperature produces an increase in the com-
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pression ratio and hence in the specific compression work. Contrary to the
cooling capacity results, where the condensing temperature does not signifi-
cantly affect the cooling capacity. This is due to the shape of the isentropic
curves, where the variation of the condensing temperature affects more the
specific compression work than the evaporating temperature [30]. Then, both
parameters also affect the compression ratio that varies the compressor global
efficiency, and hence, the power consumption.

5.3. COP

The validation of the COP for the three refrigerants under study is shown
in Figure 8. Similar to the other two parameters, very small relative errors
are observed for most tests. Specifically, very few measurements exhibit
maximum errors of 0.15, in fact, most of the validation samples exhibit an
error that is less than 0.03. The low relative errors guarantees an adequate
prediction of the coefficient of performance of the refrigeration plant through
the use of the ANN model.

The simulation for the COP is shown in Figure 9 where it is possible
to notice that the color variation is very similar for the three refrigerants.
Therefore, it can be concluded that the installation operating with R450A
and the installation working with R513A offers a very similar COP to the
installation working with R134a. Additionally, it can be observed that an
increase in the evaporating temperature produces an increase in the cooling
capacity (see Figure 5) resulting a slightly decrease in power consumption
(see Figure 7), thus, increasing the overall COP of the system. From the
figure, it can also be seen that for a low evaporating temperature and a
high condensing temperature, the COP is a little smaller for R134a than for
R450A and R513A, in fact the COP is 6 % smaller for R134a; as the blue
color is more intense in Figure 9a than in Figure 9b and c.

Based on the behavior of the energy parameters analyzed in this work,
the lower GWP values and the safety classification, it can be concluded that
the refrigerants R450A and R513A are appropriate fluids to replace R134a
in applications at medium evaporating temperature.

6. Conclusions

The phase-out of HFCs requires new refrigerants and accessible techniques
to determine their energetic behavior in new and existing vapor compression
systems. This paper proposed a new approach to analyze the behavior of
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Figure 7: Computer simulation results for the power consumption.
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R134a and two lower GWP mixtures, R450A and R513A using artificial
neural networks. The neural network models were used to simulate: the
cooling capacity, the power consumption and the COP. The artificial neural
networks were training using a data set obtained from a vapor compression
system with a full hermetic rotary compressor. This data set was built using
a fully instrumented installation. The input parameters used in this study
were: the condensing temperature and the evaporating temperature. Three
separated data sets were built, one for R134a, another for R450A, and a last
one for R513A.

In order to assess the performance of the network, a technique called
cross-validation was used; this validation technique is the most recommended
method for the size of the data set used in this work. Using the results of
cross-validation, graphs to display the relative error for each parameter were
built.

After computer simulations were completed, the networks were used to
create 3D color surfaces. These 3D surfaces show the behavior for each en-
ergy parameter when the condensing temperature and the evaporating tem-
perature are changed. Based on the computer simulations, it was observed
that the R450A refrigerant exhibits around 10 % lower cooling capacity than
R134a and R513A for most operating conditions. With respect the power
consumption, it was concluded that R134a and R513A had very similar power
consumption, while R450A exhibited approximately a 10 % less power con-
sumption than the other two refrigerants. For the COP simulations, it was
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Figure 9: Computer simulation results for COP.
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observed that all three refrigerants displayed very similar behaviors. By visu-
ally comparing the 3D surfaces generated for each energy parameter, it was
concluded that R450A and R513A are adequate refrigerants to replace the
R134a in currently refrigeration systems that present similar characteristics
to the presented in this work.

Finally, it can be concluded that artificial neural networks can be used
to model the behavior of a vapor compressor system, and thus, predict the
energy performance of the system when the evaporating temperature as well
as the condensing temperature are changed.
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[23] Mota-Babiloni A., Navarro-Esbŕı J., Barragán-Cervera A., Molés F.,
Peris B. Experimental study of an R1234ze(E) mixture (R450A) as

23



  

R134a replacement. International Journal of Refrigeration 2015, 51: 52–
58.
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• A new approach to analyze the energy behavior of R134a, R450A and R513A is discussed. 

• An artificial neural network application to model a small refrigeration system is developed. 

• The performance of the model was verified using cross-validation. 

• Computer simulations were performed to build 3D color surfaces for each energy parameter. 

• Based on the results, R450A and R513A are adequate refrigerants to replace R134a. 
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